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Abstract
Dirichlet Process mixture models (DPMM) in
combination with Gaussian kernels have been
an important modeling tool for numerous data
domains arising from biological, physical, and
social sciences. However, this versatility in appli-
cations does not extend to strong theoretical guar-
antees for the underlying parameter estimates, for
which only a logarithmic rate is achieved. In this
work, we (re)introduce and investigate a metric,
named Orlicz-Wasserstein distance, in the study
of the Bayesian contraction behavior for the pa-
rameters. We show that despite the overall slow
convergence guarantees for all the parameters,
posterior contraction for parameters happens at
almost polynomial rates in outlier regions of the
parameter space. Our theoretical results provide
new insight in understanding the convergence be-
havior of parameters arising from various settings
of hierarchical Bayesian nonparametric models.
In addition, we provide an algorithm to compute
the metric by leveraging Sinkhorn divergences
and validate our findings through a simulation
study.

1. Introduction
From their origin in the work of Pearson (Pearson,
1894), mixture models have been widely used by statis-
ticians (McLachlan & Basford, 1988; Lindsay, 1995;
Mengersen et al., 2011) in variety of modern interdisci-
plinary domains such as medical science (Schlattmann,
2009), bioinformatics (Ji et al., 2005), survival analy-
sis (Tsodikov et al., 2003), psychometry (Gu et al., 2018)
and image classification (Permuter et al., 2006), to name
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just a few. The heterogeneity in data populations and asso-
ciated quantities of interest has inspired the use of a variety
of kernels, each with its own advantages and characteris-
tics. Gaussian kernels are particularly popular in various
inferential problems, especially those related to density es-
timation and clustering analysis (Kotz et al., 2001; Bailey
et al., 1994.; Roeder & Wasserman, 1997; Robert, 1996;
Banfield & Raftery, 1993). In addition to the choice of
kernels, the Bayesian mixture modelers are also guided by
the selection of prior distributions for the quantities of inter-
est. In particular, Bayesian nonparametric priors (BNP) for
mixture models are increasingly embraced, thanks to com-
putational ease and the modeling flexibility that these rich
priors entail (Escobar & West, 1995; MacEachern, 1999).

On the theoretical front, convergence rates for (Gaus-
sian) mixture models received extensive treatments in the
Bayesian paradigm (Ghosal et al., 2000; Barron et al., 1999;
Ghosal & van der Vaart, 2007). There have been enormous
recent progress on both density estimation and parameter
estimation problems. The density estimation problem under
Gaussian mixture models with BNP priors was extensively
studied by (Ghosal & van der Vaart, 2001) who obtained
attractive polynomial rates of contraction relative to the
Hellinger distance metric. In the parameter estimation prob-
lem, the metric of choice is Wasserstein distance, which
proved to be a natural tool to analyze the convergence of
mixture parameters (Nguyen, 2013). Moreover, (Nguyen,
2013) showed that the fast rates for density estimation with
BNP Gaussian mixtures do not extend themselves to param-
eter estimation scenarios. Meanwhile, practitioners have
employed successfully BNP mixture models, which yield
useful estimates for model parameters that provide meaning-
ful information about the data population’s heterogeneity.
This state of affairs leaves a gap in the theoretical under-
standing and the practical usage of Bayesian mixture models.
In this paper, we aim to bridge this gap by capturing more
accurately the heterogenenous behavior in the rates of pa-
rameter estimation. We proceed to describe this in further
detail.
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1.1. Gaussian Mixture Models

Consider discrete mixing (probability) measure G =∑k
i=1 piδθi . Here, p = (p1, . . . , pk) is a vector of mix-

ing weights, while atoms {θi}ki=1 are elements in a given
space Θ ⊂ Rd. Here k is used to denote the number of
components, which can potentially be infinite. Mixing mea-
sure G is combined with a (multivariate) Gaussian kernel
with known covariance matrix Σ, denoted by fΣ(·|θ), with
respect to the Lebesgue measure µ to yield a mixture density
pG. Here, fΣ, admits the following form:

fΣ(x|θ) :=
exp(−(x− θ)>Σ−1(x− θ)/2)

|2πΣ|−1/2
, (1)

where | · | in the denominator is the determinant operator of
a square matrix. To avoid notational cluttering, we remove
Σ from notation in the remainder of the paper and denote it
as f(·|θ).

The mixture density pG may be represented as follows.

pG(.) :=

∫
f(·|θ)dG(θ) =

k∑
i=1

pif(·|θi). (2)

The atoms θi’s are representatives of the underlying sub-
populations. Let X1, . . . , Xn be i.i.d. samples from a
mixture density pG0

(x) =
∫
f(x|θ)dG0(θ), where G0 =∑k0

i=1 p
0
i δθ0i is a true but unknown discrete mixing measure

with unknown number of support points k0 ∈ N∪{∞}. We
assume in this work that all the masses {p0

i }
k0
i=1 are strictly

positive and the atoms {θ0
i : i ≤ k0} are distinct.

A Bayesian mixture modeler places a prior distribution Πn

on a suitable space (specifically, G(Θ) of discrete measures
on Θ). The posterior distribution corresponding to Πn, both
of which may vary with sample size, can be computed as:

Πn(G ∈ B
∣∣X1:n) =

∫
B

∏n
i=1 pG(Xi)dΠn(G)∫

G(Θ)

∏n
i=1 pG(Xi)dΠn(G)

. (3)

Dirichlet process Gaussian mixture models: In the ab-
sense of the knowledge of the number of mixture compo-
nents k0, the learning of mixture models is carried out by
the use of Bayesian non-parametric (BNP) priors, leading
to the infinite mixture setting. One of the most popular such
priors is the Dirichlet process prior (Antoniak, 1974), which
uses sample draws from a base measure H to define the ran-
dom components and weights of the mixture model, leading
to the popular Dirichlet Process Gaussian Mixture Models
(DPGMM) (Lo, 1984; Escobar & West, 1995). In essence,
the Dirichlet process prior places zero probability on mixing
measures with a finite number of supporting atoms and en-
ables the addition of more atoms in the supporting set as the
number of data points increase. The DPGMM is formulated

as follows:

G ∼ DP(α,H),

θ1, . . . , θn
i.i.d.∼ G,

Xi|θi ∼ f(Xi|θi), ∀i = 1, . . . , n, (4)

where DP stands for Dirichlet process, the base measure
H is a distribution on Θ, and α > 0 is a concentration
parameter which controls the rate at which new atoms
may be considered, by varying the tail-behavior of mix-
ture weights. A parametric counterpart of DPGMM is the
mixture of finite Gaussian mixtures prior (MFM) (Miller
& Harrison, 2018), which places all its mass on mixing
measures with finite number of supporting atoms. BNP
priors other than DPGMM may have the effects of pushing
the atoms away from each other (Xie & Xu, 2017) or en-
couraging the weights of mixture to have a polynomial tail
behavior (De Blasi et al., 2015).

The popularity of BNP priors may partially have been pro-
moted due to a misconception that it ”automatically” deter-
mines the number of components in the posterior inference
process. This issue was highlighted by (Miller & Harrison,
2014), who demonstrated that Dirichlet Process priors over-
estimate the true number of components, k0, almost surely.
Subsequent work (Guha et al., 2021) has provided post-
processing techniques to determine k0 consistently with
Dirichlet Process priors. Their method depends on the
knowledge of the parameter contraction rate, with respect to
the Euclidean Wasserstein metric, i.e., Wasserstein metric
with underlying distance metric `2, a rate that is extremely
slow for the Gaussian kernels (Nguyen, 2013).

The inconsistency of estimating k0 arises primarily because
Dirichlet priors typically tend to create a large number of
extraneous components. While some of these components
may be in the neighborhood of the true supports, others may
be outliers and in practice, can be easily eliminated from
consideration by careful truncation techniques. However,
the Euclidean Wasserstein distance treats both the scenarios
similarly and in turn yields slow convergence rates for both
sets of extraneous atoms. This calls for alternative metrics
for investigating parameter estimation rates. In a recent
work, (Manole & Ho, 2022) argued that Wasserstein met-
rics capture only the worst-case uniform rates of parameter
estimation and therefore can yield extremely slow rates in
comparison to the local rates observed in practice, which
may vary drastically based on the likelihood curvature in
the parameter neighborhood. Employing alternate distance
metrics via the use of Voronoi tessallations, they showed
that in the finite Gaussian mixture setting with overfitted
components (where ∞ > k > k0), even though the uni-
form convergence rates may be slow as k increases, there
may still be some atoms which enjoy much faster rates of
convergence.
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The infinite Gaussian mixture setting is generally more chal-
lenging to address, (a) since the ”true” atoms are not guar-
anteed to be well-separated, (b) each true atom may be
surrounded by potentially infinitely many atoms a posteriori
and (c) a posteriori samples can potentially have a significant
portion of atomic masses attributed to outlier regions of the
parameter space. We argue in this work that in the infinite
Gaussian mixture setting, the rates captured by Wasserstein
distances for outlier masses are inadequately slow and will
demonstrate that with the help of a new suitably defined
choice of metric this difficulty can be alleviated.

1.2. Contribution

As a primary contribution of this work we study a general-
ized class of metrics called Orlicz-Wasserstein metrics, in
the context of parameter estimation arising in infinite mix-
ture models. We show that an in-depth analysis using this
metric helps alleviate a number of the concerns attributable
to the use of Wasserstein distances for quantifying the rates
of parameter convergence arising in infinite Gaussian mix-
tures. This class of distance metrics generalizes the Wasser-
stein metric relative to the Orlicz norm using a variety of
choices of convex functions. They encompass a very wide
range of distances on the space of probability measures,
including the Euclidean Wasserstein metrics as a special
case. By making appropriate choices of convex functions
we can obtain a fast, almost polynomial contraction rates
for atomic masses in outlier regions of the parameter space.
This is very different from the slow local contraction behav-
ior around the true atoms under the standard Wasserstein
metric. This helps us establish informative and useful finer
details about the convergence behavior of parameter esti-
mates underlying the usage of Gaussian mixture models in
clustering. We believe the usage of Orlicz-Wasserstein met-
rics for parameter estimation in Dirichlet process Gaussian
mixture models opens a new range of directions for future
research that aim for developing statistically sound and com-
putationally efficient strategies for posterior sampling with
mixture models.

Organization. The remainder of the paper is organized as
follows. Section 2 provides necessary backgrounds about
posterior contraction of parameters in Gaussian mixture
models under Wasserstein distances. Section 3.1 introduces
Orlicz-Wasserstein distances and some of its key properties.
Section 3.4 provides computational approximations to calcu-
lating Orlicz-Wasserstein metrics for two mixing measures.
Section 3.2 presents exact lower bounds for the Hellinger
metric with respect to Orlicz-Wasserstein distances for Gaus-
sian kernels. Section 3.3 uses the results in Section 3.2 to
provide the key results in the paper with regards to contrac-
tion behavior using Orlicz-Wasserstein metrics. Proofs of
results are deferred to the Appendices.

Notation. For any function g : X → R, we denote
g̃(ω) as the Fourier transformation of function g. Given
two densities p, q (with respect to the Lebesgue measure
µ), the squared Hellinger distance is given by h2(p, q) =

(1/2)

∫
(
√
p(x)−

√
q(x))2dµ(x). For any metric d on

Θ, we define the open ball of d-radius ε around θ0 ∈ Θ
as Bd(ε, θ0). Additionally, the expression an & bn will
be used to denote the inequality up to a constant multiple
where the value of the constant is independent of n. We
also denote an � bn if both an & bn and an . bn hold.
Furthermore, we denote Ac as the complement of set A for
any set A while B(x, r) denotes the ball, with respect to the
l2 norm, of radius r > 0 centered at x ∈ Rd. The expres-
sion D(ε,P, d) used in the paper denotes the ε-packing
number of the space P relative to the metric d. d is re-
placed by h to denote the hellinger norm. Finally, we use
Diam(Θ) = sup{‖θ1 − θ2‖ : θ1, θ2 ∈ Θ} to denote the di-
ameter of a given parameter space Θ relative to the l2 norm,
‖ · ‖, for elements in Rd. Regarding the space of mixing
measures, let Ek := Ek(Θ) and Ok := Ok(Θ) respectively
denote the space of all mixing measures with exactly and
at most k support points, all in Θ. Additionally, denote
G := G(Θ) = ∪

k∈N+

Ek the set of all discrete measures with

finite supports on Θ. G(Θ) denotes the space of all discrete
measures (including those with countably infinite supports)
on Θ. Finally,M(Θ) stands for the space of all probability
measures on Θ.

2. Posterior contraction under Wasserstein
distance

Following the work of (Nguyen, 2013), Wasserstein dis-
tances have been used to explore parameter estimation rates
of mixture models, embodied through their mixing mea-
sures. In this section, we outline the basic concepts as
follows. Let Θ ⊂ Rd. Moreover, define M(Θ) = {P :
P is a probability measure on Θ}.
Definition 1. Given µ, ν ∈ M(Θ) and the l2 metric ‖ · ‖
on Rd, the Wasserstein distance (Villani, 2009) of order r
seeks a joint measure π ∈ Π minimizing

Wr(µ, ν) :=

(
inf
π∈Π

∫
Θ×Θ

‖θ1 − θ2‖rdπ(θ1, θ2)

)1/r

. (5)

Here, Π is the set of couplings of µ and ν denoted by Π =
{π : γ1

#π = µ, γ2
#π = ν}, where γ1, γ2 are functions

that project onto the first and second coordinates of Θ×Θ
respectively.

In particular, as shown by (Nguyen, 2013), given two dis-
crete measures G =

∑k
i=1 piδθi and G′ =

∑k′

i=1 p
′
iδθ′i ,

a coupling between p and p′ is a joint distribution q on
[1 . . . , k] × [1, . . . , k′], which is expressed as a matrix
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q = (qij)1≤i≤k,1 ≤j≤k′ ∈ [0, 1]k×k
′

with marginal prob-
abilities

∑k
i=1 qij = p′j and

∑
j = 1k

′
qij = pi for any

i = 1, 2, . . . , k and j = 1, 2, . . . , k′. We use Q(p,p′) to
denote the space of all such couplings of p and p′. For any
r ≥ 1, the r-th order Wasserstein distance between G and
G′ is given by

Wr(G,G
′) = inf

q∈Q(p,p′)

(∑
i,j

qij‖θi − θ′j‖r
)1/r

.(6)

(Heinrich & Kahn, 2018) show that with Gaussian kernels,
the minimax rate for estimation is dependent on the num-
ber of extra components and goes down as the number of
potential components increases, meaning it gets harder to
accurately cluster the observations as we have more and
more extra components. The Gaussian kernel being smooth
fits in as many components as possible without changing
the mixture density and therefore achieves a very slow pa-
rameter contraction rate. With potentially infinitely many
extra components (while using Dirichlet Process priors),
rates are even slower. In fact, (Nguyen, 2013) shows that
for DPGMM with posterior distribution Πn(·|X1:n), the
following holds true.

Πn

(
G ∈ G(Θ) : W2(G,G0) . (logn)−1/2

∣∣∣∣X1:n

)
→ 1 (7)

in pG0
-probability. This bound can be shown to be tight

leveraging the results of (Ded, 2013). On the other hand,
it has been shown that ordinary-smooth kernels need only
a power of − log(ε) components to approximate an infi-
nite component mixing density upto ε- approximation in
Lq distance (Nguyen, 2013; Gao & van der Vaart, 2016).
Correspondingly, Laplace kernels need a polynomial power
of (1/ε) many components for the same degree of approxi-
mation. This combined with (7) suggests that BNP priors
use a lot more extra components to fit the true mixture dis-
tribution than is necessary, especially with Gaussian kernel.
The extra components can potentially arise from two differ-
ent sources, (i) multiple supporting atoms in the posterior
trying to approximate each true atom, (ii) or excessively
many outlier atoms in the posterior sample. If condition
(ii) is true, this may potentially have negative consequences
for using Gaussian kernels for clustering purposes. From
Eq. (7), we are only able to conclude that

Πn

(
G =

∑
piδθi :

∑
j

pj1{‖θj−θ0i ‖>η ∀i}

& log(n)−1/η2

∣∣∣∣X1:n

)
→ 1 (8)

which states that masses attributed to outlier atoms (those
> η distance from any ”true” atom) vanish at only a slow

logarithmic rate. Clearly, while standard Wasserstein dis-
tances are the popular choices of metrics, they do not help
differentiate between the sources of extra atoms, and thereby
are not useful while discarding outlier atoms. To facilitate
this distinction of the source of excess atoms, in this paper
we consider a generalisation of standard (Euclidean) Wasser-
stein metrics called Orlicz-Wasserstein distances which al-
low placement of higher weight penalties on outliers and
thereby help to identify outlier atoms better. We proceed in
the following sections to describe this in further detail.

3. A generalized metric for contraction of
mixing measures

In existing literature thus far, the rates of parameter estima-
tion have been extensively studied with respect to Euclidean
Wasserstein distances, in the works of (Nguyen, 2013; Ho &
Nguyen, 2016b;a; Gao & van der Vaart, 2016; Guha et al.,
2021). As part of this work, we extend such results to the
regime of Orlicz-Wassertein metrics which take a more care-
ful consideration of the geometry of the parameter space.
In that regard, for the sake of completeness, we first intro-
duce the reader to the notion of Orlicz norms and spaces as
follows.

3.1. Orlicz-Wasserstein distance

The Orlicz norm is defined as follows (Wellner, 2017).

Definition 2. Let µ be a σ−finite measure on a space X
with metric ‖ · ‖. Assume that Φ : [0,∞) → [0,∞) be a
convex function satisfying:

(i)
Φ(x)

x
→∞, as x→∞,

(ii)
Φ(x)

x
→ 0, as x→ 0.

Then, the Orlicz space is defined as follows:

LΦ :=
{
f : X → R| ∃ λ ∈ R+ s.t.∫

X

Φ(‖f(x)‖/λ) dµ(x) ≤ 1
}
.

Moreover, the Orlicz norm corresponding to f ∈ LΦ is
given by:

‖f‖Φ := inf{λ ∈ R+ :

∫
X

Φ(‖f(x)‖/λ) dµ(x) ≤ 1}. (9)

Without loss of generalisation, we will assume X = Rd,
with ‖ · ‖ denoting the standard Euclidean metric. Notice
that when Φ(x) = xp with p ≥ 1, the Orlicz norm, ‖f‖Φ
is the same as the Lp-norm. In this sense, the Orlicz norm
generalizes the concept of Lp-norm for p ≥ 1. Recall that,
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a coupling between two probability measures ν1 and ν2 on
Rd is a joint distribution on Rd × Rd with corresponding
marginal distributions ν1 and ν2. Corresponding to the Or-
licz norms, we define the Orlicz-Wasserstein metric which
generalizes the Wr-metric as follows.
Definition 3. Let ν1, ν2 be probability measures on (Rd, ‖ ·
‖). Assume that Φ : [0,∞) → [0,∞) is a convex func-
tion satisfying conditions (i) and (ii) in Definition 2. We
define the Orlicz-Wasserstein distance between ν1 and ν2 as
follows:

WΦ(ν1, ν2) := inf
ν∈Q(ν1,ν2)

inf{λ ∈ R+ :∫
Rd×Rd

Φ(‖x− y‖/λ) dν(x, y) ≤ 1},
(10)

where Q(ν1, ν2) is the set of all possible couplings of ν1

and ν2.

Orlicz Wasserstein distances have been briefly introduced
in the works of (Kell, 2017; Sturm, 2011), however, the
utility of the metrics for contraction properties of param-
eter estimation has remained hitherto unexplored. Also,
following Lemma 3.1 of (Sturm, 2011), we see under
some minor regularity conditions, for every Φ, ν1, ν2, there
exists λmin and νopt such that λmin = WΦ(ν1, ν2) and∫
Rd×Rd Φ(‖x− y‖/λmin) dνopt(x, y) = 1. This combined

with Fubini’s theorem establishes the equivalence of the
definitions in this work and those of (Sturm, 2011; Kell,
2017).

Note that when Φ(x) = xr for r ≥ 1, then WΦ(ν1, ν2) =
Wr(ν1, ν2), the usual Wasserstein distance of order r be-
tween ν1 and ν2. The following lemma demonstrates that
Orlicz-Wasserstein defines a proper metric on (Rd, ‖ · ‖).
Lemma 1. The Orlicz-Wasserstein WΦ is a distance metric
on the set of probability measures on (Rd, ‖·‖), namely, it is
symmetric and satisfies the identity and triangle inequality
properties.

The proof of Lemma 1 is in Appendix B.1. The notion of
Orlicz-Wasserstein distance may encompass a stronger no-
tion of metrics than that of the usual Wasserstein distance to
compare probability measures as evidenced by the following
lemma.
Lemma 2. Let ν1, ν2 be probability measures on (Rd, ‖ ·‖).
Also assume Φ,Ψ are convex functions satisfying conditions
(i) and (ii) in Definition 2. Suppose that for all x > 0,
Φ(x) ≤ Ψ(x). Then, we have

WΦ(ν1, ν2) ≤WΨ(ν1, ν2).

The proof of Lemma 2 is in Appendix B.2. Note that the
supremum of convex functions is also a convex function.
Therefore, as a corollary to the above lemma we obtain the
following inequality.

Corollary 1. Let Φ1(·) be a polynomial convex function and
Φ2(·) an exponential convex function. Ψ is the supremum of
Φ1(·) and Φ2(·). Then the following holds, for any G,G′,
1 > α > 0.

WΨ(G,G′) ≥ WαΦ1+(1−α)Φ2
(G,G′) (11)

≥ αWΦ1
(G,G′) + (1− α)WΦ2

(G,G′)

An important property of the Wasserstein distances is that
if one mixing measure is close to another in Wasserstein
distance, it provides a way to control the corresponding
contraction rates of the atoms and the masses associated
with them. The following lemma provides a similar result
for Orlicz-Wasserstein norms.

Lemma 3. Let G0 =
∑k0
i=1 p

0
i δθ0i , G =

∑k
i=1 piδθi be

mixing measures such that θj , θ0
i ∈ Rd for all i, j. Assume

that Φ : [0,∞) → [0,∞) is a convex function satisfying
conditions (i) and (ii) in Definition 2. Then

∑
j

pj1{‖θj−θ0i ‖>η for all i} ≤
(

Φ

(
η

WΦ(G,G0)

))−1

. (12)

Here, k0, k can also take the value∞.

The proof of Lemma 3 is in Appendix B.5. Lemma 3 al-
lows us to identify the amount of mass transferred over
large distances, when the mass transfer occurs between two
measures G and G0. Note that the constraint on Φ is very
minimal, thereby lending flexibility to the result. Since oper-
ations like supremums of convex functions or compositions
of a convex function with a non-decreasing convex func-
tion (this is the outer function), also yield convex functions,
Lemma 3 is a standalone result of interest as a generali-
sation of Bernstein/Hoeffding type inequalities for mixing
measures.

3.2. Lower bound of Hellinger distance based on
Orlicz-Wasserstein metric

In the previous section, we state results to control the cost of
mass transfer attributable to large transportation distances
using Orlicz-Wasserstein distances. This is an important
result in understanding the contraction behaviors of sup-
port points in the outlier regions of parameter space. Tra-
ditionally, contraction behavior has been extensively stud-
ied (Ghosal & van der Vaart, 2001) in the regime of mixture
densities pG. The following results help us connect our
understanding of posterior contraction on space of mixture
densities to that of mixing measure, relative to that of Orlicz-
Wasserstein distances. This is stated as follows in the next
theorem.

Theorem 1. Let Φ be a convex function satisfying condi-
tions (i) and (ii) in Definition 2 such that Φ(x) ≤ exp(xβ)−
1 for some 16/15 > β > 1. Then, as Θ = [−θ̄, θ̄]d, for
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any mixing measures G,G′, with corresponding densities
pG, pG′ , we have

WΦ(G,G′) . C

(
θ̄5/4

(log(1/h(pG, pG′)))1/8

+

(
1

log(1/h(pG, pG′))

)11/8

+

(
1

log(c/h(pG, pG′)(log(1/h(pG, pG′)))d/4)

)1/2)
(13)

for constants C, c dependent on the dimension and known
covariance matrix.

The proof of Theorem 1 is in Appendix A.1. The key tech-
nical novelty of the proof lies in the idea of convolving the
mixing measures with a mollifier which is exponentially
integrable while its Fourier transform is smoother than the
Gaussian location kernel. This helps to smoothly transition
the problem of bounding distances on mixing measures to
the Fourier transform domain of corresponding mixture den-
sities. We make a few comments about the above theorem.

(i) The upper bound on the RHS of equation (13) depends on
a power of log-Hellinger distance between the correspond-
ing mixture densities. This strengthens the result in Theo-
rem 2 of (Nguyen, 2013), who obtained a (log(1/h))−1/2

upper bound for W2(G,G′). The result in Theorem 1 is ob-
tained in terms of Orlicz-Wasserstein distances relative to an
exponential convex function, thus lending it more flexibility.

(ii) The key object to obtaining this result is to
find a suitable mollifier Zδ, which we choose as

c
1

δ
(
∫

exp(−itx/δ) exp(−t4)dt)2 with c being the constant
of proportionality for the proof of Theorem 1. However, we
believe a more refined choice of mollifier can yield sharper
estimates on the RHS of equation (13).

(iii) The result is obtained with exact computation of the
involvement of θ̄. Therefore, it can also be used for posterior
contraction rates with sieve priors, although for this work
we study only compactly supported priors.

Outline of proof of Theorem 1: Here, we provide a proof
strategy for Theorem 1, which relies on the following trian-
gle inequality with Orlicz-Wasserstein distance between G
and G′:

WΦ(G,G′) ≤WΦ(G,G ∗ Zδ,d) +WΦ(G′, G′ ∗ Zδ,d)
+WΦ(G ∗ Zδ,d, G′ ∗ Zδ,d),

(14)

where Zδ,d(x1, . . . , xd) :=
∏d
i=1 ζδ(xi) and ζδ(x) :=

c
1

δ
(
∫

exp(−itx/δ) exp(−t4)dt)2, with c being the con-

stant of proportionality. To control both WΦ(G,G ∗ Zδ,d)
and WΦ(G′, G′ ∗ Zδ,d), we use the following lemma:

Lemma 4. Assume that ν2 = ν1 ∗ Zδ,d where ν1 is a given
probability measure on (Rd, ‖ · ‖). Furthermore, suppose
that Φ(x) ≤ exp(xα) − 1 for some 1 < α < 4/3. Then,
there exists universal constant Cα depending only on α such
that

WΦ(ν1, ν2) ≤ Cαδ.

The proof of Lemma 4 is in Appendix B.3. For the final
term WΦ(G ∗Zδ,d, G′ ∗Zδ,d), we can upper bound it using
the following result:
Lemma 5. Let ν1, ν2 be probability measures on (Rd, ‖ · ‖)
and let Φ be a convex function satisfying conditions (i) and
(ii) in Definition 2. Then, we obtain that

WΦ(ν1, ν2) ≤ 2 inf{λ ∈ R+ :∫
Rd

Φ(‖x‖/λ) d|ν1(x)− ν2(x)| ≤ 1}.

The proof of Lemma 5 is in Appendix B.4. Using triangle
inequality and Lemmas 4 and 5, we obtain

WΦ(G,G′) - δ + inf{λ ∈ R+ :∫
Rd

Φ(‖x‖/λ) · |(G−G′) ∗ Zδ,d(x)|dx ≤ 1}.

We then decompose the integral with respect to Rd into two
integrals: one with respect to ‖x‖ ≤M and one with respect
to ‖x‖ > M , and after some algebraic manipulations, we
have

inf

{
λ ∈ R+ :∫
Rd

Φ(‖x‖/λ) · |(G−G′) ∗ Zδ,d(x)|dx ≤ 1

}
-

M

log(C/(h(pG, pG0) exp(α2dδ−4)Md/2))

+
(dθ̄)5/4

log(3/2)M1/4
+

δ5/4

M1/4
,

for any M > 0 where C is some universal constant. Col-
lecting these results leads to

WΦ(G,G′) - inf
δ,M

{
δ+

M

log(C/(h(pG, pG0
) exp(α2dδ−4)Md/2))

+
(dθ̄)5/4

log(3/2)M1/4
+

δ5/4

M1/4

}
.

Solving the minimization problem, we obtain the conclusion
of Theorem 1.

In the next section, we use Theorem 1 to establish poste-
rior contraction bounds of parameter estimating in Dirichet
Process Gaussian mixtures.

6
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3.3. Posterior contraction with Orlicz Wasserstein
distances

On the parameter estimation front, (Nguyen, 2013; Guha
et al., 2021; Ohn & Lin, 2020) establish logarithmic rates for
estimating mixing measures in Dirichlet Process Gaussian
mixtures. While (Nguyen, 2013) establishes an approxi-
mately log(n)−1/2 rate of contraction relative to the W2

metric, more recently, (Ohn & Lin, 2020) establish minimax
type ≈ log(n) rates relative to the W1 metric. Putting the
results in context with Lemma 3, both those results imply,∑
j pj1‖θj−θ0i ‖>η for all i ≈ log(n), meaning the mass of

posterior sample atoms in the region of parameter space
not populated by atoms of the true (data-generating) mix-
ing measure decays logarithmically. This puts the use of
DPGMMs for clustering in a negative light.

In this section, we show that a much stronger almost poly-
nomial rate can be established for this objective, facilitated
by the use of Orlicz-Wasserstein metrics. To facilitate our
presentation, we consider the following notation.

EX η(Θ, r) :=

{
G =

∑
piδθi ∈ G(Θn1) :∑

j

pj1{‖θj−θ0i ‖>η for all i} ≥ r
}
. (15)

EX η(Θ, r) here denotes the set of mixing measures which
devote at least r probability mass to atoms which are away
from the atoms ofG0 by distance η. To study the contraction
of mixing measure of DPGMMs, we impose the following
assumption on the base distribution H .

(P.1) The base distribution H is supported on Θ = [−θ̄, θ̄]d,
and absolutely continuous with respect to the Lebesgue
measure µ on Θ and admits a density function g(·). Also,H
is approximately uniform, i.e., minθ∈Θ g(θ) >

c0
µ(Θ)

> 0.

Let f1(n, d) := (log(n)/(d+ 2)− log(log n))−1/8.

Theorem 2. Given the Dirichlet Process Gaussian mixture
models (4), if Φ satisfies the assumptions in Theorem 1, then
for any η > 0 the following holds:

Πn

(
G ∈ G(Θ) : WΦ(G,G0) ≥ f1(n, d)

∣∣∣∣ X1:n

)
PnG0→ 0.

The proof of Theorem 2 is in Appendix A.2. The following
result is a simple corollary of Theorem 2.

Corollary 2. Given all the assumptions in Theorem 2,

Πn

(
G ∈ EX η

(
Θ, 2 exp

(
−η log(n)1/8

(d+ 2)

)) ∣∣∣∣
X1:n

)
PG0→ 0.

(16)

The proof of Corollary 2 is in Appendix A.3.

Remarks: (i) Corollary 2 suggests that if η can be chosen
sufficiently small so that each η-neighborhood contains at
most one true atom, Gaussian mixture models can be useful
choices in clustering as well since outlier atoms vanish at
almost polynomial rates.

(ii) We believe the rate of contraction can be optimized fur-
ther with a more refined choice of Φ(·), however, we make
no such attempts in this work. In particular, given existence
of a mollifier integrable relative to exp(xβ)−1(β ≈ 2) with
a strictly sub-Gaussian Fourier transform, the same proof
technique can be used to show that the Orlicz-Wasserstein
rate (relative to WΦ, with Φ(x) := exp(x2)) of log(n)−1/2

(possibly ignoring log(log(n)) terms) can be achieved, in
which case the excess mass would contract polynomially
≈ exp(−c(log(n)1/2)2). Corollary 2 reveals the power of
Orlicz-Wasserstein distances for Gaussian mixture models.
On the other hand, this exponential choice of Φ does not im-
prove on the bound for heavy tailed kernels such as Laplace
location mixtures.

We show in this section that Orlicz-Wasserstein metrics
provide strong theoretical guarantees for mixing measures.
This raises the natural question as to how such a metric can
be computed for arbitrary choices of Φ. We provide some
guidance in that regard in the following section.

3.4. Computation of the Orlicz-Wasserstein

In practice, the Euclidean Wasserstein distance is computed
for samples of the respective distributions. The exact compu-
tation turns out to be a linear programming problem which
scales to the order of O(n3 log(n)), where n is the com-
bined sample size of the two sampling distributions for
which the distance is being calculated. (Cuturi, 2013) shows
that using entropic regularization this can be drastically im-
proved to O(n2) (Altschuler et al., 2017; Lin et al., 2019;
2022). Further speed-ups and easiness of computation via
the use of dual formulation of the entropic regularization has
been explored by the works of (Seguy et al., 2017; Genevay
et al., 2016; Genevay, 2019). Here we consider the entropic
regularized version of the Orlicz-Wasserstein metrics.

Computational procedure: In that respect, we consider
solving the following problem as a surrogate to equa-
tion (10).

Wλ
Φ(ν1, ν2) := inf

ν∈Q(ν1,ν2)
AΦ(ν1, ν2),

PλΦ(ν1, ν2) := arg inf
ν∈Q(ν1,ν2)

AΦ(ν1, ν2),
(17)

where AΦ(ν1, ν2) := inf{η ∈ R+ :
∫
Rd×Rd Φ(‖x −

y‖/η) dν(x, y) − (1/λ)(H(ν)) ≤ 1} with H(µ) used to
denote the Shannon entropy of distribution µ. To obtain
solutions for equation (17), we resort to using outputs from

7
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(a) Standard Wasserstein W1 (b) Orlicz-Wasserstein with exponential Φ

Figure 1. Transportation plans. (a) Entropic OT produces more global plans and is unable to capture local structure of mass transfers. (b)
Entropic Orlicz-Wasserstein penalizes mass transfers over large distances

Sinkhorn divergence computations.

Algorithm 1 Computing Orlicz Wasserstein distances be-
tween two discrete probability measures

1: Input M, λ, r, c, ε.
2: Output Wλ

Φ(ν1, ν2).
3: I = (r > 0); r = r(I); M = M(I, :);
4: xupp = max(M)/Φ−1(1),

xlow = [S(M,λ, r, c) +
1

2λ
(H(r) +H(c))]/Φ−1(1 +

1

λ
(H(r) +H(c))

5: fxupp = S(Φ(M/xupp), λ, r, c),fxlow =
S(Φ(M/xlow), λ, r, c).

6: while |xlow − xupp| < ε not converged do
7: xnew = (xlow ∗ fxupp−xupp ∗ fxlow)/(fxupp− fxlow)).
8: if xnew < xupp and xnew > xlow do
9: fxnew = S(Φ(M/xupp), λ, r, c)

10: if fxnew < 1, xupp = xnew, fxupp = fxnew.
11: else: xlow = xnew, fxlow = fxnew
12: end if
13: else xnew = (xlow + xupp)/2. repeat Step 9-12.
14: end if
15: end while
16: return Wλ

Φ(ν1, ν2) := xupp.

Consider two discrete probability measures, r (with m
atoms, {xi}mi=1) and c (with n atoms, {yi}mi=1). Let
Mn×m be a distance matrix such that Mij = c(xi, yj)
for some cost function c(·, ·). Let S(M,λ, r, c) be used
to denote the Sinkhorn divergence optimized objective
function for cost matrix M , regularization parameter λ
and d(M,λ, r, c) = 〈S(M,λ, r, c),M〉 be used to denote
the transport cost. Algorithm 1 defines a procedure to
obtain a regularised Orlicz-Wasserstein distance between
ν1 =

∑
i riδxi and ν2 =

∑
i ciδyi in such a scenario

by iteratively updating the value of Orlicz-Wasserstein

distance until convergence. The crucial intuition be-
hind Algorithm 1 is that infν∈Q(ν1,ν2)

∫
Rd×Rd Φ(‖x −

y‖/η) dν(x, y) − (1/λ)(H(ν)) is a monotonically non-
increasing function of η. Therefore the solution to the Or-
licz Wasserstein distance can be obtained by a binary search
once upper and lower limits are known. This is rigorously
explained in Proposition 1 in Appendix C.

Simulations settings: We provide a demonstration of
the utility of using Orlicz-Wassestein distances in Fig-
ure 1. We consider two mixing densities, ν1 on the y-
axis is a 3-mixture of univariate normal distributions with
means at [3, 4, 5], common σ = 0.3 and mixture weights
[0.37, 0.3, 0.33]. On the other hand ν2 represented in the x-
axis is a 4-mixture of univariate Laplace kernels with means
at [7, 8, 9, 6], scale parameters [0.3, 0.3, 0.3, 0.1]] and mix-
ture weights [0.30, 0.32, 0.32, 0.06]. The left plot of Fig-
ure 1 shows the transportation plan for output of Sinkhorn
mechanism with regularisation parameter 0.01, while the
right plot shows the same for transportation plan obtained
via Algorithm 1 with λ = 0.01 (Φ(·) = exp(·/β) − 1,
β = 1.1). We have the following remarks.

Remark: The entropic Orlicz-Wasserstein procedure pro-
duces sharper transport plans. This indicates that it per-
forms a shrinkage procedure on the space of transportation
plans. This can have potential benefits towards obtaining
robust plans and provide a promising direction of future re-
search. Additionally, while entropic Euclidean Wasserstein
transport plans distribute the mass of the outlier atom of ν2

(mean=6, weight= 0.06), its Orlicz-Wasserstein counterpart
manages to avoid it entirely. By penalizing mass transfers
over large distances, Orlicz-Wasserstein distances are able
to restrict attention to localised transportation plans. This
in turn helps capture the small outlier mass associated with
aposteriori DPGMM samples, as seen in Section 3.3.

8
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4. Conclusion
In this work, we discuss the shortcomings of traditional
Wasserstein metrics to perform clustering with Gaussian
mixture models. We re-introduce a metric, called Orlicz-
Wasserstein distances, with novel application to the context
of estimating parameter convergence rates of hierarchical
and mixture models and provide sound theoretical justi-
fications of its ability to address the concerns associated
with traditional Wasserstein distances. We also provide
a theoretically sound approximate algorithm to compute
the distance metric, and also show that convergence rates
of Orlicz-Wasserstein distances carry over to the approxi-
mate distance. Lastly, we provide a preliminary simulation
study to initiate a discussion on future research with Orlicz-
Wasserstein distances. Since they allow low/high penalty
on mass transfers over large distances, depending on the
choice of function Φ, this lends flexibility to extending mass
transfers over local/global regions and consequentially may
be used as a device for smoothing/sharpening standard OT
plans. Combined with dimension reduction techniques this
can lend usage to a number of application domains such as
anomaly detection and robust optimal transport.
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Supplement to “On Excess Mass Behavior in Gaussian Mixture Models with
Orlicz-Wasserstein Distances”

In this supplementary material, we present proofs of key results in Appendix A and proofs of lemmas in Appendix B. We
then provide theoretical guarantee for the algorithm to compute the entropic regularized Orlicz-Wasserstein in Appendix C.

A. Proofs of key results
Notation revisited For any function g : X → R, we denote g̃(ω) as the Fourier transformation of function g. Given
two densities p, q (with respect to the Lebesgue measure µ), the squared Hellinger distance is given by h2(p, q) =

(1/2)

∫
(
√
p(x)−

√
q(x))2dµ(x). For any metric d on Θ, we define the open ball of d-radius ε around θ0 ∈ Θ as

Bd(ε, θ0). Additionally, the expression an & bn will be used to denote the inequality up to a constant multiple where the
value of the constant is independent of n. We also denote an � bn if both an & bn and an . bn hold. Furthermore, we
denote Ac as the complement of set A for any set A while B(x, r) denotes the ball, with respect to the l2 norm, of radius
r > 0 centered at x ∈ Rd. The expressionD(ε,P, d) used in the paper denotes the ε-packing number of the space P relative
to the metric d. d is replaced by h to denote the hellinger norm. Finally, we use Diam(Θ) = sup{‖θ1 − θ2‖ : θ1, θ2 ∈ Θ}
to denote the diameter of a given parameter space Θ relative to the l2 norm, ‖ · ‖, for elements in Rd. Regarding the space of
mixing measures, let Ek := Ek(Θ) and Ok := Ok(Θ) respectively denote the space of all mixing measures with exactly and
at most k support points, all in Θ. Additionally, denote G := G(Θ) = ∪

k∈N+

Ek the set of all discrete measures with finite

supports on Θ. Moreover, G(Θ) denotes the space of all discrete measures (including those with countably infinite supports)
on Θ. Finally,M(Θ) stands for the space of all probability measures on Θ.

A.1. Proof of Theorem 1

We present the proof of Theorem 1 for the lower bound of Hellinger distance between mixing density functions based on
Orlicz-Wasserstein metric between their corresponding mixing measures.

In this proof, we denote a . b to imply that a ≤ C · b for a universal constant C dependent on α, d, and θ̄. Also, f ∗ g will
denote the outcome of convolution operation on functions f and g. Now, we consider the following density function in R:

K(x) := c

(∫ ∞
−∞

exp(−itx) exp(−t4)dt

)2

, (18)

where c is a proportionality constant so that
∫∞
−∞K(x)dx = 1. Lemma 6 shows that K(·) is integrable.

Moreover, Lemma 7 shows that the characteristic function K̂(·), corresponding to K(·) satisfies,

|K̂(x)| . exp(−(x/2)4).

The strategy to obtain upper bounds for WΦ(G,G′) is to convolve G with mollifiers, Zδ,d(·), of the form Zδ,d(x) =∏d
i=1

1

δ
K(xi/δ) for δ > 0, where x = (x1, . . . , xd). In particular, by triangle inequality and following Lemma 1 we can

write:

WΦ(G,G′) ≤W1(G,G ∗ Zδ,d) +WΦ(G′, G′ ∗ Zδ,d) +WΦ(G ∗ Zδ,d, G′ ∗ Zδ,d).

For Φ(x) = exp((7/32)x)− 1, following Lemma 4 we find that

WΦ(G,G ∗ Zδ,d) ≤ Cαδ.

Therefore, we can write

WΦ(G,G′) ≤ 2Cαδ +WΦ(G ∗ Zδ,d, G′ ∗ Zδ,d).
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For every M > 0, we have

WΦ(G ∗ Zδ,d, G′ ∗ Zδ,d) ≤ 2 inf{λ ∈ R+ :

∫
Rd

Φ(‖x‖/λ) · |(G−G′) ∗ Zδ,d(x)|dx ≤ 1}

≤ 2 inf{λ ∈ R+ : s1 ≤ 1/2 and s2 ≤ 1/2},
≤ 2 max{inf{λ ∈ R+ : s1 ≤ 1/2}, inf{λ ∈ R+ : s2 ≤ 1/2}}, (19)

with the first inequality following from Lemma 5 and the third inequality comes from the monotonicity of function Φ. Here,
we denote

s1 =

∫
‖x‖2≤M

Φ(‖x‖/λ) · |(G−G′) ∗ Zδ,d(x)|dx,

s2 =

∫
‖x‖2>M

Φ(‖x‖/λ) · |(G−G′) ∗ Zδ,d(x)|dx.

We now proceed to bound T1 = inf{λ ∈ R+ : s1 ≤ 1/2} and T2 = inf{λ ∈ R+ : s2 ≤ 1/2}.

Bounding for T1: Using Holder’s inequality, we obtain

inf{λ ∈ R+ :

∫
‖x‖2≤M

Φ(‖x‖/λ) · |(G−G′) ∗ Zδ,d(x)|dx ≤ 1/2}

≤ inf{λ > 0 :

∫
‖x‖≤M

exp((‖x‖/λ)β) · |(G−G′) ∗ Zδ,d(x)|dx ≤ 3/2}

≤ inf

{
λ > 0 :

( ∫
‖x‖≤M

exp((M/λ)β)dx

)1/2( ∫
‖x‖≤M

|(G−G′) ∗ Zδ,d(x)|2dx

)1/2

≤ 3/2

}

≤ inf

{
λ > 0 :

πd/4√
(d2 + 1)Γ(d/2)

Md/2 exp((M/λ)β)‖(G−G′) ∗ Zδ,d(x)‖2 ≤ 3/2

}

=
M

(log(cd/(‖(G−G′) ∗ ζδ,d‖2Md/2)))1/β
. (20)

Since f is Gaussian distribution, we have f̃(ω) ≥ cf exp(−α
∑d
i=1 ω

2
i ) for some cf , α > 0. Given that inequality, we find

that

‖(G−G′) ∗ Zδ,d‖22 =

∫
|G̃− G̃′|2(ω)|K̃δ,d(ω)|2dω =

∫
|f̃(G̃− G̃′)|2(ω)

|K̃δ,d(ω)|2

|f̃(ω)|2
dω

≤ ‖pG − pG′‖22 sup
ω∈Rd

|K̃δ,d(ω)|2

|f̃(ω)|2

≤ 4‖f‖∞h2(pG, pG0
) sup
ω∈Rd

{
1

c2f
·
d∏
i=1

exp(−δ4|ωi|4) exp(2α|ωi|2)

}
.

By taking derivatives, we obtain the maximum as

sup
ωi∈R

{
exp(−δ4|ωi|4) exp(2α|ωi|2)

}
= exp(α2/δ4).

Plugging these results into equation (20) leads to

inf{λ ∈ R+ :

∫
‖x‖2≤M

Φ(‖x‖/λ) · |(G−G′) ∗ Zδ,d(x)|dx ≤ 1/2}

≤ M

(log(c/(h(pG, pG0
) exp(α2dδ−4)Md/2)))1/β

(21)
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for some universal constant c.

Bounding for T2: For any M > 0, we denote

k′ = inf{λ ∈ R+ : EX∼(G−G′)(Φ(‖X‖5/4/λM1/4) ≤ 1/2},
k′′ = inf{λ ∈ R+ : EY∼Zδ,d(Φ(‖Y ‖5/4/λM1/4) ≤ 1/2}. (22)

Then, by the convexity of Φ we have

inf{λ ∈ R+ : EX∼G−G′,Y∼Zδ,d(Φ(‖X + Y ‖5/4/λM (1/4)) ≤ 1/2} ≤ 21/4(k′ + k”).

The above inequality is because of the following inequalities:

EX∼G−G′,Y∼Zδ,d(Φ(‖X + Y ‖5/4/21/4(k′ + k”)M (1/4))

≤ EX∼G−G′,Y∼Zδ,d(Φ(21/4(‖X‖5/4 + ‖Y ‖5/4)/21/4(k′ + k”)M (1/4)))

= EX∼G−G′,Y∼Zδ,d
(

Φ
((
k′‖X‖5/4 + ‖Y ‖5/4

)
/(k′ + k”)M (1/4)

))
≤ EX∼G−G′,Y∼Zδ,d

(
Φ

(
k′

k′ + k”

(
‖X‖5/4

k′M (1/4)

)
+

k”

k′ + k”

(
‖Y ‖5/4

k”M (1/4)

)))
≤ EX∼G−G′,Y∼Zδ,d

k′

k′ + k”
Φ

(
‖X‖5/4

k′M (1/4)

)
+

k”

k′ + k”
Φ

(
‖Y ‖5/4

k”M (1/4)

)
≤ 1

2
. (23)

The first inequality follows from ‖a+ b‖p ≤ 2p−1(‖a‖p + ‖b‖p). The second last inequality follows from convexity of Φ
and the final inequality follows from equation (22). Therefore, we obtain that

inf{λ ∈ R+ :

∫
‖x‖2>M

Φ(‖x‖/λ) · |(G−G′) ∗ Zδ,d(x)|dx ≤ 1/2}

≤ inf{λ ∈ R+ :

∫
‖x‖2>M

Φ(‖x‖5/4/λM (1/4)) · |(G−G′) ∗ Zδ,d(x)|dx ≤ 1/2}

≤ inf{λ ∈ R+ : EX∼G−G′,Y∼Zδ,d(Φ(‖X + Y ‖5/4/λM (1/4)) ≤ 1/2}

. inf{λ > 0 :

∫
Rd

exp((‖x‖5/4/λM1/4)β) · |(G−G′)(x)|dx ≤ 3/2}

+ inf{λ > 0 :

∫
Rd

exp((‖x‖5/4/λM1/4)β) · |Zδ,d(x)|dx ≤ 3/2}

.
(dθ̄)5/4

M1/4
+ Cδ5/4/M1/4, (24)

where C = inf{λ > 0 :
∫
Rd

exp((‖x‖5/4/λ)β) · |K1,d(x)|dx < ∞ as K1,d(x) ∼ O(exp(−|x|4/3)) for large |x|, by

Lemma 6. Hence, using these results we get

WΦ(G,G′) . δ + max

{
(dθ̄)5/4

M1/4
+ Cδ5/4/M1/4,

M

(log(c/(h(pG, pG0) exp(α2dδ−4)Md/2)))1/β

}
≤ δ +

(dθ̄)5/4

M1/4
+ Cδ5/4/M1/4 +

M

(log(c/(h(pG, pG0
) exp(α2dδ−4)Md/2)))1/β

. (25)

Choosing M = (log(1/h(pG, pG0
)))1/2 and δ =

2α2

log(1/h(pG, pG0
))

in equation (25) we obtain,

WΦ(G,G′) . (log(1/h(pG, pG0
)))−1 +

(dθ̄)5/4

(log(1/h(pG, pG0)))1/8
+

(
1

log(1/h(pG, pG0
))

)11/8

+

(
1

log(c/h(pG, pG0
)(log(1/h(pG, pG0

)))d/4)

)(1/β)−(1/2)

(26)
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As a consequence, we obtain the conclusion of the theorem.

A.2. Proof of Theorem 2

The proof of this result follows by an application of Lemma 8, 9 and 10 in combination with Theorem 2.1 in (Ghosal et al.,
2000). To facilitate the presentation, we break the proof into several steps.

Step 1: First we compute the contraction rate relative to the Hellinger metric, i.e., assume that

θ̄d

εd+2
n

log

(
θ̄

εn

)
= o(n) and nε2n →∞.

Then we show that

Πn(G ∈ G(Θ) : h(pG, pG0) ≥ Lεn|X1, . . . , Xn)
PG0→ 0. (27)

We apply Theorem 7.1 in (Ghosal et al., 2000), with ε = Lεn and D(ε) = exp

(
c1

(
θ̄√

λminεn

)d
log

(
e+

32eθ̄2

λminε2n

))
,

where L ≥ 2 is a large constant to be chosen later and c1 is the constant in equation (43). Lemma 9 shows the validity of
this choice of D(ε). Then there exists a test function φn that satisfies

PnG0
φn ≤ exp

(
c1

(
θ̄√

λminεn

)d
log

(
e+

32eθ̄2

λminε2n

))

× exp(−KnL2ε2n)
1

1− exp(−KnL2ε2n)
,

sup
G∈G(Θ):h(pG,pG0

)≥Lεn
PnG(1− φn) ≤ exp(−KnL2ε2n). (28)

Now, we have

EPG0
Πn(G ∈ G(Θ) : h(pG, pG0

) ≥ Lεn|X1, . . . , Xn)φn

≤ PnG0
φn ≤ 2 exp

(
c1

(
θ̄√

λminεn

)d
log

(
e+

32eθ̄2

λminε2n

)
−KnL2ε2n

)
. (29)

Based on computation with the posterior,

Πn(G : h(pG, pG0
≥ εn)|X1, . . . , Xn)(1− φn) =

∫
G∈G(Θ):h(pG,pG0

)≥εn

∏n
i=1

pG(Xi)

pG0
(Xi)

dΠn(G)(1− φn)∫
G∈G(Θ)

∏n
i=1

pG(Xi)

pG0
(Xi)

dΠn(G)

≤

∫
G∈G(Θ):h(pG,pG0

)≥εn

∏n
i=1

pG(Xi)

pG0
(Xi)

dΠn(G)(1− φn)∫
G∈G(Θ):K(pG0

,pG).ε2n,K2(pG0
,pG).ε2n(log(M/εn))2

∏n
i=1

pG(Xi)

pG0
(Xi)

dΠn(G)

,

where M = exp(dλ−1
min(5θ̄2

0 + 4θ̄2)), with λmin being the minimum eigenvalue of Σ.

Step 1.1: In this step we show that∫
G∈G(Θ):K(pG0

,pG).ε2n,K2(pG0
,pG).ε2n(log(M/εn))2

n∏
i=1

pG(Xi)

pG0
(Xi)

dΠn(G)

& exp(−(1 + C)nλminε
2
n)

Γ(γ)(c0γπ
d/2)D

(2Γ(d/2 + 1))D(2D)D−1

(√
λminεn

2θ̄

)2(D−1)+dD

(30)

with pnG0
probability→ 1,

15
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for all C > 0 and εn > 0 is sufficiently small, where D = D(
√
λminεn,Θ, ‖.‖) ≈

(
θ̄

εn

)d
stands for the maximal

√
λminεn-packing number for Θ under ‖.‖ norm, and Γ(·) is the gamma function. First we show that

{G ∈ G(Θ) : W2(G,G0) .
√
λminεn}

⊂ {G ∈ G(Θ) : K(pG0 , pG) . ε2n,K2(pG0 , pG) . ε2n(log(M/εn))2}, (31)

for εn sufficiently small.

Since
∫

(pG0(x))2

pG(x)
µ(dx) ≤M by Lemma 10, it follows by an application of Theorem 5 in (Wong & Shen, 1995) that for

εn < 1/2(1− e−1)2,

h(pG, pG0
) . ε2n =⇒ K2(pG0

, pG) . ε2n(log(M/εn))2.

Following Example 1 in (Nguyen, 2013), h2(pG, pG0
) ≤ W 2

2 (G,G0)

8λmin
for Gaussian location mixtures.

Similarly, from (Nguyen, 2013) it also follows that K(pG, pG0) ≤ W 2
2 (G,G0)

2λmin
. Combining the above displays, equa-

tion (31) follows.

Following Lemma 8.1 in (Ghosal et al., 2000), for every C, ε,M > 0 and any measure Π on the set {G ∈ G(Θ) :
K(pG0

, pG) . ε2n,K2(pG0
, pG) . ε2n(log(M/εn))2}, we have,

PnG0

(∫ n∏
i=1

pG(Xi)

pG0(Xi)
dΠn(G) ≤ exp(−(1 + C)nε2)

)
≤ 1

C2nε2(log(M/ε))2
. (32)

The result in equation (30) now follows by an application of Lemma 8 in combination with equations (31) and (32) using
the fact that nε2n →∞.

Step 1.2: Let the event in (30) be denoted as Tn. Then

EPG0
[Πn(G : h(pG, pG0

) ≥ Lεn)|X1, . . . , Xn)(1− φn)] ≤ PG0
(TCn )

+ PG0
(Tn)

exp((1 + C)nλminε
2
n)

Γ(γ)(c0γπd/2)D

(2Γ(d/2+1))D(2D)D−1

(√
λminεn

2θ̄

)2(D−1)+dD
sup

G∈G(Θ):h(pG,pG0
)≥Lεn

PnG(1− φn)

.
exp((1 + C)nλminε

2
n)

Γ(γ)(c0γπd/2)D

(2Γ(d/2+1))D(2D)D−1

(√
λminεn

2θ̄

)2(D−1)+dD
exp(−KnL2ε2n) + o(1). (33)

The final step follows from simple computation similar to that of the Proof of Theorem 2.1 in (Ghosal et al., 2000) and using

the fact that
θ̄d

εd+2
n

log

(
θ̄

εn

)
= o(n). Combining equations (29) and (33) and using the condition

θ̄d

εd+2
n

log

(
θ̄

εn

)
= o(n),

it follows that for L large enough

Πn(G ∈ G(Θ) : h(pG, pG0
) ≥ Lεn|X1, . . . , Xn)

PG0→ 0. (34)

Step 2: For some sufficiently large L with εn = L(log n)n−1/(d+2) satisfies
θ̄d

εd+2
n

log

(
θ̄

εn

)
= o(n). Therefore we get,

from the result in Step 1of this proof

Πn

(
G ∈ G(Θ) : h(pG, pG0) ≥ L(log n)

n1/(d+2)

∣∣∣∣ X1:n

)
PnG0→ 0.

Now, from Theorem 1, we have

Πn

(
G ∈ G(Θ) : WΦ(G,G0) ≥ f1(n, d)

∣∣∣∣ X1:n

)
PnG0→ 0,

where f1(n, d) := (log(n)/(d+ 2)− log(log n))−1/8.
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A.3. Proof of Corollary 2

Let G0 =
∑k0
i=1 p

0
i δθ0i , G =

∑k
j=1 piδθi . Suppose q = (qij)1≤i≤k0,1 ≤j≤k ∈ [0, 1]k0×k is a coupling between p0 =

(p0
1, . . . , p

0
k0

) and p = (p1, . . . , pk), with Q(p,p′) represents the space of all such couplings of p0 and p. Using the proof
technique similar to Lemma 3, we get ∑

qij exp((‖θ0
i − θj‖/k)β)

≥
∑

qij1{‖θ0i−θj‖≥η} exp((η/k)β)

≥
∑

pj1{‖θ0i−θj‖≥η for all i} exp((η/k)β),

for all 1 < β < 16/15.

We denote K = inf{λ ≥ 0 :
∑
pj1{‖θ0i−θj‖≥η for all i} exp((η/λ)β) ≤ 2}. Then, we find that

K ≥ η

(
log

(
1∑

pj1{‖θ0i−θj‖≥η for all i}

))−1/β

, and

∑
j

pj1{‖θj−θ0i ‖>η for all i} ≤ 2 exp

(
−η

WΦ(G,G0)

)
.

Putting these results together with Theorem 2 leads to

Πn

(
G ∈ EX η

(
Θ, 2 exp

(
−
(
η log(n)1/8

(d+ 2)

)β)) ∣∣∣∣ X1:n

)
PG0→ 0

in PnG0
probability. Since this result holds for all 1 < β < 16/15, we obtain the conclusion.

B. Proofs for Lemmas
We now present the proofs for all lemmas in Section 3.

B.1. Proof of Lemma 1

We need to show the following properties of Orlicz-Wasserstein:

(i) WΦ(ν1, ν2) = WΦ(ν2, ν1) for any probability measures ν1, ν2 on (Rd, ‖ · ‖).

(ii) WΦ(µ, µ) = 0 for any probability measure µ on (Rd, ‖ · ‖).

(iii) WΦ(ν1, ν2) ≤WΦ(ν1, ν3) +WΦ(ν3, ν2) for any probability measures ν1, ν2, ν3 on (Rd, ‖ · ‖).

(i) follows easily from the fact ‖x− y‖ = is symmetric with respect to x, y ∈ Rd .

For (ii) consider the coupling, ν(x, y) = µ(x)1x=y, then it is clear to see that for any k > 0,
∫
Rd×Rd Φ(‖x −

y‖/k) dν(x, y) = 0 and therefore WΦ(µ, µ) = 0.

For part (iii), assume that WΦ(ν1, ν3) = k1,WΦ(ν3, ν2) = k2. Then, it is enough to show that there exists a coupling ν of
ν1 and ν2 such that

∫
Rd×Rd Φ(‖x− y‖/(k1 + k2)) dν(x, y) ≤ 1.

By results from (Villani, 2003; 2009), there exists a coupling µ1 of ν1 and ν3 and a coupling µ2 of ν2 and ν3 such that,∫
Rd×Rd

Φ(‖x− z‖/k1) dµ1(x, z) ≤ 1∫
Rd×Rd

Φ(‖z − y‖/k2) dµ2(y, z) ≤ 1. (35)
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Then, by a result in probability theory there exists a probability measure µ on Rd × Rd × Rd such that∫
x∈Rd

µ(dx, y, z) = µ2(y, z)∫
x∈Rd

µ(x,dy, z) = µ1(x, z) (36)

Define ν(x, y) :=
∫
z∈Rd µ(x, y,dz). Then, we obtain that∫

Rd×Rd
Φ(‖x− y‖/(k1 + k2)) dν(x, y)

=

∫
Rd×Rd×Rd

Φ(‖x− y‖/(k1 + k2)) dµ(x, y, z)

≤
∫
Rd×Rd×Rd

Φ((‖x− z‖+ ‖y − z‖)/(k1 + k2)) dµ(x, y, z)

≤
∫
Rd×Rd×Rd

Φ

(
k1

k1 + k2

‖x− z‖
k1

+
k2

k1 + k2

‖y − z‖
k2

)
dµ(x, y, z)

≤ k1

k1 + k2

∫
Rd×Rd

Φ

(
‖x− z‖
k1

)
dµ1(x, z)

+
k2

k1 + k2

∫
Rd×Rd

Φ

(
‖y − z‖
k2

)
dµ2(y, z) ≤ 1.

The first inequality follows from the triangle inequality property of ‖ · ‖, while the last inequality follows from the convexity
of Φ.

B.2. Proof of Lemma 2

Fix a coupling ν of ν1 and ν2. Consider λ satisfying∫
Rd×Rd

Φ(‖x− y‖/λ) dν(x, y) <∞,∫
Rd×Rd

Ψ(‖x− y‖/λ) dν(x, y) <∞,∫
Rd×Rd

Φ(‖x− y‖/λ) dν(x, y) ≤
∫
Rd×Rd

Ψ(‖x− y‖/λ) dν(x, y),

and thus, we find that {
λ :

∫
Rd×Rd

Ψ(‖x− y‖/λ) dν(x, y) ≤ 1

}
⊂
{
λ :

∫
Rd×Rd

Φ(‖x− y‖/λ) dν(x, y) ≤ 1

}
.

As a consequence, we obtain the conclusion of Lemma 2 since infimum of a set is smaller than the infimum of its subset.

B.3. Proof of Lemma 4

Consider X ∼ ν1 and Y ∼ Zδ,d. Let K be such that∫
R

exp((7/32)|yi/K|α − (7/16)|yi/δ|4/3)dyi <∞.

18
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Then, we find that

inf
µ

{∫
Rd×Rd

Φ(‖x− y‖/λ) dµ(x, y) : µ ∈ Q(ν1, ν2)

}
≤

(
1

δ

)d ∫
Rd

exp((7/32)‖y‖α/λα)

d∏
i=1

K1(yi/δ)

d∏
i=1

dyi − 1

≤
d∏
i=1

(
1

δ

)∫
R

exp((7/32)|yi|α/λα)K1(yi/δ)dyi − 1

=

d∏
i=1

(
1

δ

)∫
R
φ(yi)

2 exp((7/32)|yi/λ|α − (7/16)|yi/δ|4/3)dyi − 1,

where φ(·) is the function in Lemma 6. The second inequality follows from the fact that ‖x‖p ≤ ‖x‖q when p ≥ q, where
‖ · ‖p is the Lp norm. The final equality follows from Lemma 6. Now, as |φ(x)| ≤ Cφ for some constant Cφ <∞, we have
following the result in Lemma 2,

WΦ(ν1, ν2) ≤ Cαδ

where

Cα = inf

{
k > 0 :

∫
R

exp(|y/k|α − |y|4/3)dy − 1 ≤ 1

C2
φ

}
.

Note that, Cα as defined above exists because α ≤ 4/3. As a consequence, we obtain the conclusion of the lemma.

B.4. Proof of Lemma 5

Consider a coupling, ν between ν1 and ν2 that keeps fixed all the mass shared between ν1 and ν2, and redistributes the
remaining mass independently, i.e.,

ν(x, y) = (ν1(x)
∧
ν2(y))1x=y +

1

(ν1 − ν2)+(Rd)
(ν1(x)− ν2(x))+(ν2(y)− ν1(y))+ (37)

Let k0 be defined as

k0 := inf{k ∈ R+ :

∫
Rd

Φ(‖x‖/k) d|ν1(x)− ν2(x)| ≤ 1}. (38)

Then, using ν as defined in the above display we get∫
Rd×Rd

Φ(‖x− y‖/2k0) dν(x, y) =

∫
Rd×Rd

Φ(‖x− y‖/2k0) · 1

(ν1 − ν2)+(Rd)
(ν1(x)− ν2(x))+(ν2(y)− ν1(y))+

≤
∫
Rd×Rd

Φ(‖x‖/k0)(ν1(x)− ν2(x))+ ≤ 1

Therefore,

WΦ(ν1, ν2) ≤ 2 inf{k ∈ R+ :

∫
Rd

Φ(‖x‖/k) d|ν1(x)− ν2(x)| ≤ 1}.

As a consequence, we reach the conclusion of the lemma.

Lemma 6. Let f(x) = exp(−x4), and f̃(t) = (1/2π)
∫∞
−∞ exp(−itx)f(x)dx. Then,

|f̃(t)| ≤ φ(t) exp(−7/32|t|4/3), (39)

where φ(t) is an absolutely bounded real-valued function.
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Proof. Consider a rectangle on the complex plane, with vertices at R,−R,R + iζ,−R + iζ respectively. Following
Goursat’s Theorem (Stein & Shakarchi, 2010) for integration along rectangular contours on the complex plane, the contour
integral along a closed rectangle is 0.

Therefore,

∫ R

−R
exp(−itx)f(x)dx+

∫ R+iζ

R

exp(−itx)f(x)dx+

∫ −R
−R+iζ

exp(−itx)f(x)dx+

∫ −R+iζ

R+iζ

exp(−itx)f(x)dx = 0.

Now,

|
∫ R+iζ

R

exp(−itx)f(x)dx| = |
∫ ζ

0

exp(itR− tx)f(R+ ix)idx| ≤ C exp(−R4)→ 0,

as R→∞. Similarly,

|
∫ −R
−R+iζ

exp(−itx)f(x)dx| → 0,

as R→∞.

Therefore,

lim
R→∞

∫ R+iζ

−R+iζ

exp(−itx)f(x)dx = lim
R→∞

∫ R

−R
exp(−itx)f(x)dx = 2πf̃(t).

Now,

lim
R→∞

∫ R

−R
exp(−itx)f(x)dx = 2πf̃(t) = lim

R→∞

∫ R+iζ

−R+iζ

exp(−itx)f(x)dx

= lim
R→∞

∫ R

−R
exp(it(x+ iζ))f(x+ iζ)dx.

= lim
R→∞

∫ R

−R
exp(−itx− tζ)) exp(−(x+ iζ)4)dx.

Expanding the above expression,

f̃(t) = (1/2π) limR→∞
∫ R
−R exp(−itx− 4ix3ζ + 4ixζ3 − tζ − (x2 − 3ζ2)2 + 8ζ4)dx.

Substituting ζ =
1

4
sign(t)|t|1/3 in the above equationa,

|f̃(t)| ≤ (1/2π) exp(−(7/32)|t|4/3) ·
∫ ∞
−∞

exp(−(x2 − (1/3)|t|1/2)2)dx. (40)

The proof is complete when we note that φ(t) := (1/2π)
∫∞
−∞ exp(−(x2 − (1/3)|t|1/2)2)dx is an absolutely bounded

function.

Lemma 7. Let k(t) = cf̃(t)2, where f̃(t) = (1/2π)
∫∞
−∞ exp(−itx) exp(−x4)dx and c is a constant of proportionality

so that
∫∞
−∞ k(t)dt = 1. Then,

|
∫ ∞
−∞

exp(itx)k(t)dt| . exp(−(x/2)4) (41)
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Proof. Define f(x) = exp(−x4). Then, by a version of the Fourier inversion theorem,∫ ∞
−∞

exp(itx)k(t)dt = f ∗ f(x),

where ∗ is the convolution operator. Since convolution of even functions is even, it is enough to show the result for x > 0.
Then,

f ∗ f(x) =

∫ ∞
−∞

exp(−y4) exp(−(y − x)4)dy

=

∫ ∞
x/2

exp(−y4) exp(−(y − x)4)dy +

∫ x/2

−∞
exp(−y4) exp(−(y − x)4)dy

≤ exp(−(x/2)4)

∫ ∞
x/2

exp(−(y − x)4)dy + exp(−(x/2)4)

∫ x/2

−∞
exp(−y4)dy

≤ 2 exp(−(x/2)4)

∫ ∞
−∞

exp(−y4)dy.

The result holds with C = 2
∫∞
−∞ exp(−y4)dy since

∫∞
−∞ exp(−y4)dy <∞.

B.5. Proof of Lemma 3

Suppose q = (qij)1≤i≤k0,1 ≤j≤k ∈ [0, 1]k0×k is a coupling between p0 = (p0
1, . . . , p

0
k0

) and p = (p1, . . . , pk), with
Q(p,p′) representing the space of all such couplings of p and p′. Then, for fixed k we have∑

qijΦ(‖θ0
i − θj‖/k) ≥

∑
qij1{‖θ0i−θj‖≥η}Φ(η/k)

≥
∑

pj1{‖θ0i−θj‖≥η for all i}Φ(η/k).

Let K = inf{k ≥ 0 :
∑
pj1{‖θ0i−θj‖≥η for all i}Φ(η/k) ≤ 1}. Then,

K ≥ η

(
Φ−1

(
1∑

pj1{‖θ0i−θj‖≥η for all i}

))−1

, (42)

where Φ−1 is the inverse function of the function Φ. Note that, this function exists and is concave as Φ is monotonic
increasing and convex. Moreover, by Lemma 2(i), we would have that WΦ(G,G0) ≥ K, where,

WΦ(G,G0) := inf
q∈Q(p,p′)

{inf{k ≥ 0 :
∑

qijΦ(‖θ0
i − θj‖/k) ≤ 1}}

Combining the results from equations (42) and (43) we obtain the conclusion of the lemma.

B.6. Prior mass on Wasserstein ball

Lemma 8. Let G ∼ DP (γ,Hn). Fix r ≥ 1. Assume G0 ∈M(Θ), where Θ = [−θ̄, θ̄]d. If Hn admits condition (P.1), then
the following holds

Π (W r
r (G,G0) ≤ (2r + 1)εr) ≥ Γ(γ)(c0γπ

d/2)D

(2Γ(d/2 + 1))D(2D)D−1

( ε

2θ̄

)r(D−1)+dD

for all ε sufficiently small so that D(ε,Θ, ‖.‖) > γ.

Here, D = D(ε,Θ, ‖.‖) stands for the maximal ε-packing number for Θ under ‖.‖ norm, and Γ(·) is the gamma function.
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Proof. From Lemma 5 in (Nguyen, 2013),

Π (W r
r (G,G0) ≤ (2r + 1)εr) ≥ Γ(γ)γD

(2D)D−1

(
ε

Diam(Θ)

)r(D−1)

sup
S

D∏
i=1

Hn(Si),

where, S := (S1, ..., SD) denotes the D disjoint ε/2-balls that form a maximal ε-packing of Θ. The supremum is taken over
all such packings.

Now, Hn(A) ≥
(

c0
µ(Θ)

)
µ(A). Moreover,

∏D
i=1 µ(Si) ≥

(
(
√
πε)d

2Γ(d/2 + 1)

)D
. Using this, we arrive at the result.

B.7. Metric entropy with Hellinger distance

Lemma 9. Let G0 be a discrete mixing measure with all its atoms in Θ = [−θ̃, θ̃]d ⊂ Rd. Let PG(Θ) := {pG : G ∈ G(Θ)}.
Then, if the kernel f is multivariate Gaussian with covariance matrix Σ,

logD(ε/2, {pG ∈PG(Θ) : ε < h(pG, pG0) ≤ 2ε}, h) ≤ c1

(
θ̃√
λminε

)d
log

(
e+

32eθ̃2

λminε2

)
(43)

for some universal constant c1.

Proof. Let N(ε,P, d) denote the ε-covering number of the space P relative to the metric d. It is related to the packing
number by the following identity:

N(ε,P, h) ≤ D(ε,P, d) ≤ N(ε/2,P, h). (44)

Using the result in Example 1 of (Nguyen, 2013), when fΣ(·|θ) ∼ Nd(θ,Σ),

h2(fΣ(·|θi), fΣ(·|θ′j)) = 1− exp

(
−1

8
‖θi − θ′j‖2Σ−1

)
≤
‖θi − θ′j‖2

8λmin
, (45)

where ‖z‖Σ−1 :=
√
z′Σ−1z.

Let G0 =
∑k0
i=1 p

0
i δθ0i and G =

∑k′

j=1 p
′
jδθ′j be mixing measures in G(Θ), with k0, k

′ ∈ [1,∞]. Let q =

(qij)1≤i≤k0,1 ≤j≤k′ ∈ [0, 1]k0×k
′

denote a coupling of p0 and p′.

Using Lemma 2 of (Nguyen, 2013) with φ(x) =
1

2
(
√
x− 1)2, gives us:

h2(pG, pG0) ≤ inf
q∈Q(p0,p

′)

∑
i,j

qij
‖θi − θ′j‖2

8λmin
=
W2(G,G0)2

8λmin
, (46)

where Q(p0,p
′) is the set of all couplings of p0 and p′. Therefore, it immediately follows that:

logD(ε/2, {pG ∈PG(Θ) : ε < h(pG, pG0
) ≤ 2ε}, h)

≤ logD(
√

2λminε, {G : G ∈ G(Θ)},W2) ≤ N

(√
λmin

8
ε,Θ, ‖ · ‖

)
log

(
e+

32eθ̃2

λminε2

)
.

The last inequality follows by applying Eq. (44) followed by Lemma 4 part (b) of (Nguyen, 2013). The result then follows
immediately.
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B.8. Computation of M corresponding to KL ball

Lemma 10. Let G be a discrete mixing measure with all its atoms in
[
−θ̃, θ̃

]d
for some θ̃ > 0. Furthermore, assume the

atoms of G0 lie in
[
−θ̄, θ̄

]d
where θ̄ > 0 is given. Then, the following holds if the kernel f is multivariate Gaussian,∫

(pG0(x))2

pG(x)
µ(dx) ≤ exp(dλ−1

min(5θ̄2 + 4θ̃2)). (47)

Here µ is the Lebesgue measure on Rd.

Proof. For the multivariate Gaussian kernel with covariance matrix Σ, similar to the multivariate Laplace case, using lemma

2 of (Nguyen, 2013) with φ(x) =
1

x
, gives us:∫

(pG0(x))2

pG(x)
µ(dx) ≤ inf

q∈Q(p0,p
′)

∑
i,j

qij

∫
(fΣ(x|θ0

i ))
2

fΣ(x|θ′j)
µ(dx), (48)

where Q(p0,p
′) is the set of all couplings of p0 and p′, and fΣ(·|θ) is the multivariate Gaussian kernel with covariance

parameter Σ and mean parameter θ.∫
(fΣ(x|θ0

i ))
2

fΣ(x|θ′j)
µ(dx) =

∫
fΣ(x|θ0

i ) exp

(
−‖x− θ0

i ‖2Σ−1 + ‖x− θ′j‖2Σ−1

2

)
µ(dx) (49)

=

∫
fΣ(x|θ0

i ) exp

(
−‖θ′j − θ0

i ‖2Σ−1

2
+ 〈x− θ′j ,Σ−1θ′j − θ0

i 〉

)
µ(dx),

where the second equality follows by simple calculation using x− θ0
i = (x− θ′j) + (θ′j − θ0

i ).

If MΣ(t|θ) is the moment generating function of the Gaussian distribution with mean θ and covariance Σ, then

MΣ(t|θ) = exp(〈θ, t〉+
1

2
〈t,Σt〉).

Using this result , we can rewrite Eq. (49) as∫
(fΣ(x|θ0

i ))
2

fΣ(x|θ′j)
µ(dx) = exp(〈θ′j − θ0

i ,Σ
−1θ0

i + θ′j〉) ≤ exp(2dλ−1
min(θ̃ + θ̄)2 + dλ−1

minθ̄
2),

The bound on
∫

(pG0(x))2/pG(x)µ(dx) then follows immediately.

C. Theoretical guarantee of Algorithm 1
We show in this section that the output of Algorithm 1 converges to the Entropy regularised version of the Orlicz-Wasserstein
distance in equation (17).
Proposition 1. Let Ŵλ

Φ(ν1, ν2) be the output of Algorithm 1 and Wλ
Φ(ν1, ν2) be as in equation (17). Then

|Ŵλ
Φ(ν1, ν2)−Wλ

Φ(ν1, ν2)| < ε. (50)

Proof. Here M is the cost matrix such that Mij = ‖xi − yj‖. Note that S(Φ(M/Wλ
Φ(ν1, ν2)), λ, r, c) < 1 and if

S(Φ(M/η), λ, r, c) < 1, then η < Wλ
Φ(ν1, ν2)).

Therefore, if x̂upp = max(M)/Φ−1(1), x̂low = d(M,λ, r, c)/Φ−1(1 + d(M,λ, r, c) − S(M,λ, r, c)) it is enough to
show that fxupp = S(Φ(M/x̂upp), λ, r, c) < 1,fxlow = S(Φ(M/x̂low), λ, r, c) > 1, since it would imply xupp :=

Ŵλ
Φ(ν1, ν2) < Wλ

Φ(ν1, ν2) < xlow and therefore if |xupp − xlow| < ε, the result holds directly.

We need to show
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(i) S(Φ(M/x̂upp), λ, r, c) < 1.

(ii) S(Φ(M/x̂low), λ, r, c) > 1.

For (i), observe that

S(Φ(M/x̂upp), λ, r, c) = inf
ν∈Q(ν1,ν2)

∫
Rd×Rd

Φ(‖x− y‖/x̂upp) dν(x, y)− (1/λ)(H(ν)) (51)

= inf
ν∈Q(ν1,ν2)

∫
Rd×Rd

Φ(Φ−1(1)‖x− y‖/max(M)) dν(x, y)− (1/λ)(H(ν)) ≤ 1 (52)

The last inequality holds by monotonicity of Φ combined with ‖x− y‖/max(M) < 1 with ν-probability 1, and the fact
that H(ν) > 0.

For (ii),note that for any ν ∈ Q(ν1, ν2), it holds that∫
Rd×Rd

Φ(‖x− y‖/η) dν(x, y)−H(ν)/λ ≥ Φ

(∫
Rd×Rd

(‖x− y‖/η) dν(x, y)

)
− (H(r) +H(c))/λ (53)

≥ Φ((S(M,λ, r, c) + (H(r) +H(c))/2λ)/η))− (H(r) +H(c))/λ. (54)

Both the inequalities hold by monotonicty and convexity of Φ combined with the fact that ∀ν ∈ Q(ν1, ν2), it holds that
H(r) +H(c) ≥ H(ν) ≥ (H(r) +H(c))/2.

Now Φ((S(M,λ, r, c)+(H(r)+H(c))/2λ)/η))−(H(r)+H(c))/λ ≥ 1, for any η ≤ x̂upp, this completes the proof.

D. Estimation of number of components for mixing measures
In this section, we consider how Orlicz-Wasserstein distances could be used to improved estimation of the number of
components with Gaussian mixture models. Gaussian Mixture models have been used for the purpose of clustering both
historically (?) as well as in modern applications (Athey & Vogelstein, 2019; ?; Jiao et al., 2022). From the Bayesian
perspective, often used BNP priors for mixture models tend to overestimate the number of components drastically by
producing multiple extraneous components around the ”true” components (Miller & Harrison, 2014). This makes it difficult
to estimate the number of components, where it may of interest (MacEachern & Muller, 1998; Green & Richardson, 2001).

Several recent works have explored the consistent estimation of the number of components with mixture models, both with
in-processing (Manole & Khalili, 2021) and post-processing (Guha et al., 2021) techniques. However, while (Manole &
Khalili, 2021) restricts attention to the overfit setting only, (Guha et al., 2021) requires the knowledge of explicit contraction
rates of respective parameters in Wasserstein distances. As parameter convergence rates of Dirichlet Process Gaussian
Mixture models are extremely slow (Nguyen, 2013), this would also affect the estimation of the number of components
negatively. The procedures in both the works (Guha et al., 2021; Manole & Khalili, 2021) consist of two smaller steps,
truncation of extraneous outlier atoms and merging of atoms which are close to the ”true” atoms. The results in this
work specifically, Theorem 2 provide a low threshold for truncating outlier atoms thereby eliminating outlier atoms more
efficiently. Combined with an understanding of convergence behavior around the ”true” atoms would allow efficient
estimation of the number of components with Dirichlet Process Gaussian Mixture models.
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