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Abstract
Federated Learning (FL) is a way for machines to
learn from data that is kept locally, in order to pro-
tect the privacy of clients. This is typically done
using local SGD, which helps to improve commu-
nication efficiency. However, such a scheme is
currently constrained by slow and unstable con-
vergence due to the variety of data on different
clients’ devices. In this work, we identify three
under-explored phenomena of biased local learn-
ing that may explain these challenges caused by
local updates in supervised FL. As a remedy, we
propose FedBR, a novel unified algorithm that
reduces the local learning bias on features and
classifiers to tackle these challenges. FedBR has
two components. The first component helps to
reduce bias in local classifiers by balancing the
output of the models. The second component
helps to learn local features that are similar to
global features, but different from those learned
from other data sources. We conducted several ex-
periments to test FedBR and found that it consis-
tently outperforms other SOTA FL methods. Both
of its components also individually show perfor-
mance gains. Our code is available at https:
//github.com/lins-lab/fedbr.

1. Introduction
Federated Learning (FL) is an emerging privacy-preserving
distributed machine learning paradigm. The model is trans-
mitted to the clients by the server, and when the clients have
completed local training, the parameter updates are sent
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back to the server for integration. Clients are not required
to provide local raw data during this procedure, maintaining
their privacy. As the workhorse algorithm in FL, FedAvg
(McMahan et al., 2016) proposes local SGD to improve
communication efficiency. However, the considerable het-
erogeneity between local client datasets leads to inconsistent
local updates and hinders convergence.
Several studies propose variance reduction methods (Karim-
ireddy et al., 2019; Das et al., 2020), or suggest regularizing
local updates towards global models (Li et al., 2018b; 2021)
to tackle this issue. Almost all these existing works directly
regularize models by utilizing the global model collected
from previous rounds to reduce the variance or minimize
the distance between global and local models (Li et al.,
2018b; 2021). However, it is hard to balance the trade-offs
between optimization and regularization to perform well,
and data heterogeneity remains an open question in the
community, as justified by the limited performance gain,
e.g. in our Table 1 and experiment results in some previous
works (Tang et al., 2022; Li et al., 2021; Yoon et al., 2021a;
Chen & Chao, 2021; Luo et al., 2021).
Apart from the existing solutions, we revisit and reinterpret
the fundamental issues in federated deep learning, caused
by data heterogeneity and local updates. As our first
contribution, we identify three pitfalls of FL systematically
and in a unified view, termed local learning bias, from
the perspective of representation learning1: 1) Biased local
classifiers are unable to effectively classify unseen data
(c.f. Figure 1(a)), due to the shifted decision boundaries
dominated by local class distributions; 2) Local features
(extracted by a local model) differ significantly from global
features (similarly extracted by a centralized global model),
even for the same input data (c.f. Figure 1(b)); and 3) Local
features, even for data from different classes, are too close to
each other to be accurately distinguished (c.f. Figure 1(b)).
To this end, we propose FedBR, a unified method that
leverages (1) a globally shared, label-distribution-agnostic
pseudo-data and (2) two key algorithmic components, to
simultaneously address the three difficulties outlined above.
The first component of FedBR alleviates the first difficulty
by forcing the output distribution of the pseudo-data to

1Please refer to section 3 for more justifications about the
existence of our observations.
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Figure 1: Observation for learning bias of FL on heterogeneous data with local updates. There are two clients in the figure, and each has
two classes of data (red and blue points). Biased local classifier in 1(a): Client 1’s decision boundary cannot accurately classify data sam-
ples from Client 2. Biased local feature in 1(b): The difference between features extracted by Client 1’s local and global feature extractor is
sustainable large. However, Client 2’s local feature is close enough to Client 1’s, even for input data from different data distributions/clients.

be balanced. The second component of FedBR aims to
address the second and third difficulties simultaneously,
where we develop a min-max contrastive learning method
to learn client invariant local features. More precisely,
a key two-stage algorithm is proposed to maximize the
elimination of feature learning biases: the first stage learns
a projection space to distinguish the features of two types,
while the second stage enforces learned features on the
projected feature space that are farther from local features
and closer to global ones. All these can be unified into
a simple yet effective min-max procedure to alleviate the
local learning bias in FL, with trivial requirements on
pseudo-data while still preserving privacy.

Our main contributions are:
• We provide a unified view to interpret the learning diffi-

culty in FL with heterogeneous data, and identify three
key pitfalls to explain the issue of local learning biases.

• We propose FedBR, a unified algorithm that leverages
pseudo-data to reduce the learning bias on local features
and classifiers. We design two orthogonal key compo-
nents of FedBR to complement each other to improve
the learning quality of clients with heterogeneous data.

• FedBR considerably outperforms other FL baselines by
a large margin, as justified by extensive numerical eval-
uation on RotatedMNIST, CIFAR10, and CIFAR100.
Besides, FedBR does not require the labeled or large
number of global shared pseudo-data, thereby improving
the efficiency.

2. Related Works
Federated Learning (FL). As the de facto FL algorithm,
McMahan et al. (2016); Lin et al. (2020b) propose to use
local SGD steps to alleviate the communication bottleneck.
However, the objective inconsistency caused by the local
data heterogeneity considerably hinders the convergence of
FL algorithms (Li et al., 2018b; Wang et al., 2020b; Karim-
ireddy et al., 2019; 2020; Guo et al., 2021). To address the

issue of heterogeneity in FL, a series of projects has been
proposed. FedProx (Li et al., 2018b) incorporates a proximal
term into local objective functions to reduce the gap between
the local and global models. SCAFFOLD (Karimireddy
et al., 2019) adopts the variance reduction method on local
updates, and Mime (Karimireddy et al., 2020) increases con-
vergence speed by adding global momentum to global up-
dates. Recently, Moon (Li et al., 2021) has proposed to em-
ploy contrastive loss to reduce the distance between global
and local features. However, their projection layer is only
used as part of the feature extractor, and cannot contribute to
distinguishing the local and global features—a crucial step
identified by our investigation for better model performance.
In this paper, we focus on improving the global model in
Federated Learning (FL) by designing methods that per-
form well on all local distributions. The designed algorithm
works on the local training stage, which aligns with previous
research in this area, such as McMahan et al. (2016); Li et al.
(2018b); Karimireddy et al. (2019); Li et al. (2021); Tang
et al. (2022). Other topics like improving the global aggre-
gation stages (Wang et al., 2020a; Yoshida et al., 2019) or
Personalized Federated Learning (PFL) methods (Tan et al.,
2022; Wu et al., 2022; Jiang & Lin, 2023) are orthogonal
to our approach and could be further combined with our
method.

Data Augmentation in FL. To reduce data heterogeneity,
some data-based approaches suggest sharing a global dataset
among clients and combining global datasets with local
datasets (Tuor et al., 2021; Yoshida et al., 2019). Some
knowledge distillation-based methods also require a global
dataset (Lin et al., 2020a; Li & Wang, 2019), which is
used to transfer knowledge from local models (teachers)
to global models (students). Considering the impractical
of sharing the global datasets in FL settings, some recent
research use proxy datasets with augmentation techniques.
Astraea (Duan et al., 2019) uses local augmentation to create
a globally balanced distribution. XorMixFL (Shin et al.,
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2020) encodes a couple of local data and decodes it on
the server using the XOR operator. FedMix (Yoon et al.,
2021b) creates the privacy-protected augmentation data by
averaging local batches and then applying Mixup in local
iterations. VHL (Tang et al., 2022) relies on the created
virtual data with labels and forces the local features to be
close to the features of same-class virtual data. Different
from previous works, this paper designs methods that utilize
label-agnostic pseudo-data, and outperform other methods
using significantly less pseudo-data.

3. The Pitfalls of FL on Heterogeneous Data
FL and local SGD. FL is an emerging learning paradigm
that supposes learning on various clients while clients can
not exchange data to protect users’ privacy. Learning occurs
locally on the clients, while the server collects and aggre-
gates gradient updates from the clients. The standard FL
considers the following problem:

f∗ = minω∈Rd

[
f(ω) =

∑N
i=1 pifi(ω)

]
, (1)

where fi(ω) is the local objective function of client i, and pi
is the weight for fi(ω). In practice, we set pi = |Di|/|D| by
default, where Di is the local dataset of client i and D is the
combination of all local datasets. The global objective func-
tion f(ω) aims to find ω that can perform well on all clients.
In the training process of FL, the communication cost
between client and server has become an essential factor
affecting the training efficiency. Therefore, local SGD
(McMahan et al., 2016) has been proposed to reduce the
communication round. In local SGD, clients perform
multiple local steps before synchronizing to the server in
each communication round.

Bias caused by local updates. In this paper, we consider
improving previous works by proposing a label-agnostic
method, and we first identify the pitfalls of FL on
heterogeneous data in a label-agnostic way as follows.
Proposition 3.1 (Local Learning Bias in FedAvg). For Fe-
dAvg, the local models after local epochs could be biased,
in detail,
• Biased local feature: For local feature extractor Fi(·),

and centralized trained global feature extractor Fg(·),
we have: 1) Given the data input X , Fi(X) could deviate
largely from Fg(X). 2) Given the input from different
data distributions X1 and X2, Fi(X1) could be very
similar or almost identical to Fi(X2).

• Biased local classifier: After a sufficient number of iter-
ations, local models classify all samples into only the
classes that appeared in the local datasets.

To verify the correctness of Proposition 3.1, we can use
some toy examples to show the existence of the biased local
feature and classifiers. For toy examples on more complex
scenarios and on the benefits of using FedBR please refer to
Appendix C.3.

Example 3.2 (Observation for biased local features). Fig-
ures 2(a) and 2(b) show that local features differ from global
features for the same input, and Figures 2(b) and 2(c) show
that local features are similar even for different input dis-
tributions. We define this observation as the “biased local
feature”. In detail, we calculate F1(X1), F1(X2), Fg(X1),
and Fg(X2), and use t-SNE to project all the features to
the same 2D space. We can observe that the local features
of data in X2 are so close to local features of data in X1,
and it is non-trivial to tell which category the current input
belongs to by merely looking at the local features.

Example 3.3 (Observation for biased local classifiers).
Figure 3 shows the output of the local model on data
X2, where all data in X2 are incorrectly categorized into
classes 0 to 4 of X1. The observation, i.e. data from classes
that are absent from local datasets cannot be correctly
classified by the local classifiers, refers to the “biased
local classifiers”. More precisely, Figure 3(a) shows the
prediction result of one sample (class 8) and Figure 3(b)
shows the predicted distribution of all samples in X2.

Distinct from the local learning bias in previous works.
We acknowledge the discussion of learning bias in some
previous works, e.g. in Karimireddy et al. (2019); Li et al.
(2018b; 2021). However, our work differs in several ways:
1. FedProx (Li et al., 2018b) defines local drifts as the

differences in model weights, while SCAFFOLD (Karim-
ireddy et al., 2019) considers gradient differences as
client drifts. These methods, though have been effective
on traditional optimization tasks, may only have
marginal improvements on deep models, as shown
in Tang et al. (2022); Li et al. (2021); Yoon et al. (2021a);
Chen & Chao (2021); Luo et al. (2021).

2. MOON (Li et al., 2021) minimizes the distance between
global and local features, but its performance is limited
because they use only the projection layer as part of the
feature extractor, and the contrastive loss diminished
without our designed max step (c.f. Table 1 and Table 4).

3. VHL (Tang et al., 2022) defines local learning bias
as the shift in features between samples of the same
classes; however, this approach requires prior knowledge
of local label information and results in a much larger
virtual dataset, especially when increasing the number of
classes. Our method instead achieves better performance
with significantly fewer pseudo-data (see Table 2).

4. FedBR: Reducing Learning Bias in FL
Addressing the local learning bias is crucial to improving
FL on heterogeneous data, due to the bias discussed in
Proposition 3.1. To this end, we propose FedBR as shown
in Figure 4, a novel framework that leverages the globally
shared pseudo-data with two key components to reduce the
local training bias, namely 1) reducing the local classifier’s
bias by balancing the output distribution of classifiers (com-
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(a) Global feature of X1, Fg(X1) (b) Local feature of X1, F1(X1) (c) Local feature of X2, F1(X2)

Figure 2: Observation for biased local features on a shared t-SNE projection space. Local updates will cause: • Large difference
in local and global features for the same input data. Colored points in sub-figures (a) & (b) denote the global and local features of
data from X1, and the same color indicates data from the same class. Notice that even for data from the same class (same color), the
global and local features are clustered into two distinct groups, implying a considerable distance between global and local features even
for the same input data distribution. • High similarity of local features for different inputs. Notice from sub-figure (b) & (c) that X1 and
X2 are two disjoint datasets (no data from the same class). However, the local features of X1 and X2 are clustered into the same group
by t-SNE, indicating the relatively small distance between local features of different classes. Results on mild conditions and different
training stages can be found in Appendix C.

(a) Sample from class 8 (b) All samples in X2

Figure 3: Observation for biased local classifiers: the output
distribution of the local classifiers will be dominated by the
local class distribution. The model is trained on data X1 and
tested on data X2. The sub-figure (a) illustrates the model output
distribution of a sample belonging to Class 8. The sub-figure
(b) shows the total prediction distribution of all samples in X2.
Results show that the biased local model will classify all samples
into classes that are only present in the X1.

ponent 1), and 2) an adversary contrastive scheme to learn
unbiased local features (component 2).

4.1. Overview of the FedBR
The learning procedure of FedBR on each client i involves
the construction of a global pseudo-data (c.f. Section 4.2),
followed by applying two key debias steps in a min-max
approach to jointly form two components (c.f. Section 4.3
and 4.4) to reduce the bias in the classifier and feature,
respectively.
The min-max procedure of FedBR can be interpreted as
first projecting features onto spaces that can distinguish
global and local feature best, then 1) minimizing the distance
between the global and local features of pseudo-data and
maximizing distance between local features of pseudo-data
and local data; 2) minimize classification loss of both local
data and pseudo-data:
Max Step: maxθ Ladv(Dp, Di)

:= Exp∼Dp,x∼Di

[
Lcon(xp,x,ϕg,ϕi,θ)

]
. (2)

Figure 4: Optimization flow of FedBR: an illustration of how
the three terms in (2) and (3) are calculated. We calculate the
cross-entropy loss of local data (x,y), and pseudo-data (xp, ỹp),
and use the local feature ϕi(x),ϕi(xp), and global feature
ϕg(xp) for contrastive loss.

Min Step: minϕi,ω Lgen(Dp, Di)

:= E(x,y)∼Di
[Lcls(x,y,ϕi,ω)]

+ λExp∼Dp [Lcls(xp, ỹp,ϕi,ω)]

+ µExp∼Dp,x∼Di

[
Lcon(xp,x,ϕg,ϕi,θ)

]
. (3)

Lcls and Lcon represent the cross-entropy loss and a con-
trastive loss (will be detailed in Section 4.4), respectively.
Di denotes the distribution of the local dataset at client i.
Dp is that of shared pseudo-dataset, where ỹp is the pseudo-
label of pseudo-data. The model is composed of a feature
extractor ϕ and a classifier ω, where the omitted subscript i
and g correspond to the local client i and global parameters,
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respectively (e.g. ϕg denotes the feature extractors received
from the server at the beginning of each communication
round). We additionally use a projection layer θ for the
max step to project features onto spaces where global and
local features have the largest dissimilarity.
Apart from the cross-entropy loss of local data in (3), the
second term aims to overcome the biased local classifier
while the local feature is debiased by the third term.
The proposed FedBR is summarized in Algorithm 1. The
global communication part is the same as FedAvg, and the
choice of synchronizing the new pseudo-data to clients in
each round is optional2.

The benefit of FedBR for using less prior informa-
tion. In additional to the superior performance, the de-
sign of FedBR has the following benefits: 1) Unlike pre-
vious works (Tang et al., 2022), our method does not re-
quire knowledge of the local label distribution and is label-
agnostic. This means that the size of the pseudo-data will
not increase as the number of classes increases. Our results,
shown in Table 2 and Figure 6(b), demonstrate that our
method, FedBR, can achieve better performance with sig-
nificantly less pseudo-data. 2) Pseudo-data can be used for
various tasks. Pseudo-data created using CIFAR10 performs
well on tasks with local data from CIFAR10 and CIFAR100,
as seen in Figure 6(c).

4.2. Construction of the Pseudo-Data
The choice of the pseudo-data in our FedBR framework is
arbitrary. For ease of presentation and taking the commu-
nication cost into account, we showcase two construction
approaches below and detail their performance gain over all
other existing baselines in Section 5:
• Random Sample Mean (RSM). Similar to the treatment

in FedMix (Yoon et al., 2021b), one RSM sample of
the pseudo-data is estimated through a weighted com-
bination of a random subset of local samples, and the
pseudo-label is set3 to ỹp = 1

C · 1. It is worth noting
that RSM does not require the local data to be balanced
when constructing the pseudo-data, as long as the lo-
cal data is distinct from the pseudo-data. We show in
Figure 6(d) that our algorithm (FedBR) can achieve com-
parable performance using pseudo-data constructed from
data with unbalanced label distribution. For more details,
see Algorithm 2 in the appendix.

• Mixture of local samples and the sample mean of a
proxy dataset (Mixture). This strategy relies on ap-
plying the procedure of RSM to irrelevant and globally
shared proxy data (refer to Algorithm 3). To guard the
distribution distance between the pseudo-data and local

2As shown in Figure 6(b), the communication-efficient variant
of FedBR—i.e. only transferring pseudo-data at the beginning of
the FL training—is on par with the choice of frequent pseudo-data
synchronization.

3We assume that pseudo-data does not belong to any particular
classes, and should not give high confidence to any of that.

Algorithm 1 Algorithm Framework of FedBR
Require: Local datasets D1, . . . , DN , pseudo dataset Dp where

|Dp| = B, and B is the batch size, number of local iterations
K, number of communication rounds T , number of clients
chosen in each round M , weights used in designed loss λ, µ,
local learning rate η.

Ensure: Trained model ωT , θT , ϕT .
1: Initialize ω0,θ0,ϕ0.
2: for t = 0, . . . , T − 1 do
3: Send ωt,θt,ϕt, Dp (optional) to all clients.
4: for chosen client i = 1, . . . ,M do
5: ω0

i = ωt,θ
0
i = θt,ϕ

0
i = ϕt,ϕg = ϕt

6: for k = 1, . . . ,K do
7: # Max Step
8: θk

i = θk−1
i + η∇θLadv .

9: # Min Step
10: ωk

i = ωk−1
i − η∇ωLk.

11: ϕk
i = ϕk−1

i − η∇ϕLgen.

12: Send ωK
i ,θK

i ,ϕK
i to server.

13: ωt+1 = 1
M

∑M
i=1 ω

K
i .

14: θt+1 = 1
M

∑M
i=1 θ

K
i .

15: ϕt+1 = 1
M

∑M
i=1 ϕ

K
i .

data, one sample of the pseudo-data at each client is
constructed by

x̃p=
1

K+1
(xp+

∑K
k=1 xk), ỹp=

1
K+1

( 1
C
·1+

∑K
k=1 yk) , (4)

where xp is one RSM sample of the global proxy dataset,
and xk and yk correspond to the data and label of one
local sample (vary depending on the client). K is a con-
stant that controls the closeness between the distribution
of pseudo-data and local data. As we will show in Sec-
tion 5, setting K = 1 is data-efficient yet sufficient to
achieve good results.

Remark: preserving privacy via Mixture. The RSM
method is similar to the data augmentation method used
in FedMix. Similar to the discussion in FedMix, such a
scheme may leak privacy. To address this, we propose using
the Mixture as a privacy-preserving method. Mixture can
even outperform RSM as justified in Figure 6(c).

4.3. Component 1: Reducing Bias in Local Classifiers
Due to the issue of label distribution skew or the absence of
some samples for the majority/minority classes, the trained
local model classifier tends to overfit the locally presented
classes, and may further hinder the quality of the feature
extractor (as justified in Figure 3 and Proposition 3.1).
As a remedy, here we implicitly mimic the global data
distribution—by using the pseudo-data constructed in
Section 4.2—to regularize the outputs and thus debias the
classifier (note that Component 1 is the second term of (3)):

λExp∼Di [Lcls(xp, ỹp,ϕi,ω)] .
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4.4. Component 2: Reducing Bias in Local Features
In addition to alleviating the biased local classifier in Sec-
tion 4.3, here we introduce a crucial adversary strategy to
learn unbiased local features.

Intuition of constructing an adversarial problem. As
discussed in Proposition 3.1, effective federated learning on
heterogeneous data requires learning debiased local feature
extractors that 1) can extract local features that are close to
global features of the same input data; 2) can extract differ-
ent local features for input samples from different distribu-
tions. However, existing methods that directly minimize the
distance between global features and local features (Li et al.,
2018b; 2021) have limited performance gain (c.f. Table 1)
due to the diminishing optimization objective caused by the
indistinguishability between the global and local features of
the same input. To this end, we propose to extend the idea
of adversarial training to our FL scenarios:
1. We construct a projection layer as the critical step to

distinguish features extracted by the global and local
feature extractor: such layer ensures that the projected
features extracted by the local feature extractor will be
close to each other (even for distinct local data distribu-
tions), but the difference between features extracted by
the global and local feature extractor after projection will
be considerable (even for the same input samples).

2. We can find that constructing such a projection layer
can be achieved by maximizing the local feature bias
discussed in Proposition 3.1. More precisely, it can be
achieved by maximizing the distance between global
and local features of pseudo-data and simultaneously
minimizing the distance between local features of pseudo-
data and local data.

3. We then minimize the local feature biases (discussed in
Proposition 3.1) under the trained projection space, to
enforce the learned local features of pseudo-data to be
closer to the global features of pseudo-data but far away
from the local features of real local data.

On the importance of utilizing the projection layer to
construct the adversary problem. To construct the afore-
mentioned adversarial training strategy, we consider using
an additional projection layer to map features onto the pro-
jection space4. In contrast to the existing works that simi-
larly add a projection layer (Li et al., 2021), we show that 1)
simply adding a projection layer as part of the feature extrac-
tor has trivial performance gain (c.f. Figure 6(a)); 2) our de-
sign is the key step to reducing the feature bias and boosting
the federated learning on heterogeneous data (c.f. Table 4).

Objective function design. We extend the idea of Li et al.
(2021) and improve the contrastive loss initially proposed
in simCLR (Chen et al., 2020) to our challenging scenario.
Different from previous works, we use the projected features

4Such a projection layer is not part of the feature extractor or
used for classification, as shown in Figure 4.
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Figure 5: Convergence curve of algorithms on different datasets.
We split RotatedMNIST, CIFAR10, and CIFAR100 datasets to 10
clients, and report the mean accuracy on all local test datasets for
each communications rounds. More Details refer to Figure 9 of
Appendix C.

(global and local) on pseudo-data as the positive pairs and
rely on the projected local feature of both pseudo-data and
local data as the negative pairs:

f1 = exp

(
sim
(
Pθ(ϕi(xp)), Pθ(ϕg(xp))

)
τ1

)
, (5)

f2 = exp

(
sim (Pθ(ϕi(xp)), Pθ(ϕi(x)))

τ2

)
, (6)

Lcon(xp,x,ϕg,ϕi,θ) = − log

(
f1

f1 + f2

)
, (7)

where Pθ is the projection layer parameterized by θ, τ1 and
τ2 are temperature parameters, and sim is the cos-similarity
function. Our implementation uses a tied value for τ1 and
τ2 for the sake of simplicity, but an improved performance
may be observed by tuning these two.

5. Experiments
5.1. Experiment Setting
We elaborate on experiment settings in Appendix A.

Baseline algorithms. We compare FedBR with both
SOTA FL baselines including FedAvg (McMahan et al.,
2016), Moon (Li et al., 2021), FedProx (Li et al., 2018b),
VHL (Tang et al., 2022), FedMix (Yoon et al., 2021b),
FedNTD (Lee et al., 2022), FedCM (Xu et al., 2021), and
FedDecorr (Shi et al., 2023) which are most relevant to
our proposed algorithms. Similar to a very recent study in
benchmarking FL (Bai et al., 2023), we also contain domain
generalization (DG) methods as baselines and check their
performance under standard FL settings. For DG baselines,
we choose GroupDRO (Sagawa et al., 2019), Mixup (Yan
et al., 2020), and DANN (Ganin et al., 2015). We also
discuss other DG baselines in Appendix A. Unless specially
mentioned, all algorithms use FedAvg as the backbone
algorithm.

Models and datasets. We examine all algorithms on
RotatedMNIST, CIFAR10, and CIFAR100 datasets. We use
a four-layer CNN for RotatedMNIST, VGG11 for CIFAR10,
and Compact Convolutional Transformer (CCT (Hassani
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Table 1: Performance of algorithms. We split RotatedMNIST, CIFAR10, and CIFAR100 to 10 clients with α = 0.1, and ran 1000
communication rounds on RotatedMNIST and CIFAR10 for each algorithm, 800 communication rounds CIFAR100. We report the mean
of maximum (over rounds) 5 test accuracies and the number of communication rounds to reach the threshold accuracy.

Algorithm RotatedMNIST (CNN) CIFAR10 (VGG11) CIFAR100 (CCT)

Acc (%) Rounds for 80% Acc (%) Rounds for 55% Acc (%) Rounds for 43%

Local 14.67 - 10.00 - 1.31 -
FedAvg 82.47 828 (1.0X) 58.99 736 (1.0X) 44.00 550 (1.0X)
FedProx 82.32 824 (1.0X) 59.14 738 (1.0X) 43.09 756 (0.7X)
Moon 82.68 864 (0.9X) 58.23 820 (0.9X) 42.87 766 (0.7X)
DANN 84.83 743 (1.1X) 58.29 782 (0.9X) 41.83 -
GroupDRO 80.23 910 (0.9X) 56.57 835 (0.9X) 44.34 444 (1.2X)
FedBR (Ours) 86.58 628 (1.3X) 64.65 496 (1.5X) 45.14 352 (1.5X)

FedAvg + Mixup 82.56 840 (1.0X) 58.57 826 (0.9X) 46.37 358 (1.6X)
FedMix 81.33 902 (0.9X) 57.37 872 (0.8X) 42.69 -
FedBR + Mixup (Ours) 83.42 736 (1.1X) 65.32 392 (1.9X) 47.75 294 (1.9X)

Table 2: Comparison with VHL. We split CIFAR10 and
CIFAR100 to 10 clients with α = 0.1, and report the mean of
maximum (over rounds) 5 test accuracies and the number of
communication rounds to reach the threshold accuracy. We set
different numbers of virtual data to check the performance of VHL,
and pseudo-data only transfer once in FedBR (32 pseudo-data).
For CIFAR100, we choose Mixup as the backbone.

Algorithm CIFAR10 (VGG11) CIFAR100 (CCT)

Acc (%) Rounds for 60% Acc (%) Rounds for 46%

VHL (2000 virtual data) 61.23 886 (1.0X) 46.80 630 (1.0X)
VHL (20000 virtual data) 59.65 998 (0.9X) 46.51 714 (0.9X)
FedBR (32 pseudo-data) 64.61 530 (1.8X) 47.67 554 (1.1X)

Table 3: Combining FedBR with other baselines. We split
CIFAR10 and CIFAR100 to 10 clients with α = 0.1, and report
the mean of maximum (over rounds) 5 test accuracies. For FedBR,
pseudo-data only transfer once (32 pseudo-data) using Mixture.
For CIFAR100, we choose Mixup as the backbone.

Algorithm CIFAR10 (VGG11) CIFAR100 (CCT)

w/o FedBR + FedBR w/o FedBR + FedBR

FedAvg 58.99 64.66 (+5.67) 46.37 47.98 (+1.61)
FedCM 62.63 65.32 (+2.69) 46.15 46.95 (+0.80)
FedDecorr 54.15 62.70 (+8.55) 47.18 48.34 (+1.16)
FedNTD 59.10 59.26 (+0.16) 47.02 47.18 (+0.16)

et al., 2021)) for CIFAR100. We split the datasets following
the idea introduced in (Yurochkin et al., 2019; Hsu et al.,
2019; Reddi et al., 2021), where we leverage the Latent
Dirichlet Allocation (LDA) to control the distribution drift
with parameter α. The pseudo-data is chosen as RSM by
default, and we also provide results on other types of pseudo-
data (c.f. Figure 6(c)). By default, we generate one batch
of pseudo-data (64 for MNIST and 32 for other datasets)
in each round, and we also investigate only generating one
batch of pseudo-data at the beginning of training to reduce
the communication cost (c.f. Figure 6(b), Figure 6(c)). We
use SGD optimizer and set the learning rate to 0.001 for
RotatedMNIST, and 0.01 for other datasets. The local batch
size is set to 64 for RotatedMNIST, and 32 for other datasets
(following the default setting in DomainBed (Gulrajani &
Lopez-Paz, 2020)). Additional results regarding the impact

of hyper-parameter choices and performance gain of FedBR
on other datasets/settings/evaluation metrics can be found
in Appendix C.

5.2. Numerical Results
The superior performance of FedBR over existing FL
and DG algorithms.5 In Table 1 and Figure 5, we show
the performance and convergence curve of baseline methods
as well as our proposed FedBR algorithm. When compar-
ing different FL and DG algorithms, we discovered that:
1) FedBR performs best in all settings; 2) DG baselines
only slightly outperform ERM, and some are even worse;
3) Regularizing local models to global models from prior
rounds, such as Moon and Fedprox, does not result in posi-
tive outcomes.

Comparison with VHL. We vary the size of virtual data
in VHL and compare it with our FedBR in Table 2 6: our
communication-efficient FedBR only uses 32 pseudo-data
and transfers pseudo-data once, while the communication-
intensive VHL (Tang et al., 2022) requires the size of
virtual data to be proportional to the number of classes
and uses at least 2,000 virtual data (the authors suggest
2,000 for CIFAR10 and 20,000 for CIFAR100 respectively
in the released official code, and we use the default value
of hyper-parameters and implementation provided by the
authors). We can find that 1) FedBR always outperforms
VHL. 2) FedBR overcomes several shortcomings of VHL,
e.g. the need for labeled virtual data and the large size of
the virtual dataset.

5.3. Ablation Studies
Effectiveness of the different components in FedBR. In
Table 4, we show the improvements brought by different
components of FedBR. In order to highlight the importance

5See CIFAR10 + ResNet18 results in Table 9 of Appendix C.
6The performance of FedBR is slightly different from results

in Table 1 because we only use 32 pseudo-data here to make a fair
comparison with VHL.
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Table 4: Ablation studies of FedBR on the effects of two components. We show the performance of two components and remove the
max step (Line 8 in Algorithm 1) of component 2. We split RotatedMNIST, CIFAR10, and CIFAR100 to 10 clients with α = 0.1. We run
1000 communication rounds on RotatedMNIST and CIFAR10 for each algorithm and 800 communication rounds on CIFAR100. We
report the mean of maximum (over rounds) 5 test accuracies and the number of communication rounds to reach the target accuracy.

Algorithm RotatedMNIST (CNN) CIFAR10 (VGG11) CIFAR100 (CCT)

Acc (%) Rounds for 80% Acc (%) Rounds for 55% Acc (%) Rounds for 43%

FedAvg 82.47 828 (1.0X) 58.99 736 (1.0X) 46.37 358 (1.0X)

Component 1 84.40 770 (1.1X) 64.32 442 (1.7X) 47.22 330 (1.1X)
+ min step 80.81 922 (0.9X) 62.98 562 (1.3X) 46.54 358 (1.0X)

Component 2 86.25 648 (1.3X) 63.44 483 (1.5X) 47.78 308 (1.2X)
+ w/o max step 81.24 926 (0.9X) 58.84 584 (1.3X) 43.50 512 (0.7X)

FedBR 86.58 628 (1.3X) 64.65 496 (1.5X) 47.75 294 (1.2X)
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Figure 6: Ablation studies of FedBR, regarding the impact of the
projection layer, the communication strategy of pseudo-data, and
the choices of pseudo-data. In Figure 6(a), we show the perfor-
mance of algorithms with/without the additional projection layer
on the CIFAR10 dataset with the VGG11 model. In Figure 6(b),
we show the performance of FedBR on RotatedMNIST, CIFAR10,
and CIFAR100 datasets when only transferring pseudo-data once
(at the beginning of training) or generating new pseudo-data each
round. In Figure 6(c), we show the performance of FedBR using
different types of pseudo-data. In Figure 6(d), we show the perfor-
mance of FedBR when constructing RSM using data with balanced
and unbalanced label distribution. Pseudo-data transfer once at
the beginning of the training in Figure 6(c), and Figure 6(d).

of our two components, especially the max-step (c.f. Line
8 in Algorithm 1) in component 2, we first consider two
components of FedBR individually, followed by removing
the max-step. We find that: 1) Two components of FedBR
have individual improvements compared with FedAvg,
but the combined solution FedBR consistently achieves
the best performance. 2) The projection layer is crucial.

Table 5: Performance of algorithms with 100 clients. We split
CIFAR10 dataset into 100 clients with α = 0.1. We run 1000
communication rounds for each algorithm on the VGG11 model
and report the mean of the maximal 5 accuracies (over rounds)
during training on test datasets.

Methods FedAvg FedDecorr FedMix FedProx Mixup VHL FedBR

Acc 38.20 35.53 34.71 37.90 36.63 40.93 41.59

Table 6: Performance of local model on balanced global test
datasets. We split CIFAR10 to 10 clients with α = 0.1, and
report the test accuracies achieved by the local models/aggregated
models at the end of each communication round. For FedBR,
pseudo-data only transfer once (32 pseudo-data).

Algorithm FedAvg FedDecorr VHL FedBR

Local Model Performance 21.01 21.18 32.81 21.83
Aggregated Model Performance 46.37 47.10 46.80 47.67

Table 7: Parameter transmitted and mean simulation time
in each round. We split CIFAR10 and CIFAR100 to 10 clients
with α = 0.1. For FedBR, pseudo-data only transfer once (32
pseudo-data). The simulation time only includes the computation
time per step, and do not includes the communication time.
CIFAR100 experiments use Mixup as backbone.

CIFAR10 (VGG11) FedAvg Moon VHL FedCM FedBR

Parameters (Millions) 9.2 9.7 9.2 18.4 9.7
Mean simulation time (s) 0.29 0.69 0.43 0.36 0.60

CIFAR100 (CCT) FedAvg Moon VHL FedCM FedBR

Parameters (Millions) 22.4 22.6 22.4 44.8 22.6
Mean simulation time (s) 0.67 1.97 1.44 0.85 1.19

After removing projection layers, Component 2 of FedBR
performs even worse than FedAvg; such insights may also
explain the limitations of Moon (Li et al., 2021).

Performance of FedBR on CIFAR10 with different num-
ber of clients. In Table 5, we increase the number of
clients to 100, and 10 clients are randomly chosen in each
communication round. We can find that FedBR consistently
outperform other methods.

Reducing the communication cost of FedBR. To reduce
the communication overhead, we reduce the size of pseudo-
data, and only transmit one mini-batch of pseudo-data (64
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Figure 7: Convergence curve w.r.t. simulation time. We split
CIFAR10 and CIFAR100 datasets to 10 clients, and report the
mean accuracy on all local test datasets at each time slots. We
use VGG11 for CIFAR10 experiments, and CCT for CIFAR100
experiments. CIFAR100 experiments use Mixup as backbone for
all the algorithms. More details refer to Figure 16 of Appendix C.

for MNIST and 32 for others) once at the beginning of
training. In Figure 6(b), we show the performance of FedBR
when pseudo-data only transfer to clients at the beginning
of the training (64 pseudo-data for RotatedMNIST, and
32 for CIFAR10 and CIFAR100). Results show that only
transferring pseudo-data once can achieve comparable
performance gain compared with transferring pseudo-data
in each round. This indicates that the performance of FedBR
will not drop even if we give a small number of pseudo-data.

Regarding privacy issues caused by RSM. Because
RSM may have some privacy issues, we consider using
Mixture to protect privacy. In Figure 6(c), we show the
performance of FedBR with different types of pseudo-data
(pseudo-data only transfer once at the beginning of training
as in Figure 6(b)). Results show that: 1) FedBR consis-
tently outperforms FedAvg on all types of pseudo-data. 2)
When using Mixture as pseudo-data and setting K = 0
((4)), FedBR still have a performance gain compared with
FedAvg, and a more significant performance gain can be
observed by setting K = 1.

Constructing pseudo-data by RSM using local data with
unbalanced label distribution. In Figure 6(d), we con-
struct the pseudo-data for FedBR using data with (1) bal-
anced and (2) unbalanced label distributions. Results show
that the performance of FedBR remained the same even
when the data used to create the pseudo-data had an unbal-
anced label distribution.

Combining FedBR with other FL methods enhances
performance. In Table 3, we combine FedBR with other
SOTA FL algorithms, including FedNTD Lee et al. (2022),
FedCM (Xu et al., 2021) and FedDecorr (Shi et al., 2023).
Results demonstrate that FedBR significantly enhances the
performance of these methods through simple integration.

Effectiveness of FedBR on reducing the local learning
bias. To validate FedBR’s ability to train unbiased local
models, we save and assess the local models at the end

of each communication round using balanced global test
datasets. Results in Table 6 show that: 1) FedBR can achieve
better performance than FedAvg without using the labeled
global shared data, and the aggregated model matches and
even surpasses VHL’s performance 2) Local models of VHL
perform better than other methods by using labeled global
shared datasets to correct classification errors. It is natu-
ral for VHL to achieve better local performance as local
datasets of VHL is relatively balanced.

Performance of FedBR regarding communication and
computation costs. Using pseudo-data and an additional
projection layer in FedBR increases computation and com-
munication costs. We quantify this by reporting transmitted
parameters and mean simulation time per round in Table 7,
and display the convergence curve with respect to the simula-
tion time in Figure 7. Results show that: 1) The computation
time of FedBR is similar to that of other FL methods that
adding regularization terms to overcome the local learning
bias, such as VHL and Moon. 2) FedBR’s communication
cost remains minimal as it only introduce an additional small
three-layer MLP projection layer, in contrast to the larger
feature extractors found in modern deep neural networks.

6. Conclusion and Future works
We propose a new algorithm, FedBR, for Federated Learn-
ing that uses label-agnostic pseudo-data to improve perfor-
mance on heterogeneous data. It has two key components
and experiments show it significantly improves Federated
Learning. Unlike previous methods, FedBR does not require
labeled pseudo-data or a large pseudo-dataset, therefore re-
ducing the communication costs.
However, FedBR requires additional computation as the
algorithm needs additional forward propagation on pseudo-
data, as well as the additional computation on the min-max
optimization procedure. It would be interesting to explore
ways to reduce this extra computation in the future.
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A. Experiment Details
Framework and baseline algorithms. In addition to traditional FL methods, we aim to see if domain generalization (DG)
methods can help increase model performance during FL training. Thus, we use the DomainBed benchmark (Gulrajani &
Lopez-Paz, 2020), which contains a series of regularly used DG algorithms and datasets. The algorithms in DomainBed can
be divided into three categories:
• Infeasible methods: Some algorithms can’t be applied in FL scenarios due to the privacy concerns, for example, MLDG

(Li et al., 2017), MMD (Li et al., 2018a), CORAL (Sun & Saenko, 2016), VREx (Krueger et al., 2020) that need features
or data from each domain in each iteration.

• Feasible methods (with limitations): Some algorithms can be applied in FL scenarios with some limitations. For
example, DANN (Ganin et al., 2015), CDANN (Li et al., 2018c) require knowing the number of domains/clients, which
is impractical in the cross-device setting.

• Feasible methods ( without limitations): Some algorithms can be directly applied in FL settings. For example, ERM,
GroupDRO (Sagawa et al., 2019), Mixup (Yan et al., 2020), and IRM (Arjovsky et al., 2019).

We choose several common used DG algorithms that can easily be applied in Fl scenarios, including ERM, GroupDRO
(Sagawa et al., 2019), Mixup (Yan et al., 2020), and DANN (Ganin et al., 2015). For FL baselines, we choose FedAvg (McMa-
han et al., 2016) (equal to ERM), Moon (Li et al., 2021), FedProx (Li et al., 2018b), SCAFFOLD (Karimireddy et al., 2019)
and FedMix (Yoon et al., 2021b) which are most related to our proposed algorithms.
Notice that some existing works consider combining FL and domain generalization. For example, combining DRO with
FL (Mohri et al., 2019; Deng et al., 2021), and combine MMD or DANN with FL (Peng et al., 2019; Wang et al., 2022; Shen
et al., 2021). The natural idea of the former two DRO-based approaches is the same as our GroupDRO implementations, with
some minor weight updates differences; the target of the later series of works that combine MMD or DANN is to train models
to work well on unseen distributions, which is orthogonal with our consideration (overcome the local heterogeneity).To
check the performance of this series of works, we choose to integrate FL and DANN into our environments.
Notice that we carefully tune all the baseline methods. The implementation detail of each algorithm is listed below:
• GroupDRO: The weight of each client is updated by ωt+1

i = ωt
i exp(0.01l

t
i), where lti is the loss value of client i at

round t.
• Mixup: Local data is mixed by x̃ = λxi + (1− λ)xj , and λ is sampled by Beta(0.2, 0.2).
• DANN: Use a three-layer MLP as domain discriminator, where the width of MLP is 256. The weight of domain

discriminate loss is tuned in {0.01, 0.1, 1}.
• FedProx: The weight of proximal term is tuned in {0.001, 0.01, 0.1}.
• Moon: The projection layer is a two-layer MLP, the MLP width is setting to 256, and the output dimension is 128. We

tuned the weight of contrastive loss in {0.01, 0.1, 1, 10}.
• FedMix: The mixup weight λ used in FedMix is tuned in {0.01, 0.1, 0.2}, we construct 64 augmentation data in each

local step for RotatedMNIST, and 32 samples for CIFAR10 and CIFAR100..
• VHL: We use the same setting as in the original paper, with the weight of augmentation classification loss α = 1.0,

and use the "proxy_align_loss" provided by the authors for feature alignment. Virtual data is generated by untrained
style-GAN-v2, and we sample 2000 virtual data for CIFAR10 and RotatedMNIST; 20000 virtual data for CIFAR100
follow the default setting of the original work. To make a fair comparison, we sample 32 virtual samples in each local
step for CIFAR10 and CIFAR100.

• FedNTD: We use the official code of FedNTD, set τ = 1.0 as suggested in the original paper, and β is tuned in {1.0, 0.1}
• FedDecorr: We use the official code of FedDecorr, and set the weight of penalty term to 0.1.
• FedBR: We use a three-layer MLP as the projection layer, the MLP width is set to 256, and the output dimension is 128.
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By default, we set τ1 = τ2 = 2.0, the weight of contrastive loss µ = 0.5, and the weight of AugMean λ = 1.0 on MNIST
and CIFAR100, λ = 0.1 on CIFAR10 and PACS. We sample 64 pseudo-data in each local step for RotatedMNIST and
32 samples for CIFAR10 and CIFAR100.

Datasets and Models. For datasets, we choose RotatedMNIST, CIFAR10, CIFAR100, and PACS. For RotatedMNIST,
CIFAR10, and CIFAR100, we split the datasets following the idea introduced in (Yurochkin et al., 2019; Hsu et al., 2019;
Reddi et al., 2021), where we leverage the Latent Dirichlet Allocation (LDA) to control the distribution drift with parameter
α. Larger α indicates smaller non-iidness. We divided each environment into two clients for PACS, with the first client
containing data from classes 0-3, and the second client containing data from classes 4-6.
Unless specially mentioned, we split RotatedMNIST, CIFAR10, and CIFAR100 to 10 clients and set α = 0.1. For PACS,
we have 8 clients instead. Notice that for each client of CIFAR10, we utilize a special transformation, i.e., rotation to the
local data, to simulate the natural shift. In detail:
• RotatedMNIST: We first split MNIST by LDA using parameter α = 0.1 to 10 clients, then for each client, we rotate the

local data by {0, 15, 30, 45, 60, 75, 90, 105, 120, 135}.
• CIFAR10: We first split CIFAR10 by LDA using parameter α = 0.1 to N clients. Then for each client, we sample
q ∈ R10 from Dir(1.0). For each image in local data, we sample an angle in {0, 15, 30, 45, 60, 75, 90, 105, 120, 135} by
probability q, and rotate the image by the angle.

• Clean CIFAR10: Unlike the previous setting, we do not rotate the samples in CIFAR10 (no inner-class non-iidness).
• CIFAR100: We split the CIFAR100 by LDA using parameter α = 0.1, and transform the train data using RandomCrop,

RandomHorizontalFlip, and normalization.
Each communication round includes 50 local iterations, with 1000 communication rounds for RotatedMNIST and CIFAR10,
800 communication rounds for CIFAR100, and 400 communication rounds for PACS. Notice that the number of com-
munication rounds is carefully chosen, and the accuracy of all algorithms does not significantly improve after the given
communication rounds.
The public data is chosen as RSM (Yoon et al., 2021b) by default, and we also provide results on other proxy datasets.
We utilize a four-layer CNN for MNIST, VGG11 for CIFAR10 and PACS, and CCT (Hassani et al., 2021) (Compact
Convolutional Transformer, cct_7_3x1_32_c100) for CIFAR100.
For each algorithm and dataset, we employ SGD as the optimizer, and set learning rate lr = 0.001 for MNIST, and lr = 0.01
for CIFAR10 , CIFAR100, and PACS. When using CCT and ResNet, we set momentum as 0.9. We set the same random
seeds for all algorithms. We set local batch size to 64 for RotatedMNIST, and 32 for CIFAR10, CIFAR100, and PACS.

B. Details of Augmentation Data
We use the data augmentation framework the same as FedMix, as shown in Algorithm 2. For each local dataset, we upload
the mean of each M samples to the server. The constructed augmentation data is close to random noise. As shown in Figure
8, we randomly choose one sample in the augmentation dataset of CIFAR10 dataset.

Algorithm 2 Construct Augmentation Data
Require: local Datasets D1, . . . , DN , number of augmentation data for each client K, number of samples to construct one augmentation

sample M .
Ensure: Augmentation Dataset Dp.
1: Initialize Dp = ∅.
2: for i = 1, . . . , N do
3: for k = 1, . . . ,K do
4: Randomly sample x1, . . . , xM from Di.
5: x̄ = 1

M

∑M
m=1 xM .

6: Dp = Dp ∪ {x̄}

C. Additional Results
C.1. Results with Error Bar
In this section, we report the performance of our method FedAug and other baselines with an error bar to verify the
performance gain of our proposed method.
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Figure 8: We show 20 augmentation data of CIFAR10 dataset here. Notice that the augmentation data is close to random noise and can
not be classified as any class.

0 100 200 300 400 500

Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

FedAvg
FedMix
FedProx
Moon
Mixup
FedBR
FedBR + Mixup

(a) Convergence curve on RotatedMNIST

0 100 200 300 400 500

Communication Rounds

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

FedAvg
FedMix
FedProx
Moon
Mixup
FedBR
FedBR + Mixup

(b) Convergence curve on CIFAR10

0 50 100 150 200 250 300 350 400

Communication Rounds
0.0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

FedAvg
FedMix
FedProx
Moon
Mixup
FedBR
FedBR + Mixup

(c) Convergence curve on CIFAR100

Figure 9: Convergence curve of algorithms on different datasets.
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Algorithm 3 Construct Augmentation Data by Proxy Data
Require: Proxy Datasets Dprox, number of augmentation data K, number of samples to construct one augmentation sample M .
Ensure: Augmentation Dataset Dp.
1: Initialize Dp = ∅.
2: for k = 1, . . . ,K do
3: Randomly sample x1, . . . , xM from Dprox.
4: x̄ = 1

M

∑M
m=1 xM .

5: Dp = Dp ∪ {x̄}

Table 8: Performance of algorithms with error bar. All examined algorithms use FedAvg as the backbone. We run 1000 communication
rounds on RotatedMNIST and CIFAR10 for each algorithm. For each algorithm, we run three different trials with different random seeds.
For each trial, we report the mean of maximum 5 accuracies for test datasets and the number of communication rounds to reach the
threshold accuracy.

Algorithm RotatedMNIST CIFAR10

Acc (%) Rounds for 80% Acc (%) Rounds for 55%

ERM (FedAvg) 82.78± 0.38 821 (1.0X) 58.97± 0.30 742 (1.0X)
DANN 84.67± 0.46 754 (1.1X) 58.98± 0.61 747 (1.0X)
Mixup 82.38± 0.07 853 (1.0X) 58.32± 0.33 822 (0.9X)
GroupDRO 80.65± 0.53 929 (0.9X) 56.72± 0.26 840 (0.9X)

FedBR (Ours) 87.05 ± 0.44 637 (1.3X) 64.62 ± 0.32 374 (2.0X)

Table 9: Performance of algorithms on CIFAR10. We split CIFAR10 dataset to 10 clients with α = 0.1, without additional rotation.
For each algorithm, we run 1000 communication rounds on ResNet18 (with group normalization), and set local steps to 50. Note that we
set momentum to 0.9 for ResNet18.

FedAvg FedProx Moon VHL FedBR (ours)

Accuracy (ResNet18) 45.91 46.28 43.85 43.7 47.29

C.2. Ablation Study of FedBR
Values of τ1 and τ2 in Component 2. In this paragraph, we investigate how the value of τ1 and τ2 affect the performance
of the second component of FedBR. In table 10, we show the results on Rotated-MNIST dataset with different weights τ1
and τ2. Results show that: 1) Setting τ2 = 0 , which only minimizes the distance of global and local features, has significant
performance gain compare with ERM. However, adding τ2 can further improve the performance. 2) The best weight on
Rotated-MNIST dataset is τ1 = 2.0 and τ2 = 0.5.

Table 10: Performance of Component 2 of FedBR under different values of τ1, τ2. We run 1000 communication rounds on
RotatedMNIST dataset. For each setting, we run three different trials with different random seeds. For each trial, we report the mean of
maximum 5 accuracies for test datasets and the number of communication rounds to reach the threshold accuracy.

τ1 τ2 Acc (%) Rounds for 80% Rounds for 85%

2.0 0.0 86.11± 0.77 746 933
2.0 0.1 86.22± 0.33 753 920
2.0 0.5 87.24± 0.50 647 851
2.0 1.0 86.25± 0.87 705 922
2.0 2.0 86.01± 0.33 680 932

Table 11: Performance of FedBR under different values of τ1, τ2. We run 1000 communication rounds on the CIFAR10 dataset. For
each setting, we run three different trials with different random seeds. For each trial, we report the mean of maximum 5 accuracies for test
datasets and the number of communication rounds to reach the threshold accuracy.

τ1 τ2 Acc (%) Rounds for 55% Rounds for 60%

2.0 0.0 64.05± 0.27 390 563
2.0 0.5 64.26± 0.47 382 585
2.0 1.0 64.77± 0.24 374 533
2.0 2.0 64.62± 0.32 374 541
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Weights of the first component of FedBR. In this paragraph, we investigate how the weights of the first component of
FedBR affect the performance of models in table 12.

Table 12: Performance of component 1 under different weights. We run 1000 communication rounds on the CIFAR10 dataset. For
each setting, we run three different trials with different random seeds. For each trial, we report the mean of maximum 5 accuracies for test
datasets and the number of communication rounds to reach the threshold accuracy. We use λ as the weight of the first component of
FedBR.

λ Acc (%) Rounds for 55% Rounds for 60%

0.1 64.12± 0.27 442 591
0.5 64.92± 0.46 385 536
1.0 64.50± 0.34 379 565

Domain robustness of FL and DG algorithms. We also hope that our method can increase the model’s robustness because
it expects to train client invariant features. Therefore, we calculate the worst accuracy on test datasets of all clients/domains
and report the mean of each algorithm’s top 5 worst accuracies in Table 14 to show the domain robustness of algorithms.
We have the following findings: 1) FedBR significantly outperforms other approaches, and the improvements of FedBR
over FedAvg become more significant than the mean accuracy in Table 1. FedBR has a role in learning a domain-invariant
feature and improving robustness, as evidenced by this finding. 2) Under these settings, DG baselines outperform FedAvg.
This finding demonstrates that the DG algorithms help to enhance domain robustness.

Table 13: Performance of algorithms. All examined algorithms use FedAvg as the backbone. We run 1000 communication rounds on
RotatedMNIST and CIFAR10 for each algorithm, 800 communication rounds CIFAR100 and 400 communication rounds for PACS. We
report the mean of maximum 5 accuracies for test datasets and the number of communication rounds to reach the final accuracy of ERM .

Algorithm RotatedMNIST CIFAR10 PACS

Acc (%) Rounds (Speed up) Acc (%) Rounds (Speed up) Acc (%) Rounds (Speed up)

ERM (FedAvg) 82.47 828 (1.0X) 58.99 736 (1.0X) 64.03 168 (1.0X)
FedProx 82.32 824 (1.0X) 59.14 738 (1.0X) 65.10 168 (1.0X)
SCAFFOLD 82.49 814 (1.0X) 59.00 738 (1.0X) 64.49 168 (1.0X)
FedMix 81.33 902 (0.9X) 57.37 872 (0.8X) 62.14 228 (0.7X)
Moon 82.68 864 (0.9X) 58.23 820 (0.9X) 64.86 122 (1.4X)
DANN 84.83 743 (1.1X) 58.29 782 (0.9X) 64.97 109 (1.5X)
Mixup 82.56 840 (1.0X) 58.57 826 (0.9X) 64.36 210 (0.8X)
GroupDRO 80.23 910 (0.9X) 56.57 835 (0.9X) 64.40 170 (1.0X)

FedBR (Ours) 86.58 628 (1.3X) 64.65 496 (1.5X) 65.63 100 (1.7X)

Table 14: Worst Case Performance of algorithms. All examined algorithms use FedAvg as the backbone. We run 1000 communication
rounds on RotatedMNIST and CIFAR10 for each algorithm, 800 rounds for CIFAR100, and 400 communication rounds for PACS. We
calculate the worst accuracy for all clients in each round and report the mean of the top 5 worst accuracies for each method. Besides, we
report the number of communication rounds to reach the final worst accuracy of FedAvg.

Algorithm RotatedMNIST CIFAR10 PACS

Acc (%) Rounds (Speed up) Acc (%) Rounds (Speed up) Acc (%) Rounds (Speed up)

ERM (FedAvg) 66.60 816 (1.0X) 41.30 846 (1.0X) 42.79 170 (1.0X)
FedProx 65.88 780 (1.0X) 41.84 840 (1.0X) 42.82 170 (1.0X)
SCAFFOLD 66.72 804 (1.0X) 40.88 840 (1.0X) 41.63 170 (1.0X)
FedMix 60.52 910 (0.9X) 28.44 - 38.00 -
Moon 66.18 866 (0.9X) 40.34 908 (0.9X) 41.59 66 (2.6X)
DANN 67.85 753 (1.1X) 43.38 747 (1.1X) 40.51 59 (2.9X)
Mixup 66.25 836 (1.0X) 40.32 984 (0.9X) 41.89 252 (0.7X)
GroupDRO 68.53 568 (1.4X) 46.90 656 (1.3X) 43.18 246 (0.7X)

FedBR (Ours) 77.13 630 (1.3X) 48.94 632 (1.3X) 43.99 58 (2.9X)

C.3. T-SNE and Classcifier Outputs of Toy Examples
As the setting in Figure 2 and Figure 3, we investigate if the two components of FedBR will help for mitigating the proposed
bias on feature and classifier. Figure 10 show the features after the second component of FedBR, which implies this
component can significantly mitigate the proposed feature bias: 1) on the seen datasets, local features are close to global
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(a) Global feature of X1, Fg(X1) (b) Local feature of X1, F1(X1) (c) Local feature of X2, F1(X2)

Figure 10: Features after the second component of FedBR.

Figure 11: Classifier output after the first component of FedBR on unseen classes.

features. 2) on the unseen datasets, the local feature is far away from that of seen datasets. Figure 11 shows the output of the
local classifier after the first component of FedBR on unseen classes. Notice that compared with Figure 3, the output is more
balanced.
In Figure 12 and Figure 13, we show the local learning bias when local model has better feature initialization. We copy
the feature extractor of global model to local models, and randomly initialize local classifiers. Results show that: 1) The
drifts between global and local features are still significant even has a good feature initialization. 2) The local features of
unseen data are less relevant to the local features of seen data compare with training from scratch. This indicates that such
a problem will be mitigated after enough training rounds. 3) The drifts between global and local features increase as the
number of local epochs increases.
We also investigate if our observation remains for different stages of global models. In this experiment, we use CIFAR10
dataset, and train global model for 1, 3, 10 epochs on the whole dataset to obtain 29.74%, 38.65%, 49.28% global accuracy,
then we directly copy global models to clients (including classifier). We fine-tune the global models for 10 local epochs,
results are shown in Figure 14. Results show that: For not well-trained global models, difference between global features on
the same input and similarity between local features of different inputs are both significant.

(a) Global feature of X1, Fg(X1) (b) Fine-tuned Local feature of X1, F1(X1) (c) Fine-tuned Local feature of X2, F1(X2)

Figure 12: Fine-tuned local features after 10 local epochs.
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(a) Global feature of X1, Fg(X1) (b) Fine-tuned Local feature of X1, F1(X1) (c) Fine-tuned Local feature of X2, F1(X2)

Figure 13: Fine-tuned local features after 20 local epochs.

(a) Global feature of X1, Fg(X1) (b) Fine-tuned Local feature of X1, F1(X1) (c) Fine-tuned Local feature of X2, F1(X2)

(d) Global feature of X1, Fg(X1) (e) Fine-tuned Local feature of X1, F1(X1) (f) Fine-tuned Local feature of X2, F1(X2)

(g) Global feature of X1, Fg(X1) (h) Fine-tuned Local feature of X1, F1(X1) (i) Fine-tuned Local feature of X2, F1(X2)

Figure 14: First train global model on the whole dataset for 1, 3, and 10 epoch (w.r.t. each row), then report local features after 10 local
epochs.
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(a) Global, α = 0.05 (b) Local X1, α = 0.05 (c) Local X2, α = 0.05 (d) Aggregate, α = 0.05

(e) Global, α = 0.1 (f) Local X1, α = 0.1 (g) Local X2, α = 0.1 (h) Aggregate, α = 0.1

(i) Global, α = 0.4 (j) Local X1, α = 0.4 (k) Local X2, α = 0.4 (l) Aggregate, α = 0.4

(m) Local Classifier, α = 0.05 (n) Local Classifier, α = 0.1 (o) Local Classifier, α = 0.4

Figure 15: Illustration of our observation under mild split conditions: We introduce a parameter α ∈ [0, 0.5] to control the level of
non-i.i.d. of clients, where a larger α indicates less non-i.i.d., and α = 0.5 indicates a balanced local distribution. We present the global
feature, local feature on seen (X1) and unseen (X2) data, as well as the feature of the aggregated model. Additionally, we illustrate the
output distribution of the global and local classifiers on the test data with a balanced label distribution.

20



FedBR: Improving Federated Learning on Heterogeneous Data via Local Learning Bias Reduction

0 50 100 150 200 250

Time

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

FedAvg
FedMix
FedProx
Moon
Mixup
VHL
FedCM
FedBR

(a) CIFAR10, VGG11
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(b) CIFAR100, CCT

Figure 16: Convergence curve w.r.t simulation time. We present the convergence curves of various algorithms with respect to simulation
time. Our results indicate that FedBR introduces additional computational burden compared to FedAvg and FedProx. However, the
computational efficiency of FedBR is comparable to that of other regularization-based baselines.

C.4. T-SNE Results on Mild Conditions
We introduce a parameter α ∈ [0, 0.5] to control the level of non-i.i.d. of clients, where a larger α indicates less non-i.i.d.,
and α = 0.5 indicates a balanced local distribution. Results are shown in Figure 15: 1) The local feature on the unseen data
(Local X2) still lacks a clear decision boundary, and the local features are close even for data from different classes. 2) The
decision boundary of the aggregated model becomes clearer as α increases, supporting the necessity of reducing the local
bias. 3) Our observation on the biased classifier still holds, where a smaller α leads to a more biased classifier output.
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