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Abstract
The learnware paradigm aims to build a learn-
ware market containing numerous learnwares,
each of which is a well-performing machine learn-
ing model with a corresponding specification to
describe its functionality so that future users can
identify useful models for reuse according to their
own requirements. With the learnware paradigm,
model developers can spontaneously submit mod-
els to the market without leaking data privacy,
and users can leverage models in the market to
accomplish different machine learning tasks with-
out having to build models from scratch. Recent
studies have attempted to realize the model specifi-
cation through Reduced Kernel Mean Embedding
(RKME). In this paper, we make an attempt to
improve the effectiveness of RKME specification
for heterogeneous label spaces, where the learn-
ware market does not contain a model that has the
same label space as the user’s task, by consider-
ing a class-specific model specification explicitly,
along with a class-wise learnware identification
method. Both theoretical and empirical analyses
show that our proposal can quickly and accurately
find useful learnwares that satisfy users’ require-
ments. Moreover, we find that for a specific task,
reusing a small model identified via the speci-
fication performs better than directly reusing a
pre-trained generic big model.

1. Introduction
Machine learning has achieved great success in various
tasks and applications (Jordan & Mitchell, 2015). How-
ever, training a well-performing machine learning model
from scratch is difficult since it requires a huge number of
training data, particularly labeled data (Zhou, 2017); profi-
cient training skills (LeCun et al., 2015); massive computing
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resources (Guo et al., 2020). Moreover, the amount of pos-
sible machine learning tasks can be unimaginably big or
even infinite, it would be expensive or even impossible to
train a well-performing model for every task. Data privacy
concerns are also a serious issue when reusing or adapting a
trained model among different users.

To deal with the above challenges simultaneously, learn-
ware (Zhou, 2016; Zhou & Tan, 2022) provides a new
paradigm that attempts to change the current style of stan-
dard machine learning to a style where the previous efforts
of other users can be identified and reused, by construct-
ing a public learnware market containing numerous learn-
wares. Each learnware is a well-performing machine learn-
ing model with a specification that conveys its specialty
and utility. A standard learnware paradigm is conducted as
follows: a developer or owner of a trained machine learning
model (no matter whether the model structure or the train-
ing algorithm) can spontaneously submit the trained model
into the learnware market. The learnware market assigns a
specification to the model, which captures its specialty and
utility and enables it to be identified for reuse, and then in-
corporates the model into the market. When a user is going
to tackle a machine learning task, the user can submit the
requirement to the learnware market, and then the market
will identify useful learnware(s) by considering the model
specification. It is noteworthy that the learnware market has
no access to either the data of developers or users. Figure 1
presents a comparison of the standard machine learning
paradigm and the learnware paradigms.

It is evident that the specification plays a pivotal role in the
learnware paradigm. A model specification should satisfy
two important properties: 1) the specification should accu-
rately describe the characteristics of the model, such that
given a new learning task, it is possible to identify useful
learnwares based on the specification; 2) the specification
must not leak its original training data, otherwise the model
developers may not be able to share their models due to
concerns about the leak of data privacy. A recent effort
is the RKME (Reduced Kernel Mean Embedding) speci-
fication (Zhou & Tan, 2022), based on techniques of the
reduced set of KME (Kernel Mean Embedding) (Muandet
et al., 2017; Wu et al., 2021). The KME is a powerful tech-
nique to map a probability distribution to a point in RKHS
(Reproducing Kernel Hilbert Space) without losing infor-
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Figure 1. Comparison between the standard machine learning paradigm and the learnware paradigm.

mation (Sriperumbudur et al., 2011), and the reduced set
reserves the ability with a concise representation that does
not expose the original data privacy.

The RKME specification is based on the assumption that
identifying useful models for a user’s task can be approached
by identifying models whose training data distribution is
close to the user task’s data distribution. Although identi-
fying useful learnwares approached by whole data distribu-
tion similarity has achieved impressive results on various
tasks (Wu et al., 2021; Zhou & Tan, 2022; Tan et al., 2022),
the conditional probability distribution for each class has not
been modeled explicitly, thus, the correspondence between
the label space of the models in the market and the user’s
task can not be taken into account. This limits its effective-
ness in the heterogeneous label space settings where the
learnware market does not contain a model with the same
label space as the user’s task.

To this end, we propose a new plugin to improve the ef-
fectiveness of RKME specification for heterogeneous label
spaces. Specifically, in the submitting stage, we propose to
assign a class-wise specification for each submitted model
by reducing the model into a linear proxy model via twice
learning (Zhou & Jiang, 2004), a similar idea later called
knowledge distillation (Hinton et al., 2014), to approximate
the model’s functionality on each class, in addition to re-

ducing the whole training data distribution into a point in
RKHS. In the deploying stage, we propose a fine-grained
matching method to identify the most useful learnware in
a class-wise manner, which contains two steps. In the first
step, we identify multiple candidate learnwares by consid-
ering the model specifications. In the second step, we con-
struct a bipartite graph for each candidate learnware and the
user’s task and then obtain the maximum matched learnware
through the Hungarian algorithm (Kuhn, 1955). Theoretical
analysis shows that specification similarity can accurately
approximate the ground-truth model reuse performance on
the user’s task. Experimental results on more than 20 tasks
show that our proposal not only identifies the most useful
model for the user’s task but also the similarity ranking of
the new proposal is closely related to the ranking of ground-
truth model reuse performance. Moreover, we show that for
a specific task, fine-tuning a small model identified via the
model specification can do better than directly fine-tuning a
pre-trained generic big model.

2. Related Works
This paper is mainly related to learnware, model reuse,
model selection via LLM, and reusability evaluation studies.

Learnware. Learnware (Zhou, 2016; Zhou & Tan, 2022)
presents a general and realistic paradigm where numerous
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models for various tasks associated with their specifications
are available in the learnware market and users can search
for a useful model from the market based on their require-
ments, reducing the number of resources required. The
model specification is an essential component of the learn-
ware paradigm, describing the functionality of each model.
Recently, there have been some efforts in this direction. For
example, the RKME specification (Zhou & Tan, 2022) con-
structs the specification space by mapping the training data
of models to an element of the RKHS, helpful models can
be identified by calculating the RKHS distance between
RKMEs (Wu et al., 2021). When the user’s task involves un-
seen tasks not covered by the learnware market, Zhang et al.
(2021) extended the RKME specification by using the mix-
ture proportion estimation (MPE) technique (Ramaswamy
et al., 2016; Zhang et al., 2020) to identify examples from
these unseen tasks while assigning the rest to proper mod-
els returned from the market. Tan et al. (2022) provides a
solution for models from heterogeneous feature spaces by
generating the RKME specification in a unified subspace.
These studies describe the model’s specialty and utility by
approximating the whole training data distribution while ig-
noring class-wise conditional probability distributions. This
paper provides a solution to improve the effectiveness of
learnware paradigm for heterogeneous label spaces.

Model Reuse. Model reuse tries to adapt models from re-
lated source tasks to a new target task (Pan & Yang, 2010).
Transfer learning or domain adaptation is one way of im-
plementing model reuse (Duan et al., 2009; Du et al., 2017;
Kuzborskij & Orabona, 2013). But they usually assume ac-
cess to both source and target domain data simultaneously,
which may not be feasible in real-world scenarios due to
privacy and confidentiality concerns. There are also source-
free domain adaptation methods (Chidlovskii et al., 2016;
Liang et al., 2020; Shao et al., 2021; 2022), which only
utilize the source-trained model and target data to adapt to
the target domain. However, they require that all the source
models are helpful for the target task while ignoring the
challenging problem of how to identify useful models for
the target task. In the learnware paradigm, there may be
thousands or millions of models in the market, and only
a tiny portion of models are helpful for the target task, so
identifying useful models is indispensable.

Model Selection via LLMs. Recently, with the success of
large language models (LLMs) (Brown et al., 2020; Tou-
vron et al., 2023), there are some works proposed to adopt
the LLM to identify useful models for a user’s task based
on the natural language descriptions of the model’s char-
acteristics and the user’s requirements. For example, Hug-
gingGPT (Shen et al., 2023) proposed to use ChatGPT as
a machine learning model selector to identify useful mod-
els that meet users’ requirements from the HuggingFace
platform. In contrast to these efforts that only provide a

hub or pool of pre-trained models, where the models are to
be used “as-what-was-submitted”, the learnware paradigm
demonstrates a fundamentally different manner, where the
learnware market is to enable its accommodated models to
be used “beyond-what-was-submitted”. In other words, the
learnware market aims to enable its accommodated mod-
els to be useful in tasks that were not considered by the
models’ developers, where the learnware specification plays
a fundamental role. Needless to say, the specification can
help the learnware market accommodate the models in a
highly organized way, enabling efficient identification and
assembling helpful models for new tasks.

Reusability Evaluation. There are also studies focused
on how to evaluate the reusability of trained models for a
target task. For example, Tran et al. (2019) developed the
negative conditional entropy measure between the source
and target label sets to study the transferability between
classification tasks. Bao et al. (2019) developed a trans-
ferability measure based on H-scores, which are derived
from information-theoretic principles. Nguyen et al. (2020)
developed a LEEP measure, which is the log expectation of
the empirical predictor constructed by estimating the joint
distribution over pre-trained labels and the target labels. You
et al. (2021) proposed to estimate the maximum value of la-
bel evidence given features extracted by trained models and
obtained the Logarithm of Maximum Evidence (LogME)
measure. However, these measures necessitate running each
candidate model on the target data, which is impractical for
real-world scenarios with numerous models. On the con-
trary, with the design of the model specification to describe
the specialty and utility of each model, we can identify use-
ful models simply by comparing user requirements with
model specifications, without running models.

3. Our Approach
In this section, we present our approach, including the prob-
lem setup, details of the specification assignment and learn-
ware identification, and theoretical analysis.

3.1. Problem Setup

In the learnware paradigm, we assume there are M avail-
able models {fm}Mm=1 in the learnware market where fm is
trained on the dataset Dm = {Xm,Ym}. Xm ∈ RNm×dm

indicates the feature matrix, Ym ∈ RNm×Km indicates the
label matrix. Nm, dm, and Km represent the number of
training examples, the dimension of feature space, and the
dimension of label space, respectively. When the model
developer submits the model to the learnware market, the
market needs to assign a specification Sm to each model.
When a user wants to deploy a model to tackle his/her own
task with dataset DT = {XT ,YT } where XT ∈ RNT ×dT

and YT ∈ RNT ×KT , the learnware market generates ST
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Algorithm 1 Specification Assignment.
Input: Dataset {X,Y}, model f , feature extractor G(·).
Output: Model specification S.

1: Project the feature into a new space with G(·).
2: Obtain the data reduction Φ = (β,U) by optimizing

Eq.(1).
3: Obtain the model reduction W by optimizing Eq.(2).
4: Return S = (Φ,W).

as the user’s requirements using DT and returns the model
with the most similar specification to ST in the learnware
market. It is noteworthy that, the learnware paradigm pro-
tects data privacy, i.e., the learnware market only stores the
model and related specification, the original training data is
not accessible.

To realize the learnware paradigm, there are two important
challenges:

• In the submitting stage, how to assign specifications
to describe the utility of the submitted model?

• In the deploying stage, how to identify useful learn-
wares in the market given a user’s requirements?

3.2. Assign Specifications in the Submitting Stage

In the submitting stage, the model developer submits a
model to the learnware market, and the market needs to
assign a proper specification to the model. The model spec-
ification should convey the model’s specialty and utility
while also protecting the training data privacy. Considering
the fact that there will exist heterogeneous models with dif-
ferent feature spaces, i.e., dm could be varied in different
models. To obtain a unified feature space, we assume there
is a public feature extractor G(·) that can map the training
data of each model into a new unified representation space.
The assumption is practical for real-world tasks since we
can adopt a public pre-trained representation learning model
as the feature extractor.

When a model fm is submitted to the learnware market, we
first generate a new feature matrix for its original training
data using G(·) and obtain Zm = G(Xm) ∈ RNm×d.

Then, we obtain a reduced training dataset by optimizing
the following objective:

min
βm,Um

∥∥∥ 1

Nm

Nm∑
i=1

k(Zm,i, ·)−
Vm∑
j=1

βm,jk(Um,j , ·)
∥∥∥2
H

(1)

where k(·, ·) is the kernel function with associated RKHS
H, Um,j is the element in the reduced set, and βm,j is the
corresponding coefficient.

Algorithm 2 Identify Useful Learnwares.
Input: User’s dataset {XT ,YT }, M trained models
{fm}Mm=1, specifications {Sm}Mm=1.
Output: Identified model f .

1: Obtain ΦT and WT for the user’s data.
2: if homogeneous setting then
3: Select C candidate models that have the most similar

Φ and the same label space as the user’s task.
4: Calculating the similarity between Wc and WT via

Eq.(5).
5: Return f with the most similar W to WT .
6: end if
7: if heterogeneous setting then
8: Select C candidate models that have the most similar

Φ as the user’s task.
9: For each class k in the user’s task, select a model with

the most similar class-wise specification to WT ,k,
and obtain L candidate models.

10: Construct a bipartite graph for the user’s task and
each candidate model fl.

11: Run the Hungarian algorithm to find the maximum
matching for each model fl.

12: Return f with the maximum matching score.
13: end if

The above minimization problem can be solved with the
alternating optimization algorithm, as presented in Wu et al.
(2021). After solving the problem, we can obtain Φm =
{(βm,Um)} where Um ∈ RVm×d.

Next, we reduce the submitted model fm into a linear proxy
model by minimizing the following objective:

min
Wm

LCE(ZmWm,Ym)+LKL(ZmWm, fm(Xm)) (2)

where LCE and LKL indicates the cross-entropy loss and
KL-divergence, respectively, and Wm ∈ Rd×Km is the
parameter of the reduced model.

It is noteworthy that the k-th column in the matrix Wm can
be seen as a specification for class k, thus, Wm is a class-
wise specification that describes the model’s functionality
on each class.

We treat Φm and normalized Wm as the specification of
model fm, i.e., Sm = (Φm,Wm), and the corresponding
learnware is (fm, Sm).

Remark. It is worth noting that the model specification Sm

is unrelated to the feature dimension, implying that our pro-
posal can naturally deal with heterogeneous feature space.
Moreover, the learnware market only stores the model and
corresponding specification, thus, the model developer does
not leak original training data.
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3.3. Identify Useful Learnwares in the Deploying Stage

In the deploying stage, the user searches for useful models
in the learnware market according to the model specification.
In our study, we consider both homogeneous and heteroge-
neous label spaces to make the proposal more practical. In
the homogeneous label space setting, the learnware market
contains models that have the same label space as the user’s
task, while in the heterogeneous setting, there is not a model
in the learnware market that can fit the user’s task perfectly.

Similar to the specification assignment process in the sub-
mitting stage, given a small dataset DT = {XT ,YT } of
the user’s task, we first map the feature into a new represen-
tation space with G(·) and obtain ZT = G(XT ) ∈ RNT ×d.

The data reduction of the user’s task can be obtained as

ΦT =
1

NT

NT∑
i=1

k(ZT ,i, ·) (3)

and the model reduction can be obtained by optimizing the
following objective

min
WT

LCE(ZT WT ,YT ) (4)

For the homogeneous label space setting, we first select all
models that have the same label space as the user’s task
and then select C candidate models {fc}Cc=1 by comparing
the RKHS distance between ΦT with Φm in the learnware
market, which is the same as Wu et al. (2021).

Next, we compute the similarity between WT and Wc

Similarity(WT ,Wc) = Tr(W⊤
T Wc) (5)

where Tr(·) is the trace of a matrix.

Finally, we can return a model that has the most similar
specification to the user’s task.

For the heterogeneous setting, since there is no model with
the same label space as the user’s task, we first select C
candidate learnwares according to ΦT , and then identify
the most useful learnware in a class-wise manner accord-
ing to WT . This class-wise identification process contains
two steps. In the first step, we select potentially useful
learnwares for each class. Note that the specification WT
can be written as [WT ,1; · · · ;WT ,k; · · · ;WT ,KT ] where
WT ,k ∈ Rd×1. We denote WT ,k as the class-wise specifi-
cation for class k in the user’s task. For each model fm in
the learnware market, we also have Wm,i as the class-wise
specification for the i-th class of model fm.

Then, for each class k in the label space of the user’s task,
we can select a model by comparing the similarity between
WT ,k and Wm,i, the similarity score can be computed as

Similarity(WT ,k,Wm,i) = W⊤
T ,kWm,i (6)
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Figure 2. An example of the matching process in the heterogeneous
label space setting. Assume that the label space of the user’s task
and the candidate model fm are {“rabbit”, “dog”} and {“rabbit”,
“cow”, “wolf”}, respectively. We construct a bipartite graph with
the class-wise similarity score as the edge weights, as shown on
the left. Then, we find the maximum matching via the Hungarian
algorithm and can obtain that the matching score between the
user’s task and fm is 0.9+0.7=1.6.

After the first step, we can obtain L candidate models
{f1, · · · , fL} and L ≤ KT because the same model can be
selected for different classes.

In the second step, we construct a bipartite graph for the
user’s task and each candidate model fl. The graph contains
two node sets: the nodes of target classes and the nodes of
classes in model fl. The weights of edges in the graph are
the similarity score: Similarity(WT ,k,Wl,i). Then we run
the Hungarian algorithm (Kuhn, 1955) to find the maximum
matching of each bipartite graph. We give an example of
the matching process in Figure 2. Finally, we can return a
model with the maximum matching score.

3.4. How the Proposal Works

Generally, we expect the selected model to achieve a good
performance on the user’s task. Wu et al. (2021) has pro-
vided theoretical results to rigorously justify the reusability
of models by using the data reduction Φ. In this section, we
show that the specification similarity between W also acts
as a good approximation of the ground-truth model reuse
performance.

Given a model fm, we denote the prediction of model fm
on the target dataset DT as

Ŷm = fm(XT ) (7)

The classification accuracy of fm can be calculated as

Accuracy(fm,DT ) = Tr(Ŷ⊤
mYT ) (8)

By using the feature extractor G(·) and the reduced model,
we have

Ŷm ≈ G(XT )Wm,YT ≈ G(XT )WT (9)
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Then, the classification accuracy can be approximated as

Accuracy(fm,DT ) (10)

≈ Tr
((

G(XT )Wm

)⊤(
G(XT )WT

))
= Tr

(
W⊤

mG(XT )
⊤G(XT )WT

)
Based on the analysis, we have the following proposition,

Proposition 3.1. Assume that the representation matrix
G(XT ) satisfies that G(XT )

⊤G(XT ) = I , the accuracy
of model fm on the target dataset DT can be well approxi-
mated by the similarity between Wm and WT , i.e.,

Accuracy(fm,DT ) = Tr(W⊤
mWT ) (11)

Remark. Proposition 3.1 reveals that the model specifica-
tion similarity can accurately approximate the performance
of reusing this model on the user’s task. The results help us
understand why the proposal works. The assumption is also
reasonable since a good representation should overcome the
feature redundancy problem (Wang et al., 2020).

4. Experiments
To demonstrate the effectiveness of the learnware paradigm
and the new proposal, we conduct experiments to verify the
following questions: 1) Can the most useful learnware be
identified via the specification? 2) How about the correlation
between the model reuse performance and specification
similarity? 3) Is it better to reuse the identified model than
to directly reuse a generic big model? 4) How much time
can be saved compared to brute-force fine-tuning?

4.1. Experimental Setup

Datasets. We adopt the NICO (He et al., 2021) and Domain-
Net (Peng et al., 2019) datasets to evaluate the proposed
learnware paradigm. The two datasets are both designed to
help evaluate the effectiveness of model reuse algorithms.
Specifically, the NICO dataset has two super-classes: animal
and vehicle, with 10 classes for animals and 9 classes for ve-
hicles. The dataset contains images with both main concepts
(e.g., dog) and contexts (e.g., on grass). By selecting images
with different contexts, we have 6 different domains: [“au-
tumn”, “dim”, “grass”, “outdoor”, “rock”, “water”]. The
DomainNet (Peng et al., 2019) dataset is an image dataset
with 345 categories of common objects. Specifically, we
select 5 domains from the DomainNet dataset: [“clipart”,
“infograph”, “painting”, “quickdraw”, “real”].

Learnware Market Construction. In practice, we expect
model developers to spontaneously submit models to the
learnware market. In our experiments, we manually divide
different tasks using data from different domains and dif-
ferent label spaces, train models on these tasks and then

Table 1. Pre@k measure in the learnware identification process.
The best method is highlighted in bold.

Settings Methods Pre@1 Pre@2 Pre@3
Homo-

direct use
RKME-basic 54.54 81.82 95.45

Ours 95.15 100.0 100.0
Homo-

fine-tuning
RKME-basic 40.90 68.18 81.82

Ours 81.82 90.91 90.91
Hetero-

fine-tuning
RKME-basic 36.36 45.45 50.00

Ours 59.09 63.63 68.18

construct the learnware market. Specifically, for the ho-
mogeneous label space setting, we select images from the
common label spaces of the NICO and DomainNet datasets
and obtain two label spaces. The label space A is [“flower”,
“horse”, “cow”, “rabbit”, “tiger”, “bird”, “bus”, “sailboat”,
“train”, “helicopter”] and the label space B is [“butterfly”,
“owl”, “bird”, “giraffe”, “frog”, “squirrel”, “train”, “tent”,
“truck”, “umbrella”]. Thus, we obtain 11 domains × 2 label
spaces = 22 classification tasks. We treat each task as the
user’s task separately, leaving models trained on the other 21
tasks as source models in the learnware market. Overall, we
have 22 user tasks, and for each user’s task, the learnware
market contains 21 trained models. For the heterogeneous
label space setting, we construct another two label spaces
in addition to label space A and label space B. Specifically,
label space C is [“flower”, “horse”, “cow”, “rabbit”, “tiger”]
and label space D is [“bird”, “giraffe”, “frog”, “squirrel”,
“tiger”]. We treat images from the 11 domains and label
spaces C/D as the user’s tasks, leaving images from the 11
domains with label spaces A/B as the source tasks. Overall,
we have 11 user tasks, and for each task, the learnware mar-
ket contains 11 trained models. In the heterogeneous setting,
we cannot find a model that has the same label space as the
user’s task in the learnware market.

Training Details. For each source task, we train a ResNet-
18 (He et al., 2016) as the trained model. We train the model
for 500 epochs using the SGD optimizer. The initial learn-
ing rate is 0.1, and we adopt the cosine annealing learning
rate decay strategy. The feature extractor G(·) in our exper-
iments is a DenseNet201 (Huang et al., 2017) pre-trained
on the ImageNet dataset. To generate the model specifica-
tion, we train a linear model for 200 epochs using the SGD
optimizer, and the learning rate is 0.1. For the user’s tasks,
we assume there are only 10 labeled examples available
for each class. We adopt the small labeled dataset to help
generate specifications and fine-tune the selected trained
model, leaving the others as the test data.

Compared Methods. The basic implementation of the
RKME specification(Wu et al., 2021) is adopted as the com-
parison method in our studies. Specifically, in the submitting
stage, the RKME-basic specification constructs a reduced
set of empirical KME as the specification, which maps
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Figure 3. Correlation τ between fine-tuned performance (X-axis) and specification similarities (Y-axis) for trained model selection. The
target dataset name is combined with the domains and the label spaces (e.g., autumn-A indicates examples are sampled from the domain
‘autumn’ and the label space is ‘A’). One circle marker indicates a trained model. τ is in the bracket next to the dataset name and the best
τ in each dataset is highlighted in bold.

a probability distribution to a point in RKHS and can be
regarded as a representation of the distribution. In the de-
ploying stage, the RKME-basic specification measures the
RKHS distance between the mean embedding of the user’s
task and the reduced embedding in the learnware market.
We adopt the official code in Wu et al. (2021) to implement
the RKME-basic specification.

4.2. Can the most useful learnware be identified via the
model specification?

The goal of the learnware paradigm is to help identify the
most useful learnware from the learnware market given a
user’s requirement. Thus, we first pay attention to the prob-
lem that can the most useful learnware be identified based
on the model specification. To verify this property, we adopt
the Pre@k as the evaluation measure. Specifically, given a
user’s task, we rank all models in the learnware market ac-
cording to their specifications’ similarity to the user’s task.
The ranking can be represented by the vector πf , where
πfi < πfj if Similarity(Si, ST ) > Similarity(Sj , ST ).
Given T users’ tasks {T1, · · · , TT } and the rank of the best
model for the user’s task Tt is πfbest

t , the Pre@k measure
can be defined as:

Pre@k =
1

T

T∑
t=1

I(πfbest
t ≤ k) (12)

We report the Pre@k measure on both homogeneous and
heterogeneous label space settings in Table 1. Specifically,
we adopt two model reuse methods for the homogeneous
setting: direct use of the trained model on the user’s task
and fine-tuning the trained model on the user’s dataset. The
results show that: in the homogeneous setting, the best-
performing models for direct use are always in the top 2;
the model with the best fine-tuning performance is also
more than 90% likely to be identified in the top-2 selected
models; even in the more difficult heterogeneous setting,
the best model still has a high probability of being selected.
Additionally, our proposal outperforms the basic RKME
specification consistently. These results demonstrate that
the model specification can help identify the most useful
learnwares, which is in line with our starting point.

4.3. How about the correlation between model reuse
performance and specification similarity?

Except for the most useful learnware, we are also interested
in the correlation between the ground-truth model reuse
performance and the model specification similarity rank.
Inspired by (You et al., 2021), we adopt Kendall’s τ coeffi-
cient (Kendall, 1938) as the performance measure. Assume
we have M trained models {f1, · · · , fM}, the model reuse
performance of the trained model fi on the user’s task is
Pi and the similarity between the model’s specification Si

7
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Figure 4. Correlation τ between fine-tuned performance (X-axis) and specification similarities (Y-axis) for trained models. τ is in the
bracket next to the dataset name and the best τ is highlighted in bold.

and the user’s task ST is Qi, the Kendall’s τ coefficient is
defined as:

τ =
2

M(M − 1)

∑
1≤i≤j≤M

sign(Pi − Pj)sign(Qi −Qj)

(13)
This measure reflects the rank order consistency between
the ground-truth model reuse performance and the model
specification similarities.

We use the basic RKME and our proposal to compute simi-
larities between Si and ST for the trained model fi and the
user’s task, separately. Figure 3 and Figure 4 show the cor-
relation τ between specification similarity and model reuse
performance on 22 user tasks. We can find that our proposal
outperforms the basic RKME specification on most datasets
(20 datasets out of 22 datasets).

4.4. Is it better to reuse the identified model than to
directly reuse a generic big model?

To generate the model specification, we adopt a generic
big model DenseNet201 (Huang et al., 2017) pre-trained
on the ImageNet dataset as the feature extractor. One may
question about that why don’t we directly fine-tune the big
model on the user’s task. We perform experiments on 22
user tasks to compare the performance of fine-tuning the
generic big model, the model selected by the basic RKME

Table 2. The average classification accuracy of fine-tuning differ-
ent models on 22 users’ tasks.

Methods Big model RKME-basic Ours
Accuracy 32.99 33.94 43.54

Performance Gains 2.88% 31.98%

specification, and the model selected by the new proposal.
For each user’s task, the models in the learnware market
are ResNet18 trained on the other 21 tasks. The average
classification accuracy of fine-tuning different models on
22 users’ tasks is reported in Table 2. The results show that
fine-tuning the model selected by both the basic RKME
and the new proposal outperforms the generic big model.
This demonstrates that though the big model paradigm has
achieved great success, it is difficult to expect one big model
to achieve consistently good performance on a wide range of
tasks, whereas there are abundant task-specific small models
with the development of machine learning, it is crucial to
collect numerous task-specific small models and reuse them
to solve different tasks.

4.5. How much time can be saved compared to
brute-force fine-tuning?

Given M trained models, the straightforward way to select
the useful model is to fine-tune every model on the user’s

8
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task and select the best one. In our experiments, we estimate
the training time for fine-tuning a ResNet-18 on a single
NVIDIA 3090 GPU card to be close to 48s. In the learnware
paradigm, we simply compute the similarity between model
specifications and then choose the one that is most similar to
the user’s task. The average computation time cost to com-
pute the similarity between Φ and W is nearly 0.003s and
8× 10−6s, respectively. Therefore, the learnware paradigm
can achieve at least a thousand-fold speedup compared with
brute-force fine-tuning, and the more models available, the
more time can be saved.

5. Conclusions
In this paper, we study the learnware paradigm, which at-
tempts to enable users to build machine learning models
without needing to start from scratch. The key ingredient is
the specification, which enables a trained model to be ade-
quately identified for reuse according to the requirements
of future users who know nothing about the model in ad-
vance. This paper proposes a new plugin to improve the
effectiveness of the learnware paradigm for heterogeneous
label space settings by considering data and model reduction
simultaneously to obtain a class-specific specification, along
with a class-wise learnware identification method. Both ex-
perimental results and theoretical analysis demonstrate the
effectiveness of our proposal.

One limitation is that the identification process needs to ex-
amine the whole market. In the future, we plan to study how
to identify useful learnwares more efficiently via anchor
learnware (Zhou & Tan, 2022). Moreover, it is also interest-
ing to study how to incorporate the LLMs to facilitate the
learnware identification process.
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