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Abstract

Multi-task learning has the potential to improve
generalization by maximizing positive transfer
between tasks while reducing task interference.
Fully achieving this potential is hindered by man-
ually designed architectures that remain static
throughout training. On the contrary, learning
in the brain occurs through structural changes that
are in tandem with changes in synaptic strength.
Thus, we propose Multi-Task Structural Learning
(MTSL) that simultaneously learns the multi-task
architecture and its parameters. MTSL begins
with an identical single-task network for each
task and alternates between a task-learning phase
and a structural-learning phase. In the task learn-
ing phase, each network specializes in the corre-
sponding task. In each of the structural learning
phases, starting from the earliest layer, locally
similar task layers first transfer their knowledge
to a newly created group layer before being re-
moved. MTSL then uses the group layer in place
of the corresponding removed task layers and
moves on to the next layers. Our empirical re-
sults show that MTSL achieves competitive gen-
eralization with various baselines and improves
robustness to out-of-distribution data. Code avail-
able at https://github.com/NeurAI-Lab/MTSL.

1. Introduction
Artificial Neural Networks (ANNs) have exhibited strong
performance in various tasks essential for scene understand-
ing. Single-Task Learning (STL) (Yu et al., 2021; Wang
et al., 2020b; Orsic et al., 2019) has been largely at the center
of this exhibit driven by custom task-specific improvements.
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Despite these improvements, using single task networks for
the multiple tasks required for scene understanding comes
with notable problems such as a linear increase in computa-
tional cost and a lack of inter-task communication.

Multi-Task Learning (MTL), on the other hand, with the
aid of shared layers provides favorable benefits over STL
such as improved inference efficiency and positive informa-
tion transfer between tasks. However, a notable drawback
of sharing layers is task interference. Existing works have
attempted to alleviate task interference by modifying the
architecture (Kanakis et al., 2020; Liu et al., 2019), determin-
ing which tasks to group together using a similarity notion
(Standley et al., 2020; Fifty et al., 2021; Vandenhende et al.,
2020; Gurulingan et al., 2022), balancing task loss func-
tions (Kendall et al., 2018; Liu et al., 2019; Yu et al., 2020;
Lin et al., 2019), or learning the architecture (Guo et al.,
2020; Lu et al., 2017). Although these methods have shown
promise, progress can be made by drawing inspiration from
the brain, which is the only known intelligent system that
excels in multi-task learning. The inner mechanisms of the
brain, although not fully understood, can guide research
in ANNs through simplified notions. Neuron creation and
neuron removal (Maile et al., 2022) are simplified notions
that can aid in the automated design of Multi-Task Networks
(MTNs).

Neuron removal presents the opportunity to start from
a dense set of neurons and move toward a sparse set of
neurons. In the early stages of brain development, neural
circuits consist of excess neurons and connections that pro-
vide a rich information pipeline (Maile et al., 2022). This
pipeline allows neural circuits to learn specialized functions
while undergoing neuron removal and synaptic pruning (Ric-
comagno & Kolodkin, 2015). Thereby, moving from a dense
architecture consisting of multiple single-task networks to a
sparse multi-task architecture could be beneficial.

Neuron creation is an open-ended operation due to the
difficulty involved in deciding where, how, and when to
create neurons (Evci et al., 2022). In the brain, local com-
munication between neurons is an important part of learning.
Learning rules that modulate synaptic strength are local in
nature (Kudithipudi et al., 2022) and local neural activity
could be responsible for the creation of neurons (Luhmann
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et al., 2016) and also neuron removal (Faust et al., 2021).
We explore local task similarity to drive neuron creation and
removal, which together could improve learning.

Structural learning pertains to the learning of the architec-
ture and its parameters simultaneously (Maile et al., 2022).
Neuronal circuitry in the brain changes even during adult-
hood, undergoing morphological changes induced by struc-
tural plasticity (Kudithipudi et al., 2022). Evidently, learn-
ing in the brain does not involve static architecture creation
followed by modulation of synaptic strengths. Instead, ar-
chitecture changes occur in tandem with changes in synaptic
strength. Thus, utilizing structural learning with strategic
neural operations could mitigate the effects of task interfer-
ence and promote generalization in MTL.

Therefore, we propose Multi-Task Structural Learning
(MTSL) to simultaneously learn the multi-task architec-
ture and its parameters. MTSL considers entire layers as
computation units (Maile et al., 2022) and performs neu-
ron creation and neuron removal on them. Inspired by the
creation of a large number of neurons in the developmental
stage of the brain, MTSL begins training by initializing each
task with its own network. Similar to the brain, the excess
layers of each task network provide a rich information flow
to inform grouping decisions. Local task similarity is used
to guide task learning through the alignment of task repre-
sentations, and also to make decisions on grouping tasks.
A positive decision to group tasks induces the creation of
a group layer, and the associated task layers transfer their
learned knowledge to the group layer before being removed.
Finally, a few epochs of fine-tuning result in a learned MTN
which persists the learned parameters for inference.

Contributions. (i) We propose a structural learning algo-
rithm for multi-task learning based on aligning local task
representations, grouping similar task layers, transferring in-
formation from grouped task layers to a new group layer, and
removing the concerned task layers. (ii) We compare against
various state-of-the-art methods and show that MTSL shows
improved generalization without the need to retrain. (iii)
We show that MTSL improves the robustness to natural
corruptions. (iv). We present an ablation on the various
components of MTSL and show its utility.

2. Related Works
Different lines of work, such as architecture modifications
(Liu et al., 2019; Kanakis et al., 2020; Misra et al., 2016; Gu-
rulingan et al., 2021), task grouping (Standley et al., 2020;
Fifty et al., 2021; Vandenhende et al., 2020; Gurulingan
et al., 2022), or task loss balancing (Kendall et al., 2018;
Liu et al., 2019; Yu et al., 2020; Lin et al., 2019) address
task interference. Other works address task interference
by partitioning the parameters into shared and task specific

parameters (Maninis et al., 2019; Strezoski et al., 2019).
However, all these works use hand-designed architectures
that could be suboptimal. Alternatively, a variety of works in
the MTL literature propose methods to learn the architecture.
We categorize these works into three groups, namely learn-
ing the partition strategy, learning input-dependent dynamic
architectures and learning the branching structure.

Partition strategy, the manner in which network parame-
ters are split into shared and task specific parameters can be
learned. Bragman et al. (2019) learn the probability that a
convolution kernel would be specific to one of the tasks or
would be shared. Maziarz et al. (2019) learn which tasks use
which network components using Gumbel Softmax. In (Pas-
cal et al., 2021), random elements from a partition is selected
and modified. These approaches can be used to complement
MTSL. Input-dependent dynamic architectures, provide
many benefits including improved computational efficiency
(Han et al., 2021). DSelect-k Hazimeh et al. (2021) is a mix-
ture of experts model where a spare set of experts is selected
to infer an input sample. In (Ahn et al., 2019), a selector
network learns to pick a subnetwork from a large estimator
network based on input. In routing networks (Rosenbaum
et al., 2018), task-dependent agents are trained using rein-
forcement learning to pick an input dependent path within
a large network. While these approaches aim to optimize
networks or subnetworks to adapt based on input samples,
MTSL aims to optimize a shared network for all tasks.

The branching structure of multi-task networks have been
learned using different approaches. Zhang et al. (2022)
propose to estimate the accuracy of a branched multi-task
network using two task networks with similar branching.
They also suggest data structures and methods to ease the
search for branching decisions in an arbitrary network sim-
ilar to (Zhang et al., 2021). Raychaudhuri et al. (2022)
propose two controller networks that predict the branching
structure and the weights of the cross-task edges based on
user preferred task importance and budget constraints. Guo
et al. (2020) start from a dense search space where a child
layer is connected to a number of parent layers. During
learning, a distribution is learned over the parent nodes with
the aid of path sampling. At the end of training, a valid net-
work path is picked, and using neuron removal, the neurons
no longer part of the valid path are removed.

BMTAS (Bruggemann et al., 2020) takes a similar approach
to (Guo et al., 2020) but additionally uses a resource loss. On
the contrary, MTSL involves progressive neuron removals at
different intervals during training. The branching structure
learning approaches discussed so far explicitly retrain the
learned architecture, while MTSL avoids retraining and con-
firms with structural learning. Like MTSL, Lu et al. (2017)
also avoid retraining and use neuron creation where tasks are
split into different branches starting from the output layer to
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Figure 1. Schematic of the MTSL Algorithm. The grey regions (initial state, alignment, next state) are part of the task learning phase
while the white regions (neuron creation, and neuron removal) are part of the structural learning phase. During training, our algorithm
loops between alignment in the task learning phase followed by neuron creation and neuron removal in the structural learning phase
leading to the next state (last column).

the input layer using inter-task affinities defined based on
task error margins. Unlike Lu et al. (2017), MTSL starts
from a dense set of neurons and moves towards a sparse
architecture. In addition, MTSL is designed to leverage
both neuron creation and neuron removal. Adashare (Sun
et al., 2020) learns task-specific policies to determine which
residual blocks to execute or skip, leading to residual blocks
in the encoder specialized in a subset of tasks. Unlike Guo
et al. (2020); Zhang et al. (2022; 2021), BMTAS and MTSL,
Adashare does not directly learn a branching structure and
is specifically designed for ResNet.

3. Multi-Task Structural Learning (MTSL)
The tasks to be learned together in an MTN bring in diverse
information about the input scene. This diverse information
can be leveraged to learn representations with improved
generalization on all tasks. However, design decisions, such
as which layers to share and where to branch tasks, are
complex due to their combinatorial nature. This complexity,
along with the crucial role of these decisions in the inter-
play between positive transfer and task interference, renders
manual architecture design suboptimal. Structural learning,
on the other hand, learns the architecture along with its
parameters, which is more in line with how the brain learns.

MTSL uses two neural operators, namely neuron creation

and neuron removal, to aid in structural learning. In early de-
velopment, the brain has excess neurons that can provide a
rich information pipeline for a pruned neural circuit to func-
tionally specialize. Likewise, MTSL creates excess neurons
by starting from a disparate network for each task. Through
the progress of training, the corresponding task neurons in a
layer pave the way for a specialized group neuron, leading
to a structural change. In the next sections, we present the
finer details of the MTSL algorithm. In Section 3.1, we
formalize the problem setup and establish the terminologies
that we use in the rest of the paper. Following this section,
we discuss the alignment of task representations in Section
3.2, creation of group neurons in Section 3.3, removal of
task neurons in Section 3.4, and the MTSL algorithm in
Section 3.5.

3.1. Problem Setup

We consider the problem of structural learning where the
MTN architecture and its parameters are learned simultane-
ously. Given the set of T tasks that each has its own single
network with L layers, our algorithm results in a single
MTN capable of inferring all the T tasks accurately without
the need for retraining. First, we establish the terminologies
that are used in the rest of the paper. A node is a layer
that connects one branch to another branch (or to a node),
and a branch is a sequence of layers that follow a node.
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Algorithm 1 MTSL algorithm
Input: Initial state (as depicted in Figure 1), Training
budget E, Minimum fine-tuning budget f
n← Number of structural learning phases
Task Learning Epochs Et ← [t1, t2.., tn],

∑n
i E

i
t <

E − f
Structural Learning Epochs Es ← [s1, s2.., sn]
repeat

// Task Learning Phase
t← Next value from Et

for t epochs do
Train using loss L in Equation 1

end for
e← e+ t
// Structural Learning Phase
Create group nodes using local task similarity
Group nodes← Average of corresponding task nodes
s← Next value from Es

for s epochs do
Use ATT to transfer knowledge in corresponding
task nodes to group nodes

end for
if there is no more layer in all task branches then

Exit loop
end if
// Fine-Tuning Phase
for E − e epochs do

Fine-tune using multi-task loss LMTL

end for
until e < E − f

Initially, the first layer of each single task network is the
task node, while the rest of the task network excluding the
task head is called the task branch. Similarly, a group of
tasks will have a group node and a group branch. A task
node is of particular significance to our algorithm, as tasks
can only be fused at the task node. Also, only task nodes
that are connected to the same group branch or group node
can be fused. At the start of the training, all task nodes are
connected to the input image and can be fused. T and G
denote a task and a group, respectively. Additionally, F and
F denote the output features of the task node and the group
node, respectively. Figure 1 provides the overall schematic
of our approach, where the leftmost column illustrates the
initial state of our setup using the terminologies defined
so far. In the following sections, we discuss the different
components of our approach.

3.2. Aligning Task Specific Representations

As is evident from Figure 1, we begin training from single-
task networks. Since the encoder of each task is initialized
with ImageNet weights, there exists a correspondence be-

tween task nodes initially. During training, task nodes would
learn concepts that minimize particular task loss indepen-
dent of other tasks. This independence likely breaks any
correspondence between parameters mapped one-to-one be-
tween any two task nodes. This behavior comes from the
permutation invariance of neural networks that leads to no
guarantee on the order in which concepts are learned (Wang
et al., 2020a). Therefore, MTSL aligns the concepts learned
by the task nodes and locally increases their similarity using
Centered Kernel Alignment (CKA) (Kornblith et al., 2019).

CKA is used to measure similarity between two feature
representations and has been shown to provide meaningful
similarity scores. During training, we introduce a CKA-
based regularization term between task nodes branching
from the same group node/branch (or the input). This regu-
larization term, as shown in the alignment part of Figure 1,
is included between all pairs of task node features (indicated
by bi-directional arrows) and enforces the task representa-
tions to align by serving as an alignment constraint. We
use the unbiased CKA estimator (Nguyen et al., 2021) to
facilitate reliable estimates of CKA with small batch sizes
used during training.

L = LMTL + λ(1− LCKA) (1)

The overall loss that is used for training in the task learning
phase of our algorithm is provided in Equation 1, where the
first term (LMTL) represents the multi-task loss which is
a weighted sum of all individual task losses. The second
term represents the CKA regularization term (LCKA) that
is included with a balancing factor λ and a negative sign to
maximize alignment between tasks.

3.3. Creating Group Nodes

The overall loss L used during the task learning phase (dis-
cussed in Section 3.2) leads tasks to learn similar features
while also minimizing the concerned task loss. After the
task learning phase, MTSL begins the structural learning
phase to first leverage neuron creation. In the brain, local
neuronal activity can affect the structure of the neural cir-
cuitry (Luhmann et al., 2016) and play a role in learning
experiences (Kudithipudi et al., 2022). Taking cues from
these notions of locality, we use CKA to gauge the similarity
between task node features that represent the local activity
of task neurons. These local task similarities are used to
induce the creation of group nodes.

First, CKA between all pairs of task node features is calcu-
lated after which all possible groups of task nodes are listed.
From these groups, a set of groups that maximize the total
similarity is chosen and the groups that satisfy a minimum
similarity of γ induce the creation of a group neuron. For
instance, in Figure 1, we see that the groups picked are
[T1, T2] and T3 assuming that the total number of tasks T
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Table 1. IID Generalization and inference efficiency comparisons between MTSL and state-of-the-art methods, namely Cross-stitch,
MTAN, LTB and BMTAS. LTB-R and BMTAS-R represent results obtained by retraining the final converged architecture of LTB and
BMTAS, respectively. # (M) denotes parameter count in millions, and GMac denotes Giga multiply-accumulate.

CS NYU

NETWORK ∆SD
MTL ↑ ∆MTL ↑ # (M) GMAC ∆SD

MTL ↑ ∆MTL ↑ # (M) GMAC

STN - - 79.50 26.73 - - 79.51 29.24

ONE-NET -0.84±0.15 -1.22±0.04 34.79 7.70 -0.79±0.11 -4.57±0.13 34.80 8.42
CROSS-STITCH +2.79±0.41 +1.01±0.17 79.50 26.73 +0.73±0.37 -2.18±0.25 79.53 29.24
MTAN -0.02±0.49 -3.68±0.64 36.61 11.13 -0.34±0.93 -3.91±0.54 36.62 12.18

LTB-R +0.49±0.40 +0.11±0.17 68.15 19.81 -0.13±0.10 -0.23±0.08 79.17 25.20
BMTAS-R +0.25±0.57 -0.02±0.26 68.30 21.03 -0.10±0.29 -0.21±0.28 79.17 25.20
MTSL-R -0.22±0.69 -0.79±0.42 43.19 8.77 -0.67±0.55 -3.53±0.35 59.98 11.95

LTB -2.95±0.42 -1.79±0.18 68.15 19.81 -4.78±0.40 -5.35±0.31 79.17 25.20
BMTAS -3.84±0.39 -2.19±0.11 68.30 21.03 -4.00±0.74 -5.07±0.42 79.17 25.20
MTSL +0.25±0.81 -0.55±0.34 43.19 8.77 +0.35±0.44 -3.10±0.13 59.98 11.95

is three. More details regarding the grouping algorithm are
provided in the Appendix.

After the task nodes have been grouped based on local task
similarity, for each group, a group node is created. The
learned knowledge in the task neurons is used to initialize
the created group node using a two-step process. In the
first step, the weights of the group node are obtained by
averaging the parameters of the concerned task nodes. This
averaging is justified by the alignment constraint used in
the task learning phase that ensures that the corresponding
parameters learn similar concepts. Figure 1 depicts the
averaging initialization using a plus symbol. In the second
step, MTSL distills the information learned by multiple task
nodes into the group node using an attention-based feature
amalgamation method (Ye et al., 2019) referred to as ATT.
Figure 1 depicts this amalgamation process by using arrows
from task node features F1 and F2 to group node feature F .

LKA =
1

N

N∑
i

(
Fi −ATTnet

i (F)⊙F
)2

(2)

The knowledge amalgamation objective LKA is provided
in Equation 2 assuming that there are N tasks grouped
together. ATTnet denotes the attention network consisting
of two linear layers with an intermediate ReLU activation
and a final sigmoid activation. ATTnet

i (F) provides a 1×C
dimensional attention vector which acts as a weight for the
different channels of F allowing the selective distillation of
task features into the group feature.

3.4. Removing Task Neurons

Starting from a dense set of neurons as in the initial state of
MTSL provides the opportunity to leverage a rich informa-
tion flow originating from diverse task information. Using
neuron removal, MTSL moves towards a sparser architec-
ture by removing task nodes that learn similar representa-

tions. These locally similar task nodes become redundant
once they transfer their knowledge to the group node. The
task branch is then disconnected from these redundant task
nodes and connected to the group node. As defined in Sec-
tion 3.1, the neurons in the task branch that now connect
to the group node become task nodes. These changes are
evident in the depicted next state in Figure 1.

3.5. MTSL Algorithm

Algorithm 1 presents the different phases involved in the
MTSL algorithm, namely the task learning phase, the struc-
tural learning phase, and a fine-tuning phase. The task
learning phase and the structural learning phase occur al-
ternatively for n number of times, followed by a final fine-
tuning phase. In the task learning phase, the entire network
is trained to minimize multi-task loss and maximize simi-
larity among task nodes as described in Section 3.2. The
structural learning phase involves neuron creation and neu-
ron removal as discussed in Section 3.3 and in Section 3.4,
respectively. Et determines the number of epochs for which
each subsequent task learning phase is executed. Similarly,
Es determines the epochs for ATT-based knowledge trans-
fer. Considering a total training budget of E epochs, the
task learning phase is executed up to E − f epochs where f
is the minimum epochs allocated for the fine-tuning phase
during which the task nodes are no longer forced to align.

4. Experiments
We evaluate the strengths of our approach using two datasets,
namely Cityscapes (Cordts et al., 2016) and NYUv2 (Sil-
berman et al., 2012). The Cityscapes dataset is an outdoor
driving scenes dataset consisting of 2975 training images
and 500 validation images. Images are re-shaped to a res-
olution of 256×512 in both training and validation. The
NYUv2 dataset consists of indoor scenes with a total of

5



Multi-Task Structural Learning using Local Task Similarity induced Neuron Creation and Removal

Table 2. IID generalization and inference efficiency comparisons between MTSL and baselines. MTSL performs better than One-Net in
most cases and achieves an inference efficiency close to One-Net. # (M) denotes the number of parameters in millions.

NETWORK S ↑ D ↓ E ↓ N ↑ A ↓ ∆SD
MTL ↑ ∆MTL ↑ # (M) GMAC

C
S

STN 60.87±0.78 6.37±0.02 0.03±0.00 0.61±0.00 0.05±0.00 - - 107.10 31.03

ONE-NET 60.34±0.37 6.76±0.04 0.04±0.00 0.59±0.00 0.06±0.00 -3.47±0.80 -9.65±0.46 21.70 7.06
ONE-NET-L 60.71±0.21 6.75±0.03 0.04±0.00 0.59±0.00 0.06±0.00 -3.15±0.62 -9.39±0.57 21.70 7.06

MTSL 60.68±0.10 6.52±0.03 0.04±0.00 0.60±0.00 0.06±0.00 -1.35±0.70 -7.04±0.56 22.86 8.96

N
Y

U STN 35.63±0.53 52.70±0.25 0.06±0.00 0.80±0.00 0.14±0.00 - - 107.10 33.99

ONE-NET 34.15±0.15 53.44±0.39 0.06±0.00 0.74±0.00 0.17±0.01 -2.77±0.88 -9.82±1.87 21.70 7.77
ONE-NET-L 34.42±0.17 53.36±0.31 0.06±0.00 0.74±0.00 0.17±0.01 -2.77±0.70 -9.82±1.67 21.70 7.77

MTSL 35.50±0.25 52.46±0.23 0.06±0.00 0.73±0.00 0.16±0.00 +0.06±1.03 -6.21±0.90 22.81 9.89

Table 3. Robustness to natural corruptions under four categories. MTSL shows better robustness compared to One-Net in most cases.

NETWORK
∆SD

MTL ↑ ∆MTL ↑
NOISE BLUR WEATHER DIGITAL NOISE BLUR WEATHER DIGITAL

C
S ONE-NET -5.78 -1.32 -3.81 -2.15 +3.02 -7.73 -1.36 -12.22

MTSL -3.03 +0.21 +0.49 +1.42 +2.92 -3.72 +2.60 -7.07

N
Y

U ONE-NET +10.25 -3.71 -3.27 -2.72 +15.72 -8.51 -11.79 -10.35
MTSL +1.92 -2.65 -0.84 -1.14 +13.50 -8.03 +3.22 -7.54

795 training images and 654 validation images, respectively.
Cityscapes and NYUv2 datasets are also referred to as CS
and NYU, respectively. We consider five dense prediction
tasks, namely semantic segmentation (S), depth estimation
(D), edge detection (E), surface normals (N ), and autoen-
coder (A). All numbers are reported on the validation set of
each dataset as an average over three runs. Each experiment
has been run on a Nvidia Tesla V100 GPU in a DGX cluster.
The ResNet encoder is initialized with the ImageNet pre-
trained weights, and the rest of the weights are initialized
randomly. Section C provides additional training details.

We provide multi-task performance improvement (Vanden-
hende et al., 2021) using Equation 3 where m and s repre-
sent task performance in multi-task and single task networks,
respectively. When the higher performance is better l is 0
and when the lower performance is better l is 1. We also re-
port multi-task performance improvements in segmentation
S and depth D tasks as ∆SD

MTL,

∆MTL =
1

T

T∑
i=1

(−1)li (Mm,i −Ms,i) /Ms,i (3)

We compare MTSL with state-of-the-art methods (Section
4.1), evaluate generalization, inference efficiency (Section
4.2) and robustness of MTSL (Section 4.3). We draw in-
sights based on the converged network architecture in Sec-
tion 4.4. Section 4.5 provides a detailed ablation study.

4.1. Comparison with State-of-the-art Methods

We compare MTSL with existing multi-task architectures
and methods to learn multi-task architecture branching. The

implementations of Cross-stitch (Misra et al., 2016) and
MTAN (Liu et al., 2019) have been taken from the reposi-
tory of (Vandenhende et al., 2021) while the implementation
of Learning-to-Branch (LTB; (Guo et al., 2020)) has been
taken from LibMTL (Lin & Zhang, 2022). We update LTB
with the resource loss proposed by Branched Multi-Task Ar-
chitecture Search BMTAS (Bruggemann et al., 2020) from
their open source repository to obtain the implementation of
BMTAS. LTB-R and BMTAS-R refer to the results obtained
by retraining the converged architecture from scratch. For
all methods we use the same hyperparameter settings and
use ResNet18 backbone with DeepLab head.

In Table 1, we observe that Cross-stitch obtains the best im-
provement (highlighted in bold) over Single Task Networks
(STNs). Cross-stitch retains all separate task networks and
learns task-specific adapter parameters. These adapter pa-
rameters enable the selective transfer of information from
other tasks. Additionally, since there is no explicit param-
eter sharing, task interference can be mitigated, leading to
increased performance. However, Cross-stitch loses the
inference time and memory advantage of using shared pa-
rameters. When comparing MTSL with methods that learn
branching structures (last group), MTSL outperforms both
LTB and BMTAS by a considerable margin in both datasets.
For instance, in ∆SD

MTL, MTSL outperforms LTB by 2.72%
and 4.72% and BMTAS by 3.61% and 3.94% in Cityscapes
and NYUv2 datasets. Also, with the aid of CKA regulariza-
tion, MTSL leads to a more inference efficient architecture
(visualized in Section 4.4) as evidenced by GMac. LTB-R,
BMTAS-R and MTSL-R are versions of LTB, BMTAS and
MTSL, respectively, where the final converged architecture
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Input

Cityscapes NYUv2 One-Net

10 network layers

Figure 2. Visualization of the One-Net architecture and the MTSL resultant architectures. In both datasets, tasks branch out at layer six
but differences emerge in the branching structure in the following layers. The oval shapes at the end of each path represents the task heads.

is reinitialized and retrained. With additional training, LTB-
R and BMTAS-R can obtain a marginal gain over MTSL.
However, they deviate from structural learning, as the origi-
nal trained weights are no longer relevant and are discarded.
MTSL-R is more efficient in terms of inference and shows
a performance comparable to that of LTB-R and BMTAS-
R. Note that MTSL is designed for structural learning and
shows clear performance and inference efficiency improve-
ments over LTB and BMTAS.

The methods discussed so far only consider learning branch-
ing structure in the encoder. For the upcoming experiments,
we extend MTSL to UniNet (Gurulingan et al., 2021), an
encoder-decoder architecture with a total of ten locations,
six in the encoder and four in the decoder, where task nodes
can participate in neuron creation and removal. The encoder
is based on ResNet18, and the decoder has ResNet blocks.

4.2. IID Generalization and Inference Efficiency

MTSL algorithm begins from STNs and could potentially
end in a network with all encoder and decoder layers shared
between all tasks (referred to as One-Net). These two possi-
ble networks are considered as the baselines to evaluate our
approach. Table 2 shows the generalization performance
of the baselines and MTSL. MTSL achieves better gener-
alization than One-Net in most cases, while being close to
One-Net in inference efficiency, as seen in the GMac and
parameter count columns. In NYUv2, MTSL even rivals the
performance of STN in both S andD tasks. We hypothesize
that the improved generalization can be attributed to brain-
inspired aspects of the MTSL algorithm, such as local task
similarity and the change of dense to sparse architecture.

The training time of MTSL is higher than that of One-Net
because of the training epochs required for knowledge amal-
gamation. However, this only adds 34 additional epochs
in training where only the network parts up until the task

LTB BMTAS MTSL

Input

Figure 3. Converged architecture of LTB, BMTAS, and MTSL on
the Cityscapes dataset. Each row of circles represents a layer on
the encoder. At the last layer of the encoder, each task branch out
with their own heads.

nodes is involved in the computation. For a fair compar-
ison, we train One-Net for 34 more epochs and get the
One-Net-L baseline. We note that MTSL also improves
generalization over One-Net-L. Overall, we see that with
only a fractional increase in training costs, MTSL algorithm
provides a learned network with better generalization.

4.3. Robustness to Natural Corruptions

MTSL provides an improved generalization, likely due to
its motivation originating from abstract notions of the brain.
Given that the brain is effective in discerning noise from
semantics, a natural question to ask is whether MTSL can
lead to improvements in robustness to natural corruptions.
Table 3 shows the robustness of the baselines and MTSL to
various natural corruptions (Hendrycks & Dietterich, 2019)
categorized into four types, namely noise, blur, weather,
and digital. Under each corruption category, the average
across five different severity levels is taken. We see that
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Table 4. Effect of alignment (Align), average initialization (Avg), and attention-based knowledge amalgamation (ATT). Without alignment
(first 3 rows), the resultant networks remain close to STN. With alignment (last 3 rows), the resultant networks are closer to One-Net.

CS NYU

ALIGN AVG ATT ∆SD
MTL ↑ ∆MTL ↑ # (M) GMAC ∆SD

MTL ↑ ∆MTL ↑ # (M) GMAC

✓ -0.35 -2.25 97.37 17.02 +0.38 -4.24 69.94 17.87
✓ -0.05 -1.92 97.37 17.02 +0.57 -4.23 95.97 17.87

✓ ✓ -0.39 -2.12 95.97 16.30 +0.31 -4.25 95.97 17.87

✓ ✓ -2.29 -7.67 22.56 8.71 -1.26 -6.68 22.97 10.32
✓ ✓ -3.62 -9.66 22.51 8.60 -2.36 -6.71 23.10 10.90
✓ ✓ ✓ -1.35 -7.04 22.86 8.96 +0.06 -6.21 22.81 9.89

the MTSL network exhibits better robustness compared to
One-Net in most cases, especially in the weather and digital
category of the Cityscapes dataset. These results further
demonstrate that MTSL presents a compelling case for the
utility of drawing inspiration from the brain.

4.4. Converged Network Architecture and Task Groups

The assumptions about the data used for training play a
pivotal role in determining the learned representations. In
the brain, exposure to the nature of experiences determines
the way neural circuitry develops (Kudithipudi et al., 2022).
Thus, the resultant architecture obtained with MTSL on two
datasets would likely differ. Figure 2 visualizes the One-Net
architecture and the learned architectures in Cityscapes and
NYUv2. Evidently, after the first branch from layer six, the
task groups and the branching structure emerging on the
two datasets are different. Semantic segmentation (S) and
edge detection (E) grouped together in both datasets follow
intuition, as edge detection requires predictions of semantic
edges. However, the emergence of certain groups of tasks
such as depth and autoencoder in NYUv2 is counterintuitive.
In addition to task relationships, these results show that local
task similarity and inherent biases in the dataset can also
impact the optimal architecture. In Section E, we analyze
the sensitivity of the converged architecture to other factors.

In Table 1, we provide results for state-of-the-art LTB and
BMTAS methods. Here, we visualize the converged archi-
tectures of LTB and BMTAS along with those of MTSL
and provide inferences. Figure 3 illustrates the converged
architectures on the Cityscapes dataset (and Figure 4 in Ap-
pendix on NYUv2 dataset). We see that LTB and BMTAS
generally converged to a larger architecture compared to
MTSL. MTSL is able to learn a more efficient architecture,
likely due to the use of the CKA regularization term, which
forces tasks to learn similar representations, leading to more
sharing between tasks.

4.5. Ablation Study

To determine the effectiveness of the different components
involved in MTSL, we perform systematic evaluations and

provide the results in Table 4. When alignment is not used,
the task representations diverge largely around layers 3 and
4. As a result, the task nodes no longer become sufficiently
similar to be fused. Therefore, the resultant architectures
in the first three rows perform similarly and have inference
requirements similar to STN. On the other hand, in the
last three rows, with the help of alignment, the resultant
architectures undergo neuron creation and removal in more
layers and approach close to the inference efficiency of One-
Net. Of these, the last row constitutes all the components
used in MTSL and results in the best performance. Note
that although we use CKA for alignment and knowledge
amalgamation, various other methods can also be used.

5. Conclusion
Inspired by the notion that both the structure of the neural cir-
cuits and the associated synaptic strengths change together
in the brain, we proposed Multi-Task Structural Learning
(MTSL). MTSL relies on local similarity-induced creation
of group neurons and removal of task neurons. We showed
that MTSL results in networks with improved generalization
and robustness while improving inference efficiency. We
discussed the dependence of converged network architec-
tures on local task similarity and dataset. We studied the
role of the different components in MTSL and found that
enforcing local task similarities results in architectures with
better inference efficiency.

Limitations. A fixed epoch schedule is used to transition
between different learning phases of MTSL. Instead, it can
be explored to automatically determine the periods in train-
ing in which structural learning is required. In this regard,
the local inter-neuron activity in the brain could provide
useful cues to automatically drive structural changes. Fur-
ther, local similarity should likely be an emergent result of
inter-neuron activity contrary to being explicitly enforced as
in MTSL. MTSL does not use synaptogenesis and synaptic
pruning, thereby limiting its ability to learn connections.
Despite these limitations, MTSL shows that extending sim-
plified notions from neuroscience into multi-task learning
could be beneficial.
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A. Additional Related Works
MTSL relies on local task similarity to drive group neuron creation and removal of the corresponding task neurons. The
learned convolutional filters in different task branches might not align one-on-one due to the permutation invariance of
convolutional neural networks (Wang et al., 2020a). Existing works (Wang et al., 2020a; Leontev et al., 2019; Singh &
Jaggi, 2020; He et al., 2018) use different ways to align the corresponding layers of two models to counteract permutation
invariance. MTSL uses CKA (Kornblith et al., 2019) to align neurons according to representation similarity. Knowledge
amalgamation approaches (Li & Bilen, 2020; Shen et al., 2019; Luo et al., 2020; 2019; He et al., 2018) address distilling the
knowledge from multiple learned teachers into a single student. (Ye et al., 2019) create task-specific coding at a layer in the
student network using a small network for feature distillation. MTSL uses this feature distillation process to exploit the
knowledge of the task neurons set to be removed.

B. Grouping Algorithm
At the beginning of the structural learning phase, the task nodes are grouped according to the local similarity between task
node features. The grouping algorithm used to provide this grouping decision is detailed in Algorithm 2. This algorithm
provides the best possible task grouping, which is subsequently used to determine the creation of group nodes and the
removal of task nodes.

Algorithm 2 Grouping
Input: Task set T and Similarity Sij , i, j ∈ T , i ̸= j
Group G← {tasks}
Grouping G ← {groups}
Task value in group G is Vt ← 1

i

∑
i Sti, where i ⊂ G\t

Group value VG ← 1
t

∑
t Vt, where t is the #tasks in group

Unique Grouping G ⊂ G, such that all tasks are present exactly once
for all unique groupings do
VG ← 1

g

∑
g Vg , where g is the #groups in grouping

end for
Final grouping← grouping with maximum VG

C. Additional Training Details
We provide additional training details to aid with reproducibility. The five tasks used in our experiments S , D, E , N and A
are evaluated with mIoU, RMSE, BCE (Binary Cross Entropy Error), Cosine Similarity, and MSE, respectively. The edge
detection task E concerns the predictions of semantic edges in the scene. We use an encoder-decoder architecture where the
first four layers of the encoder are initialized with ImageNet pretrained weights, while the last layer of the encoder and the
decoder are initialized randomly.

For both baselines and MTSL, we use the same training hyperparameters and evaluation metrics. For training, we use the
Adam optimizer with a learning rate of 1e-4 for 80 epochs. We use the step-wise learning schedule with steps at epochs 60
and 70. The batch size used is 16, a weight decay of 5e-5 and we equally weigh all task losses (all task losses have a weight
of 1). In addition to averaging all parameters to initialize the group node, we also average the optimizer state of the task
nodes to get the optimizer state of the group node. All other parameters that are not removed retain their weights, as well as
their optimizer state. The grouping threshold γ used is 0.75 for Table 1 results and 0.8 for the rest. The number of structural
learning phases is set to 10. The weight of CKA regularization loss λ is 0.1 for Table 1 results and 0.2 for the rest. The task
learning epochs for subsequent phases are 2, 2, 2, 2, 4, 4, 8, 8, 8, and 8 and knowledge amalgamation is done for 1, 1, 2, 2, 2,
2, 4, 4, 8, and 8 epochs in the subsequent structural learning phases. The task learning epochs and knowledge amalgamation
epochs are progressively increased based on the nature of task representations learned at different stages of training. In
early training, all task nodes are in early layers and need to learn low-level features. Our intuition here is that these generic
features are likely common across tasks and can be learned fast. The former suggests our use of low epochs in the structural
learning phase, and the latter suggests the task learning phase early in the training. As we progress through the training,
more epochs would be required to learn task-specific features, suggesting the increase in task-specific phase epochs. Also,
later in the training, features of each task likely diverge becoming more task-specific, suggesting the increase in structural
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LTB BMTAS MTSL

Input

Figure 4. Illustration of the converged architecture of LTB, BMTAS, and MTSL on NYUv2 datase. Each row of circles represents a layer
on the encoder. At the last layer of the encoder, each task branch out with their own heads.

(a) In Cityscapes dataset. (b) In NYUv2 dataset.

Figure 5. Task vs. total similarity of the corresponding task representations with all other task representations at the output of the first
layer. MTSL leads to higher CKA similarities with the aid of CKA regularization, as shown by the taller green bars.

learning phase epochs.

D. Centered Kernel Alignment (CKA)
Centered Kernel Alignment (CKA) provides the similarity between two layers by computing the similarity between the
output representations of the said layers. Let X and Y represent the output representations obtained for N images by the
two layers to be compared. X and Y are then transformed by taking the mean across the spatial dimension to obtain N×C
dimensional representations. We then use the unbiased estimate (Nguyen et al., 2021) to obtain the CKA. First, the gram
matrices of the two representations GX = XXT and GY = Y Y T are calculated and centered. CKA is then obtained using,

CKA =
GX .GY

||GX ||F × ||GY ||F
(4)

In MTSL, to enforce the similarity between tasks, the CKA regularization term is calculated between pairs of task
representations by using the current training minibatch. CKA similarities for grouping decisions during training are
calculated using a subset of 800 training images in Cityscapes and all 795 training images in NYUv2. To demonstrate that
CKA can be optimized, we look at the sum of CKA values of a task layer with all other task layers in STN and MTSL
illustrated in Figure 5. The similarities are taken using the output representations of the first layer of different single-task
networks (STNs). In the case of MTSL, this similarity is taken right before tasks are grouped in the first layer. For example,
the gray bar for S is obtained by adding the similarity of the first layer in the single task segmentation network with the first
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layer of all other task networks. The plot shows that MTSL is able to increase similarity between tasks, as is evident by the
taller green bars, by using CKA regularization.

E. Sensitivity Analysis
E.1. Sensitivity of the Converged Architectures

In the main paper, we showed that the converged architecture differs between the two datasets Cityscapes and NYUv2.
This suggests that the algorithm is sensitive to the dataset. In addition, we observe that the converged architectures are also
sensitive to the initialization of the encoder and to random seeds. We tabulate the different architectures obtained in Table 5.
The layer column lists the layers in the network, and the corresponding entries in the remaining columns show which tasks
have been grouped. For instance, [D, N , A] means that D, N , and A are grouped together.

Table 5. Sensitivity of the converged architecture to different initialization of the encoder and random seeds in both datasets. The random
seeds groupings using ImageNet pre-trained weights for the encoder.

LAYER SEED 0 SEED 1 SEED 2 RANDOM
SEED 2

C
S

1-6 [S , E , D, N , A] [S , E , D, N , A] [S , E , D, N , A] [S , E , D, N , A]
7,8 [S , E , A], [D, N ] [S , E ], [D, N , A] [S , E ], [D, N , A] [S , E , D, N , A]
9 [S , E , A], [D], [N ] [S , E ], [D], [N ], [A] [S , E ], [D, N , A] [S , E , D, N , A]

10 [S , E , A], [D], [N ] [S , E ], [D], [N ], [A] [S , E ], [D, N ], [A] [S , E , D, N , A]

N
Y

U 1-6 [S , E , D, N , A] [S , E , D, N , A] [S , E , D, N , A] [S , E , D, N , A]
7,8,9 [S , E ], [D, N , A] [S , E , N ], [D, A] [S , E ], [D, N , A] [S , E , D, N , A]

10 [S , E ], [D], [N ], [A] [S], [E ], [N ], [D, A] [S], [E ], [D, N , A] [S , E , D, N , A]

E.2. Sensitivity to Grouping Threshold

The grouping threshold determines whether or not a group of task nodes are similar enough to lead to the creation of a group
node and eventual removal of the concerned task nodes. The sensitivity of MTSL to different grouping thresholds is shown
in Table 6. A high grouping threshold would mean that task nodes are never grouped, and the resultant architecture will be
similar to STN in terms of GMac and parameters. However, the performance would still be different due to the use of CKA
to regularize the task representations. A low grouping threshold would mean that task nodes are always grouped, leading to
architectures more similar to One-Net. We observe that for a threshold of 0.7 or less, MTSL leads to One-Net architecture,
but the performance is not sufficient. A threshold of 0.9 or higher leads to slow inference networks. A threshold of 0.8
provides the right trade-off and is used for all experiments in the main paper.

E.3. Sensitivity to Number of Tasks

We evaluate whether or not MTSL leads to improvements over One-Net when only 4 out of the 5 tasks are used. To this end,
we train multi-task networks for 4 tasks, namely S , E , D and N . The results are tabulated in 7. We observe that even when
there are 4 tasks, MTSL improves over One-Net.

E.4. Sensitivity to CKA Loss Weight

We evaluate the sensitivity of MTSL to CKA loss weight λ. Table 8 lists the results of MTSL obtained by using 5 different
λ values. In general, the trend is that the computation cost starts to increase up to λ-0.5 and then it decreases. The opposite
trend seems to hold for the multi-task performance. However, the differences are marginal suggesting that MTSL is not
sensitive to λ.

F. Sensitivity of BMTAS to Resource Loss Weight
We test the sensitivity of BMTAS to the resource loss weight. Both ∆SD

MTL and ∆MTL values remain fairly close to each
other and remain within standard deviation. Parameter count and GMac change due to the change in the effect of resource
loss. We note that in the main paper, we use 0.05 as the resource loss weight based on the values used by the authors.
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Table 6. Sensitivity of MTSL to the grouping threshold. For example, MTSL-0.1 denotes MTSL with a grouping threshold of 0.1. # (M)
denotes the number of parameters in millions.

NETWORK S ↑ D ↓ E ↓ N ↑ A ↓ ∆SD
MTL ↑ ∆MTL ↑ # (M) GMAC

C
S

STN 61.95 6.38 0.0341 0.6108 0.0535 - - 107.10 31.03

ONE-NET 60.02 6.71 0.0421 0.5941 0.0620 -4.10 -10.06 21.70 7.06
MTSL-0.1 59.98 6.75 0.0439 0.5955 0.0626 -4.48 -11.44 21.70 7.06
MTSL-0.2 59.97 6.68 0.0433 0.5956 0.0629 -3.92 -10.98 21.70 7.06
MTSL-0.3 59.97 6.70 0.0437 0.5961 0.0629 -4.06 -11.25 21.70 7.06
MTSL-0.4 60.32 6.67 0.0436 0.5960 0.0626 -3.59 -10.90 21.70 7.06
MTSL-0.5 59.95 6.68 0.0437 0.5963 0.0626 -3.95 -11.09 21.70 7.06
MTSL-0.6 60.31 6.72 0.0431 0.5967 0.0628 -3.98 -10.81 21.70 7.06
MTSL-0.7 59.48 6.68 0.0432 0.5965 0.0625 -4.32 -10.90 21.70 7.06
MTSL-0.8 60.64 6.52 0.0415 0.6023 0.0565 -2.13 -6.59 22.99 9.53
MTSL-0.9 60.04 6.46 0.0359 0.6074 0.0559 -2.12 -2.91 95.97 16.30
MTSL-1.0 60.73 6.46 0.0340 0.6105 0.0538 -1.61 -0.71 107.10 31.03

N
Y

U

STN 35.36 52.36 0.0566 0.7966 0.1401 - - 107.10 33.99

ONE-NET 33.99 53.26 0.0634 0.7378 0.1557 -2.80 -7.22 21.70 7.77
MTSL-0.1 34.48 53.29 0.0634 0.7330 0.1859 -2.13 -11.39 21.70 7.77
MTSL-0.2 33.99 52.95 0.0635 0.7328 0.1840 -2.49 -11.30 21.70 7.77
MTSL-0.3 34.69 52.92 0.0638 0.7337 0.1824 -1.48 -10.75 21.70 7.77
MTSL-0.4 34.07 53.23 0.0634 0.7346 0.1772 -2.65 -10.32 21.70 7.77
MTSL-0.5 34.19 52.94 0.0633 0.7349 0.1861 -2.20 -11.36 21.70 7.77
MTSL-0.6 34.27 53.07 0.0636 0.7360 0.1860 -2.21 -11.43 21.70 7.77
MTSL-0.7 34.53 53.22 0.0638 0.7330 0.1888 -2.00 -11.89 21.70 7.77
MTSL-0.8 34.63 52.81 0.0586 0.7309 0.1649 -1.46 -6.48 22.84 10.11
MTSL-0.9 35.22 52.25 0.0587 0.7149 0.1504 -0.10 -4.30 95.97 17.87
MTSL-1.0 35.71 52.88 0.0565 0.7921 0.1344 0.00 0.74 107.10 33.99

Table 7. Sensitivity of MTSL to the number of tasks. # (M) denotes the number of parameters in millions.

NETWORK S ↑ D ↓ E ↓ N ↑ ∆SD
MTL ↑ ∆MTL ↑ # (M) GMAC

C
S

STN 59.84 6.43 0.0341 0.6114 - - 85.68 24.80

ONE-NET 60.38 6.79 0.0415 0.5966 -2.31 -7.18 21.63 6.83
MTSL 60.41 6.43 0.0360 0.6068 0.45 -1.35 77.33 13.75

N
Y

U STN 35.41 53.10 0.0572 0.7881 - - 85.68 27.18

ONE-NET 34.37 53.29 0.0623 0.7427 -1.65 -4.49 21.63 7.51
MTSL 35.95 51.69 0.0585 0.7127 2.08 -1.92 77.33 15.09

G. Robustness to Natural Corruptions
We look at the robustness to natural corruptions of the different state-of-the-art methods and MTSL when using the ResNet
encoder and the DeepLab head. The results are tabulated in Table 10. Cross-stitch shows the best results among all methods,
likely due to the task-specific adapter blocks and task-specific networks. However, as discussed in Section 4.1, Cross-stitch
has a low inference efficiency contrary to the other methods. When comparing LTB, BMTAS and MTSL, MTSL generally
provides improved robustness. LTB and BMTAS are designed to learn the branching structure and consequently rely on
Gumbel-Softmax for the continuous approximation of discrete branching decisions. This approximation could lead to the
learned weights being suboptimal. On the contrary, MTSL has no such operations and is designed to learn both architecture
and its weights. This aspect could be the reason behind the improved robustness. However, in noise corruption, MTSL
shows reduced robustness, and the cause for this behavior is currently unclear. Task interference could likely play a role, but
further investigation can be done in future work.
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Table 8. Sensitivity of MTSL to the CKA loss weight λ. # (M) denotes the number of parameters in millions.

CS NYU

NETWORK ∆SD
MTL ↑ ∆MTL ↑ # (M) GMAC ∆SD

MTL ↑ ∆MTL ↑ # (M) GMAC

MTSL-λ-0.1 -1.80±0.45 -6.70±2.06 21.70 7.06 -0.30±1.07 -5.84±0.20 23.32 11.41
MTSL-λ-0.3 -1.70±1.39 -7.62±1.86 22.83 9.20 -1.41±0.89 -6.81±1.76 23.24 11.24
MTSL-λ-0.5 -0.71±0.66 -6.32±2.11 23.24 10.23 -0.86±1.47 -5.44±0.79 24.73 11.44
MTSL-λ-0.7 -2.17±0.81 -7.79±1.64 22.83 9.20 -0.97±0.93 -6.06±0.32 23.32 11.41
MTSL-λ-0.9 -0.49±0.19 -7.62±0.99 22.83 8.75 -0.47±0.83 -5.86±0.37 23.32 11.41

Table 9. Sensitivity of BMTAS to the resource loss weight. For example, BMTAS-0.1 refers to BMTAS with resource weight 0.1. # (M)
denotes the number of parameters in millions.

CS NYU

NETWORK ∆SD
MTL ↑ ∆MTL ↑ # (M) GMAC ∆SD

MTL ↑ ∆MTL ↑ # (M) GMAC

BMTAS-1.0 -3.07±0.38 -1.89±0.21 79.69 22.10 -3.84±0.64 -5.06±0.38 68.15 21.67
BMTAS-0.1 -3.45±0.19 -2.02±0.08 79.31 24.25 -4.38±0.98 -5.18±0.53 79.17 25.20
BMTAS-0.5 -3.19±0.47 -1.95±0.17 79.31 24.25 -3.83±1.07 -5.10±0.63 79.17 25.20
BMTAS-0.05 -3.84±0.39 -2.19±0.11 68.30 21.03 -4.00±0.74 -5.07±0.42 79.17 25.20
BMTAS-0.01 -3.55±0.34 -2.10±0.20 79.17 23.04 -3.58±0.83 -4.90±0.41 78.65 24.02
BMTAS-0.02 -3.48±0.18 -2.06±0.11 78.64 21.96 -4.40±0.87 -5.16±0.46 76.69 24.17
MTSL -0.23±0.85 -0.34±0.37 68.37 12.00 -0.06±0.34 -3.21±0.21 59.98 11.95

BMTAS-R-1.0 -0.02±0.07 -0.09±0.05 79.69 22.10 -0.12±0.53 -1.00±0.96 68.15 21.67
BMTAS-R-0.1 +0.83±0.19 +0.29±0.03 79.31 24.25 +0.07±0.30 -0.34±0.32 79.17 25.20
BMTAS-R-0.5 +0.36±0.30 +0.10±0.14 79.31 24.25 -0.46±0.17 -0.60±0.11 79.17 25.20
BMTAS-R-0.05 +0.25±0.57 -0.02±0.26 68.30 21.03 -0.10±0.29 -0.21±0.28 79.17 25.20
BMTAS-R-0.01 +0.49±0.30 +0.14±0.06 79.17 23.04 -0.09±0.39 -0.48±0.22 78.65 24.02
BMTAS-R-0.02 +0.61±0.66 +0.20±0.26 78.64 21.96 -0.29±0.29 -0.25±0.18 76.69 24.17
MTSL-R +0.17±0.47 -0.22±0.20 68.37 12.00 -0.39±0.46 -3.54±0.23 59.98 11.95

Table 10. Robustness to natural corruptions under four categories when using the ResNet encoder and the DeepLab head. MTSL shows
better robustness compared to LTB and BMTAS in most cases.

NETWORK
∆SD

MTL ↑ ∆MTL ↑
NOISE BLUR WEATHER DIGITAL NOISE BLUR WEATHER DIGITAL

C
S

ONE-NET -8.55 -5.48 -9.72 -1.79 -3.26 -3.94 -1.60 -1.38
CROSS-STITCH -1.94 -0.17 -3.42 +2.51 +0.14 -1.28 +3.51 +1.04

MTAN -6.53 -6.03 -6.42 -0.95 -6.23 -7.30 -13.28 -4.03

LTB-R -2.52 -2.83 -6.08 -2.23 +1.84 -2.26 -1.24 -1.21
BMTAS-R -3.48 -2.37 -3.63 -1.63 -1.80 -1.67 +1.01 -0.96
MTSL-R -5.64 -3.35 -7.13 +0.95 -2.87 -2.97 -1.61 +0.03

LTB -6.50 -3.98 -8.75 -2.35 -0.08 -3.42 -1.68 -1.47
BMTAS -7.77 -3.49 -11.11 -2.63 -1.60 -2.81 -5.37 -1.55
MTSL -9.52 -1.68 -4.87 +0.56 -3.21 -2.46 -1.14 +0.16

N
Y

U

ONE-NET -2.84 -2.89 -4.77 -1.25 -1.74 -5.02 -3.00 -4.92
CROSS-STITCH +5.82 -1.29 -3.31 +1.23 +5.53 -1.42 +1.12 -1.48

MTAN +2.42 -4.87 -3.78 +0.36 +0.78 -5.57 -4.53 -4.26

LTB-R +0.98 -1.74 -1.76 -0.84 +0.19 -0.70 -1.33 -0.92
BMTAS-R +2.73 -0.20 -0.44 +0.52 -1.16 -0.52 +0.06 -0.14
MTSL-R -2.13 -3.18 -2.94 -0.02 +1.56 -3.11 +0.20 -3.52

LTB +11.21 -2.61 -6.18 -3.76 +6.49 -4.52 -4.07 -5.47
BMTAS +11.27 -3.97 -6.82 -3.63 +4.41 -5.18 -6.94 -5.34
MTSL +1.41 -1.58 -4.11 +1.09 +1.00 -2.67 -0.30 -2.85
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Table 11. Generalization and robustness comparison of MTSL against a version in which the learned architecture is reinitialized and
retrained (MTSL-R).

NETWORK
∆SD

MTL ↑ ∆MTL ↑ ∆SD
MTL ↑ ∆MTL ↑

GENERALIZATION N B W D N B W D

C
S ONE-NET -3.47 -9.65 -5.78 -1.32 -3.81 -2.15 +3.02 -7.73 -1.36 -12.22

MTSL-R -1.22 -6.71 -3.49 +0.15 -4.64 +0.51 +4.50 -4.13 +0.23 -8.33
MTSL -1.35 -7.04 -3.03 +0.21 +0.49 +1.42 +2.92 -3.72 +2.60 -7.07

N
Y

U ONE-NET -2.77 -9.82 +10.25 -3.71 -3.27 -2.72 +15.72 -8.51 -11.79 -10.35
MTSL-R -1.34 -6.71 +7.25 -1.84 -2.29 -1.42 +15.92 -7.16 +3.31 -7.72

MTSL +0.06 -6.21 +1.92 -2.65 -0.84 -1.14 +13.50 -8.03 +3.22 -7.54

Table 12. Switching of the converged architectures. # (M) denotes the number of parameters in millions.

NETWORK S ↑ D ↓ E ↓ N ↑ A ↓ ∆SD
MTL ↑ ∆MTL ↑ # (M) GMAC

C
S

STN 61.95 6.38 0.0341 0.6108 0.0535 - - 107.10 31.03

ONE-NET 60.02 6.71 0.0421 0.5941 0.0620 -4.10 -10.06 21.70 7.06
MTSL-R 60.34 6.46 0.0414 0.6028 0.0567 -1.92 -6.51 22.99 9.53

MTSL-R-SWITCH 61.30 6.54 0.0380 0.5987 0.0569 -1.78 -4.67 22.83 9.20

N
Y

U

STN 35.36 52.36 0.0566 0.7966 0.1401 - - 107.10 33.99

ONE-NET 33.99 53.26 0.0634 0.7378 0.1557 -2.80 -7.22 21.70 7.77
MTSL-R 34.94 52.89 0.0585 0.7342 0.1524 -1.10 -4.43 22.84 10.11

MTSL-R-SWITCH 35.25 52.66 0.0628 0.7308 0.1561 -0.44 -6.30 22.90 10.47

H. Retraining the Converged Architectures
We evaluate the effectiveness of the learned architecture with and without the learned parameters. The learned architecture
is reinitialized and retrained under the same training settings as MTSL. The result of this retrained architecture is presented
as MTSL-R in Table 11. Both MTSL-R and MTSL provide improved results when compared with One-Net, suggesting that
both the learned architecture in and of itself and the MTSL training procedure of simultaneously learning the architecture
and its parameters are beneficial.

Next, we provide results for MTSL-R, where the converged architectures are retrained from scratch. Instead of retraining
the architecture converged on a dataset to retrain on the same dataset, we use the converged architecture in Cityscapes to
train on NYUv2 and vice versa. We refer to this switched evaluation as MTSL-R-Switch. The results are provided in Table
12. We observe that switching the converged architectures leads to marginal improvements.

I. Additional Similarity Metric
Instead of using CKA for alignment and grouping, a variety of other similarity metrics can be used. Here, we replace CKA
with Representation Similarity Analysis (RSA) and provide the results in Table 13. We observe that RSA is able to improve
the results of MTSL but at the cost of additional computation.

Table 13. MTSL with a different similarity metric called RSA. # (M) denotes the number of parameters in millions.

NETWORK S ↑ D ↓ E ↓ N ↑ A ↓ ∆SD
MTL ↑ ∆MTL ↑ # (M) GMAC

C
S

STN 60.87±0.78 6.37±0.02 0.03±0.00 0.61±0.00 0.05±0.00 - - 107.10 31.03

MTSL 60.68±0.10 6.52±0.03 0.04±0.00 0.60±0.00 0.06±0.00 -1.35±0.70 -7.04±0.56 22.86 8.96
MTSL-RSA 60.61±0.39 6.43±0.05 0.04±0.00 0.61±0.00 0.06±0.00 -0.72±0.61 -2.36±0.18 95.97 16.3

N
Y

U STN 35.63±0.53 52.70±0.25 0.06±0.00 0.80±0.00 0.14±0.00 - - 107.10 33.99

MTSL 35.50±0.25 52.46±0.23 0.06±0.00 0.73±0.00 0.16±0.00 +0.06±1.03 -6.21±0.90 22.81 9.89
MTSL-RSA 35.50±0.20 52.19±0.12 0.06±0.00 0.71±0.00 0.15±0.00 +0.31±0.54 -4.77±0.53 95.97 16.3
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Table 14. Generalization and inference efficiency comparisons between MTSL and state-of-the-art methods, namely cross stitch (Misra
et al., 2016), MTAN (Liu et al., 2019), LTB (Guo et al., 2020) and BMTAS (Bruggemann et al., 2020). LTB-R, BMTAS-R and MTSL-R
denote the results obtained by retraining the converged models of LTB, BMTAS and MTSL. # (M) denotes the number of parameters in
millions.

NETWORK S ↑ D ↓ E ↓ N ↑ A ↓
C

S
STN 50.77±0.18 7.22±0.01 0.0642 0.5819 0.2246

ONE-NET 50.90±0.13 7.36±0.03 0.0650±0.00 0.5783±0.00 0.2302±0.00

CROSS-STITCH 52.63±0.34 7.08±0.01 0.0644±0.00 0.5818±0.00 0.2250±0.00

MTAN 51.41±0.63 7.31±0.01 0.0650±0.00 0.5805±0.00 0.2626±0.00

LTB 49.57±0.47 7.47±0.02 0.0649±0.00 0.5812±0.00 0.2289±0.00

LTB-R 51.29±0.28 7.22±0.03 0.0643±0.00 0.5820±0.00 0.2253±0.00

BMTAS 48.84±0.29 7.50±0.03 0.0649±0.00 0.5809±0.00 0.2290±0.00

BMTAS-R 51.18±0.32 7.24±0.06 0.0644±0.00 0.5820±0.00 0.2253±0.00

MTSL 51.06±0.58 7.22±0.03 0.0652±0.00 0.5809±0.00 0.2280±0.00

MTSL-R 50.88±0.66 7.27±0.02 0.0653±0.00 0.5808±0.00 0.2282±0.00

N
Y

U

STN 34.56±0.19 54.17±0.17 0.0764±0.00 0.7712±0.00 0.5933±0.00

ONE-NET 33.49±0.38 53.35±0.29 0.0776±0.00 0.7041±0.00 0.6590±0.00

CROSS-STITCH 34.25±0.23 52.90±0.24 0.0768±0.00 0.7010±0.00 0.6096±0.00

MTAN 33.79±0.51 53.33±0.27 0.0764±0.00 0.7070±0.00 0.6563±0.00

LTB 31.92±0.04 55.21±0.22 0.0768±0.00 0.6964±0.00 0.6345±0.00

LTB-R 34.04±0.47 53.49±0.40 0.0768±0.00 0.7725±0.00 0.5970±0.00

BMTAS 32.09±0.29 54.64±0.36 0.0768±0.00 0.6978±0.00 0.6370±0.00

BMTAS-R 34.30±0.26 53.88±0.12 0.0764±0.00 0.7685±0.00 0.5968±0.00

MTSL 34.28±0.23 53.35±0.31 0.0776±0.00 0.6994±0.00 0.6252±0.00

MTSL-R 33.57±0.09 53.35±0.27 0.0780±0.00 0.7040±0.00 0.6265±0.00

J. Extended Numbers for Comparison with SOTA
Table 14 provides extended numbers for all the sota methods against which MTSL is compared.

K. Robustness to Adversarial Attack
In addition to the robustness to natural corruptions discussed in the main paper, we evaluate the robustness to PGD attacks
(Madry et al., 2018). We perform the attacks using four epsilon levels (0.25, 0.5, 1 and 2), step size of 1 and number of
iterations determined using min(ϵ+ 4, ⌈1.25ϵ⌉) (Kurakin et al., 2017). For each task S and D, the corresponding task loss
is used for attack. MTSL provides improved robustness over One-Net in most cases, as seen in Table 15.

Table 15. Robustness to PGD attack of the baselines and MTSL.

NETWORK S ↑ D ↓
0.25 0.5 1 2 0.25 0.5 1 2

C
S

STN 45.42 40.76 31.14 24.56 10.80 13.21 19.93 25.86

ONE-NET 45.28 40.97 31.41 24.84 11.63 14.42 22.16 29.04
MTSL 46.42 41.72 31.94 25.34 11.28 14.02 21.52 28.58

N
Y

U

STN 21.58 17.96 11.65 8.24 85.98 103.13 150.55 194.52

ONE-NET 20.75 17.31 11.17 7.83 85.40 103.67 149.12 191.13
MTSL 21.88 18.25 11.50 7.90 85.00 102.85 148.80 191.21

L. Extended Numbers for Generalization Results
The generalization performance of the baselines and MTSL have been provided in Table 16 with extended digits after the
decimal point where required.
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Table 16. Generalization comparisons between MTSL and baselines. # (M) denotes the number of parameters in millions.

NETWORK S ↑ D ↓ E ↓ N ↑ A ↓

C
S

STN 60.87±0.78 6.37±0.02 0.0342±0.00 0.6106±0.00 0.0535±0.00

ONE-NET 60.34±0.37 6.76±0.04 0.0423±0.00 0.5943±0.00 0.0616±0.00

ONE-NET-L 60.71±0.21 6.75±0.03 0.0421±0.00 0.5942±0.00 0.0615±0.00

MTSL 60.68±0.10 6.52±0.03 0.0419±0.00 0.6029±0.00 0.0583±0.00

N
Y

U STN 35.63±0.53 52.70±0.25 0.0570±0.00 0.7955±0.00 0.1355±0.00

ONE-NET 34.15±0.15 53.44±0.39 0.0636±0.00 0.7370±0.00 0.1688±0.01

ONE-NET-L 34.42±0.17 53.36±0.31 0.0634±0.00 0.7366±0.00 0.1682±0.01

MTSL 35.50±0.25 52.46±0.23 0.0595±0.00 0.7298±0.00 0.1605±0.00

M. Extended numbers for Ablation Results
The performance of each task using different components of MTSL is provided in Table 17.

Table 17. Ablation results of different tasks.

ALIGN AVG ATT S ↑ D ↓ E ↓ N ↑ A ↓

C
S

✓ 60.54±1.06 6.38±0.02 0.0362±0.00 0.6070±0.00 0.0558±0.00

✓ 61.13±0.10 6.40±0.05 0.0359±0.00 0.6073±0.00 0.0557±0.00

✓ ✓ 60.95±0.34 6.43±0.02 0.0358±0.00 0.6075±0.00 0.0560±0.00

✓ ✓ 60.29±1.32 6.60±0.13 0.0421±0.00 0.6006±0.00 0.0584±0.00

✓ ✓ 59.39±1.39 6.67±0.11 0.0436±0.00 0.5974±0.00 0.0596±0.00

✓ ✓ ✓ 60.68±0.10 6.52±0.03 0.0419±0.00 0.6029±0.00 0.0583±0.00

N
Y

U

✓ 35.34±0.06 51.88±0.06 0.0589±0.00 0.7145±0.00 0.1470±0.00

✓ 35.54±0.44 51.97±0.47 0.0590±0.00 0.7140±0.00 0.1469±0.00

✓ ✓ 35.64±0.50 52.40±0.07 0.0589±0.00 0.7102±0.00 0.1461±0.00

✓ ✓ 34.80±0.33 52.80±0.06 0.0584±0.00 0.7331±0.00 0.1634±0.00

✓ ✓ 34.18±0.44 53.05±0.21 0.0588±0.00 0.7344±0.00 0.1599±0.02

✓ ✓ ✓ 35.50±0.25 52.46±0.23 0.0595±0.00 0.7298±0.00 0.1605±0.00
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