
Kernel Logistic Regression Approximation
of an Understandable ReLU Neural Network

Marie Guyomard 1 Susana Barbosa 2 Lionel Fillatre 1

Abstract
This paper proposes an understandable neural net-
work whose score function is modeled as an addi-
tive sum of univariate spline functions. It extends
usual understandable models like generative ad-
ditive models, spline-based models, and neural
additive models. It is shown that this neural net-
work can be approximated by a logistic regres-
sion whose inputs are obtained with a non-linear
preprocessing of input data. This preprocessing
depends on the neural network initialization but
this paper establishes that it can be replaced by a
non random kernel-based preprocessing that no
longer depends on the initialization. Hence, the
convergence of the training process is guaranteed
and the solution is unique for a given training
dataset.

1. Introduction
Neural Networks (NNs) are widely used as their perfor-
mance on both regression and classification tasks is signif-
icant (Meijering et al., 2022). The explainability of NNs
and the possibility to certify their results is often criticized,
which is why they are described as “black boxes” (Fel &
Vigouroux, 2020).

In recent years, many studies have been conducted on the
interpretability of the NNs, but also on the convergence
of the learning process and the uniqueness of the learned
parameters. A rigorous bridge between NNs using a rec-
tified linear unit function (ReLU NNs) and spline-based
multidimensional functions approximation has been built in
(Balestriero et al., 2018). The authors establish that ReLU
NNs can be interpreted as splines operators that divide the

*Equal contribution 1Laboratory I3S, University Côte d’Azur,
Sophia-Antipolis, France 2Laboratory IPMC, University Côte
d’Azur, Sophia-Antipolis, France. Correspondence to: Marie
Guyomard <guyomard@i3s.unice.fr>, Lionel Fillatre <li-
onel.fillatre@i3s.unice.fr>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

input space into polyhedrons. Unfortunately, the partition
induced by the hidden layers of the network is too complex
because the input variables are mixed with a linear transfor-
mation or convolution. Other methods like Decision Trees
(DTs) (Breiman, 2017; Hastie et al., 2009), Multivariate
Adaptative Regression Splines (MARS) models (Friedman,
1991) and Generalized Additive Models (GAMs) (Hastie,
2017) also partition the input space, while their partitions
are interpretable. These partitions are only composed of
orthotopes because they split each input variable separately.
However, these methods exploit a greedy algorithm to split
the variables at each iteration. Hence, both the optimality of
the training and its robustness are questionable.

Recently, some studies were conducted to develop inter-
pretable NN-based models that mimic these interpretable
methods while optimizing a global criterion. In (Eckle et al.,
2019), it is shown that the MARS model can be approx-
imated by a NN but no algorithm is proposed to train it.
The Neural Additive Models (NAMs) in (Agarwal et al.,
2021) approximate GAMs by NNs. The resulting NN is
basically a conventional NN learned with the Stochastic Gra-
dient Descent (SGD) (Boyd & Vandenberghe, 2004) with
no guarantee to converge toward a satisfying solution.

Recent papers as (Jacot et al., 2018) have demonstrated
that it is possible to guarantee the convergence of the SGD
for a fully connected NN when the number of hidden neu-
rons becomes arbitrarily large. Indeed, assuming that the
NN parameters are initialized with a Gaussian distribution,
NNs may asymptotically become linear with respect to their
parameters as NN width increases (Neal, 2012; Liu et al.,
2020a). Unfortunately, it has been established in (Liu et al.,
2020a) that this approximation does not hold when the out-
put layer is non-linear, which arises for classification prob-
lems involving a sigmoid or a softmax function.

The contributions of this paper are fourfold. Firstly, we in-
troduce an interpretable model that combines the advantages
of MARS, GAMs, NAMs and NNs. Our Splines Approx-
imation Throught Understandable ReLU Neural Network
(SATURNN) is intrinsically explainable as MARS, GAM
and NAM and its training involves to minimize a global
classification loss. Secondly, we demonstrate that even if
SATURNN is composed of a sigmoid output layer, it can be

1

Kernel Logistic Regression Approximation of an Understandable ReLU Neural Network

partially linearized with respect to its parameters when the
number of hidden neurons is large. Thus its training can be
done by solving a convex optimization problem. Thirdly, we
show that SATURNN is equivalent to a logistic regression
applied to non-linear features deduced from SATURNN
architecture. Hence, with respect to the explainability tax-
onomy in (Linardatos et al., 2021; Xie et al., 2020), our
structural explainability can be considered as global, model
specific and intrinsically explainable. Finally, we show that
this logistic regression is equivalent to a kernel logistic re-
gression with a nonrandom kernel. Hence, we can conclude
that the convergence of SATURNN is guaranteed and the
obtained classifier is unique.

This paper is structured as follows. Section 2 introduces
the SATURNN model. Section 3 demonstrates that the
SATURNN model is equivalent to a logistic regression with
non-linear features. Section 4 establishes an approximation
of SATURNN by Kernel methods. Section 5 compares
SATURNN and its approximation methods to state-of-the-
art algorithms. Finally, Section 6 concludes the paper.

2. SATURNN Modeling
Our dataset contains N independent and identically dis-
tributed pairs {(x(i), y(i))}Ni=1 where x(i) ∈ Rd is the vector
of input variables or features and y(i) = {0, 1} is the binary
label to predict. We suppose that the features lie on an open
ball Bd2(0, r) where Bd2(c, r) := {x ∈ Rd : ∥x− c∥2 ≤ r}
is the ball in Rd of center c ∈ Rd and radius r > 0 with
∥x∥22 =

∑d
i=1 x

2
i the Euclidean norm of x = (x1, . . . , xd).

2.1. ReLU Neural Network

NNs (Goodfellow et al., 2016) are widely used for non-
linear classification tasks, as they are universal approxi-
mators of any function (Hornik et al., 1989; Leshno et al.,
1993). Let us consider a 1-hidden-ReLU-layer NN with p
neurons and a sigmoid activation as output layer:

ΦReLU(p)(x) = σ(ψReLU(p)(x)), (1)

ψReLU(p)(x) = β0 +

p∑

k=1

βkϕ (Wkx+ bk) , (2)

with β = (β0, β1, . . . , βp) ∈ Rp+1, b = (b1, . . . , bp) ∈ Rp

and W1, . . . ,Wp ∈ R1×d the trainable parameters. The
NN (1) models a non-linear classification as it applies the
sigmoid function σ(t) = 1/(1 + exp(−t)) to the non-
linear score function (2). The function ϕ(·) = ReLU(·) =
max{0, ·} is the ReLU activation (Balestriero et al., 2018).
The weight matrices Wk in (2) can be viewed as blenders
as they mix all the input features. The resulting partition
of a ReLU NN with 10 neurons is illustrated in Figure 1
(left). This partition with oblique regions is very difficult to
interpret with respect to the input features.

2.2. SATURNN

This paper introduces the SATURNN model which is a
classification ReLU NN (1) with the specific score function:

ψ(x, θ) =
1√
p

[
β0 +

p∑

k=1

βkϕ(skxυ(k) + bk)

]
, (3)

where θ = [βT , bT]T ∈ R2p+1 are the trainable parameters
and xT is the transpose of x. Each of the p hidden neu-
rons hk(x) = ϕ(skxυ(k) + bk) takes a single variable as
an input, i.e., the k-th neuron hk(x) processes xυ(k) where
υ : {1, . . . , p} 7→ {1, . . . , d} is the input selector indicating
which feature is handled by the neuron. Since the ReLU
function is non-decreasing, the sign sk ∈ {−1, 1} speci-
fies if hk(x) is a non-decreasing or non-increasing function
of xυ(k). The sk’s are not estimated, they are randomly
distributed as a Bernoulli distribution with the parameter
1/2. Similarly, the selector function is randomly initial-
ized such that υ(k) takes the value i ∈ {1, . . . , d} with the
probability 1/d, thus all the features are selected the same
number of times on average. Finally, the bias bk indicates
the knot, which is the starting point when hk(x) becomes
linear: hk(x) = skxυ(k) + bk when skxυ(k) > −bk. This
construction of the hidden layer partitions the input space
with orthotopes (Figure 1 right) leading to an interpretable
decision rule. As an orthotope is the product of closed inter-
vals, it is clear which variables are involved in this orthotope
and what their range is. Of course, using orthotopes is not
the only way to get an explainable architecture but we be-
lieve this is an efficient means to measure the role of each
input variable in the classification decision (as it is done in
GAMs, NAMs, MARS, decision trees, and so on).

It is worth noting that the SATURNN model can be seen as
a special case of GAMs (Hastie, 2017). By rewriting (3),
we get:

ψ(x, θ) =
1√
p

β0 +

d∑

i=1

∑

1≤k≤p:υ(k)=i

βkϕ (skxi + bk)

︸ ︷︷ ︸
fi(xi)

(4)

where fi(xi) is the univariate spline function of xi as a
linear sum of ReLU functions. According to the taxonomy
introduced by (Gilpin et al., 2018; Guidotti et al., 2018), the
proposed method is intrinsically interpretable as it meets all
the criteria including the explicability of both the outcome
and the representation of the data inside the NN.

2.3. Loss function optimization and initialization

Contrary to NAMs (Agarwal et al., 2021) that optimize a
criteria to learn a combination of d+ 1 NNs, our proposed

2

Kernel Logistic Regression Approximation of an Understandable ReLU Neural Network

method estimates the whole decision rule with only one NN.
Learning SATURNN requires minimizing the following cost
function:

LSATURNN(θ) =
1

N

N∑

i=1

L
(
σ(ψ(x(i), θ)), y(i)

)
, (5)

such that

θ̂SATURNN = argmin
θ∈B2p+1

2 (θ(0),R)

LSATURNN(θ), (6)

with L(·) the loss function, for instance the binary cross-
entropy used for binary classification tasks (Goodfellow
et al., 2016; Murphy, 2013):

L (ŷ, y) = −y log(ŷ)− (1− y) log(1− ŷ), (7)

for all y ∈ {0, 1} and all 0 ≤ ŷ ≤ 1. As for all NN training,
an initialization of the NN parameter is made with a vector
θ(0) = [β(0)T , b(0)

T

]T . The β(0)
k ’s satisfy β(0)

k ∼ N (0, 1)

for k = {0, . . . , p}. The thresholds b(0)k are initialized ac-
cording to a uniform distribution on the interval [−r, r]
since ∥xi∥2 ≤ r: b(0)k ∼ U [−r,+r]. A ℓ2-regularization is
applied to ensure that after the training, the estimated param-
eters θ̂SATURNN do not deviate too much from the initialized
values, up to a distance maximum R > 0. Since ψ(x, θ)
is non-linear on both x and θ, the optimization problem
(6) is not convex. Hence, we have no guarantee about its
convergence and the uniqueness of θ̂SATURNN. In the next
section, we will show that for a large p, the score function
ψ(x, θ) becomes linear with respect to the NN parameter θ
and thus the optimization problem (6) becomes convex.

3. Approximation with a Logistic Regression
As shown in (Liu et al., 2020a), a straightforward lineariza-
tion of a sigmoid-based NN like (1) cannot be accurate.
Hence, we first propose to linearize the score function
ψ(x, θ) with respect to θ. Then, we do not linearize the
sigmoid but we show that the resulting NN is equivalent
to a Logistic Regression (LR) with non-linear features. It
is important to note that we cannot use the recent results
about parameterized NN (Liu et al., 2020a;b) because our
SATURNN model does not satisfy the usual assumptions
on the weight matrices Wk (our model does not contain
such matrices) and the coefficients βk. Our model is also
specific because we explicitly take into account the bias
vector b with a non-Gaussian random initialization. Hence,
our theoretical results in Theorems 3.4 and 3.5 are novel.

3.1. Partial Linearization of SATURNN

We first proceed to an approximation of the score function
(3) around its initial trainable parameters θ(0). To do so, we

consider fixed sample x and derive the second order Taylor
series. We suppose that ψ(x, θ) : Rd → R is C2 almost ev-
erywhere on the open ball B2p+1

2 (θ(0), R) := {θ ∈ R2p+1 :
∥θ − θ(0)∥2 ≤ R} with fixed radius R > 0. Then there
exists a real number τ ∈ [0, 1] such that:

ψ̃(x, θ, θ(0)) = ψ(x, θ(0)) +∇θψ(x, θ
(0))T (θ − θ(0))

+
1

2
(θ − θ(0))THθ(ψ(x, (1− τ)θ(0) + τθ))(θ − θ(0)),

(8)

where ∇θψ(x, θ
(0)) is the gradient vector of ψ(x, θ) with

respect to θ taken at the point θ(0) (Seber & Wild, 2005)
defined by the following equation:

∇θψ(x, θ
(0)) =

1√
p

[
1, ϕ(s1xυ(1) + b

(0)
1),

ϕ(s2xυ(2) + b
(0)
2) , . . . , ϕ(spxυ(p) + b(0)p),

β
(0)
1 1{s1xυ(1)+b

(0)
1 >0}, . . . , β

(0)
p 1{spxυ(p)+b

(0)
p >0}

]T
,

(9)

where 1A is the indicator function of the event A. In (8),
Hθ(ψ(x, (1− τ)θ(0) + τθ)) denotes the hessian matrix of
ψ(x, θ) with respect to θ taken at the point (1 − τ)θ(0) +
τθ. The following lemma establishes that the gradient (9)
remains constant as the width of the SATURNN p grows.
Lemma 3.1 (Constancy of the gradient vector).
Let θ(0) = [β

(0)
0 , . . . , β

(0)
p , b

(0)
1 , . . . b

(0)
p] and r,R > 0 such

that β(0)
k ∼ N (0, 1) and b(0)k ∼ U [−r,+r]. As the width

of the SATURNN grows to infinity (p → ∞), the gradient
vector remains constant:

sup
x∈Bd

2 (0,r)

θ∈B2p+1
2 (θ(0),R)

∇θψ
(
x, θ(0)

)T
∇θψ

(
x, θ(0)

)
= O(1),

(10)
where O(·) is the Big O notation.

Proof. The proof is provided in Appendix A.

The following lemma establishes that the hessian matrix
Hθ(ψ(x, (1− τ)θ(0) + τθ)) approaches zero as the width
of SATURNN p grows.
Lemma 3.2 (Asymptotic behavior of the hessian).
Let θ(0) = [β

(0)
0 , . . . , β

(0)
p , b

(0)
1 , . . . b

(0)
p] and r,R > 0 such

that β(0)
k ∼ N (0, 1), b(0)k ∼ U [−r,+r] and τ ∈ [0, 1].

As the width of the SATURNN grows to infinity (p → ∞),
the hessian of ψ(x, θ) with respect to θ taken at the point
(1− τ)θ(0) + τθ(0) approaches zero.

sup
x∈Bd

2 (0,r)

θ∈B2p+1
2 (θ(0),R)

∥∥∥Hθ(ψ(x, (1− τ)θ(0) + τθ))
∥∥∥
2
= O

(
1√
p

)
.

(11)

3

Kernel Logistic Regression Approximation of an Understandable ReLU Neural Network

Proof. The proof is provided in Appendix B.

Thus, as the width of SATURNN grows, the second part of
the Taylor development of the score function (8) is negli-
gible (Lemma 3.2) and the gradient term remains constant
(Lemma 3.1). We can then conclude in Proposition 3.3 that
when SATURNN’s width is large enough, its score function
can be well-approximated by the linear model (12).
Proposition 3.3 (Linearization of ψ(x, θ)).
Let θ(0) = [β

(0)
0 , . . . , β

(0)
p , b

(0)
1 , . . . b

(0)
p] and r,R > 0 such

that β(0)
k ∼ N (0, 1) and b(0)k ∼ U [−r,+r]. As the width

of the NN grows to infinity (p → ∞), the hessian matrix
approaches zero while the gradient vector remains constant.
Then the score function ψ(x, θ) can be well-approximated
by the following linear model:

ψlin(x, θ, θ(0)) = ψ(x, θ(0)) +∇θψ(x, θ
(0))T (θ − θ(0)).

(12)

Proof. The proof follows from Lemmas 3.1 and 3.2.

It is a partial linearization because the function is still a
non-linear function of x through the gradient

g0(x) = ∇θψ(x, θ
(0)).

In fact, g0(x) does not depend on θ anymore but it is still
a non-linear function of x. The following theorem proves
that the approximation error between ψ(x, θ) defined in (3)
and its linearized form ψlin(x, θ, θ(0)) in (12) vanishes as p
increases.
Theorem 3.4 (Approximation error of ψ(x, θ) by
ψlin(x, θ, θ(0))).
Let θ(0) = [β

(0)
0 , . . . , β

(0)
p , b

(0)
1 , . . . , b

(0)
p] and r,R > 0 such

that β(0)
k ∼ N (0, 1) and b(0)k ∼ U [−r,+r]. Then, the ap-

proximation error between ψlin(x, θ, θ(0)) and ψ(x, θ) is
uniformly bounded by

sup
x∈Bd

2 (0,r)

θ∈B2p+1
2 (θ(0),R)

∣∣∣ψ(x, θ)− ψlin(x, θ, θ(0))
∣∣∣ ≤ R2

2
√
p
. (13)

Proof. The proof is provided in Appendix C.

It is worth noting that the upper bound does not depend
on x. The ℓ2-regularization added in the cost function (6)
through the constraint θ ∈ B2p+1

2 (θ(0), R) for a reasonable
value of R ensures that the approximation error remains
negligible when p is large enough. The following theorem
shows that the sigmoid does not change the quality of the
approximation when ψlin(x, θ, θ(0)) replaces ψ(x, θ).

Theorem 3.5 (Local linearization of SATURNN).
Let θ(0) = [β

(0)
0 , . . . , β

(0)
p , b

(0)
1 , . . . , b

(0)
p] and r,R >

0 such that β(0)
k ∼ N (0, 1) and b

(0)
k ∼ U [−r,+r].

Then, the approximation error between σ (ψ(x, θ)) and
σ
(
ψlin(x, θ, θ(0))

)
is uniformly bounded by

sup
x∈Bd

2 (0,r)

θ∈B2p+1
2 (θ(0),R)

∣∣∣σ(ψ(x, θ))− σ(ψlin(x, θ, θ(0)))
∣∣∣ ≤ R2

8
√
p
.

(14)

Proof. The proof is provided in Appendix D.

According to Theorem 3.5, when the number p of neurons
is large enough, the SATURNN model becomes equivalent
to a LR model applied on the linearized form of the score
function.

3.2. Equivalence with a Logistic Regression

In this subsection, we will demonstrate the equivalence
between learning the SATURNN model by minimizing
the cost function (6) and optimizing a LR based on
ψlin(x, θ, θ(0)). Let δLR(x, η) denote the LR applied on
the SATURNN linearized score function (12) defined by:

δLR(x, η) = σ
(
c0(x) + g0(x)

T η
)
≈ σ

(
g0(x)

T η
)

(15)

where η = θ − θ(0) ∈ R2p+1 is the parameter vector to
learn when we train the LR. The non-linear feature mapping
g0(x) can be considered as a non-linear preprocessing of
the input feature x. The term c0(x) = ψ(x, θ(0)) is constant
with respect to η. It only depends on θ(0), the initialization
of the NN. A short calculation shows that the expectation
of c0(x) is zero and its variance is bounded by 4r2 + 1/p.
This variance is negligible with respect to g0(x)T η, which
justifies the right-hand side approximation in (15). The
vector of parameters η is estimated by minimizing

LLR(η) =
1

N

N∑

i=1

L
(
δLR(x

(i), η), y(i)
)
. (16)

such that
η̂LR = argmin

η∈B2p+1
2 (0,R)

LLR(η). (17)

Since δLR(x, η) in (15) is a usual linear logistic
model learned with the cross-entropy loss (16) with ℓ2-
regularization over η, the optimization problem (17) is
strongly convex. Hence, the convergence is guaranteed and
the solution η̂LR is unique. For any SATURNN initialization
θ(0), we get a unique solution η̂LR

(
θ(0)
)
.

As established in the following theorem, it is equivalent to
optimize either (6) or (17) when the number p of neurons
composing SATURNN is large enough.

4

Kernel Logistic Regression Approximation of an Understandable ReLU Neural Network

Theorem 3.6 (Equivalence between LSATURNN and LLR).
Let θ(0) = [β

(0)
0 , . . . , β

(0)
p , b

(0)
1 , . . . , b

(0)
p] and r,R > 0 such

that β(0)
k ∼ N (0, 1) and b(0)k ∼ U [−r,+r]. Then, we get

sup
θ∈B2p+1

2 (θ(0),R)

η∈B2p+1
2 (0,R)

∣∣LSATURNN(θ)− LLR(η)
∣∣ ≤ R2

2
√
p
. (18)

Proof. The proof is provided in Appendix E.

According to the Theorem 3.6, learning θ̂SATURNN or η̂LR

leads to the same decision rule when p is large enough since
i) their decision functions are almost equal according to
Theorem 3.5 and ii) the training criteria are almost equal
according to Theorem 3.6. Then, it is possible to deduce
from δLR(x, η) both the partitioning of the input space in-
duced by the SATURNN architecture but also the resulted
estimated splines (4) by computing

θ̂LR = η̂LR + θ(0). (19)

By approximating SATURNN with the LR δLR(x), we over-
ride the constraints making NNs qualified as “black boxes”.
On the one hand, the decision rule is interpretable as we
obtain a partitioning of the input space with orthotopes and
the estimated univariate functions can easily be computed
providing information about the impact of each feature on
the decision. On the other hand, the resulted decision rule
is explainable since the LR offers guarantees on the conver-
gence and the uniqueness of its estimate. It is worth noting
that our LR model still depends on θ(0) through g0(x). In
the next section, we will introduce an approximation of
δLR(x) using a kernel method that does not depend on the
initializations θ(0).

4. Approximation with a Kernel Logistic
Regression

In (Jacot et al., 2018), the authors built a rigorous bridge
between NNs and Kernel Methods. Nevertheless, this the-
ory and those which followed later (Liu et al., 2020a;b)
cannot be applied to SATURNN. In fact, (Jacot et al., 2018;
Neal, 2012; Lee et al., 2017; Liu et al., 2020b) demonstrate
that NNs whose parameters are initialized with Gaussian
distributed random values are equivalent to Gaussian pro-
cesses in infinite-width limit. Moreover, (Liu et al., 2020a)
highlights that the tangent kernel does not remain constant
when NNs are composed of a non-linear output layer. In this
section, we will demonstrate that despite its particular archi-
tecture including the fixed weight matrix, the non-Gaussian
initialization of the parameters, and its non-linear output
layer, SATURNN can be well approximated by a Kernel
Logistic Regression (KLR). First, we introduce the exact

kernel that depends on the initialization θ(0). Then, we es-
tablish that this kernel can be approximated by a constant
kernel which is independent from the initial parameters,
provided that the number of hidden neurons is large enough.

4.1. KLR approximation of δLR(x, η)

According to the representer theorem (Schölkopf et al.,
2001), the estimated vector of parameters η̂LR in (17) can
be expressed as a linear combination of the input vectors,
i.e., there exist {αj}Nj=1 ∈ RN such that

η̂LR =

N∑

j=1

αjg0

(
x(j)

)
. (20)

Let us denote κ0(x, x̃) the kernel function defined by

κ0(x, x̃) = g0(x)
T g0(x̃). (21)

A short calculation shows that

κ0(x, x̃) =

1

p

[
1 +

p∑

k=1

ϕ
(
skxυ(k) + b

(0)
k

)
ϕ
(
skx̃υ(k) + b

(0)
k

)

+β
(0)2

k 1{skxυ(k)+b
(0)
k >0}1{skx̃υ(k)+b

(0)
k >0}

]
. (22)

It follows from (20) that (15) can be rewritten as

δKLR(x, α) = σ

N∑

j=1

αjκ0

(
x(j), x

)

 . (23)

Let us define the feature vector K0(x) ∈ RN as

K0(x) =
(
κ0

(
x(1), x

)
, . . . , κ0

(
x(N), x

))T
. (24)

Then, we get

δKLR(x, α) = σ
(
K0(x)

Tα
)
. (25)

As for δLR(x, η) modeling, LR is applied on a non-linear
feature mapping derived from the kernel. For δLR(x, η), the
mapping of each sample x 7→ g0(x) = ∇θψ(x, θ

(0)) is
independent from the training samples. When considering
the kernel approach δKLR(x, α) in (23), the mapping of each
sample depends directly on the distribution of the whole
training dataset : x 7→

(
κ0(x

(i), x)
)N
i=1

. The univariate
spline functions learned by SATURNN modeling, and thus
the univariate segmentation, can be retrieved by computing

θ̃KLR =

N∑

j=1

α̂KLR
j g0(x

(j)) + θ(0), (26)

5

Kernel Logistic Regression Approximation of an Understandable ReLU Neural Network

where α̂KLR minimizes

LKLR(α) =
1

N

N∑

i=1

L
(
δKLR(x

(i), α), y(i)
)
, (27)

such that
α̂KLR = argmin

α∈BN
2 (0,R)

LKLR(α). (28)

Since KLR is based on the representer theorem applied to
the LR, they are obviously equivalent.

4.2. Deterministic KLR approximation of δLR(x, η)

By definition, the kernel κ0(x, x̃) in (21) still depends on
θ(0), so does K0(x). However, the following proposition
shows that this kernel can be well approximated by its ex-
pectation.

Proposition 4.1 (Convergence of the kernel).
Let θ(0) = [β

(0)
0 , . . . , β

(0)
p , b

(0)
1 , . . . , b

(0)
p] and r,R > 0

such that β(0)
k ∼ N (0, 1) and b(0)k ∼ U [−r,+r]. The ex-

pectation of κ0(x, x̃) with respect to θ(0), for any couple
(x, x̃) ∈ Rd × Rd, is given by κ(x, x̃) defined as

κ(x, x̃) =
1

p
+
r2

6
+

1

4rd

d∑

i=1

ϱ(xi, x̃i), (29)

where ϱ : R2 7→ R is given by

ϱ(xi, x̃i) = 2r(xix̃i + 1)− |xi − x̃i|+
1

6
|xi − x̃i|3.

(30)

Furthermore, the variance V(κ0(x, x̃)) of κ0(x, x̃) satisfies

V(κ0(x, x̃)) = O

(
1

p2

)
. (31)

Proof. The proof is given in Appendix F.

From the law of large numbers, we can deduce that the ker-
nel κ0(x, x̃) converges in probability towards its expected
value κ(x, x̃) as p goes to infinity. Hence, when the num-
ber of hidden neurons is large, we propose to approximate
δKLR(x, α) with δEKLR(x, α) defined by

δEKLR(x, α) = σ
(
K(x)Tα

)
(32)

where the feature vector K(x) ∈ RN is

K(x) =
(
κ
(
x(1), x

)
, . . . , κ

(
x(N), x

))T
. (33)

The Expected Kernel Logistic Regression (EKLR) does not
depend anymore on θ(0). Even though EKLR seems totally

independent from SATURNN, it is possible to retrieve the
decision rule estimated by SATURNN. Let α̂EKLR denote
the parameters estimated by EKLR as the minimizer of (28)
when δEKLR replaces δKLR. We get

δEKLR(x, α̂
EKLR) = σ

N∑

j=1

α̂EKLR
j κ

(
x(j), x

)

= σ

(
β̂0 +

r2

4rd

d∑

i=1

β̂i(xi)

)
(34)

where

β̂0 =
1

p

N∑

j=1

α̂EKLR
j , (35)

β̂i(xi) =

N∑

j=1

α̂EKLR
j ϱ(x

(j)
i , xi). (36)

From (34), we retrieve an additive decomposition similar to
SATURNN in (4). This decomposition does not depend on
the initialization θ(0). Each function β̂i(xi) depends on all
the training samples x(j). Because of the ℓ2-regularization
to estimate the LR weights, the parameters α̂EKLR

j are unique.
Hence, the functions β̂i(xi) are also unique for a given
training dataset.

4.3. Implementation of KLR and EKLR

As mentioned previously, one of the main advantages of
NNs and LR applied on a non-linear transformation of fea-
tures concerns their optimization. Contrary to mainly other
non-linear methods, as MARS (Friedman, 1991), GAM
(Hastie, 2017) or DT (Breiman, 2017), these methods are
learned using Stochastic Gradient Descent (Boyd & Van-
denberghe, 2004). In (Zhu & Hastie, 2001) two algorithms
are proposed to optimize Import Vector Machine, a classifi-
cation approach built on KLR using classical kernels such
as linear, polynomial or sigmoid, for example. Since the
kernels proposed in (22) and (29) are novel, there is no im-
plementation available in order to optimize both KLR (25)
and EKLR (32) models. Thus, KLR and EKLR can be im-
plemented as a regularized LR1 applied on the preprocessed
input sample K0(x) or K(x).

5. Experiments
We evaluate the relevance of both the SATURNN model and
its approximation methods δLR(x, η) in (15), δKLR(x, α) in
(23) and δEKLR(x, α) in (32) on two simulated datasets and
on one real one.

1Scikit-Learn Logistic Regression (Pedregosa et al., 2011).

6

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

Kernel Logistic Regression Approximation of an Understandable ReLU Neural Network

5.1. Tested Methods

We compare the performance of our proposed methods to
various non-linear models such as Random Forests (RF)
(Breiman, 2001), MARS (Friedman, 1991), GAMs (Hastie,
2017), Explainable Boosting Machine (EBM) (Lou et al.,
2012), ReLU NNs (Goodfellow et al., 2016) and NAMs
(Agarwal et al., 2021). For all greedy algorithms, a tun-
ing algorithm is required to learn the models with optimal
hyperparameters. The optimal number of spline basis for
MARS or the optimal width and number of DTs composing
RFs and EBMs are computed with gridsearch algorithms.
To get a fair comparison between all the methods, we do not
incorporate interaction effects for MARS, GAM, EBM and
NAMs. Tables 1 and 2 summarize the average accuracies
of each model computed from a 5-fold cross-validation on
both training and test samples. The computation time does
not take into account the time required to tune the greedy
methods, but rather the training of optimal parameterized
models.

5.2. Simulated Datasets

We only consider two features in order to visualize both the
estimated decision boundaries and the resulted partitions
from different non-linear classification methods.

Gaussian Dataset. We generate 400 samples x(i) =

(x
(i)
1 , x

(i)
2) ∈ R2 from a normal distribution. They are some

instances of the pair of random values (X1, X2). In real
applications the decision boundary is noisy, so we define
the labels y(i) using a Bernoulli distribution:

y(i)∼B
(
p(x(i))

)
with p(x(i))=σ

(
f1(x

(i)
1) + f2(x

(i)
2)
)
.

The probability used to generate the Bernoulli distribution
is constructed from the sigmoid applied on a score function
built with threshold effects. The functions f1 and f2 are
defined to generate the regions displayed in Figure 1. We
assume that having X1 under a certain threshold decreases
the Bernoulli probability, whereas a high value increases it.
We also suppose that too low or too high of a level of X2

increases the probability of belonging to class 2.

Circle Dataset. We generate two noisy circle distribu-
tions2 each composed of 200 samples. The resulted dataset
(Figure 4) is relevant to analyze non-linear classifiers.

Results. Although the SATURNN model does not mix
the features but processes each input variable separately, it
obtains similar performance to other methods, even higher
for the Circle Dataset (90% accuracy on the test sample).
The SATURNN modeling ensures an explainable partition

2Using the make circles method provided by Scikit-Learn.

of the input space (Figure 1 right) with orthotopes contrary
to ReLU NN (Figure 1 left), which produce oblique regions
that are impossible to interpret. Moreover, contrary to the
ReLU NN, SATURNN can be viewed as a specific GAM (4)
since the estimated splines by SATURNN are univariate and
thus can be analyzed (Figure 2). The NAM (pink curves)
and SATURNN (orange curves) models estimate more con-
sistent splines with respect to the simulated pattern than
MARS or GAM. Indeed, in Figure 1, we can see that when
X2 is high, most of the samples belong to class 1, justifying
why NAM and SATURNN splines are decreasing from a
certain value of X2. Paradoxically, the estimated spline of
X2 by GAM (Figure 2 green curve) is always increasing.
Thus the interpretability of GAM splines are not reliable,
questioning the convergence of the GAM greedy algorithm.

ReLU NN SATURNN

Figure 1. Partition on Gaussian Dataset of the ReLU NN (p = 10)
on the left and SATURNN (p = 10) on the right. The estimated
decision rule is in red and the partition boundaries are in black.
The estimated decision boundaries of all implemented methods are
displayed in Figure 7 in Appendix G.1.

2 0 2

30

20

10

0

10

Estimated splines for X1

MARS
GAM
NAM
SATURNN

2 0 2

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Estimated splines for X2

Figure 2. Gaussian Dataset: estimated splines for X1 (left) and X2
(right). The estimated splines on the Circle Dataset are displayed
in Figure 9 in Appendix G.2.

As established in Theorem 3.5, the SATURNN model in
its asymptotic regime (SATURNN∞ in Table 1 with re-
spectively p = 30 000 and p = 50 000 for the Gaussian
and the Circle Dataset) can be well-approximated by LR
δLR(x, η) defined by (15) on both data sets. Indeed, in Table

7

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html

Kernel Logistic Regression Approximation of an Understandable ReLU Neural Network

Gaussian Dataset Circle Dataset

Methods Accuracy
Train

Accuracy
Test

Computation
Time

Accuracy
Train

Accuracy
Test

Computation
Time

RF 0.97 (0.01) 0.76 (0.01) 0.64 0.93 (0.01) 0.88 (0.02) 0.89
MARS 0.82 (0.01) 0.80 (0.01) 0.29 0.89 (0.01) 0.88 (0.04) 0.09
GAM 0.81 (0.01) 0.78 (0.01) 0.11 0.90 (0.01) 0.89 (0.03) 0.04
EBM 0.82 (0.01) 0.78 (0.02) 0.30 0.93 (0.01) 0.89 (0.03) 0.17
NAM 0.77 (0.02) 0.76 (0.01) 227 0.87 (0.07) 0.86 (0.08) 210

ReLU NN 0.78 (0.02) 0.76 (0.02) 208 0.90 (0.01) 0.89 (0.01) 177
SATURNN 0.77 (0.02) 0.76 (0.03) 233 0.88 (0.01) 0.90 (0.01) 218

SATURNN∞ 0.78 (0.01) 0.77 (0.04) 387 0.91 (0.01) 0.90 (0.01) 387
LR PSI LIN 0.86 (0.01) 0.81 (0.04) 19 0.93 (0.01) 0.89 (0.02) 15

KLR 0.78 (0.02) 0.80 (0.03) 0.05 0.89 (0.01) 0.89 (0.03) 0.05
EKLR 0.78 (0.02) 0.80 (0.03) 0.05 0.89 (0.01) 0.89 (0.02) 0.05

Table 1. Summary of comparison on both datasets: average (standard deviation) accuracies obtained on training and test samples and
average training time per fold (in seconds). The blue rows refer to the new approaches presented in this paper. ReLU NN and SATURNN
are computed with p = 10. LR PSI LIN (meaning LR applied on the partially linearized score function of SATURNN∞), KLR and
EKLR are all composed by respectively p = 30 000 and p = 50 000 neurons for the Gaussian and the Circle datasets.

5 100 500 700 1000 2000
Width of SATURNN

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ap
pr

ox
im

at
io

n
er

ro
r

Average
Per fold

Figure 3. Gaussian Dataset: mean of the approximation errors Ek

between SATURNN and δLR(x, η) over 5 folds for different values
of p. The results of this experiment on the circle dataset are
displayed in Figure 10 in Appendix G.3.

1, δLR(x, η) is as powerful as SATURNN and all the com-
pared NNs and also much faster. Thus the decision rule of
this approximation method fits the data well (Figure 4-left).
Finally, we study the mean of the approximation error

Ek =
∑

i∈Fk

∣∣∣σ(ψ(x(i), θ̂))− σ(ψlin(x(i), θ̂, θ(0)))
∣∣∣ / |Fk|

between SATURNN and δLR(x, η) over 5 folds (blue points)
where Fk is the k-th fold, |Fk| its size and θ̂ = θ̂SATURNN

is obtained from (6). Figure 3 illustrates the mean of the
approximation error (orange curve) over 5 folds (blue points)
on the Gaussian Dataset (see Figure 10 in Appendix G.3 for
the Circle Dataset). First, as p grows, the maximum value of
the approximation error becomes more stable. Secondly, as
established in Theorem 3.5, the mean of the approximation

error decreases as 1/
√
p.

Finally, the approximation of SATURNN by KLR and
EKLR is much faster than NNs and obtain similar even
higher accuracies on the test sample. For example, on the
gaussian dataset, the accuracies on the test sample for both
KLR and EKLR reach 80% while NAM and the ReLU NN
get 76%. In Figure 4-right, the decision rule of the KLR
method highlights how well the approximation works on
the Circle Dataset.

LR PSI LIN

Figure 4. Estimated decision boundaries in red on the Circle
Dataset of LR defined by (15) with p = 50 000 on the left and
EKLR (32) with p = 50 000 on the right. The estimated decision
boundaries of all implemented methods are displayed in Figure 8
in Appendix G.1.

5.3. Real dataset

We chose to derive experiments using the Framingham
dataset (Mahmood et al., 2014). Indeed, the bio-medical
field requires application of methods that can be interpreted
by medical experts. The Framingham dataset aims to pre-
dict a cardiovascular event from 15 descriptive variables

8

Kernel Logistic Regression Approximation of an Understandable ReLU Neural Network
Train Test

Methods Acc AUC Acc AUC
Computation

Time
RF 0.68 (0.01) 0.76 (0.01) 0.64 (0.02) 0.70 (0.02) 0.1

MARS 0.69 (0.01) 0.75 (0.01) 0.66 (0.02) 0.71 (0.01) 0.1
GAM 0.72 (0.01) 0.80 (0.01) 0.63 (0.02) 0.69 (0.02) 0.65
EBM 0.69 (0.01) 0.77 (0.01) 0.65 (0.01) 0.72 (0.01) 7.8
NAM 0.71 (0.01) 0.78 (0.01) 0.65 (0.01) 0.70 (0.02) 694

RN ReLU 0.75 (0.02) 0.85 (0.02) 0.61 (0.03) 0.66 (0.03) 483
SATURNN 0.68 (0.02) 0.74 (0.02) 0.67 (0.03) 0.72 (0.02) 735

SATURNN∞ 0.63 (0.02) 0.72 (0.01) 0.62 (0.02) 0.71 (0.01) 591
RL PSI LIN 0.76 (0.01) 0.84 (0.01) 0.64 (0.02) 0.69 (0.02) 52

KLR 0.69 (0.01) 0.74 (0.01) 0.66 (0.02) 0.73 (0.02) 0.32
EKLR 0.68 (0.01) 0.74 (0.01) 0.66 (0.01) 0.73 (0.02) 0.35

Table 2. Summary of comparison on Framingham dataset: average accuracy and AUC (standard deviation) on the training and test samples
and average training time (in seconds). The blue rows refer to the new approaches presented in this paper. The ReLU NN is composed of
p = 10 neurons while SATURNN and NAM are trained with p = 40. KLR, EKLR and RL PSI LIN (LR applied to the linearized score
function of the SATURNN∞) have p = 50 000 neurons.

such as gender, cholesterol level, or body mass index. With
the proportions of the database being strongly unbalanced
(85% - 15%), we chose to rebalance it. We thus carry out
the experiments on 1114 patients.

AUC (Area Under the Curve) is a criterion appreciated by
doctors (Zhou et al., 2009). Where accuracy provides infor-
mation about the predictive power of a model, AUC gives
an idea of the Sensibility and the Specificity of a predictive
model, that is to say the capability of a tool for identifying a
binary signal (sick or not in our case). SATURNN produces
similar, or even higher accuracies than the other methods:
the SATURNN composed of p = 40 neurons reaches 72%
of AUC on the validation sample, GAM 69% and NAM 70%.
The greedy methods such as RF, MARS, and GAM tend to
overfit. By mixing all the variables together, the ReLU NN
does not allow us to graphically visualize the partitioning
of the input space. In Figure 5, we can analyze the segmen-
tations induced by the interpretable methods. NAM (pink
curve) and SATURNN (orange) estimate similar splines for
cigarettes per day and glucose. GAM (green) and MARS
(blue) introduce few non-linearities, whereas their perfor-
mance could have been improved as demonstrated by the
AUC of SATURNN (Table 2). These difficulties are related
to the fact that these methods do not optimize a global cri-
terion but use an iterative method to add threshold effects.
We can see that the SATURNN-induced spline for the dia-
betes variable (Figure 5-right) is zero. This behavior can be
likened to variable selection: SATURNN estimates that the
variables diabetes, heart rate per minute, and presence of
cough have no significant effects on the development of the
pathology. Although by excluding these variables from the
decision rule, SATURNN performs better than NAM and
GAM methods, which add complexity by thresholding these
variables. Finally, the SATURNN approximation methods
are much faster than those of the NNs (resp. 32 and 35

seconds for KLR and EKLR) and achieve better predictive
performance (73% AUC on the validation sample for KLR
and EKLR).

Cigarettes per day Glucose Diabetes

Figure 5. Estimated Splines on the Framingham dataset for MARS
(blue), GAM (green), NAM (pink) and SATURNN with p = 40
neurons (orange).

6. Conclusion
This paper proposes an understandable ReLU neural net-
work architecture based on a sum of univariate spline func-
tions. It is shown that this network is asymptotically equiva-
lent to a kernel logistic regression with a novel kernel as the
number of hidden neurons becomes large. We finally get an
additive model composed of a sum of univariate functions
that depend only on the training samples. The convergence
is guaranteed and the spline decomposition is unique.

References
Agarwal, R., Melnick, L., Frosst, N., Zhang, X., Lengerich,

B., Caruana, R., and Hinton, G. E. Neural additive mod-
els: Interpretable machine learning with neural nets. Ad-
vances in Neural Information Processing Systems, 34:
4699–4711, 2021.

9

Kernel Logistic Regression Approximation of an Understandable ReLU Neural Network

Balestriero, R. et al. A spline theory of deep learning. In
International Conference on Machine Learning, pp. 374–
383. PMLR, 2018.

Boyd, S. and Vandenberghe, L. Convex Optimization. Cam-
bridge University Press, March 2004.

Breiman, L. Random forests. Machine learning, 45(1):
5–32, 2001.

Breiman, L. Classification and regression trees. Routledge,
2017.

Eckle, K. et al. A comparison of deep networks with relu ac-
tivation function and linear spline-type methods. Neural
Networks, 110:232–242, 2019.

Fel, T. and Vigouroux, D. Representativity and consistency
measures for deep neural network explanations. arXiv
preprint arXiv:2009.04521, 2020.

Friedman, J. H. Multivariate adaptive regression splines.
The annals of statistics, 19(1):1–67, 1991.

Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M.,
and Kagal, L. Explaining explanations: An overview of
interpretability of machine learning. In 2018 IEEE 5th
International Conference on data science and advanced
analytics (DSAA), pp. 80–89. IEEE, 2018.

Goodfellow, I. J., Bengio, Y., and Courville, A. Deep Learn-
ing. MIT Press, Cambridge, MA, USA, 2016.

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Gian-
notti, F., and Pedreschi, D. A survey of methods for
explaining black box models. ACM computing surveys
(CSUR), 51(5):1–42, 2018.

Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman,
J. H. The elements of statistical learning: data mining,
inference, and prediction, volume 2. Springer, 2009.

Hastie, T. J. Generalized additive models. In Statistical
models in S, pp. 249–307. Routledge, 2017.

Hornik, K., Stinchcombe, M., and White, H. Multilayer
feedforward networks are universal approximators. Neu-
ral networks, 2(5):359–366, 1989.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent ker-
nel: Convergence and generalization in neural networks.
Advances in neural information processing systems, 31,
2018.

Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Penning-
ton, J., and Sohl-Dickstein, J. Deep neural networks as
gaussian processes. arXiv preprint arXiv:1711.00165,
2017.

Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. Mul-
tilayer feedforward networks with a nonpolynomial ac-
tivation function can approximate any function. Neural
networks, 6(6):861–867, 1993.

Linardatos, P., Papastefanopoulos, V., and Kotsiantis, S. Ex-
plainable ai: A review of machine learning interpretability
methods. Entropy, 23(1):18, 2021.

Liu, C., Zhu, L., and Belkin, M. On the linearity of large
non-linear models: when and why the tangent kernel is
constant. Advances in Neural Information Processing
Systems, 33:15954–15964, 2020a.

Liu, C., Zhu, L., and Belkin, M. Toward a theory of op-
timization for over-parameterized systems of non-linear
equations: the lessons of deep learning. arXiv preprint
arXiv:2003.00307, 2020b.

Lou, Y., Caruana, R., and Gehrke, J. Intelligible models for
classification and regression. In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 150–158, 2012.

Mahmood, S. S., Levy, D., Vasan, R. S., and Wang, T. J.
The framingham heart study and the epidemiology of car-
diovascular disease: a historical perspective. The lancet,
383(9921):999–1008, 2014.

Meijering, E., Calhoun, V. D., Menegaz, G., Miller, D. J.,
and Ye, J. C. Deep learning in biological image and
signal processing. IEEE Signal Processing Magazine, 39
(2):24–26, 2022. doi: 10.1109/MSP.2021.3134525.

Murphy, K. P. Machine learning : a probabilistic perspec-
tive. MIT Press, Cambridge, 2013.

Neal, R. M. Bayesian learning for neural networks, volume
118. Springer Science & Business Media, 2012.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Schölkopf, B., Herbrich, R., and Smola, A. J. A generalized
representer theorem. In Helmbold, D. and Williamson,
B. (eds.), Computational Learning Theory, pp. 416–426.
Springer Berlin Heidelberg, 2001.

Seber, G. and Wild, C. Nonlinear Regression. Wiley Se-
ries in Probability and Statistics. Wiley, 2005. ISBN
9780471725305. URL https://books.google.
fr/books?id=YBYlCpBNo_cC.

10

https://books.google.fr/books?id=YBYlCpBNo_cC
https://books.google.fr/books?id=YBYlCpBNo_cC

Kernel Logistic Regression Approximation of an Understandable ReLU Neural Network

Xie, N., Ras, G., van Gerven, M., and Doran, D. Explainable
deep learning: A field guide for the uninitiated. arXiv
preprint arXiv:2004.14545, 2020.

Zhou, X.-H., McClish, D. K., and Obuchowski, N. A. Sta-
tistical methods in diagnostic medicine. John Wiley &
Sons, 2009.

Zhu, J. and Hastie, T. Kernel logistic regression and the
import vector machine. Advances in neural information
processing systems, 14, 2001.

11

Kernel Logistic Regression Approximation of an Understandable ReLU Neural Network

A. Proof of Lemma 3.1
Proof. The gradient vector of the SATURNN score function ψ(x, θ) with respect to θ taken at the point θ(0) becomes
constant as the width of the SATURNN growths.

Let us recall that the features x lie on an open ball Bd2(0, r), r > 0 and the vector of initialized parameters is defined
as θ(0) = [β

(0)
0 , β

(0)
1 , . . . , β

(0)
p , b

(0)
1 , . . . , b

(0)
p] with β(0)

k ∼ N (0, 1) and b(0)k ∼ U [−r,+r]. We suppose sk ∈ {−1, 1} ∼
B(1/2) and υ(k) ∼ UJ1, dK, for each k ∈ {1, . . . , p}. We assume that ψ(x, θ) in (3) is C2 almost everywhere on an open
ball B2p+1

2 := {θ ∈ R2p+1 :∥θ − θ(0)∥2≤ R} with fixed radius R > 0. In the following, we neglect the points where the
function are not C2.

The gradient vector ∇θψ(x, θ) is the gradient vector of ψ(x, θ) with respect to θ and is defined by:

∇θψ(x, θ) =

[
∂ψ(x, θ)

∂β0
,
∂ψ(x, θ)

∂β1
, . . . ,

∂ψ(x, θ)

∂βp
,
∂ψ(x, θ)

∂b1
, . . . ,

∂ψ(x, θ)

∂bp

]T
. (37)

We have for all k ∈ {1, . . . , p}:

∂ψ(x, θ)

∂β0
=

1√
p

∂ψ(x, θ)

∂βk
=

1√
p
ϕ(skxυ(k) + bk)

∂ψ(x, θ)

∂bk
=

1√
p
βk
∂ϕ(skxυ(k) + bk)

∂bk
.

So we can rewrite (37) as:

∇θψ(x, θ) =

[
1√
p
,
1√
p
ϕ(s1xυ(1) + b1), . . . ,

1√
p
ϕ(spxυ(p) + bp),

1√
p
β1
∂ϕ(s1xυ(1) + b1)

∂b1
, . . . ,

1√
p
βp
∂ϕ(spxυ(p) + bp)

∂bp

]T
.

(38)

According to our assumptions, we have ∀k ∈ {1, . . . , p}, b(0)k ∈ [−r,+r] and skxυ(k) ∈ [−r,+r]. Thus, skxυ(k) + b
(0)
k ∈

[−2r, 2r] and ϕ(skxυ(k) + b
(0)
k) ∈ [0, 2r].

We compute the norm of the gradient taken at the point θ(0) in order to study its constancy:

⟨∇θψ(x, θ
(0)),∇θψ(x, θ

(0))⟩ = ∇θψ(x, θ
(0))T∇θψ(x, θ

(0))

=
1

p

1 +

p∑

i=1

ϕ(sixυ(i) + b
(0)
i)Tϕ(sixυ(i) + b

(0)
i)

︸ ︷︷ ︸
∈[0,4pr2]

+

p∑

i=1

β
(0)2

i 1{sixυ(i)+b
(0)
i >0}1{sixυ(i)+b

(0)
i >0}

︸ ︷︷ ︸
∈[0,pmax(β)2]

.

≤ 1

p
[1 + 4pr2 + pmax(β)2]

= O

(
1

p
[O(1 + 4pr2 + pmax(β)2)]

)

= O

(
1

p
O(p)

)

= O(1). (39)

12

Kernel Logistic Regression Approximation of an Understandable ReLU Neural Network

B. Proof of Lemma 3.2
Proof. The hessian matrix of ψ(x, θ) with respect to θ taken at the point (1− τ)θ(0) + τθ approaches zero as p growths.

Let us recall that the features x lie on an open ball Bd2(0, r), r > 0 and the vector of initialized parameters is defined
as θ(0) = [β

(0)
0 , β

(0)
1 , . . . , β

(0)
p , b

(0)
1 , . . . , b

(0)
p] with β(0)

k ∼ N (0, 1) and b(0)k ∼ U [−r,+r]. We suppose sk ∈ {−1, 1} ∼
B(1/2) and υ(k) ∼ UJ1, dK, for each k ∈ {1, . . . , p}. We assume that ψ(x, θ) in (3) is C2 almost everywhere on an open
ball B2p+1

2 := {θ ∈ R2p+1 :∥θ − θ(0)∥2≤ R} with fixed radius R > 0.

The hessian matrix of the SATURNN score function ψ(x, θ) can be written as the following structure:

Hθ(ψ(x, θ)) =

H(1,1) H(1,2) . . . H(1,2p+1)

H(2,1) H(2,2) . . . H(2,2p+1)

...
...

. . .
...

H(2p+1,1) H(2p+1,2) . . . H(2p+1,2p+1)

 . (40)

Here each hessian block H(i,j) := ∂2ψ(x,θ)
∂θi∂θj

, i, j ∈ {1, . . . , 2p+ 1}, is the second derivative of ψ(x, θ) with respect to its
parameters θ = [β0, β1, . . . , βp, b1, . . . , bp], such that θ0 = β0 and θ2p+1 = bp for example.

We derive the different second derivatives of ψ(x, θ) with respect to θ at the point (1 − τ)θ(0) + τθ. We have for
i, j ∈ {1, . . . , p}2, i ̸= j and ϕ(·) = ReLU(·) = max{0, ·}:

∂2ψ(x, (1− τ)θ(0) + τθ)

∂2β0
=
∂2ψ(x, (1− τ)θ(0) + τθ)

∂2βj
=
∂2ψ(x, (1− τ)θ(0) + τθ)

∂βi∂βj
= 0,

∂2ψ(x, (1− τ)θ(0) + τθ)

∂bi∂bj
=
∂2ψ(x, (1− τ)θ(0) + τθ)

∂βi∂bj
= 0,

∂2ψ
(
x, (1− τ)θ(0) + τθ

)

∂2bj
=

1√
p
βj
∂2ϕ

(
sjxυ(j) + (1− τ)b

(0)
j + τbj

)

∂2bj
= 0,

∂2ψ(x, (1− τ)θ(0) + τθ)

∂βj∂bj
=

τ√
p

∂ϕ
(
sjxυ(j) + (1− τ)b

(0)
j + τbj

)

∂bj
=

τ2√
p

1{
sjxυ(j)+(1−τ)b(0)j +τbj>0

}.
(41)

Finally, the hessian matrix Hθ(ψ(x, (1− τ)θ(0) + τθ)) can be rewritten as:

0 0
...

. . . 0
... 0 τ2

√
p1{

skxυ(k)+(1−τ)b(0)k +τbk>0
}

... 0
. . .

...
. . . 0

... τ2
√
p1{

skxυ(k)+(1−τ)b(0)k +τbk>0
} 0

0 0
. . .

. (42)

13

Kernel Logistic Regression Approximation of an Understandable ReLU Neural Network

We study the asymptotic comportment of (42) by computing its spectral norm :

∥Hθ(ψ(x, (1− τ)θ(0) + τθ))∥2 =
√
λmax

[
Hθ(ψ(x, (1− τ)θ(0) + τθ))THθ(ψ(x, (1− τ)θ(0) + τθ))

]

=

√
λmax

[
Hθ(ψ(x, (1− τ)θ(0) + τθ))

]2
, (Hθ(ψ(x, (1− τ)θ(0) + τθ)) symmetric)

= λmax

[
Hθ(ψ(x, (1− τ)θ(0) + τθ))

]
. (43)

We derive the eigenvalues of the hessian matrix by computing Hθ(ψ(x, (1 − τ)θ(0) + τθ))u = λu, with u =
[0, . . . , 0, 1, 0, . . . , 0, α, 0, . . . , 0]T ∈ R2p+1. We obtain the following linear system of equations with two unknown
parameters (λ, α):

λ = 0,

λ = α τ2
√
p1{

skxυ(k)+(1−τ)b(0)k +τbk>0
},

αλ = τ2
√
p1{

skxυ(k)+(1−τ)b(0)k +τbk>0
}.

By omitting the 2p+ 1 solutions λ = 0, we resolve the above system of two equations and find:

λ =

(
τ2√
p

)2
1

λ
1{

skxυ(k)+(1−τ)b(0)k +τbk>0
}

⇔ λ2 =
1

p
τ41{

skxυ(k)+(1−τ)b(0)k +τbk>0
}

⇔ λ = ± τ2√
p

1{
skxυ(k)+(1−τ)b(0)k +τbk>0

}
⇔ λ =

τ2√
p

1{skxυ(k)+(1−τ)b(0)+τbk>0}, since p ∈ R+. (44)

By shifting the non-zeros entries of u to positions k and k + p, for k ∈ {1, . . . , p}, we recover 2p eigenvalues. As the
Hessian (42) is a matrix with 2p non-zero entries, we thus recover all eigenvalues and conclude that pairs of eigenvalues are
given by:

λk, λk+p =
τ2√
p

1{
skxυ(k)+(1−τ)b(0)k +τbk>0

}. (45)

The spectral norm of a matrix is the largest eigenvalue of the matrix :

∥Hθ(ψ(x, (1− τ)θ(0) + τθ))∥2 = max
k={1,...,p}

τ2√
p

1{
skxυ(k)+(1−τ)b(0)k +τbk>0

}
=

1√
p

max
k={1,...,p}

τ21{
skxυ(k)+(1−τ)b(0)k +τbk>0

}
=

1√
p

= O

(
1√
p

)
. (46)

14

Kernel Logistic Regression Approximation of an Understandable ReLU Neural Network

C. Proof of Theorem 3.4
Proof. The error of approximation of the SATURNN score function ψ(x, θ) by its linearized form ψlin(x, θ, θ(0)) is bounded
by R2

2
√
p and thus tends to zero as SATURNN width increases.

Let us recall that the features x lie on an open ball Bd2(0, r), r > 0 and the vector of initialized parameters is defined as
θ(0) = [β

(0)
0 , β

(0)
1 , . . . , β

(0)
p , b

(0)
1 , . . . , b

(0)
p] with β(0)

k ∼ N (0, 1) and b(0)k ∼ U [−r,+r]. We assume that ψ(x, θ) in (3) is C2

almost everywhere on an open ball B2p+1
2 := {θ ∈ R2p+1 :∥θ − θ(0)∥2≤ R} with fixed radius R > 0.

According to the Taylor series expansion theory, there exists τ ∈ [0, 1] such that ψ(x, θ) can be exactly approximated by:

ψ(x, θ, θ(0)) = ψ(x, θ(0)) +∇θψ(x, θ
(0))T (θ − θ(0)) +

1

2
(θ − θ(0))THθ(ψ(x, (1− τ)θ(0) + τθ))(θ − θ(0)), (47)

where ∇θψ(x, θ
(0)) is the gradient vector of ψ(x, θ(0)) with respect to θ taken at the point θ(0). Hθ(ψ(x, (1− τ)θ(0)+ τθ))

denotes the hessian matrix of ψ(x, θ) with respect to its parameters θ taken at the point (1− τ)θ(0) + τθ.

According to proposition 3.3, we can rewrite the second order Taylor expansion series as follows:

ψ(x, θ, θ(0)) = ψlin(x, θ, θ(0)) +
1

2
(θ − θ(0))THθ(ψ(x, (1− τ)θ(0) + τθ))(θ − θ). (48)

Thus the error of approximation of ψ(x, θ) by ψlin(x, θ, θ(0)) is defined by:
∣∣∣ψ(x, θ)− ψlin(x, θ, θ(0))

∣∣∣ =
∣∣∣∣−

1

2
(θ − θ(0))THθ(ψ(x, (1− τ)θ(0) + τθ))(θ − θ(0))

∣∣∣∣ . (49)

Since the hessian matrix Hθ(ψ(x, (1− τ)θ(0) + τθ)) admits eigenvalues, see (45), and eigenvectors, it is diagonalizable
by PTΛP with Λ = diag(λ1, . . . , λ2p+1) the diagonal matrix of eigenvalues and P the orthogonal matrix composed of
associated eigenvectors. We can rewrite the error of approximation (49) as follows:

∣∣∣ψ(x, θ)− ψlin(x, θ, θ(0))
∣∣∣ =

∣∣∣∣−
1

2
(θ − θ(0))TPTΛP (θ − θ(0))

∣∣∣∣

=

∣∣∣∣−
1

2
zTΛz

∣∣∣∣ , with z = P (θ − θ(0))

=

∣∣∣∣∣−
1

2

2p+1∑

i=1

λiz
2
i

∣∣∣∣∣

≤
∣∣∣∣∣−
λmax

2

2p+1∑

i=1

z2i

∣∣∣∣∣

≤
∣∣∣∣−
λmax

2
∥zi∥2

∣∣∣∣ .

We know that ∥θ − θ(0)∥2 = ∥P (θ − θ(0))∥2 = ∥z∥2. Since ∥θ − θ(0)∥ ≤ R, we have ∥z∥2 ≤ R2. Thus we get:

∣∣∣ψ(x, θ)− ψlin(x, θ, θ(0))
∣∣∣ ≤

∣∣∣∣−
λmax

2
R2

∣∣∣∣

≤ R2

2
√
p

as λmax =
1√
p
> 0, R2 > 0 (50)

= O

(
1√
p

)
. (51)

15

Kernel Logistic Regression Approximation of an Understandable ReLU Neural Network

D. Proof of Theorem 3.5
Proof. The approximation error of the SATURNN model σ(ψ(x, θ)) by its partially linearized form σ(ψlin(x, θ, θ(0))) is
bounded by R2

8
√
p and thus tends to zero as SATURNN width increases.

Let us recall that the features x lie on an open ball Bd2(0, r), r > 0. We assume that ψ(x, θ) in (3) is C2 almost everywhere
on the open ball B2p+1

2 := {θ ∈ R2p+1 :∥θ − θ(0)∥2 ≤ R} with fixed radius R > 0. We know from Proposition 3.3 that we
can approximate ψ(x, θ) by:

ψ(x, θ) = ψlin(x, θ, θ(0)) + ϵ(x, θ, θ(0)), (52)

with ψlin(x, θ, θ(0)) defined in Proposition 3.3 by (12) and ϵ(x, θ, θ(0)) the approximation error bounded by R2

2
√
p as

established in Theorem 3.4.

The first order Taylor expansion theory guarantees that there exists a τ ∈ [0, 1] such that σ(ψlin(x, θ, θ(0))) can be rewritten
as:

σ
(
ψlin(x, θ, θ(0)) + ϵ(x, θ, θ(0))

)
= σ(ψlin(x, θ, θ(0))) + σ

′
(ψlin(x, θ, θ(0) + τϵ(x, θ, θ(0))))ϵ(x, θ, θ(0))), (53)

with σ
′
(·) = σ(·)[1− σ(·)] the first derivative of the sigmoid that is bounded by 1

4 .

The approximation error of σ(ψ(x, θ)) = σ(ψlin(x, θ, θ(0)) + ϵ(x, θ, θ(0))) by σ(ψlin(x, θ, θ(0)) is equal to:
∣∣∣σ(ψlin(x, θ, θ(0)) + ϵ(x, θ, θ(0)))− σ(ψlin(x, θ, θ(0)))

∣∣∣ =
∣∣∣σ′

(ψlin(x, θ) + τϵ(x, θ, θ(0)))ϵ(x, θ, θ(0))
∣∣∣

=
∣∣∣σ(ψlin(x, θ, θ(0)) + τϵ(x, θ, θ(0)))

×
[
1− σ(ψlin(x, θ, θ(0)) + τϵ(x, θ, θ(0)))

]
ϵ(x, θ, θ(0))

∣∣∣

≤
∣∣∣∣
1

4
ϵ(x, θ, θ(0))

∣∣∣∣

≤ R2

8
√
p

(54)

= O

(
1√
p

)
. (55)

16

Kernel Logistic Regression Approximation of an Understandable ReLU Neural Network

E. Proof of Theorem 3.6
Proof. As the width of SATURNN growths, it becomes equivalent to learn the SATURNN model or the Logistic Regression
applied on its linearized score function.

Let us recall that the N features x(i) lie on an open ball Bd2(0, r), r > 0, σ(ψ(x, θ)) denote the SATURNN model, with
σ(·) the sigmoı̈d. We assume that the SATURNN score function ψ(x, θ), defined in (3), is C2 almost everywhere on an
open ball B2p+1

2 := {θ ∈ R2p+1 :∥θ − θ(0)∥2≤ R} with fixed radius R > 0. ψlin(x, θ, θ(0)) refers to the linearized score
function defined by:

ψlin(x, θ, θ(0)) = ψ(x, θ(0)) + g0(x)
T (θ − θ(0)),

with g0(x) = ∇θψ(x, θ
(0)) the gradient of ψ(x, θ) with respect to θ taken at the point θ(0) defined by (9). The

vector of initialized parameters is defined as θ(0) = [β
(0)
0 , β

(0)
1 , . . . , β

(0)
p , b

(0)
1 , . . . , b

(0)
p] with β

(0)
k ∼ N (0, 1) and

b
(0)
k ∼ U [−r,+r], r > 0.

Let us study

∣∣LSATURNN(θ)− LLR(η)
∣∣ =

∣∣∣∣∣
1

N

N∑

i=1

L
(
σ
(
ψ(x(i), θ)

)
, y(i)

)
−

N∑

i=1

1

N
L
(
σ
(
ψlin(x(i), θ, θ(0))

)
, y(i)

)∣∣∣∣∣

=

∣∣∣∣∣
1

N

N∑

i=1

L
(
σ
(
ψ(x(i), θ)

)
, y(i)

)
− L

(
σ
(
ψlin(x(i), θ, θ(0))

)
, y(i)

)∣∣∣∣∣ . (56)

From Theorem 3.4 we know that ψ(x, θ) = ψlin(x, θ, θ(0)) + ϵ(x, θ, θ(0)) with |ϵ(x, θ, θ(0)| ≤ R2

2
√
p , for all x and all θ.

Thus, the problem can be rewritten :

∣∣LSATURNN(θ)− LLR(η)
∣∣ =

∣∣∣∣∣
1

N

N∑

i=1

L
(
σ
(
ψlin(x(i), θ, θ(0)) + ϵ(x(i), θ, θ(0))

)
, y(i)

)
− L

(
σ
(
ψlin(x(i), θ, θ(0))

)
, y(i)

)∣∣∣∣∣ .

(57)

At first, we consider the problem for a fixed i. Two cases have to be considered according to the value of the true label:

<latexit sha1_base64="hpgrDLFSI6POA7m/kbcc72efgsk=">AAADIXicjVFBT9swGP3I2GCwjW4cuVhUSJ2mVQlCwLHaLhxBolCpqZDjuqmFE0e2gwRVf83+CTdu0y4I7Q+MI/sFfDauxMamzVGS5/e99+zPziopjI3jm7no2fzzFwuLL5eWX71+s9J4++7IqFoz3mVKKt3LqOFSlLxrhZW8V2lOi0zy4+z0s6sfn3FthCoP7XnFBwXNSzESjFqkThppKlVOUslHtkXSkaZskpCPJDUiL2jgL8gHkvLKCKlKkmqRj+376Z9ks9oMnDSacTv2gzwFSQBNCGNfNa4hhSEoYFBDARxKsIglUDD49CGBGCrkBjBBTiMSvs5hCkvorVHFUUGRPcVvjrN+YEucu0zj3QxXkfhqdBLYQI9CnUbsViO+Xvtkx/4te+Iz3d7O8Z+FrAJZC2Nk/+WbKf/X53qxMIJd34PAnirPuO5YSKn9qbidk0ddWUyokHN4iHWNmHnn7JyJ9xjfuztb6us/vNKxbs6CtoZbt0u84OT363wKjjbbyXY7Odhqdj6Fq16ENViHFt7nDnRgD/ahi9mXuNod/Iy+RFfR1+jbgzSaC55V+GVE3+8BO7KycQ==</latexit>

log

✓
1 � � (z + ✏)

1 � � (z)

◆ <latexit sha1_base64="AJV2kovBLkVAOSDD75W/fIkWS24=">AAADFnicjVHNThUxGD0MKoggV1y6mXhjAiG5mTEGXRLZuITECyQMIZ3SOzR0ppO2YwI3vIdv4s4dYcvOuHDrz1vwtfQmCjHQycycnu+c035t2SppXZZ9n0qmHzx8NDP7eO7J/MLTxd6zpW2rO8PFkGulzW7JrFCyEUMnnRK7rRGsLpXYKY83fH3nkzBW6uajO2nFfs2qRo4kZ46og95WoXSVFkqM3HIxMoyPCyurmkXqdDUtRGul0k1hZHXkVs5uCNIJPwEHvX42yMJIb4M8gj7i2NS9byhwCA2ODjUEGjjCCgyWnj3kyNASt48xcYaQDHWBM8yRtyOVIAUj9pi+Fc32ItvQ3Gfa4Oa0iqLXkDPFK/Jo0hnCfrU01LuQ7Nn/ZY9Dpt/bCf3LmFUT63BE7F2+ifK+Pt+LwwjvQg+SemoD47vjMaULp+J3nv7VlaOEljiPD6luCPPgnJxzGjw29O7PloX676D0rJ/zqO3wx++SLji/eZ23wfbrQb42yLfe9Nffx6uexQu8xDLd51us4wM2MaTsL/iBn/iVfE6+JufJxbU0mYqe5/hnJJdX5q6wZw==</latexit>

log

✓
� (z + ✏)

� (z)

◆

<latexit sha1_base64="IwPGaAL3zdZkjaahQcEUlc6odoM=">AAACxXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVl0ocsq9gFaJJlO69C8mEwKtYg/4FZ/TfwD/QvvjCmoRXRCkjPn3nNm7r1+EohUOc5rwZqZnZtfKC6WlpZXVtfK6xvNNM4k4w0WB7Fs+17KAxHxhhIq4O1Eci/0A97yByc63hpymYo4ulSjhHdCrx+JnmCeIurirnRTrjhVxyx7Grg5qCBf9bj8gmt0EYMhQwiOCIpwAA8pPVdw4SAhroMxcZKQMHGOe5RIm1EWpwyP2AF9+7S7ytmI9tozNWpGpwT0SlLa2CFNTHmSsD7NNvHMOGv2N++x8dR3G9Hfz71CYhVuif1LN8n8r07XotDDkalBUE2JYXR1LHfJTFf0ze0vVSlySIjTuEtxSZgZ5aTPttGkpnbdW8/E30ymZvWe5bkZ3vUtacDuz3FOg+Ze1T2ouuf7ldpxPuoitrCNXZrnIWo4Qx0N8u7hEU94tk6t0FLW8DPVKuSaTXxb1sMHr86PmQ==</latexit>z <latexit sha1_base64="IwPGaAL3zdZkjaahQcEUlc6odoM=">AAACxXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVl0ocsq9gFaJJlO69C8mEwKtYg/4FZ/TfwD/QvvjCmoRXRCkjPn3nNm7r1+EohUOc5rwZqZnZtfKC6WlpZXVtfK6xvNNM4k4w0WB7Fs+17KAxHxhhIq4O1Eci/0A97yByc63hpymYo4ulSjhHdCrx+JnmCeIurirnRTrjhVxyx7Grg5qCBf9bj8gmt0EYMhQwiOCIpwAA8pPVdw4SAhroMxcZKQMHGOe5RIm1EWpwyP2AF9+7S7ytmI9tozNWpGpwT0SlLa2CFNTHmSsD7NNvHMOGv2N++x8dR3G9Hfz71CYhVuif1LN8n8r07XotDDkalBUE2JYXR1LHfJTFf0ze0vVSlySIjTuEtxSZgZ5aTPttGkpnbdW8/E30ymZvWe5bkZ3vUtacDuz3FOg+Ze1T2ouuf7ldpxPuoitrCNXZrnIWo4Qx0N8u7hEU94tk6t0FLW8DPVKuSaTXxb1sMHr86PmQ==</latexit>z

<latexit sha1_base64="cYIsQpm+9gxcR0+nWeqvM9B6z3M=">AAACy3icjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVl040aoYB9QiyTTaR2aF5mJUKtLf8Ct/pf4B/oX3hlTUIvohCRnzj3nztx7/SQQUjnOa8GamZ2bXygulpaWV1bXyusbTRlnKeMNFgdx2vY9yQMR8YYSKuDtJOVe6Ae85Q9PdLx1w1Mp4uhCjRLeDb1BJPqCeYqo9iVPpAji6KpccaqOWfY0cHNQQb7qcfkFl+ghBkOGEBwRFOEAHiQ9HbhwkBDXxZi4lJAwcY57lMibkYqTwiN2SN8B7To5G9Fe55TGzeiUgN6UnDZ2yBOTLiWsT7NNPDOZNftb7rHJqe82or+f5wqJVbgm9i/fRPlfn65FoY8jU4OgmhLD6OpYniUzXdE3t79UpShDQpzGPYqnhJlxTvpsG480teveeib+ZpSa1XuWazO861vSgN2f45wGzb2qe1B1z/crteN81EVsYRu7NM9D1HCKOhpmjo94wrN1Zknr1rr7lFqF3LOJb8t6+ABQlpKn</latexit>✏

<latexit sha1_base64="cYIsQpm+9gxcR0+nWeqvM9B6z3M=">AAACy3icjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVl040aoYB9QiyTTaR2aF5mJUKtLf8Ct/pf4B/oX3hlTUIvohCRnzj3nztx7/SQQUjnOa8GamZ2bXygulpaWV1bXyusbTRlnKeMNFgdx2vY9yQMR8YYSKuDtJOVe6Ae85Q9PdLx1w1Mp4uhCjRLeDb1BJPqCeYqo9iVPpAji6KpccaqOWfY0cHNQQb7qcfkFl+ghBkOGEBwRFOEAHiQ9HbhwkBDXxZi4lJAwcY57lMibkYqTwiN2SN8B7To5G9Fe55TGzeiUgN6UnDZ2yBOTLiWsT7NNPDOZNftb7rHJqe82or+f5wqJVbgm9i/fRPlfn65FoY8jU4OgmhLD6OpYniUzXdE3t79UpShDQpzGPYqnhJlxTvpsG480teveeib+ZpSa1XuWazO861vSgN2f45wGzb2qe1B1z/crteN81EVsYRu7NM9D1HCKOhpmjo94wrN1Zknr1rr7lFqF3LOJb8t6+ABQlpKn</latexit>✏

Figure 6. Plot of |L(σ(z + ϵ), y)− L(σ(z), y)| (58) for different values of ϵ according to the label: y = 0 (left) and y = 1 (right).

|L(σ(z + ϵ), y)− L(σ(z), y)| =

∣∣∣log
(

1−σ (z+ϵ)
1−σ(z)

)∣∣∣ if y = 0,∣∣∣log
(
σ(z+ϵ)
σ(z)

)∣∣∣ if y = 1.
(58)

17

Kernel Logistic Regression Approximation of an Understandable ReLU Neural Network

Let consider the case y = 0 and fϵ(z) = log
(

1−σ (z+ϵ)
1−σ(z)

)
displayed in the Figure 6-left. We first compute the derivative of

fϵ(z) and study its sign:

f
′

ϵ(z) =
1

1 + exp(−z) −
1

1 + exp(−z − ϵ)
. (59)

Let us assume that ϵ > 0 (the case ϵ < 0 will be considered later). We get f
′

ϵ(z) < 0. Now that we have established that
fϵ(z) is strictly decreasing (as confirmed by the Figure 6-left), we study its boundaries.

When z tends to −∞, we get

lim
z→−∞

∣∣∣∣log
(
1− σ (z + ϵ)

1− σ (z)

)∣∣∣∣ = lim
z→−∞

∣∣∣∣∣log
(
1− 1

1+exp(−z−ϵ)

1− 1
1+exp(−z)

)∣∣∣∣∣

= lim
z→−∞

∣∣∣∣log
(
1− 1

1 + exp(−z − ϵ)

)
− log

(
1− 1

1 + exp(−z)

)∣∣∣∣

= lim
z→−∞

∣∣∣∣log
(

exp(−z − ϵ)

1 + exp(−z − ϵ)

)
− log

(
exp(−z)

1 + exp(−z)

)∣∣∣∣

= lim
z→−∞

∣∣∣∣∣log
(

1
exp(z+ϵ)

1 + 1
exp(z+ϵ)

)
− log

(
1

exp(z)

1 + 1
exp(z)

)∣∣∣∣∣

= lim
z→−∞

∣∣∣∣∣∣
log

1
exp(z+ϵ)

1+exp(z+ϵ)
exp(z+ϵ)

− log

1
exp(z)

1+exp(z)
exp(z)

∣∣∣∣∣∣

= lim
z→−∞

∣∣∣∣log
(

1

1 + exp(z + ϵ)

)
− log

(
1

1 + exp(z)

)∣∣∣∣

= lim
z→−∞

∣∣∣∣log
(

1 + exp(z)

1 + exp(z + ϵ)

)∣∣∣∣
= lim
z→−∞

|log (1 + exp(z))− log (1 + exp(z + ϵ))|

= 0. (60)

When z tends to +∞, we get

lim
z→+∞

∣∣∣∣log
(
1− σ (z + ϵ)

1− σ (z)

)∣∣∣∣ = lim
z→+∞

∣∣∣∣∣log
(
1− 1

1+exp(−z−ϵ)

1− 1
1+exp(−z)

)∣∣∣∣∣

= lim
z→+∞

∣∣∣∣∣∣
log

exp(−z−ϵ)
1+exp(−z−ϵ)

exp(−z)
1+exp(−z)

∣∣∣∣∣∣

= lim
z→+∞

∣∣∣∣log
(

exp(−z − ϵ)

1 + exp(−z − ϵ)
× 1 + exp(−z)

exp(−z)

)∣∣∣∣

= lim
z→+∞

∣∣∣∣log
(
exp(−ϵ)× 1 + exp(−z)

1 + exp(−z − ϵ)

)∣∣∣∣
= lim
z→+∞

|−ϵ+ log (1 + exp(−z))− log (1 + exp(−z − ϵ))|

= ϵ. (61)

Since fϵ(z) is strictly decreasing and admits lower and upper boundaries in (60) and (61), we can conclude that:

0 < |L(σ(z + ϵ), y)− L(σ(z), y)| < ϵ ≤ R2

2
√
p
∀z ∈ R when y = 0. (62)

When ϵ < 0, we get the same bound. The proof is straightforward but we must modify a little bit the calculation.

18

Kernel Logistic Regression Approximation of an Understandable ReLU Neural Network

With exactly the same reasoning, we get

0 < |L(σ(z + ϵ), y)− L(σ(z), y)| < ϵ ≤ R2

2
√
p
∀z ∈ R y = 1. (63)

It follows that

sup
θ∈B2p+1

2 (θ(0),R)

η∈B2p+1
2 (0,R)

∣∣LSATURNN(θ)− LLR(η)
∣∣ = sup

θ∈B2p+1
2 (θ(0),R)

∣∣∣∣∣
1

N

N∑

i=1

L
(
σ
(
ψlin(x(i), θ, θ(0)) + ϵ(x, θ, θ(0))

)
, y(i)

)
(64)

−L
(
σ
(
ψlin(x(i), θ, θ(0))

)
, y(i)

)∣∣∣

=
1

N

N∑

i=1

sup
θ∈B2p+1

2 (θ(0),R)

∣∣∣L
(
σ
(
ψlin(x(i), θ, θ(0)) + ϵ(x(i), θ, θ(0))

)
, y(i)

)

(65)

−L
(
σ
(
ψlin(x(i), θ, θ(0))

)
, y(i)

)∣∣∣

≤ 1

N

N∑

i=1

ϵ

≤ ϵ

≤ R2

2
√
p

(66)

= O

(
1√
p

)
. (67)

19

Kernel Logistic Regression Approximation of an Understandable ReLU Neural Network

F. Proof of Proposition 4.1
Proof. The kernel defined by (22) admits a finite expectation.

Let us recall that the features x lie on an open ball Bd2(0, r) r > 0 and the vector of initialized parameters is defined as
θ(0) = [β

(0)
0 , β

(0)
1 , . . . , β

(0)
p , b

(0)
1 , . . . , b

(0)
p] with β(0)

k ∼ N (0, 1) and b(0)k ∼ U [−r,+r]. We assume sk ∈ {−1, 1} ∼ B(1/2)
and υ(k) ∼ UJ1, dK, for each k ∈ {1, . . . , p}. Finally ϕ(·) = max{0, ·} is the ReLU activation and σ(·) the sigmoı̈d.

We compute the expectation of κ(x, x̃) defined by:

κ(x, x̃) =
1

p

[
1 +

p∑

k=1

ϕ
(
skxυ(k) + b

(0)
k

)
ϕ
(
skx̃υ(k) + b

(0)
k

)
+ β

(0)2

k 1{skxυ(k)+b
(0)
k >0}1{skx̃υ(k)+b

(0)
k >0}

]
. (68)

We have :

E(κ(x, x̃)) = E

(
1

p

[
1 +

p∑

k=1

ϕ
(
skxυ(k) + b

(0)
k

)
ϕ
(
skx̃υ(k) + b

(0)
k

)
+ β

(0)2

k 1{skxυ(k)+b
(0)
k >0}1{skx̃υ(k)+b

(0)
k >0}

])

=
1

p
+

1

p

p∑

k=1

E
(
ϕ
(
skxυ(k) + b

(0)
k

)
ϕ
(
skx̃υ(k) + b

(0)
k

)
+ β

(0)2

k 1{skxυ(k)+b
(0)
k >0}1{skx̃υ(k)+b

(0)
k >0}

)

=
1

p
+

1

p

p∑

k=1

P(sk = −1)E
(
ϕ
(
−xυ(k) + b

(0)
k

)
ϕ
(
−x̃υ(k) + b

(0)
k

))

+ P(sk = 1)E
(
ϕ
(
xυ(k) + b

(0)
k

)
ϕ
(
x̃υ(k) + b

(0)
k

))

+ P(sk = −1)E
(
β
(0)2

k

)
E
(

1{−xυ(k)+b
(0)
k >0}1{−x̃υ(k)+b

(0)
k >0}

)

+ P(sk = 1)E
(
β
(0)2

k

)
E
(

1{xυ(k)+b
(0)
k >0}1{x̃υ(k)+b

(0)
k >0}

)
, (69)

with P(sk = −1) = P(sk = 1) = 1
2 as sk ∈ {−1, 1} ∼ B(1/2), E

(
β
(0)2

k

)
= 1 since β(0)

k ∼ N (0, 1) and υ(k) ∼ UJ1, dK,
for each k ∈ {1, . . . , p}. Thus we have:

E(κ(x, x̃)) =
1

p
+

1

2p

p∑

k=1

d∑

i=1

P(υ(k) = i)E
(
ϕ
(
−xi + b

(0)
k

)
ϕ
(
−x̃i + b

(0)
k

))

+ P(υ(k) = i)E
(
ϕ
(
xi + b

(0)
k

)
ϕ
(
x̃i + b

(0)
k

))

+ P(υ(k) = i)E
(

1{−xi+b
(0)
k >0}1{−x̃i+b

(0)
k >0}

)

+ P(υ(k) = i)E
(

1{xi+b
(0)
k >0}1{x̃i+b

(0)
k >0}

)

=
1

p
+

1

2pd

p∑

k=1

d∑

i=1

E
([

−xi + b
(0)
k

] [
−x̃i + b

(0)
k

]
1{b(0)k >xi,b

(0)
k >x̃i}

)

+ E
([
xi + b

(0)
k

] [
x̃i + b

(0)
k

]
1{b(0)k >−xi,b

(0)
k >−x̃i}

)

+ E
(

1{b(0)k >xi}
1{b(0)k >x̃i}

)
+ E

(
1{b(0)k >−xi}

1{b(0)k >−x̃i}

)
.

Let fb(t) denote the probability density function of b. Since we suppose b(0)k ∼ U [−r,+r] for each k ∈ {1, . . . , p}, we have
fb(t) =

1
2r .

20

Kernel Logistic Regression Approximation of an Understandable ReLU Neural Network

E(κ(x, x̃)) =
1

p
+

1

2pd

p∑

k=1

d∑

i=1

∫ r

−r
[−xi + t][−x̃i + t]fb(t)1{t>xi,t>x̃i} dt+

∫ r

−r
[xi + t][x̃i + t]fb(t)1{t>−xi,t>−x̃i} dt

+

∫ r

−r
fb(t)1{t>xi,t>x̃i} dt+

∫ r

−r
fb(t)1{t>−xi,t>−x̃i} dt

=
1

p
+

1

2pd

p∑

k=1

d∑

i=1

∫ r

max(xi,x̃i)

1

2r
[−xi + t][−x̃i + t] dt+

∫ r

max(−xi,−x̃i)

1

2r
[xi + t][x̃i + t] dt

+

∫ r

max(xi,x̃i)

1

2r
dt+

∫ r

max(−xi,−x̃i)

1

2r
dt

=
1

p
+

1

2pd

p∑

k=1

d∑

i=1

1

2r

[[
xix̃it−

t2

2
(xi + x̃i) +

t3

3

]r

max(xi,x̃i)

+ [t]
r
max(xi,x̃i)

+

[
xix̃it+

t2

2
(xi + x̃i) +

t3

3

]r

max(−xi,−x̃i)

+ [t]
r
max(−xi,−x̃i)

]

=
1

p
+

1

4rd

d∑

i=1

[
2r(xix̃i + 1) +

2r3

3
+ min(xi, x̃i)−max(xi, x̃i)− xix̃i (max(xi, x̃i)−min(xi, x̃i))

+
1

2
(xi + x̃i)

(
max(xi, x̃i)

2 −min(xi, x̃i)
2
)
− 1

3

(
max(xi, x̃i)

3 −min(xi, x̃i)
3
)]

=
1

p
+
r2

6
+

1

4rd

d∑

i=1

[2r(xix̃i + 1) + min(xi, x̃i)−max(xi, x̃i)− xix̃i(max(xi, x̃i)−min(xi, x̃i)

+
1

2
(xi + x̃i)(max(xi, x̃i)

2 −min(xi, x̃i)
2)− 1

3
(max(xi, x̃i)

3 −min(xi, x̃i)
3)

]
. (70)

Since max(a, b) = a+b+|a−b|
2 and min(a, b) = a+b−|a−b|

2 for a, b ∈ R2, we finally have:

E(κ(x, x̃)) =
1

p
+
r2

6
+

1

4rd

d∑

i=1

2r(xix̃i + 1)− |xi − x̃i|+
1

6
|xi − x̃i|3. (71)

Moreover, a simple calculation, as it is done for the expectation, shows that V(κ0(x, x̃)) = 1
p2 [f(x, x̃, θ, θ

(0))], where
f(x, x̃, θ, θ(0)) is a continuous function that does not depend on p. Hence, it follows that

V(κ0(x, x̃)) = O

(
1

p2

)
. (72)

21

Kernel Logistic Regression Approximation of an Understandable ReLU Neural Network

G. Supplementary Experimental Results
G.1. Estimated decision rules

MARS
 GAM

LR

EBM

RF ReLU NN SATURNN

LR PSI LIN KLR EKLR

Figure 7. Gaussian Dataset: Estimated decision boundaries in red for MARS (Friedman, 1991), GAM (Hastie, 2017), EBM (Xie et al.,
2020), RF (Breiman, 2001), ReLU NN (p = 10) (1), SATURNN (p = 10) (6), LR on locally linearized score function (p = 30000) (15),
KLR (p = 30000) (23) and EKLR (32) (p = 30000). Table 1 reports their respective accuracies.

22

Kernel Logistic Regression Approximation of an Understandable ReLU Neural Network

MARS GAM
 EBM

RF ReLU NN SATURNN

LR PSILIN EKLRKLR

Figure 8. Circle Dataset: Estimated decision boundaries in red for MARS (Friedman, 1991), GAM (Hastie, 2017), EBM (Xie et al., 2020),
RF (Breiman, 2001), ReLU NN (p = 10)(1), SATURNN (p = 10) (6), LR on locally linearized score function (p = 50000) (15), KLR
(p = 50000) (23) and EKLR (p = 50000) (32). Table 1 reports their respective accuracies.

23

Kernel Logistic Regression Approximation of an Understandable ReLU Neural Network

G.2. Estimated splines on Circle Dataset

1 0 1

20

15

10

5

0

5

Estimated splines for X1

1 0 1
12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5
Estimated splines for X2

MARS
GAM
NAM
SATURNN

Figure 9. Circle Dataset: estimated splines for X1 (left) and X2 (right).

G.3. Illustration of Theorem 3.4 on Circle Dataset

5 100 500 700 1000 2000
Width of SATURNN

0.1

0.2

0.3

0.4

0.5

Ap
pr

ox
im

at
io

n
er

ro
r

Average
Per fold

Figure 10. Circle Dataset: mean of the approximation errors of SATURNN by ∂LR(x, η) (15) with θ̂SATURNN in (6) over 5 folds for
different values of p.

24

