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Abstract
Several recent studies have elucidated why knowl-
edge distillation (KD) improves model perfor-
mance. However, few have researched the other
advantages of KD in addition to its improving
model performance. In this study, we have at-
tempted to show that KD enhances the inter-
pretability as well as the accuracy of models.
We measured the number of concept detectors
identified in network dissection for a quantita-
tive comparison of model interpretability. We
attributed the improvement in interpretability to
the class-similarity information transferred from
the teacher to student models. First, we confirmed
the transfer of class-similarity information from
the teacher to student model via logit distillation.
Then, we analyzed how class-similarity informa-
tion affects model interpretability in terms of its
presence or absence and degree of similarity in-
formation. We conducted various quantitative
and qualitative experiments and examined the
results on different datasets, different KD meth-
ods, and according to different measures of inter-
pretability. Our research showed that KD models
by large models could be used more reliably in
various fields. The code is available at https:
//github.com/Rok07/KD_XAI.git.

1. Introduction
In knowledge distillation (KD), information is transferred
from the teacher to student model, improving the perfor-
mance of the student model (Hinton et al., 2015). In general,
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a student model is a small neural network with a lower learn-
ing capacity compared to that of the teacher model. Many
attempts have been made to reduce the size of large models
using KD (Liu et al., 2021; Wang et al., 2022; West et al.,
2021). This is because the huge size of large pre-trained
models such as CLIP and GPT results in increased resource
consumption and inference costs, limiting their usage in
downstream applications (Brown et al., 2020; Radford et al.,
2021).

Several recent studies have elucidated why KD improves
model performance (Yuan et al., 2020; Tang et al., 2020;
Zhou et al., 2021). However, few studies have researched
the other advantages of KD besides its improving model
performance. Through this study, we demonstrated that
KD could improve not only the generalization performance
of models but also the interpretability, which indicates the
reliability of models.

Researchers have attempted to understand the internal
decision-making processes of neural networks, which es-
sentially seem to be black boxes (Singla et al., 2019; Sun-
dararajan et al., 2017; Ribeiro et al., 2016). For large models
such as CLIP and GPT to be applied to various studies, it
is necessary to secure explainability (Gerlings et al., 2021;
van der Velden et al., 2022). Many studies consider the
interpretability of a model high if the activation is object-
centric (Fong & Vedaldi, 2017; Dabkowski & Gal, 2017;
Zintgraf et al., 2017). In this study, we found that KD pro-
moted the object-centricity of the activation map of student
models and thereby enhanced their interpretability.

Figure 1 summarizes the main arguments of this study. First,
to compare the interpretability of the models, we adopted
the number of concept detectors introduced in network dis-
section (Bau et al., 2017) as a measure of interpretability.
The number of concept detectors represents the degree of the
object-centricity of activation maps and is directly propor-
tional to the model interpretability. According to the defined
terms of interpretability, we compared the interpretability of
models trained from scratch (fscratch) and trained using KD
(fKD), as shown in Figures 1 (a) and (b). Comparing the ac-
tivation maps shown in Figures 1 (a) and (b), the activation
map of fKD is more object-centric than that of fscratch.

We attributed this improvement in interpretability to the
class-similarity information transferred from the teacher to
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Figure 1. Illustration of main argument of the proposed study. The number of concept detectors of different models, namely models
trained (a) from scratch (fscratch), (b) using KD (fKD), and (c) using LS (fLS), have been measured for a quantitative comparison of
the model interpretability. LS enhances the model performance but reduces the interpretability while KD boosts both. The transfer of
class-similarity information from the teacher to student model enhances the model interpretability.

student models. The distribution of a teacher model had
a high similarity between the semantically similar classes.
For example, when the input image was a Border Collie, the
student model was trained to minimize the distance from
the distribution of the teacher model zt, which had a high
probability of classes belonging to “dog.” Thus, whenever
“dog” samples were used as input, the student model could
learn the typical characteristics of a “dog,” which supported
the object-centricity of the learned representation of the
student model.

To demonstrate that class-similarity information enhances
the interpretability of student models, we measured the en-
tropy of semantically similar classes to confirm the transfer
of class-similarity information from the teacher to student
model via logit distillation. Then, we compared the inter-
pretability between the model trained by label smoothing
(fLS), which did not contain (rather negatively affected)
class-similarity information, and fKD. As shown in Fig-
ures 1 (b) and (c), fLS learns other features than objects,
such as the background, which reduces the model inter-
pretability. Referring to the previous example, for fLS, the
probability of an irrelevant class (e.g., valley) increases
because the model reduces the distance to a uniform dis-
tribution u, causing the map of fLS to become less object-
centric. The results showed that KD enhanced the model
performance and interpretability, whereas LS decreased the
interpretability.

In addition to analyzing the effect of the presence or absence
of class-similarity information on model interpretability,
we also analyzed the effect of the degree of this informa-
tion. Chandrasegaran et al. (2022) analyzed the effect of a
teacher model trained by LS (f teacher

LS ) on the performance
of the student model. They showed that the amount of
class-similarity information transferred from the teacher to
student model could be calibrated by adjusting the temper-
ature of the KD using f teacher

LS . Accordingly, we analyzed

the effect of f teacher
LS on the interpretability of student mod-

els at different temperatures. Our results showed that 1)
the interpretability of the student model improved with the
increase in the class-similarity information learned by the
students; and 2) adding logit distillation to feature distilla-
tion increased the model interpretability, demonstrating the
effect of transferring class-similarity information.

We empirically showed the consistent effect of KD on
model interpretability regardless of the KD method and
how the interpretability measurement was defined. In ad-
dition to analyzing the effect of vanilla KD, we showed
that the interpretability of models trained with various KD
methods increased compared to that of fscratch, as dis-
cussed in Section 3.3. Then, we generated a synthesized
dataset with the ground truth of the heatmap and measured
the five-band-scores proposed by Tjoa & Guan (2020) for
fscratch and fKD, as described in Section 5.1. We measured
the DiffROAR score (Shah et al., 2021) and loss gradi-
ent (Tsipras et al., 2018), as described in Sections 5.2 and
5.3, respectively, to assess the improvement in model inter-
pretability according to various measures of interpretability.
In Section 5.4, we also showed that KD improves model
interpretability, not only in specific domains (vision), but
also diverse domains (NLP).

The main contributions of our study are as follows.

• To the best of our knowledge, this is the first study to
show that KD enhances the interpretability as well as
the accuracy of models.

• A comparison of the interpretability of the LS model
without similarity information and student models with
different amounts of similarity information learned
clearly showed that class-similarity information im-
proved the interpretability of the student models.

• Various quantitative and qualitative experimental re-
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sults support that KD improves model interpretability
across KD methods, notions, datasets, and domains.

2. Related work
2.1. Knowledge distillation

Under KD, the performance of a student model with a low
learning capacity is improved by receiving the output distri-
bution from a large pre-trained teacher model with a high
learning capacity (Hinton et al., 2015). Several studies
have proposed various KD methods, including logit distilla-
tion (Hinton et al., 2015) and feature distillation (Romero
et al., 2014; Zagoruyko & Komodakis, 2016; Yim et al.,
2017; Kim et al., 2018; Xu et al., 2020; Tian et al., 2019),
to improve the performance of student models.

Attention transfer (AT) averages the n-channel features
in the intermediate layer of the teacher model without
any regressor, allowing student models to learn atten-
tion (Zagoruyko & Komodakis, 2016). Factor transfer (FT)
uses an auto-encoder to provide concise information that
student models can easily understand (Kim et al., 2018).
Self-supervision KD (SSKD) uses self-supervision signals
to transfer intrinsic semantics and provide information to
students (Xu et al., 2020). Contrastive representation distil-
lation (CRD) trains students to maximize the lower bound
of mutual information between the representations of two
models, as done in contrastive learning (Tian et al., 2019).

Several studies (Yuan et al., 2020; Tang et al., 2020; Zhou
et al., 2021) have analyzed how KD enhances the generaliza-
tion performance of student models. They have confirmed
that KD is an adaptive version of LS, which produces a reg-
ularization effect on models. Yuan et al. (2020) analyzed the
relationship between KD and LS and proposed teacher-free
KD. However, they did not explain the additional informa-
tion provided to student models through KD. In the proposed
study, we compared the models trained by LS and KD. The
results revealed that the class-similarity information trans-
ferred by the teacher model promoted student models to
capture conceptual representations more effectively.

2.2. Label smoothing

LS trains a model using a vector that combines a one-
hot vector with a uniform distribution as a label (Szegedy
et al., 2016). LS employs regularization during training,
thereby improving the generalization performance of a
model. Müller et al. (2019) demonstrated that LS renders
each example in the training set equidistant from all other
classes by visualizing the penultimate layer representations
of the image classifiers. They demonstrated that f teacher

LS

worsened the performance of the student model because it
erased information about the similarities between teacher
logits.

On the other hand, Shen et al. (2021) argued that KD and
LS were compatible. They demonstrated that f teacher

LS im-
proved the performance of the student model by increasing
the distance between the embeddings of semantically similar
classes. Chandrasegaran et al. (2022) introduced systematic
diffusion and analyzed these contradictory findings. They
demonstrated that systematic diffusion curtailed the perfor-
mance of the student models trained by f teacher

LS , thereby
rendering KD at low temperatures effective. They also
showed that the knowledge distilled from f teacher

LS resulted
in a loss in class-similarity information with the decrease in
temperature.

2.3. Explainable AI

Researchers have attempted to explain the reasoning pro-
cesses of deep neural networks (DNNs). Post-hoc ap-
proaches interpret a trained model by localizing the attended
input pixels (Simonyan et al., 2014; Sundararajan et al.,
2017; Zeiler & Fergus, 2014; Ribeiro et al., 2016) or gener-
ating counterfactual explanations (Goyal et al., 2019; Singla
et al., 2019). In contrast, several researchers (Chen et al.,
2018; Alvarez-Melis & Jaakkola, 2018) have designed a
new explainable architecture in which decision-making is
inherently interpretable without any post-hoc explanation.
Most approaches have demonstrated the interpretability of
the proposed methods via qualitative visualizations or de-
teriorations in predictions after the elimination of the most
important pixels.

The quantification of model interpretability is relatively un-
derexplored. Li et al. (2020) theoretically defined inter-
pretability as local linearity. Barceló et al. (2020) suggested
that the computational complexity required to obtain expla-
nations represents interpretability; the lower the complexity,
the higher the interpretability. However, this cannot be em-
pirically applied because real data distribution is considered,
which results in high computational complexity. By contrast,
network dissection (Bau et al., 2017) provides an intuitive
and efficient method for quantifying the interpretability of
DNNs. Therefore, we adopted network dissection as a mea-
sure of interpretability; the details are provided in the next
section.

3. On the impact of KD for model
interpretability

This section investigates the impact of KD on model inter-
pretability. Section 3.1 describes the process of defining and
quantifying model interpretability. Section 3.2 compares
the interpretabilities of fscratch, fKD, and fLS. Section 3.3
presents the comparison of the model trained using various
KD methods to verify that enhancements are not limited to
just those done by vanilla KD.
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3.1. Interpretability quantification via network
dissection

As described in the previous section, inspired by network
dissection, we measured the interpretability of the models
using the number of concept detectors. First, we shall de-
scribe the broadly and densely labeled (Broden) dataset and
explain the process of counting the concept detectors. This
dataset comprises the following datasets: ADE20k (Zhou
et al., 2017), OpenSurfaces (Bell et al., 2014), PASCAL-
Context (Mottaghi et al., 2014), PASCAL-Part (Chen et al.,
2014), and Describable Textures (Cimpoi et al., 2014). The
samples in Broden include objects, scenes, parts, textures,
materials, and color concepts. Annotation masks for visual
concepts are permitted in this dataset. All the pixels of a
sample were annotated based on the corresponding concept.
Therefore, by comparing the activation map for each unit in
a neural network with the annotation mask, a unit aligned
with human-interpretable concepts could be obtained (Bau
et al., 2017).

The concept detectors were determined as follows. We mea-
sured the interpretability of model f with its frozen weights.
One sample x of Broden was inputted to the model, and
the activation map Ai(x) was obtained for the i-th convo-
lutional unit, following which the distribution ai of this
map was obtained. The threshold Ti corresponding to the
top 0.5% of the activation value was calculated from ai
to satisfy P (ai ≥ Ti) = 0.005. Since the activation map
Ai(x) had a smaller resolution than the annotation mask
Mc did for concept c, we interpolated Ai(x) to ensure that
the resolutions of Mc and Ai(x) would be identical. Subse-
quently, we performed binary masking on the interpolated
Ai(x) such that only regions greater than or equal to Ti

would appear. Finally, we calculated the intersection of
union (IoU) scores between the masked activation map and
annotation mask Mc. When the IoU score exceeded a pre-
determined threshold value (0.05), a unit i was recognized
as the concept detector of the corresponding concept c. We
have included a pseudocode for obtaining concept detectors
in Appendix C to facilitate the understanding of network
dissection.

A unique detector is a unit that is aligned with only a sin-
gle concept. Network dissection (Bau et al., 2017) reports
the number of unique detectors to measure the degree of
disentanglement of intermediate representations. In this
study, we measured the number of unique detectors and
total number of concept detectors. We examined the overall
concept detection capability of the unit and the degree of
disentanglement.

3.2. Impact of KD on model interpretability

This section investigates the impact of KD on model inter-
pretability, which was defined in the previous section. The

experimental settings for training fscratch, fKD, and fLS are
presented in Appendix B.2. Figure 2 shows the interpretabil-
ities of fscratch, fKD, and fLS. We measured the number of
concept detectors from the last convolutional layer of the
model. A comparison of the interpretabilities for the lower
layers of the models is provided in Appendix A.2. When
KD was implemented, the total number of concept detectors,
especially object detectors, increased significantly. Mean-
while, compared with those in fscratch, both the number of
concept detectors and unique detectors decreased in fLS;
although the number of object detectors decreased signifi-
cantly, the number of scene detectors increased. The results
are discussed in Section 4.2.

Table 1 lists the accuracy and interpretability of fscratch,
fLS, and fKD. We verified that KD could improve both the
accuracy and interpretability of the models. To ensure the
reliability of our results, we compared the interpretability of
various architectures other than ResNet-18. In addition, we
varied the quantile (top-k%) and IoU threshold, which are es-
sential hyper-parameters for obtaining the concept detector.
The results showed that KD enhanced model interpretability
regardless of the architecture and hyper-parameters (these
results are presented in Appendices A.1 and A.3).

3.3. Verification of various KD methods

In the previous section, we compared the interpretability
of fKD trained using vanilla KD; fscratch; and fLS. As dis-
cussed in Section 2, various KD methods other than vanilla
KD have been proposed. We verified whether model inter-
pretability improved, even if the teacher model transferred
knowledge other than zt to the student model. We measured
the interpretability of the models trained using various meth-
ods, such as AT (Zagoruyko & Komodakis, 2016), FT (Kim
et al., 2018), CRD (Tian et al., 2019), SSKD (Xu et al.,
2020), and self-KD (Furlanello et al., 2018) (Table 1).

The accuracy of the model and total number of concept
detectors increased regardless of the KD method used. This
implied that when the teacher model transferred knowledge
to the student model, its ability to capture the conceptual
features of the student model could improve. Although the
number of unique detectors in the AT models decreased
compared to that of fscratch, the number of object detectors
increased. In particular, the self-KD model had a significant
increase in interpretability; this can be explained as follows.
In general, teacher models have architectures with a higher
learning capacity than that of student models. Under self-
KD, the architectures of both the teacher and student models
were the same. Cho & Hariharan (2019) argued that if there
was a gap between the learning capacities of the teacher
and student models, the student model might not effectively
understand the content. Similarly, the interpretability of
the student model that received class-similarity information
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Figure 2. Comparison of interpretabilities among fscratch, fKD, and fLS: (a) Number of concept detectors, (b) unique detectors, and (c)
concept detectors per concept; the number of concepts and unique detectors increases for fKD and decreases for fLS (particularly, object
detector).

from the ResNet-18 model, which had a similar learning
capacity, improved significantly.

4. Impact of class-similarity information on
model interpretability

In this section, we analyze the impact of transferred class-
similarity information from the teacher to student model.
First, in Section 4.1, we discuss that class-similarity informa-
tion is transferred from the teacher to student model via logit
distillation. Then, we contrasted the interpretability between
fLS, which does not contain class-similarity information,
and fKD, in Section 4.2. We visualized the activation maps
of fscratch, fKD, and fLS, empirically confirming that the
activation map became object-centric as class similarity was
transferred to the models. The student interpretability in-
creased as the class-similarity information learned by the
student model increased through class-similarity calibration;
this is discussed in Section 4.3.

4.1. Examination of provision of class-similarity
information by teacher model

To assess whether fKD contained more class-similarity infor-
mation than the other models did, we compared the entropy
of the entire class and those within the same category. Ima-
geNet dataset is a hierarchical dataset that comprises 1,000
classes. First, we divided these classes into 67 categories ac-
cording to the coarse classification scheme proposed by Es-
hed (2020). Among the 67 categories, we excluded the
“other” category because we could not state that similar

Table 1. Comparison of interpretabilities of various models on
layer 4; Acc represents the Top-1 test accuracy on the ImageNet
dataset. Each model was trained thrice based on different initial
points to avoid variations. The accuracy and interpretability based
on the average value of the three models are shown.

Model Object Scene Part Material Texture Color Unique Total Acc

Scratch 146 41 22 6 60 0 162 275 69.94
LS 107 45 11 4 51 0 153 219 70.13

KD (Vanilla) 155 74 15 2 65 1 166 312 70.80

AT 163 35 25 10 54 0 158 287 70.52
FT 162 32 33 11 65 1 172 304 71.40

CRD 156 34 26 9 57 1 156 283 70.68
SSKD 162 63 15 3 66 1 164 310 70.09

Self-KD 173 46 22 6 69 0 169 316 70.63

classes had been grouped in this category. We measured
the entropy of classes within the same category, which rep-
resents the amount of information contained in the model
for that category, from the output distribution of fKD. A
larger entropy implied that the model contained more class-
similarity information. The detailed experimental setting
for the entropy measurement is presented in Appendix B.3.

Table 2 lists the results of the entropy measurements. En-
tropy (entire) was measured based on the output of all 1,000
classes, and entropy (category) was measured based on the
output of the classes in the category to which the true class
belongs. For all the classes, the entropy of fLS was ex-
tremely high because the model was trained with a uniform
distribution. By contrast, fLS had the lowest entropy within
the same category; fKD had the highest entropy. The results
showed that fKD contained more class-similarity informa-
tion than the other models did.

4.2. Impact of presence of class-similarity information
on model interpretability

We compared KD and LS to analyze how class-similarity
information affected the degree of object-centricity of an
activation map. First, we compared the loss functions of
KD and LS to mathematically analyze the origin of the
difference in class-similarity information. Equations (1) and
(2) represent the loss functions of KD (LKD) and LS (LLS),
respectively:

LKD = (1−α)·LCE(σ(zs),y)+αT 2·LCE(σ(z
T
s ), σ(z

T
t )),
(1)

LLS = (1− α) · LCE(σ(z),y) + α · LCE(σ(z),u), (2)

Table 2. Comparison of the entropy measured based on the output
of all classes (Entire) and output of classes in the same category to
which the correct class belongs (Category) for fscratch, fKD, and
fLS. Averaged entropy for 1,000 test samples of ImageNet was
measured. Averages were only obtained for samples for which all
models were correct.

Model Entire Category

Scratch 0.4851 2.8986
KD 0.5412 2.9041
LS 3.3537 2.6040
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Figure 3. Comparison among activation maps of dog detector un-
der fscratch, fKD, and fLS; the brighter the pixel, the higher the
activation value. The dog detector is the concept detector with the
highest IoU score on the sample belonging to the “dog” concept.

where LCE denotes the cross-entropy loss; σ denotes the
softmax function; zs and zt represent the output logits (dis-
tributions) of the student and teacher models, respectively;
z is the logits of the target model for LS; y denotes the one-
hot encoded ground truth vector; and u denotes the uniform
distribution; α and T are the hyper-parameters, where α is
the mixture parameter and T is the temperature for adjust-
ing the smoothness of the distributions. We used the upper
index, T , for the distributions smoothed by temperature T
(zT

s and zT
t ). When T = 1 and the student model was

considered the target model, the two loss functions differed
only for the distribution zt of the teacher model and the
uniform distribution u. Unlike u, zt contained information
regarding the similarity between classes. Therefore, the
difference in interpretability could be potentially attributed
to the transfer of class-similarity information to the target
model.

We visualized the activation maps generated by the concept
detectors; Figure 3 shows the activation maps of fscratch,
fKD, and fLS overlaid on the sample. We observed that the
activation maps of fKD are more object-centric and activate
in the entire object than those of fscratch and fLS. We shall
explain the improvement in the model interpretability owing
to the transferred class-similarity information. As an input,
let us consider the image of a Border Collie belonging
to the “dog” category. The logits of classes belonging to
the “dog” category, such as the German Shepherd and
Komondor, are higher than those of other classes that do
not belong to the same category in zt. Even if the image
of a German Shepherd was input, the teacher model
transferred a similar distribution, which had a high logit of
classes in the “dog” category, to the student model. These
similar distributions enabled the student models to learn
the typical characteristics of dogs from various images of
them. The activation map of the student model could be
more object-centric (e.g., torso, ear, tail), as shown in Figure
3. Object-centric representation increases the IoU score
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Figure 4. Comparison of interpretability and accuracy of student
model trained from f teacher

LS ; f teacher
LS was trained using LS with

α = 0.1. The accuracy (red line) of students declines as T in-
creases. On the other hand, the interpretability (blue line) of the
student models increases as T increases. This result shows that the
interpretability of the model improves as it learns class-similarity
information better.

corresponding to the correct concept. Meanwhile, fLS was
trained to learn all the other classes (e.g., seatbelt and
valley), even when the image of a Border Collie
was the input. The activation map of fLS was activated in
regions independent of the image of the dog. This resulted in
a lower IoU score for the correct concept. It can be inferred
that KD improved the model interpretability by transferring
class-similarity information, whereas LS reduced it.

Next, we shall interpret the experimental results in Table
1 and Figure 2. The total number of concept detectors of
fLS decreased, but the number of scene detectors increased
compared with that of fscratch. Figure 3 shows that the ac-
tivation map of fLS is scattered compared with that of the
others. This implied that the activation map had a higher
activation value in the scene than the object-centric map
did. The number of object detectors decreased because fLS
captured more locally in the object region, reducing the IoU
score compared with that of the other models. For fKD, the
activation map captured a wider area of the object, includ-
ing even a part of the background, increasing the number
of scene detectors. The improved interpretability of fKD,
decreased interpretability of fLS, and increased number of
scene detectors of fLS can be explained by comparing the
visualizations of the activation map.

4.3. Impact of amount of class-similarity information on
model interpretability

In this section, we shall discuss how the interpretability
of the student model improved as the class-similarity in-
formation that the student models learned increased from
calibrating information. First, we investigated the effect of
f teacher
LS on the interpretability of student models with vary-

ing T . Chandrasegaran et al. (2022) showed that through
KD from f teacher

LS with a higher T , the distances between
embeddings belonging to similar and dissimilar classes had
become relatively reduced and increased, respectively. This
implied that the higher the T , the greater the amount of
class-similarity information the student model learned from
f teacher
LS , which allowed us to calibrate the class-similarity
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Figure 5. Comparison of interpretability between student models
with (red bar) and without (blue bar) logit distillation added to
feature distillation. For logit distillation, T and α are 4 and 0.5,
respectively. We confirmed that adding logit distillation to feature
distillation improved the interpretability for all KD methods.

information that the student model learned.

Figure 4 shows the interpretability and accuracy of the stu-
dent models trained by f teacher

LS . The accuracy of these
models gradually decreased as T increased, aligning with
the analysis reported by Chandrasegaran et al. (2022). On
the other hand, the interpretability of these models gradually
increased as T increased. The detailed settings of KD using
f teacher
LS are presented in Appendix B.5.

Second, we examined the impact of adding logit distillation
to feature distillation on model interpretability. As shown in
Table 1, the interpretability of student models trained using
various KD methods other than logit distillation (vanilla KD)
also improved. This aligned with our insight that the infor-
mation transferred to the student models improved their in-
terpretability. Intuitively, zt contained more class-similarity
information than features. We compared the interpretability
of student models that learned more class-similarity infor-
mation by adding logit distillation to feature distillation with
that of student models without this addition. Figure 5 shows
that interpretability improved when feature distillation was
combined with logit distillation. These results supported our
argument that model interpretability improved when models
learned more class-similarity information.

5. Improvements in different measures of
model interpretability through KD

The improvement in measures of interpretability other than
the number of concept detectors, namely five-band-scores,
DiffROAR scores, and loss gradient, shall be discussed.
Tjoa & Guan (2020) proposed five-band-scores to measure
model interpretability by using a synthesized dataset with
the ground truth of the heatmap. Shah et al. (2021) pro-
posed the DiffROAR score, a metric used to probe whether
an instance-specific explanation of a model highlighted its
discriminative features. Tsipras et al. (2018) claimed that
the degree of alignment between pixels more relevant to
human perception and gradients indicated their degree of
interpretability. We also show that KD improves model
interpretability, not only in specific domains (vision), but
also across diverse domains (NLP). In addition to the num-

Table 3. Comparison of five-band-scores of fscratch and fKD on
the synthesized dataset. Higher values of pixel accuracy, recall,
and precision and lower values of FPR indicate that the model has
a higher interpretability; fKD has a higher interpretability than
fscratch does for all the metrics.

Model Pixel acc(↑) Recall(↑) Precision(↑) FPR(↓)
Scratch 0.8803 0.5014 0.3011 0.1911

KD 0.8974 0.5770 0.3545 0.1871

Recall

Precision

F1

AUPRC

Recall*

Precision*

F1*

AUPRC*

0 0.2 0.4 0.6 0.8 1

  localization information
   distinguishing featurebackground    vs.

Recall

Precision

F1

AUPRC

Recall*

Precision*

F1*

AUPRC*

0 0.2 0.4 0.6 0.8 1

KD
Scratch

         background
localization information

vs. distinguishing feature

Figure 6. Results based on synthesized dataset. Left: class 0 vs.
classes 1,2; Right: classes 0,1 vs. class 2; and * indicates the
maximum value for the metric. In both scenarios, fKD has a higher
interpretability than fscratch does for the averaged and maximum
scores of AUROC, Precision, Recall and F1.

ber of concept detectors, we demonstrated that consistent
results could be obtained for various notions, datasets, and
domains.

5.1. Five-band-scores

We measured the interpretability of the KD models using
a dataset other than Broden. For an objective and quanti-
tative evaluation, we used a synthesized dataset with the
ground truth for the heatmap proposed by Tjoa & Guan
(2020). The examples for each class and the ground truth
generated are shown in Appendix D. There are three regions
on the ground truth of the synthesized dataset: class 0) a
background without any classification information (shown
as a white region); class 1) localization information, which
describes the location of an object (light pink region); and
class 2), the distinguishing feature, which is crucial for dis-
tinguishing classes (dark pink area). We trained the model
from scratch and KD using this synthesized dataset; details
regarding the training are provided in Appendix B.6.
Since the distinguishing features could be regarded as the
correct answer for interpretation, we could measure the in-
terpretability by performing a pixel-by-pixel comparison of
the saliency map and ground truth. However, obtaining the
general recall and precision values was difficult because the
ground truth was a ternary class rather than a binary class.
Since the five-band-score reflects pixel accuracy, recall, pre-
cision, and the false positive rate (FPR) based on ternary
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Scratch

GT

Input

KD

Figure 7. Qualitative results based on synthesized dataset; the first
and second rows represent the input image and corresponding
ground truth for each sample, respectively, while the third and last
rows show the saliency maps of fscratch and fKD, respectively.

classification, we first measured the five-band-scores for
the two models; Table 3 shows the results. In addition, we
converted the ternary classification task to a binary classifi-
cation task. Subsequently, we measured the performance by
considering the localization information and distinguishing
features as one class and the background and localization
information as one class; the results are shown in Figure
6. The left radar plot shows the experimental results for
class 0 vs. classes 1 and 2, while the one on the right shows
the results for classes 0 and 1 vs. class 2. We measured
the average precision, recall, AUPRC, and F1 scores for
fscratch and fKD. When reporting the binary classification
performance, we excluded samples belonging to a class with
no objects (last column in Figure 11) from the evaluation.
Both Table 3 and Figure 6 show that the interpretability of
fKD is higher than that of fscratch.

For the qualitative evaluation, we visualized the heatmaps
of fscratch and fKD, as shown in Figure 7. We discovered
that the saliency map of fscratch was activated more signifi-
cantly in the region of the localization information than it
had in the region of the distinguishing feature. In contrast,
the saliency map of fKD was activated more significantly
for the distinguishing features. The hierarchical structure of
the synthesized samples resulted in the synthesized dataset
containing similarity information between the classes. The
pre-trained teacher model provided class-similarity infor-
mation to the student models, which improved their ability
to capture the distinguishing features. Using a synthetic
dataset, we showed that KD could improve the model inter-
pretability within various datasets.

5.2. DiffROAR

DiffROAR is the difference in the predictive power of the
datasets, with the top and bottom k% of the pixels removed
by ordering the feature attribution of the model. A higher
DiffROAR score implies that the attributes of the model are

Table 4. DiffROAR scores on various datasets (the higher, the bet-
ter). Nine DiffROAR scores were measured for each dataset by
varying the masking fractions (from 0.1 to 0.9 in increments of
0.1). Measurement was repeated with ten different initialization
settings. Each value in the table is the average DiffROAR score of
these 90 measurements.

Dataset CIFAR-100 CIFAR-10 MNIST

Scratch 3.9747 3.3873 18.3628
KD 4.2001 4.3850 22.3209

well aligned with the task-relevant features. We measure the
DiffROAR scores of fscratch and fKD for the CIFAR-100,
CIFAR-10, and MNIST test sets. The results are in Table 4.
For all the datasets, fKD had a higher DiffROAR score than
fscratch did.

5.3. Loss gradients

Figure 8 shows the loss gradients for the input pixels of
fscratch and fKD for the ImageNet dataset; the gradients of
fKD are more aligned with the salient characteristic (i.e.,
the edge of the object) than those of fscratch, showing that
fKD learned more human-perceptionally relevant features
than fscratch did. The results of the DiffROAR and loss
gradient experiments revealed that KD enhanced model
interpretability across various interpretability notions, in
addition to the number of concept detectors.

5.4. NLP distillation

In this section, we conduct an experiment using BERT (De-
vlin et al., 2018) model for a text classification task, we
demonstrated that KD enhances model interpretability in
NLP tasks. To measure model interpretability in line with
the convention in NLP, we used the Standard Sentiment
Treebank (SST) dataset (Hase et al., 2021; Yin et al., 2021;
Bastings et al., 2021). Below is the protocol we followed to
evaluate the interpretability of an NLP model using the SST
dataset.

• Data description

◦ Input: sentences (movie review)
◦ Class: 4-class (‘very negative’, ‘negative’, ‘posi-

tive’, and ‘very positive’)

• Model description

◦ Teacher model: 12-layer BERT (acc: 0.623)
◦ Scratch model (fscratch): 3-layer BERT (acc:

0.484)
◦ Student model (fKD): 3-layer BERT (acc: 0.516)

It is noteworthy that the similarity between ‘very negative’
and ‘negative’ as well as between ‘very positive’ and ‘pos-
itive’ can be considered class-similarity information. The
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Input

Scratch

KD

Figure 8. Visualization of loss gradients of fscratch and fKD on
the test set of ImageNet. Gradients of fKD are more aligned
with the semantically meaningful regions than those of fscratch
are, showing that fKD learned more human-perceptually relevant
features than fscratch.

SST dataset provides a label for each word as either positive
or negative, which serves as the ground truth for saliency
(attribution), similar to the synthesized dataset in section 5.1.
Therefore, we evaluated how well the saliency (attribution)
obtained from fscratch and fKD aligns with the ground truth
of attribution. We computed Integrated Gradients (IG) attri-
bution scores from the validation and test samples.

To quantitatively measure model interpretability, we fol-
lowed the process outlined below for samples where the
model correctly predicts the answer: 1) For samples la-
beled as ‘very positive/positive’ in sentiment, we measured
whether the words labeled as ‘positive’ have positive at-
tribution scores and the words labeled as ‘negative’ have
negative attribution scores. 2) For samples labeled as ‘very
negative/negative’ in sentiment, we measured whether the
words labeled as ‘negative’ have positive attribution scores
and the words labeled as ‘positive’ have negative attribu-
tion scores. Table 5 shows the interpretability of fscratch
and fKD. We show the average value of the models trained
three times with different initial point. Through the above
experiment, we demonstrated that KD can enhance model
interpretability not only in image classification but also in
the NLP domain. The detailed experimental settings of NLP
distillation and the results for various model are presented
in the Appendix.

Table 5. Comparison of model interpretability of fscratch and fKD

on the SST dataset (the higher the better); fKD has a higher inter-
pretability than fscratch does for NLP tasks.

Model Accuracy AUROC AUPRC

fscratch 0.677 0.689 0.810
fKD 0.722 0.720 0.831

6. Conclusions
In this study, we demonstrated that KD could improve both
the interpretability and accuracy of models. We measured
the number of concept detectors of fscratch, fKD, and fLS
to quantitatively compare their interpretabilities. The results
showed that the number of concept detectors had been sig-

nificantly increased in fKD and that the activation of fKD

was more object-centric than those of fscratch and fLS were.
We attributed this improvement in interpretability to the
class-similarity information transferred from the teacher to
student model. Comparing the interpretability of models
with and without class-similarity information showed that
class-similarity information had improved the interpretabil-
ity of the student model. Additionally, it was revealed that
interpretability of the student models improved as the class-
similarity information they learn increased with the calibra-
tion of information. Then, we measured the interpretability
of the models trained using various KD methods and em-
pirically showed their improved interpretability and perfor-
mance. In addition to the Broden dataset, we measured the
interpretability of the synthesized dataset using the ground
truth label of the heatmap, the DiffROAR scores, and the
loss gradients. The consistent results for varying measures
of interpretability, KD methods, and datasets supported our
argument that KD enhanced model interpretability.

Future scope of this paper With the emergence of foun-
dation models such as CLIP and GPT, AI is increasingly
becoming integrated into various aspects of human life. To
democratize large foundation models at a reasonable cost
and with fewer resources, it is essential that KD becomes
prevalent in the future. Considering the concerns regarding
the reliability of AI in human life, we believe that our discov-
ery of KD improving model interpretability in crucial areas
such as vision and NLP is envisioning. Furthermore, more
interpretable models make debugging easier, so our findings
are also important for engineers from a model development
perspective. In particular, one possible application direction
of our work is demonstrated by the fact that even simple
techniques, such as Self-KD, can make the model more in-
terpretable, facilitating easier debugging and improvement.
We are envisioning further studies to determine whether
KD can yield other useful results (e.g., the robustness of
the model) and whether additional metrics can be used to
measure model interpretability.

Acknowledgements
This work was supported by the National Research Founda-
tion of Korea (NRF) grants funded by the Korea government
(Ministry of Science and ICT, MSIT) (2022R1A3B1077720
and 2022R1A5A708390811), Institute of Information &
Communications Technology Planning & Evaluation (IITP)
grants funded by the Korea government (MSIT) (2021-0-
02068, 2022-0-00959, and 2021-0-01343: AI Graduate
School Program, SNU), Basic Science Research Program
through NRF funded by the Korea government (Ministry
of Education) (2022R1F1A1076454), and the BK21 FOUR
program of the Education and Research Program for Future
ICT Pioneers, Seoul National University in 2023.

9



On the Impact of Knowledge Distillation for Model Interpretability

References
Alvarez-Melis, D. and Jaakkola, T. S. Towards robust inter-

pretability with self-explaining neural networks. arXiv
preprint arXiv:1806.07538, 2018.
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This document is a supplement to our study titled ‘On the Impact of Knowledge Distillation for Model Interpretability’.
We demonstrate that fKD improves model interpretability compared to fscratch across various settings, including different
hyper-parameters, layers and architectures. To ensure reproducibility, we provide a detailed description of the experimental
settings used in the main paper. Additionally, we offer pseudocode for obtaining concept detectors, which aids in further
understanding network dissection. Through entropy measurement within two similar classes, we demonstrate that fKD

contains more class-similarity information than fLS. In addition to ImageNet, we present the visualization of loss gradients
for fscratch and fKD on the MNIST dataset.

A. On the impact of KD for model interpretability in various settings
We conducted a comparative analysis of model interpretability using a vanilla KD method across various settings. In
Section A.1, we present the model interpretability results considering different hyper-parameters, namely α, T , top k%
activation value and IoU threshold. Section A.2 provides a comparison of the interpretability between fscratch, fKD and fLS
specifically focusing on the lower layers. In Section A.3, we evaluate the model interpretability for various architectures
other than ResNet-18. Our experimental results consistently align with the results presented in the main paper.

A.1. Model interpretability for various hyper-parameters

In accordance with Equation (1) presented in the main paper, the KD loss function (LKD) incorporates hyper-parameters α
and temperature T . We provide the number of concept detectors for each concept, the number of unique detectors, the total
number of concept detectors and the top-1 accuracy on the ImageNet for fKD, with variations of α, in Table 6 (α = 0.1),
Table 7 (α = 0.5) and Table 8 (α = 0.9). Within each table, we demonstrate the model interpretability by varying the
temperature by values of 1, 4, 8, and 16. Consistent with the main paper, the presented results are averages from three
separate model training runs initiated from different starting point.

When α was set to 0.9, the test accuracy of the other models, except for the case where T was set to one, was lower than that
of fscratch. Teacher output probability of incorrect class compared to the correct class increases as the α value increases.
Training the student model to minimize the distance of the teacher distribution, which was greatly smoothed by a high
temperature, resulted in more instances where the student learned information from a class that was not the correct answer.
Consequently, we can explain that when both α and T values were high, the test accuracy of fKD could be lower than that
of fscratch.

We verified that the total number of concept detectors in fKD increased compared to fscratch, regardless of the combination
of hyper-parameters. Additionally, we demonstrated that the number of object detectors in fKD increased due to the
class-similarity information provided by the teacher, enabling the student to learn more object-centric representations. These
results support our claim that KD enhances model interpretability. Moreover, in most cases, fKD exhibited a higher number
of unique detectors compared to fscratch, indicating better capture of disentangled representations. If the α value remained
the same, we observed an improvement in model interpretability as the temperature increased in the majority of cases. This
improvement can be attributed to the increased transfer of class-similarity information from the teacher to the student model
as the temperature increased.

Table 9 lists the number of concept detectors per concept, the number of unique detectors, the total number of concept
detectors, and test accuracy of the fLS with different α values. We trained the models with two α values (0.1 and 0.5).
Compared to fscratch, both models exhibited a decrease in interpretability. Specifically, the number of object detectors
significantly decreased, while the number of scene detectors increased compared to fscratch. This can be attributed to fLS
being trained to minimize the distance with the uniform distribution, enabling it to learn all other classes in addition to the
target class. Consequently, the activation map of fLS showed more active in the scene surrounding the object rather than at
the center of the object.

In the main paper, we conducted a comparison of model interpretability using quantile and IoU thresholds of 0.005 and 0.05.
The quantile represents the top k% of the activation value used to obtain Ti (as described in Section 3.1 of the main paper).
A unit is considered a concept detector if the IoU score between the masked activation map and annotation mask exceeds the
IoU threshold. Both the quantile and IoU threshold are important hyper-parameters for obtaining the concept detectors.
Figure 9 and 10 present the results of the interpretability measurements for various quantiles and IoU thresholds. We show
that KD enhances model interpretability regardless of these two hyper-parameters.
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Table 6. Interpretability and accuracy of fKD with α = 0.1

Temperature(T ) Object Scene Part Material Texture Color Unique Total Acc

1 154 40 23 7 59 0 166 285 70.61
4 146 47 21 7 70 0 163 292 70.62
8 147 46 18 4 70 0 158 285 70.64
16 156 48 19 7 65 0 164 295 70.64

Table 7. Interpretability of fKD with α = 0.5

Temperature(T ) Object Scene Part Material Texture Color Unique Total Acc

1 150 43 19 6 58 0 156 277 71.17
4 155 74 15 2 65 1 166 311 70.80
8 161 70 21 4 72 1 168 330 70.77
16 167 71 20 5 79 0 171 343 70.85

Table 8. Interpretability and accuracy of fKD with α = 0.9

Temperature(T ) Object Scene Part Material Texture Color Unique Total Acc

1 162 48 24 7 69 0 174 310 70.87
4 137 78 13 4 66 1 166 298 69.59
8 149 61 20 6 81 0 170 318 68.91
16 152 72 18 3 79 1 160 325 69.54

Table 9. Interpretability and accuracy of fLS with various α

α Object Scene Part Material Texture Color Unique Total Acc

0.1 107 45 11 4 51 0 150 219 70.01
0.5 109 81 4 4 56 0 153 255 68.01

Table 10. The comparison of model interpretability of fscratch, fKD and fLS in the lower layers; we obtained consistent results with the
comparison of model interpretability of the main paper.

Unique Total
Model Layer1 Layer2 Layer3 Layer1 Layer2 Layer3

Scratch 0 7 30 0 7 37
LS 1 8 29 1 9 35
KD 1 10 39 1 10 52

A.2. Model interpretability for various layers

Table 10 lists the number of unique detectors and the total number of concept detectors in lower layers of fscratch, fKD and
fLS. Each model was the same model presented in Table 1 of our main paper. The quantile and IoU threshold were also
equal to 0.005 and 0.05. We demonstrate that fKD had more interpretable units, even in the lower layers. In particular, the
interpretability gap with fscratch widened from layer 3.

A.3. Model interpretability for various architectures

In the main paper, we focused a single setup for comparing the model interpretability with ResNet-18. It is essential to show
that KD enhances model interpretability for architectures other than ResNet-18. We additionally measured interpretability
of four different architectures. Table 11 present the interpretability for various architectures. Regardless of the model
architecture, KD enhances the interpretability of models. In the case of MobileNet v2, model interpretability was further
improved when the teacher was MobileNet v2 than the teacher was ResNet-34. We obtain the consistent results with the
measurement of the main paper that self-KD enhances the model interpretability better than vanilla KD.
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Figure 9. The total number of concept detectors of fscratch, fKD and fLS for varying the quantiles (from 0.001 to 0.010 in increments of
0.001). The quantile indicates the top k% of activation value for obtaining a Ti.
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Figure 10. The total number of concept detectors of fscratch, fKD and fLS for varying the IoU thresholds (from 0.01 to 0.05 in increments
of 0.01). If IoU score between the masked activation map and annotation mask is higher than IoU threshold, we call that unit a concept
detector.

Table 11. The comparison of model interpretability with various architectures; R, M, and E in the first and second rows represent
ResNet (He et al., 2016), MobileNet (Howard et al., 2017), and EfficientNet (Tan & Le, 2019), respectively. The symbol “-” indicates that
the model was trained from scratch, not KD.

Teacher - R-50 - R-50 - R-34 M v2 - E b2
Student R-34 R-34 R-50 R-50 M v2 M v2 M v2 E b2 E b2

Unique 161 185 602 685 244 351 393 96 469
Total 267 329 1008 1196 348 655 694 129 882

B. Experimental details
B.1. Experimental environment

We conduct all experiments introduced in the main paper with the following environments.

1. CPU: Intel(R) Xeon(R) Gold 6258R

2. GPU: NVIDIA A40 48GB GDDR6

3. CUDA version: 11.4

4. Library: PyTorch (Paszke et al., 2019)

B.2. Experimental setup for training fscratch, fKD, and fLS

The detailed experimental settings for training fscratch, fKD, and fLS are as follows: All models were trained on the
ImageNet dataset (Russakovsky et al., 2015), and the total number of epochs was 100. We performed various KD
experiments using the TorchDistill library (Matsubara, 2021). For the teacher model, we used the pre-trained ResNet-34
architecture provided by Torchvision (Paszke et al., 2017). We used the ResNet-18 architecture for fKD and the same
architecture for fscratch and fLS for an unbiased comparison. We used SGD optimization as the optimizer. We set the initial
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learning rate to 0.1 and divided it by ten every 30, 60, and 90 epoch for scheduling. We set the temperature to four. α, a
hyper-parameter to determine the ratio of the correct answer to zt, was set to 0.5 for training. For the LS, we set the α value
to 0.1. We report the results of the hyper-parameter setting with the highest generalization performance (top-1 test accuracy).

B.3. Experimental setup for the entropy measurement experiments

To show that class-similarity information is actually transferred from teacher to student model via logit distillation, we
compared the entropy measured from entire and within same category of fscratch, fKD, and fLS in Section 4.1. For the
entropy measurement experiment, we used the pre-trained ResNet-34 architecture provided by Torchvision as a teacher
model. We used the ResNet-18 architecture for fscratch, fKD, and fLS. We used fscratch as a pre-trained model provided by
PyTorch. The hyper-parameters of fKD were α = 0.5, T = 1, and α of the fLS was 0.5. The other setting (e.g., the total
number of epochs, optimization, and learning rate) were the same as in the previous section.

B.4. Experimental setup for various KD methods

In the main paper, we compared the interpretability of the models trained with various KD methods (in Table 1). We describe
the experimental setup of models trained with various KD. We conducted most of KD experiments using the TorchDistill
library. For all experiments except self-KD, we used ResNet-34 architecture as teachers and ResNet-18 architecture as
students.

B.4.1. ATTENTION TRANSFER (AT) (ZAGORUYKO & KOMODAKIS, 2016)

• training epochs: 100

• batch size: 256

• attention pair: layer3, and layer4

• attention loss factor: 1,000

B.4.2. FACTOR TRANSFER (FT) (KIM ET AL., 2018)

• training epochs for paraphraser: 1

• number of input channels for paraphraser and translator: 512

• number of output channels for paraphraser and translator: 256

• training epochs for student: 90

• batch size: 256

• norm type: 1

• transferred layer: layer4

• factor transfer loss factor: 1,000

B.4.3. CONTRASTIVE REPRESENTATION DISTILLATION (CRD) (TIAN ET AL., 2019)

• training epochs: 100

• batch size: 85

• number of negative samples: 16384

• feature dimension: 128

• temperature for contrastive learning: 0.07

• momentum: 0.5

• contrastive loss factor: 0.8
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B.4.4. SELF-SUPERVISION KNOWLEDGE DISTILLATION (SSKD) (XU ET AL., 2020)

• training teacher SS module

• training epochs: 30
• batch size: 85
• feature dimension: 512
• optimizer: SGD
• learning rate: 0.1 divided by 10 at 10, 20 epoch

• training student

• training epochs: 100
• feature dimension: 512
• KD temperature: 4.0
• SS temperature: 0.5
• TF temperature: 4.0
• SS ratio: 0.75
• TF ratio: 1.0
• loss weights [CE, KD, SS, TF]: [1.0, 0.9, 10.0, 2.7]

B.4.5. SELF KNOWLEDGE DISTILLATION (SELF-KD) (FURLANELLO ET AL., 2018)

• teacher architecture: ResNet-18

• training epochs: 100

• batch size: 256

• learning rate: 0.1 divided by 0.1 at 30, 60, 90 epoch

• momentum: 0.9

• α: 0.1

• T : 4.0

B.5. Experimental setup for KD using f teacher
LS

In addition to the effect of the presence or absence of class-similarity information on model interpretability, we also analyzed
how the degree of transferred class-similarity information affects the model interpretability in Section 4.3 of the main paper.
This section presents the detailed experimental settings for KD using f teacher

LS shown in Figure 4. We used the ResNet-34
architecture for f teacher

LS , and f teacher
LS is trained using LS with α = 0.1. For the student model, we used the ResNet-18

architecture and we set the α = 0.5 for KD. We varied the temperature to 1, 2, and 4 to analyze the impact of transferred
class-similarity information on the model interpretability. We trained each model thrice based on different initial points to
avoid variations. The other settings (e.g., the total number of epochs, optimization, and learning rate) were the same as in
Section B.2.

B.6. Experimental setup for synthesized dataset experiments

In the main paper, we demonstrate KD enhances the model interpretability with various notions and dataset (in Section 5). We
describe the setup of experiments on the synthesized dataset. For experiments on synthesized dataset, we used the ResNet-34
architecture without pre-training provided by Torchvision for a teacher model. We used the ResNet-18 architecture for a
student model. We used the same architecture for the models trained from scratch. Since the number of classes for the
synthesized dataset is 10, we added one fully connected (FC) layer to the ResNet backbone, and the output of FC layer is
10. Because the dataset is not complicated and overfitting easily occurs, as suggested by (Tjoa & Guan, 2020), we trained
the models with small epochs (training epoch = 4), and the number of batch size was 4. We set the first learning rate to
0.001 with 0.00005 weight decay. Adam optimization was used as the optimizer. For KD training, α and T were set to
0.5 and 4, respectively. We used the Saliency function of the Captum library to get the saliency map of the models for
evaluations (Kokhlikyan et al., 2020a).
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B.7. Experimental setup for calculating DiffROAR

In the main paper, we measure the DiffROAR scores (in Section 5.2). DiffROAR is the difference in the predictive power of
datasets, with the top-k% and bottom-k% of pixels removed by ordering the feature attribution of the model. We present the
experimental setup for calculating DiffROAR scores. We used the Saliency function of the Captum library to obtain the
feature attribution of the model. We used ResNet-18 as the teacher and student (Self-KD). For the CIFAR dataset, α and T
were set to 0.1 and one. We re-trained the ResNet-18 model for top-k% and bottom-k% removed datasets with 60 epochs.
For MNIST, we set α and T to 0.1 and four. We re-trained the ResNet-18 model for top-k% and bottom-k% removed
datasets with 10 epochs. The differences in accuracy for top-k% and bottom-k% are presented in Table 4 of the main paper.

B.8. Experimental setup for NLP distillation

In the main paper, we demonstrate that KD enhances model interpretability in NLP tasks. We conducted an experiment using
BERT for a classification task and utilized the Standard Sentiment Treebank (SST) dataset to measure model interpretability.
The original SST dataset comprises five classes (‘very negative’, ‘negative’, ‘neutral’, ‘positive’, and ‘very positive’).
However, we train the model using only four classes (‘very negative’, ‘negative’, ‘positive’, and ‘very positive’) because
unlike the negative and positive classes, the ‘neutral’ class does not contain similarity information with other classes. To
perform distillation, we set the values of α and T to 0.5 and four, respectively. We trained the BERT-student model with
three and six layers for 20 epochs.

C. Pseudocode of obtaining concept detectors
We present the pseudocode of obtaining the concept detector to facilitate the understanding of network dissection, and the
code is shown in Algorithm 1.

Algorithm 1 Obtaining the concept detectors
Require: Broden dataset X , target model f , and target concept c

1: N ← the number of convolutional units in fourth layer of f
2: for x ∈ Rn×n in X do
3: for i = 1, 2, ..., N do
4: Collect the activation map Ai(x) ∈ Rd×d, where d < n
5: end for
6: end for
7: ai ← the distribution of individual unit activation
8: for x ∈ Rn×n in X do
9: for i = 1, 2, ..., N do

10: Calculate Ti to satisfy P (ai ≥ Ti) = 0.005
11: Interpolate Ai(x) to be ∈ Rn×n

12: Ai(x)← Ai(x) ≥ Ti

13: Mc(x)← annotation mask of x for concept c
14: Compute IoUi,c value between Ai(x) and Mc(x)
15: if IoUi,c ≥ 0.05: then
16: Unit i is the concept detector of the concept c
17: end if
18: end for
19: end for

D. The example samples of synthesized dataset
To verify that KD improves model interpretability except for the Broden dataset and the number of concept detectors, we
present the result of five-band-scores and radar plots using the synthesized dataset in Section 5.1 of the main paper. This
section presents the example samples of synthesized that we generated. The synthesized dataset has the ground truth for the
heatmap and was proposed by Tjoa & Guan (2020). The synthesized dataset comprised 10 classes, and examples for each
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Figure 11. Samples and ground truths of the synthetic dataset that we generated. Row 1-3: Sample images of the 10 classes. Row 4-6:
Ground truths of the sample images. The synthesized dataset formed a hierarchy with a circular (columns 1 to 3), rectangular (columns 4
to 6), and tail category (columns 7 to 9). Samples of the last column is a class with no objects. Each sample exhibited one among the three
types (dark, blurred, and noisy) of random background.

class and the ground truth that we generated are shown in Figure 11. We generated 6,400 training and 1,600 test samples.
The first three rows represent the ground truths of the sample images. The synthesized dataset formed a hierarchy with
a circular (columns 1 to 3), rectangular (columns 4 to 6), and tail category (columns 7 to 9). Each sample exhibited one
among the three types (dark, blurred, and noise) of random background. The ground truth of the synthesized dataset has
three regions: class 0), a background that does not contain any classification information, shown as a white region; class 1),
localization information, the location of an object, shown as a light pink region; and class 2), the distinguishing feature,
which is crucial for distinguishing between classes, is shown as a dark pink area.

E. Additional experimental results
E.1. Qualitative results of entropy measurement experiments

In this section, we demonstrate the entropy measured in two classes with high similarity to show that KD contains class-
similarity information well. Two classes with high similarity are komondor and old English sheepdog belonging
to “sheepdog” category, and we present the example image in Figure 12. Both the komondor and the old English
sheepdog are dogs with their faces covered in hair, with the difference that the former has a white fur, whereas the latter
has a grayish fur on the back of the body. We obtained the output distribution of fscratch, fKD and fLS when the correct
answer class was komondor or old English sheepdog as the input sample. Table 12 lists the results of measuring
entropy values using the output logit values of the two classes when all models had the correct answer. Even for two classes
with high similarity, the entropy of fKD was the largest, and the entropy of fLS decreased significantly compared to fscratch.
Through qualitative entropy measurement experiments, we confirmed that the fKD contained class-similarity information
well, but not the fLS.

Table 14 presents the number of classes for each category used in the entropy measurement experiment in the main paper.

Table 12. Comparison of entropy within two similar classes (komondor and old English sheepdog)

Model Entropy

Scratch 0.944
Knowledge distillation 0.953

Label smoothing 0.872
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Komondor Old English sheepdogFigure 12. Example images of komondor (left) and old English sheepdog (right).

We divided 1,000 classes into 67 categories based on the coarse ImageNet category classification proposed by (Eshed, 2020).
Among the 67 categories, we excluded the classes of “other” category because we could not state that similar classes were
grouped together in that category.

E.2. Visualizations of loss gradient for MNIST dataset

We presented visualization of the loss gradients on the ImageNet in the Section 5.3 of the main paper. In addition to
ImageNet, we present the visualization of the loss gradients of fscratch and fKD on the MNIST dataset, and the results are
in Figure 13. The gradients of fKD were more aligned with the semantic important regions (region of the numbers) than
fscratch. We demonstrate that fKD learned more human-perceptually relevant features than fscratch for various datasets.

E.3. BERT model interpretability for various layers

We demonstrated the model interpretability using the BERT model in Section 5.4. The SST dataset provides a label for
each word as either positive or negative, serving as the ground truth for saliency (attribution), similar to the synthesized
dataset in the main paper. We computed Integrated Gradients (IG) attribution scores from the validation and test samples
using the LayerIntegratedAttribution function of the Captum library (Kokhlikyan et al., 2020b). Accuracy, AUROC, and
AUPRC were listed as measures of model interpretability in Table 5. In Table 5, we presented only the experimental results
of applying KD with a 12-layer BERT as the teacher model and a 3-layer BERT as the student model. In Table 13, we
show the model interpretability when varying the layers of the student model. Our results show that KD enhances model
interpretability, even when the layers of the student model are varied.

Input

Scratch

KD

Figure 13. Visualization of loss gradients of fscratch and fKD on the testset of MNIST.
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Table 13. Comparison of model interpretability of fscratch and fKD on the SST dataset with various layers of student model (the higher
the better); the subscript refers to the layers of the student model

Model Accuracy AUROC AUPRC

f 3-layer
scratch 0.677 0.689 0.810
f 3-layer

KD 0.722 0.720 0.831

f 6-layer
scratch 0.668 0.670 0.723
f 6-layer

KD 0.722 0.793 0.829

Table 14. The number of classes belonging to each category

Category # of classes Category # of classes Category # of classes

arachnid 8 mollusk 6 building 37
armadillo 1 mongoose 3 clothing 47

bear 5 monotreme 2 container 18
bird 59 person 4 cooking 27
bug 25 plant 3 decor 22

butterfly 6 primate 19 electronics 49
cat 4 rabbit 3 fence 3

coral 5 rodent 7 food 28
crocodile 2 salamander 5 furniture 34
crustacean 9 shark 4 hat 8
dinosaur 1 sloth 2 instrument 28

dog 119 snake 16 lab equipment 2
echinoderms 3 trilobite 1 other 19

ferret 7 turtle 5 outdoor scene 32
fish 13 ungulate 16 paper 9

flower 5 vegetable 7 sports equipment 13
frog 3 wild cat 9 technology 27
fruit 14 wild dog 11 tool 43

fungus 7 accessory 18 toy 4
hog 3 aircraft 5 train 4

lizard 11 ball 9 vehicle 49
marine mammals 4 boat 15 weapon 10

marsupial 3
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