
Alternately Optimized Graph Neural Networks

Haoyu Han 1 Xiaorui Liu 2 Haitao Mao 1 MohamadAli Torkamani 3 Feng Shi 4 Victor Lee 4 Jiliang Tang 1

Abstract
Graph Neural Networks (GNNs) have greatly ad-
vanced the semi-supervised node classification
task on graphs. The majority of existing GNNs
are trained in an end-to-end manner that can be
viewed as tackling a bi-level optimization prob-
lem. This process is often inefficient in com-
putation and memory usage. In this work, we
propose a new optimization framework for semi-
supervised learning on graphs from a multi-view
learning perspective. The proposed framework
can be conveniently solved by the alternating opti-
mization algorithms, resulting in significantly im-
proved efficiency. Extensive experiments demon-
strate that the proposed method can achieve com-
parable or better performance with state-of-the-art
baselines while it has significantly better compu-
tation and memory efficiency.

1. Introduction
Graph is a fundamental data structure that denotes pair-
wise relationships between entities in a wide variety of
domains (Wu et al., 2019b; Ma & Tang, 2021). Semi-
supervised node classification is one of the most crucial
tasks on graphs. Given graph structure, node features, and a
part of labels, the task aims to predict labels of the unlabeled
nodes. In recent years, Graph Neural Networks (GNNs)
have been proven to be powerful in semi-supervised node
classification (Gilmer et al., 2017; Kipf & Welling, 2016;
Veličković et al., 2017). A typical GNN model mainly con-
tains two operators, i.e., feature transformation and feature
propagation. The feature transformation operator encodes
input features into a low dimensional space, which is typ-
ically a learnable function. The feature propagation oper-

1Department of Computer Science and Engineering, Michi-
gan State University, East Lansing, US 2Department of Computer
Science, North Carolina State University, Raleigh, US 3Amazon,
US (this work does not relate to the author’s position at Ama-
zon) 4TigerGraph, US. Correspondence to: Haoyu Han <han-
haoy1@msu.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

ator exploits graph structure to propagate information to
its neighbors, which usually follows the message passing
scheme (Gilmer et al., 2017).

While the message passing scheme (Gilmer et al., 2017) em-
powers GNNs with the superior capability of capturing both
node features and graph structure information, they suffer
from the scalability limitation when training the GNNs in
an end-to-end way (Hamilton et al., 2017). The end-to-end
training of GNNs are in fact inefficient in computation cost
and memory usage. In the forward computation, features
will be propagated through all propagation layers in every
epoch. In the backward computation, the gradients need be
back-propagated through all propagation layers. In addition,
every propagation layer needs to maintain all the hidden
states for back-propagation, leading to a high memory cost.

There are extensive efforts trying to improve the scalability
and efficiency of GNNs, including pre-computing meth-
ods (Wu et al., 2019a; Rossi et al., 2020), post-computing
methods(Huang et al., 2020), sampling methods (Hamil-
ton et al., 2017; Chen et al., 2018), and distributed meth-
ods (Chiang et al., 2019; Shao et al., 2022). In particular,
pre-computing and post-computing methods are the most
efficient ones in dealing with large-scale graphs. SGC (Wu
et al., 2019a) and SIGN (Rossi et al., 2020) first propagate
features as a pre-processing and then an MLP is trained
based on the propagated features. C&S (Huang et al., 2020)
first trains an encoder on node features and then applies
correction and smoothing steps. These methods only need
to propagate information once during the whole training
process so they are highly scalable and efficient. However,
the performance of these GNNs is often worse than the end-
to-end GNNs that propagate features in every epoch, such
as APPNP, especially when the labeling rate is small (Duan
et al., 2022; Palowitch et al., 2022).

In this paper, we first demonstrate that the majority of afore-
mentioned GNNs for node classification can be considered
as solving a bi-level optimization problem. Instead of fol-
lowing the above perspective as previous GNNs, we pro-
pose a single-level optimization problem to couple the node
features and graph structure information through a multi-
view semi-supervised learning framework. This new op-
timization problem can be conveniently optimized in an
alternating way, leading to the proposed algorithm ALT-

1



Alternately Optimized Graph Neural Networks

OPT. Extensive experiments demonstrate that ALT-OPT
not only remarkably alleviates the computational and mem-
ory inefficiency issues of end-to-end trainable GNNs but
also achieves comparable or even better performance than
the state-of-the-art GNNs.

2. GNNs as Bi-level Optimization
Notations. We use bold upper-case letters such as X to de-
note matrices. Xi denotes its i-th row and Xij indicates the
i-th row and j-th column element. We use bold lower-case
letters such as x to denote vectors. The Frobenius norm
and trace of a matrix X are defined as ∥X∥F =

√∑
ij X

2
ij

and tr(X) =
∑

i Xii. Let G = (V, E) be a graph, where
V is the node set and E is the edge set. Ni denotes the
neighborhood node set for node vi. The graph can be repre-
sented by an adjacency matrix A ∈ Rn×n, where Aij > 0
indices that there exists an edge between nodes vi and vj
in G, or otherwise Aij = 0. Let D = diag(d1, d2, . . . , dn)
be the degree matrix, where di =

∑
j Aij is the degree

of node vi. The graph Laplacian matrix is defined as
L = D − A. We define the normalized adjacency ma-
trix as Ã = D− 1

2AD− 1
2 and the normalized Laplacian

matrix as L̃ = I− Ã. Furthermore, suppose that each node
is associated with a d-dimensional feature x and we use
X = [x1, . . . ,xn]

⊤ ∈ Rn×d to denote the feature matrix.
In this work, we focus on the node classification task on
graphs. Given a graph G = {A,X} and a partial set of
labels YL = {y1, . . . ,yl} for node set VL = {v1, . . . , vl},
where yi ∈ Rc is a one-hot vector with c classes, our goal is
to predict labels of unlabeled nodes. Labels of graph G can
be represented as a label matrix Y ∈ Rn×c, where Yi = yi

if vi ∈ VL and Yi = 0 if vi ∈ VU where VU = V \ VL.

There are some recent works (Zhu et al., 2021; Ma et al.,
2021; Yang et al., 2021) that have unified GNNs into an
optimization framework. For example, it has been proven
that the message passing of GNNs, such as GCN, GAT,
PPNP, and APPNP, can be considered as optimizing graph
signal denoising problems (Ma et al., 2021). Considering
the GNNs for node classification tasks, there are mainly two
steps: (1) Forward process that fuses both features and struc-
ture information into a low-dimensional representation; and
(2) Backward process that trains the whole model through
gradient backpropagation. Aforementioned optimization
perspectives (Zhu et al., 2021; Ma et al., 2021; Yang et al.,
2021) only consider the forward computation of GNNs. In
this work, we highlight that many existing works can be
understood and unified as a bi-level optimization problem
when considering both forward and backward processes:

min
Θ,Φ

∥fΘ(FL)−YL∥2F ,

s.t. F =argmin
F∈Rn×h

∥gΦ(X)− F∥2F + λ tr(F⊤LF)
(1)

where F is the node representations, Θ and Φ are learn-
able parameters, and λ is a hyperparameter controlling the
smoothness of node features. The inner problem in the
constraint is the forward process that has been unified by
aforementioned frameworks (Zhu et al., 2021; Ma et al.,
2021; Yang et al., 2021), and the outer problem in the objec-
tive is the backward process that trains the whole model.

For the bi-level optimization problem Eq. (1), GNNs usually
solve the inner problem first, and then solve the outer prob-
lem. Some GNNs, such as GCN, GAT, and APPNP, solve
the inner problem every epoch with fΘ(F) = F, which
are inefficient. We refer to GNNs that need to propagate
features in every epoch as Persistent GNNs. Others, such
as SGC, and SIGN, actually only solve the inner problem
once with gΦ(X) = X, without any learnable parameters.
Thus, it is hard for them to get optimal results, which could
partially help us understand their sacrificed performance
in practice. We refer to GNNs that only need to propagate
once as One-time GNNs.

3. The Proposed Framework
In this section, we introduce a new single-level multi-view
optimization problem instead of the bi-level optimization
that paves us a way to advance the efficiency of GNNs.

3.1. A General Framework

In this work, we consider the node features, graph structure,
and node labels in the node classification task as three dif-
ferent views of graphs. We propose a general single-level
optimization framework for multi-view learning by using a
latent variable F to capture these three types of information:

min
F,Θ

λ1DX(X,F) +DA(A,F) + λ2DY (YL,FL), (2)

where Θ contains all learnable parameters, F is the in-
troduced latent variable shared by three views, DX(·, ·),
DA(·, ·) and DY (·, ·) are functions to model node features,
graph structure, and labels, respectively. Hyper-parameters
λ1 and λ2 are introduced to balance these three terms. Base
on this framework, we can have numerous designs:

• DX is to map node features X to F. In reality, we can
first transform X before mapping. Thus, feature trans-
formation methods can be applied including traditional
methods such as PCA (Collins et al., 2001; Shen, 2009)
and SVD (Godunov et al., 2021), and deep methods such
as, MLP and self-attention (Vaswani et al., 2017). We
also have various choices of the mapping functions such
as Multi-Dimensional Scaling (MDS) (Hout et al., 2013)
which preserves the pairwise distance between X and F
and any distance measurements.

• DA aims to impose constraints on the latent variable

2



Alternately Optimized Graph Neural Networks

F with the graph structure. Traditional graph regular-
ization techniques can be employed. For instance, the
Laplacian regularization (Yin et al., 2016) is to guide
a node i’s feature Fi to be similar to its neighbors; Lo-
cally Linear Embedding (LLE) (Roweis & Saul, 2000)
is to force the Fi be reconstructed from its neighbors.
Different graph signal filters (Shuman et al., 2013) can
also be utilized. Moreover, modern deep graph learning
methods can be applied, such as graph embedding meth-
ods (Perozzi et al., 2014; Grover & Leskovec, 2016) and
Graph Contrastive Learning (Zhu et al., 2020b; Hu et al.,
2021), which implicitly encodes node similarity.

• DY establishes the connection between the latent vari-
able FL and the ground truth node label YL for labeled
nodes. It can be any classification loss function, such as
the Mean Square Error and Cross Entropy Loss.

In this work, we set the dimensions of the latent variable
F as Rn×c, which can be considered as a soft pseudo-
label matrix. As an example for this framework, the fol-
lowing designs are chosen for these functions: (i) for
DX , we use an MLP with parameter Θ to encode the fea-
tures of node i as MLP(Xi; Θ), and then adopt the Eu-
clidean norm to measure the distance between Fi and Xi as
∥MLP(Xi; Θ)− Fi∥22; (ii) for DA, Laplacian smoothness
is imposed to constrain the distance between neighboring
nodes’ pseudo labels

∑
(vi,vj)∈E ∥Fi/

√
di − Fj/

√
dj∥22;

and (iii) for DY , we adopt Mean Square Loss ∥Fi −Yi∥22
to constraint the distance between pseudo label of a labeled
node to the ground truth label.

This design leads to our ALT-OPT method, and its opti-
mization objective L can be written in the matrix form as:

L = λ1 ∥MLP(X)− F∥2F︸ ︷︷ ︸
DX

+tr(F⊤L̃F)︸ ︷︷ ︸
DA

+λ2 ∥FL −YL∥2F︸ ︷︷ ︸
DY

.

(3)

Compared with the bi-level optimization problem in Eq. (1),
Eq. (3) introduces a single-level optimization problem. In
the following sections, we will demonstrate that optimizing
Eq. (3) alternatingly leads to substantially better efficiency.

3.2. An Alternating Optimization Method

Due to the coupling between the latent variable F and model
parameters Θ in Eq. (3), it can be difficult to optimize both F
and Θ simultaneously. The alternating optimization (Bezdek
& Hathaway, 2002) based iterative algorithm can be a nat-
ural solution for this challenge. Specifically, for each iter-
ation, we first fix the model parameters Θ and update the
shared latent variable F on all three views. Then, we fix F
and update the parameters Θ, which is effective in exploring
the complementary characteristics of the three views. These

two steps alternate until convergence. Next, we show the
alternating optimization algorithm in detail.

Update F. Fixing MLP, we minimize L with respect to
the latent variable F using the gradient descent method
with step sizes ηL and ηU for labeled and unlabeled nodes,
respecitvely.

Fk+1
L = 2ηL

(
(ÃFk)L + λ1MLP(XL) + λ2YL

)
+

(
1− 2ηL(λ1 + λ2 + 1)

)
Fk

L

Fk+1
U = 2ηU

(
(ÃFk)U + λ1MLP(XU )

)
+

(
1− 2ηU (λ1 + 1)

)
Fk

U .

According to the smoothness and strong convexity of the
problem with respect to F, we set ηL = ηU = 1

2(λ1+λ2+1)

to ensure the decrease of loss value L (Nesterov et al., 2018),
and the update becomes:

Fk+1
L =

1

λ1 + λ2 + 1
(ÃFk)L +

λ1

λ1 + λ2 + 1
MLP(XL)

+
λ2

λ1 + λ2 + 1
YL,

(4)

Fk+1
U =

1

λ1 + λ2 + 1
(ÃFk)U +

λ1

λ1 + λ2 + 1
MLP(XU )

+
λ2

λ1 + λ2 + 1
Fk

U .

(5)

Update Θ. Fixing Fk+1, we minimize the loss function L
with respect to MLP parameters Θ:

argmin
Θ

∥MLP(X; Θ)− Fk+1∥2F , (6)

which is equivalent to training the MLP with soft pseudo
labels Fk+1 via the mean square loss. We also explore the
cross-entropy loss, and Details are in Appendix A. In sum-
mary, ALT-OPT first updates F according to Eq. (4) and (5),
and then trains MLP with updated F being the labels. The
alternating update will be repeated until convergence.

3.3. Efficiency of ALT-OPT

We derive an alternating optimization algorithm from the
single-level optimization perspective, which provides sig-
nificantly improved computation and memory efficiency
compared to existing end-to-end GNNs as discussed below.

Efficiency on updating F. Updating F is the propagation
process, which can be time-consuming. Existing GNNs
usually perform both propagation and model parameters
update during each iteration. For ALT-OPT, variable F and
model parameters Θ are optimized separately, which is more
flexible. We can update F once while training MLP multiple
times, and then alternate these two steps until convergence.
During the whole training process, variable F only needs to
be updated a few times, which is highly efficient.

3



Alternately Optimized Graph Neural Networks

Efficiency on updating Θ. For end-to-end GNNs training,
both forward and backward process need to pass through all
propagation layers. For ALT-OPT, it only needs to train
an MLP using the generated pseudo labels F. There is no
gradient backpropagation through the feature propagation
process (update F), so these propagation layers do not need
to store the activation and gradient values, which saves a
significant amount of memory and computation. Moreover,
our ALT-OPT is well suited for the training on large-scale
graphs. because it is easy to apply stochastic optimization to
train MLP using the pseudo label due to our flexible training
strategy. This can further improve the memory and compu-
tation efficiency as proved theoretically and empirically in
extensive literature of stochastic optimization (Lan, 2020).

3.4. Understandings of ALT-OPT

Another important advantage of alternating optimization is
that it provides helpful insights to understand ALT-OPT
based on the updating rules of F and Θ.

Understanding 1: Updating F is a feature-enhanced la-
bel propagation. Label Propagation (LP) (Zhou et al.,
2003) is a well-known graph semi-supervised learning
method, which has shown great efficiency and even can
work well under the low labeling rate (Wang & Zhang, 2006;
Karasuyama & Mamitsuka, 2013). However, LP cannot di-
rectly leverage feature information, resulting in unsatisfied
performance when features are essential for downstream
tasks. We provide the following proposition to compare LP
and the proposed ALT-OPT.

Proposition 3.1. The label propagation can be written as
LP(Y, α) = ĀY, and the propagation in ALT-OPT can
be represented as F = Ā ((α− β)MLP(X) + βY), where
α, β are hyperparamters, K is the number of propagation
layers, and Ā = (1− α)KÃK + α

∑K−1
k=0 (1− α)kÃk.

Details can be found in Appendix B.1. Proposition 3.1
suggests that ALT-OPT propagates not only the ground
truth labels, but also “feature labels” MLP(X) generated by
features. Thus, updating F takes advantage of information
from all three views including node features, graph structure,
and labels while LP only leverages graph structure and
ground-truth label information.

Understanding 2: Updating Θ is a pseudo-labeling ap-
proach. Pseudo-labeling (Lee et al., 2013; Arazo et al.,
2020) is a popular method in semi-supervised learning that
uses a small set of labeled data along with a large amount
of unlabeled data to improve model performance. It usually
generates pseudo labels for the unlabeled data and trains the
deep models using both the ground truth and pseudo labels.
From this perspective, ALT-OPT uses the pseudo labels F
to train MLP such that it can achieve better performance
and efficiency. We also provide the following proposition:

Proposition 3.2. If we choose to train the MLP in the
proposed ALT-OPT using the cross-entropy loss, the
loss can be rewritten as (α − β)

∑
i,j∈V ĀijCE(fi, f

′
j) +

β
∑

i∈V,j∈VL
ĀijCE(fi,yj), where fi and f ′i are the MLP

predictions of node i from the current and previous itera-
tions, respectively.

More details are in Appendix B.2. Proposition 3.2 sug-
gests that ALT-OPT uses both ground truth label yi

and pseudo label f ′j to train the MLP. A recent paper
(Dong et al., 2021) points out that the loss for training
decouple GNNs, such as APPNP, can be represented as∑

i∈V,j∈VL

ājifi,h(j)∑
q∈V ājqfq,h(j)

CE (fi,yj), where h(j) is the

label of node j, and fi,h(j) is the h(j)-th entry of fi. Com-
pared with this loss, ALT-OPT utilizes history predictions
as pseudo labels, and is easier to compute as it need not to
compute the denominator.

3.5. Implementation Details of ALT-OPT

In this subsection, we detail the implementation of ALT-
OPT. As shown in Figure 1, we first preprocess the node
feature through a diffusion, then alternatively update pseudo
label F and MLP while taking into account the weight of
pseudo labels and the class balancing problem, and finally
get the predictions. Next, we describe each step in detail.

Preprocessing. From Understanding 1 and 2, we use the
pseudo labels generated by MLP to enhance the label prop-
agation, so a good initialized MLP is needed. In real graphs,
labeled data are usually scarce so it is challenging to get a
good initialization of MLP with a small number of labels.
Therefore, we first diffuse the original node features with its
neighbors to get smoothing and enhanced features. The new
features are obtained from X′ = LP(X, α). Then, we train
MLP only using the labeled data for a few epochs to get
an initialization, similar to pseudo-labeling methods (Iscen
et al., 2019; Lee et al., 2013).

Update F. We initial F0 = Y. Then we update F for
labeled nodes and unlabeled nodes by Eq. (4) and Eq. (5),
respectively. Since F acts as pseudo labels when training
the MLP, we normalize F to be the distribution of classes
by the softmax function with temperature after the update:
Fij =

exp(Fij/τ)∑c
k=1 exp(Fik/τ)

, where τ is a hyperparameter to
control the smoothness of pseudo labels.

Pseudo-labels Generation. Directly using all pseudo labels
to train MLP is not appropriate due to the following reasons.
First, not all pseudo labels have the same certainty. Second,
pseudo-labels may not be balanced over classes, which will
impede learning. To address the first issue, we assign a
confidence weight to each pseudo-label (Rizve et al., 2021;
Iscen et al., 2019). According to information theory, entropy
can be used to quantify a distribution’s uncertainty, so we
define the weight for unlabeled nodes as wi = 1− H(Fi)

log(c) ,

4



Alternately Optimized Graph Neural Networks

Preprocess

Input graph
Stage 2: Update MLP

Stage 1: Update Pseudo-Labels

Predictions

Feature-Enhanced
Label Propagation

Train MLP by
Pseudo-labels

No gradient

: labels
: features
: unknown

Figure 1: An overview of the proposed ALT-OPT method. ALT-OPT will alternately (1) generate pseudo labels without
gradient; (2) train the MLP on pseudo labels.

where wi ∈ [0, 1] and H(Fi) = −
∑c

j=1 Fij logFij is the
entropy of the pseudo label Fi. To deal with the class im-
balance problem, we train the MLP using the same number
of unlabeled nodes for each class with the highest weights.

Update MLP. We train MLP using both labeled nodes VL
and high confidence unlabeled nodes VUt

with the loss:∑
i∈VL

ℓ(MLP(X′
i; Θ),Fi) +

∑
j∈VUt

wj · ℓ(MLP(X′
j ; Θ),Fj),

where ℓ(MLP(X′
i; Θ),Fi) = ∥MLP(X′

i; Θ) − Fi∥22 is a
MSE loss and Θ is the parameters of MLP.

Prediction. The inference of the proposed method is based
on the pseudo labels F, and the predicted class for the
unlabeled node i can be obtained as ci = argmaxj Fij .

It is important to note that the normalization of F and
pseudo-label reweighting can be incorporated into the uni-
fied framework. Please refer to Appendix C for more details.
The overall algorithm and implementation details 1 of ALT-
OPT are shown in Appendix D.

3.6. Complexity Analysis

We provide time and memory complexity analyses
for ALT-OPT and the following representative GNNs:
GCN (Kipf & Welling, 2016), SGC (Wu et al., 2019a),
and APPNP (Klicpera et al., 2018).

Suppose that p is the number of propagation layers, n is the
number of nodes, m is the number of edges, and c is the
number of classes. For simplicity, we assume that the hidden
feature dimension is a fixed d for all transformation layers,
and we have c ≪ d in most cases; all feature transformations
are updated t epochs. The adjacent matrix A is a sparse
matrix, and forward and backward propagation have the
same cost. Following (Li et al., 2021), we only analyze the
inherent differences across models by assuming that they
have the same transformation layers (MLP), allowing us to
disregard the time and memory footprint of MLP. The time

1https://github.com/haoyuhan1/ALT-OPT/

and memory complexities are summarized in Table 1.

Time complexity. We first analyze the time complexity of
feature aggregation. The feature aggregation can be imple-
mented as a sparse-dense matrix multiplication with cost
O(md) if the feature has d dimensions. Therefore, the
time complexity of training a p-layer GCN for t epochs is
O(2tpmd) with the gradient backpropagation. For SGC, we
only need p steps of feature propagation, so the time com-
plexity is O(pmd). For APPNP, the gradient also needs to
backpropagate through p layers, but the feature dimension is
c, resulting in the time complexity of O(2tpmc). Regarding
ALT-OPT, as the model are optimized in an alternating way,
there is no need to do both feature transformation and aggre-
gation in each epoch. Rather, we can propagate the pseudo
labels only for k times during the whole training process.
As a result, the time complexity of ALT-OPT is O(kpmc).
In practice, choosing k from {2, 3, 4, 5} can achieve very
promising performance, while t needs to be 500 or 1,000
for other models to converge.

Table 1: Comparison of time and memory complexities.

Method Time Memory
GCN O(2tpmd) O(nd+ pnd)
SGC O(pmd) O(nd)

APPNP O(2tpmc) O(nd+ pnc)
ALT-OPT O(kpmc) O(nd+ nc)

Memory complexity. All models require O(nd) memory
for storing node features. For the end-to-end training mod-
els, we need to store the intermediate state at each layer for
gradient calculation. Specifically, for GCN, we need to store
the hidden state for p layers, so the memory complexity is
O((p + 1)nd). SGC only needs to store the propagated
feature O(nd) as we omit the memory of network param-
eters. Similarly, APPNP has the memory complexity of
O(nd+ pnc). As for ALT-OPT, it does not need to store
the gradients at each propagation layer. Instead, ALT-OPT
needs to hold the pseudo label F. So the memory complex-
ity of ALT-OPT is O(nd+ nc).

5



Alternately Optimized Graph Neural Networks

If we omit the difference in the dimension of the propagation
features (d = c), the time and memory of GCN and APPNP
are the same, as they are both Pesistent GNNs that require
feature propagation in each epoch. Similarly, the One-time
GNNs that only need to propagate once, such as SGC, SIGN,
and C&S have the same time and memory complexity. ALT-
OPT is a Lazy Propagation method since the features are
propagated k times during training with k being a small
number. Thus, ALT-OPT can be seen as a balance between
these two groups of methods.

4. Experiment
In this section, we verify the effectiveness of the proposed
ALT-OPT by comprehensive experiments. In particular, we
try to answer the following questions:

• RQ1: How does ALT-OPT perform when compared to
other baseline models?

• RQ2: Is ALT-OPT more time and memory efficient
than state-of-the-art GNNs?

• RQ3: How do different components affect ALT-OPT?

4.1. Experimental settings

Datasets. For the transductive semi-supervised node clas-
sification task, we choose nine commonly used datasets
including three citation datasets, i.e., Cora, Citeseer and
Pubmed (Sen et al., 2008), two coauthors datasets, i.e., CS
and Physics, two Amazon datasets, i.e., Computers and
Photo (Shchur et al., 2018), and two OGB datasets, i.e.,
ogbn-arxiv and ogbn-products (Hu et al., 2020). For the
inductive node classification task, we use Reddit and Flikcr
datasets (Zeng et al., 2019). We also test the proposed
method on two heterophily graphs, i.e., Chameleon and
Squirrel (Pei et al., 2020). More details about these datasets
are shown in Appendix E.

We use 10 random data splits for all the datasets except
the OGB datasets. For the OGB datasets, we use the fixed
data split. We run the experiments 3 times for each split
and report the average performance and standard deviation.
Besides, we also test multiple labeling rates, i.e., low label
rates with 5, 10, 20, and 60 labeled nodes per class and high
label rates with 30% and 60 % labeled nodes per class, to
get a comprehensive comparison.

Baselines. We compare the proposed ALT-OPT with three
groups of methods: (i) Persistent GNNs, i.e., GCN (Kipf
& Welling, 2016), GAT (Veličković et al., 2017) and
APPNP (Klicpera et al., 2018); (ii) One-time GNNs, i.e.,
SGC (Wu et al., 2019a), SIGN (Rossi et al., 2020), and C&S
(Huang et al., 2020); and (iii) Non-GNN methods including
MLP and Label Propagation (Zhou et al., 2003). We report
the test accuracy selected by the the best validation accuracy.
Parameter settings are summarized in Appendix F.

4.2. Performance Comparison on Benchmark Datasets

4.2.1. TRANSDUCTIVE NODE CLASSIFICATION.

The transductive node classification results are partially
shown in Table 2. We leave results on more datasets and
methods with more learning rate setting in Appendix G due
to the space limitation. From these results, we can make the
following observations:

• ALT-OPT consistently outperforms other models at low
label rates on all datasets. For example, in Cora and
CiteSeer with label rate 5, our method can gain 1.2%
and 5.6% relative improvement compared to the best
baselines. This is because the pseudo labels generated
by our framework are helpful for training models when
there are few labels available. When the label rate is
high, our method is also comparable to the best results.
In addition, ALT-OPT is alternately optimized, which
suggests that end-to-end training could not be necessary
for node semi-supervised classification.

• ALT-OPT performs the best on two OGB datasets. For
example, in the large ogbn-products dataset, it obtains
7.86% and 2.63% relative improvement compared to
APPNP and SIGN, respectively.

• Compared with the One-time GNNs, Persistent GNNs
usually perform better when the labeling rate is low.
In addition, the label propagation outperforms MLP in
most cases, indicating the rationality of our proposed
feature-enhanced label propagation.

• The standard deviation of all models is not small across
different data splits, especially when the label rate is very
low. It demonstrates that splits can significantly affect a
model’s performance. A similar finding is also observed
in the PyTorch-Geometric paper (Fey & Lenssen, 2019).

4.2.2. INDUCTIVE NODE CLASSIFICATION.

For inductive node classification, only training nodes can
be observed in the graph during training, and all nodes can
be used during the inference (Zeng et al., 2019). For ALT-
OPT, we first train an MLP with the original features and
then do inference for the unlabeled node using the feature-
enhanced label propagation in Eq (4) and Eq (5).

As shown in Figure 2 and Appendix H, our ALT-OPT out-
performs other baselines on the inductive node classification
task. The only difference between ALT-OPT and MLP is
the feature-enhanced label propagation, but our method can
achieve 52.3% and 38.1 % relative improvement compared
to MLP. The performance improvement can demonstrate
the superiority of our feature-enhanced label propagation.

4.2.3. PERFORMANCE ON HETEROPHILY GRAPHS.

ALT-OPT is a specific instance of the proposed single-level
optimization framework. It utilizes graph Laplacian regular-

6



Alternately Optimized Graph Neural Networks

Table 2: Transductive node classification accuracy (%) on benchmark datasets.

Method Persistent GNNs One-time GNNs Ours
Dataset Label GCN GAT APPNP SGC SIGN C&S ALT-OPT

Cora 5 70.68 ± 2.17 72.97 ± 2.23 75.86 ± 2.34 70.06 ± 1.95 69.81 ± 3.13 56.52 ± 5.53 76.78 ± 2.56
10 76.50 ± 1.42 78.03 ± 1.17 80.29 ± 1.00 76.28 ± 1.22 76.25 ± 1.26 71.04 ± 3.30 80.66 ± 1.92
20 79.41 ± 1.30 81.39 ± 1.41 82.34 ± 0.67 80.30 ± 1.72 79.71 ± 1.11 77.96 ± 2.13 82.66 ± 0.98
60 84.30 ± 1.44 85.11 ± 1.10 85.49 ± 1.25 84.17 ± 1.39 84.16 ± 1.18 82.21 ± 1.45 85.60 ± 1.12

30% 86.87 ± 1.35 87.24 ± 1.19 87.77 ± 1.13 86.97 ± 0.90 87.17 ± 1.28 87.60 ± 1.12 87.70 ± 1.19
CiteSeer 5 61.27 ± 3.85 62.60 ± 3.34 63.92 ± 3.39 60.21 ± 3.48 57.44 ± 3.71 50.39 ± 4.70 67.48 ± 2.90

10 66.28 ± 2.14 66.81 ± 2.10 67.57 ± 2.05 65.23 ± 2.36 63.87 ± 3.09 58.96 ± 2.75 69.39 ± 2.59
20 69.60 ± 1.67 69.66 ± 1.47 70.85 ± 1.45 68.82 ± 2.11 68.60 ± 1.94 65.85 ± 2.74 71.26 ± 1.69
60 72.52 ± 1.74 73.10 ± 1.20 73.50 ± 1.54 71.43 ± 1.26 72.63 ± 1.39 71.21 ± 1.79 72.84 ± 1.65

30% 75.20 ± 0.85 75.01 ± 0.99 75.71 ± 0.71 75.09 ± 1.01 74.44 ± 0.83 74.65 ± 0.95 75.09 ± 0.79
Pubmed 5 69.76 ± 6.46 70.42 ± 5.36 72.68 ± 5.68 68.55 ± 6.88 66.52 ± 6.15 65.3 ± 6.02 73.51 ± 4.80

10 72.79 ± 3.58 73.35 ± 3.83 75.53 ± 3.85 72.80 ± 3.55 71.32 ± 3.70 72.51 ± 3.75 75.55 ± 5.09
20 77.43 ± 1.93 77.43 ± 2.66 78.93 ± 2.11 76.48 ± 2.84 76.39 ± 2.65 75.34 ± 2.49 79.16 ± 2.26
60 82.00 ± 1.62 81.40 ± 1.40 82.55 ± 1.47 80.34 ± 1.61 81.75 ± 1.55 80.63 ± 1.49 82.53 ± 1.76

30% 88.07 ± 0.29 86.51 ± 0.41 87.56 ± 0.39 86.23 ± 0.43 89.09 ± 0.33 88.44 ± 0.40 88.24 ± 0.36
CS 20 91.73 ± 0.49 90.96 ± 0.46 92.38 ± 0.38 90.32 ± 0.99 92.02 ± 0.41 92.41 ± 0.44 92.77 ± 0.50

Physics 20 93.29 ± 0.80 92.81 ± 1.03 93.49 ± 0.67 93.23 ± 0.59 93.03 ± 1.15 93.23 ± 0.55 94.63 ± 0.31
Computers 20 79.17 ± 1.92 78.38 ± 2.27 79.07 ± 2.34 73.00 ± 2.0 73.04 ±1.15 73.25± 2.09 79.12 ± 2.50

Photo 20 89.94 ± 1.22 89.24 ± 1.42 90.87 ± 1.14 83.50 ± 2.9 86.11 ± 0.66 84.87 ± 1.04 91.23 ± 1.26
ogbn-arxiv 54% 71.91 ± 0.15 71.92 ± 0.17 71.61 ± 0.30 68.74 ± 0.12 71.95 ± 0.11 71.03 ± 0.15 72.76 ± 0.17

ogbn-products 8% 75.70 ± 0.19 OOM 76.62 ± 0.13 74.29 ± 0.12 80.52±0.16 77.11 ± 0.06 82.64± 0.21

49.0

49.5

50.0

50.5

51.0

51.5

52.0

52.5

53.0

92.0

92.5

93.0

93.5

94.0

94.5

95.0

95.5

96.0

GCN APPNP SGC C&S ALT-OPT

Fli
ck

r A
cc

ur
ac

y

Re
dd

it 
Ac

cu
ra

cy

Reddit Flickr

Figure 2: Inductive node classification accuracy (%).

ization, expressed as tr(F⊤L̃F), to constrain node features
with the graph structure. The Laplacian regularization is a
low-pass filter, potentially limiting its performance with het-
erophily graphs, where high-frequency signals are helpful.

Nonetheless, the proposed Eq. (2) serves as a general frame-
work, permitting the incorporation of different filters to
seize the high-frequency signals prevalent in heterophily
graphs. To illustrate this, we introduce a novel regulariza-
tion term, denoted as DA = tr(F⊤L̃2F), which is capable
of capturing both low-pass and high-pass graph signals.
Consequently, this results in a new method, which we term
ALT-OPT-H for brevity. The specifics of this method are as
follows:

L = λ1 ∥MLP(X)− F∥2F︸ ︷︷ ︸
DX

+tr(F⊤L̃2F)︸ ︷︷ ︸
DA

+λ2 ∥FL −YL∥2F︸ ︷︷ ︸
DY

,

which can be solved using the same alternating optimization

method as in Equation (3). We carry out experiments on
two of the most widely utilized heterophily datasets, namely
Chameleon and Squirrel. We maintain the same settings
as in the study by Lim et al. (2021), and compare several
renowned heterophily GNNs, such as Geom-GCN (Pei et al.,
2020), H2GCN (Zhu et al., 2020a), MixHop (Abu-El-Haija
et al., 2019), GCNII (Chen et al., 2020), GPR-GNN (Chien
et al., 2020), and LINKX (Lim et al., 2021). The results in
Table 3 show that our ALT-OPT-H method displays com-
petitive performance on heterophily datasets, necessitating
only a slight adjustment to the graph filter. This attests to the
flexibility of the proposed framework (Eq. (2)), which can
perform well on both homophily and heterophily graphs.

Table 3: Performance on the heterophily graphs.

Dataset Chameleon Squirrel
Geom-GCN 60.90 38.14

H2GCN 59.39 ± 1.98 37.90 ± 2.02
MixHop 60.50 ± 2.53 43.80 ± 1.48
GCNII 62.48 56.63 ± 1.17

GPR-GNN 62.85 ± 2.90 54.35 ± 0.87
LINKX 68.42 ± 1.38 61.81 ± 1.80

ALT-OPT-H 70.62 ± 1.93 61.56 ± 1.81

4.3. Efficiency Comparison

In this subsection, we compare the efficiency of our ALT-
OPT with other baselines, based on two large datasets, i.e.,
ogbn-arxiv and ogbn-products. To make a fair comparison,

7



Alternately Optimized Graph Neural Networks

we choose the same feature transformation layers for each
method. Besides, we update model parameters with the
same iterations in each method, i.e., 500 epochs for ogbn-
arxiv and 1,000 epochs for ogbn-products. All the experi-
ments are conducted on the same machine with a NVIDIA
RTX A6000 GPU (48 GB memory). For ALT-OPT, we can
update F with different frequencies in training, i.e., 1, 2, 3,
4, 5, and “Full”. “Full” means we update both F and MLP
in each epoch. For ALT-OPT-k, we only update the F for
k times during the training procedure. The overall results
are shown in Table 4.

Training Time. For the Persistent GNNs including GCN,
APPNP and ALT-OPT-Full, the training time is longer than
other methods that do not need to propagate every epoch.
Both APPNP and ALT-OPT-Full need to propagate ten lay-
ers every epoch and GCN needs to propagate three layers.
However, the training time of ALT-OPT-Full is nearly half
of APPNP and still less than GCN, which matches our time
complexity analysis in Section 3.6, as there is no gradient
backpropagate through propagation layers. Compared with
the One-time GNNs like SGC, ALT-OPT with only a few
update steps, such as ALT-OPT-5, can achieve better accu-
racy with a minor increase in training time. For example,
the whole training time of ALT-OPT-5 is only 0.92s and 7s
longer than SGC, but it has 8.63% and 11.24 % relative per-
formance improvements in ogbn-arxiv and ogbn-products
datasets, respectively. Meanwhile, we observe that ALT-
OPT-5 has very similar performance with ALT-OPT-Full,
which suggests that there is no need to do propagation and
train the model simultaneously for each epoch. This also
suggests that end-to-end training with propagation might
not be necessary.

Memory Cost. Compared with the Persistent GNNs, ALT-
OPT requires less memory with no requirement to store the
hidden states in the propagation layers. Thus, ALT-OPT
can keep a constant memory even with more propagation
layers. Compared with MLP and SGC, ALT-OPT shows
comparable memory. Slightly memory increasing is from
the pseudo label matrix as analyzed in Section 3.6. ALT-
OPT can be even more efficient with sampling strategies.

In Appendix I, we also provide additional experiments to
show the efficiency of our ALT-OPT, i.e. ALT-OPT can
converge faster, need fewer propagation layer, and the mem-
ory cost does not increase with more propagation layers.

4.4. Ablation Study

Feature Diffusion. It is expected that feature diffusion
can improve the accuracy of the MLP in the pretraining
procedure and thus improve the initialization quality of
pseudo labels F. To validate this, we remove the feature
diffusion and also use the pseudo labels to train our method,
which is called ALT-OPT-w/o-diffusion. Experiments are

conducted on Cora and CiteSeer datasets. From Figure 3, we
can see that at low label rates, ALT-OPT is better than ALT-
OPT-w/o-diffusion which means that feature diffusion can
boost the model’s performance at low labeling rate. As the
labeling rate increases, the performance gap becomes small.
This shows that feature diffusion is not the key component
in our method when the label rate is not very low.

Pseudo Labels. One of the most important advantages
of ALT-OPT is that we leverage pseudo labels to better
train MLP. To study the contribution of pseudo labels
in ALT-OPT, we test the model variant ALT-OPT-w/o-
pseudo which only uses labeled data on Cora and CiteSeer
datasets. Compared with ALT-OPT, Figure 3 shows that
pseudo labels have a large impact on model performance on
both datasets, especially when the label rate is low. More-

5 10 20 60 30% 60%
Label rate

65

70

75

80

85

90

ALT-OPT
ALT-OPT-w/o-diffusion
ALT-OPT-w/o-pseudo

(a) Cora

5 10 20 60 30% 60%
Label rate

50

55

60

65

70

75

80

ALT-OPT
ALT-OPT-w/o-diffusion
ALT-OPT-w/o-pseudo

(b) CiteSeer

Figure 3: Performance of ALT-OPT variants.

over, we choose the top K confidence pseudo labels per
class after the first update of F to verify their accuracy. We
adopt the same way to evaluate Label Propagation on Cora
dataset with the label rate 20. As shown in Figure 4, after
the first update of F, the accuracy of the top 180 nodes
from each class can be 90%. So it is reasonable to use these
pseudo labels to train MLP. Besides, the accuracy of our
method at each K is much better than Label propagation,
which suggests the effectiveness of the feature-enhanced
label propagation update for F.

Hyperparameters Sensitivity. We test the parameter sensi-
tivity of λ1 and λ2 in Eq (3) on Physics and Photo datasets
by fixing one with the best parameters and tuning the other.
From Figure 5, ALT-OPT is not very sensitive to these two
hyperparameters at the chosen regions.

5. Related Works
Graph Neural Networks (GNNs) is an effective architec-
ture to represent the graph-structure data, and there are
mainly two operators, i.e. feature transformation and prop-
agation. Based on the order of these two operators, most
GNNs can be classified into: Coupled and Decoupled GNNs.
Coupled GNNs, such as GCN (Kipf & Welling, 2016),
GraphSAGE (Hamilton et al., 2017), and GAT (Velickovic
et al., 2017), couple feature transformation and propaga-

8



Alternately Optimized Graph Neural Networks

Table 4: Efficiency comparison of different methods.
Dataset ogbn-arxiv ogbn-products
Method ACC(%) Time (s) Memory (GB) ACC (%) Time (s) Memory (GB)

MLP 55.68 12.01 2.68 61.17 214 21.18
SGC 66.92 12.06 2.71 74.29 215 21.85
SIGN 71.95 24.89 4.67 80.52 492 43.17
GCN 71.91 24.71 3.33 75.70 1,284 38.36

APPNP 71.61 33.70 3.20 76.62 1,913 29.15
ALT-OPT-Full 72.76 22.28 2.81 81.83 901 24.49

ALT-OPT-1 70.09 12.86 2.81 80.03 218 24.49
ALT-OPT-2 72.32 12.89 2.81 80.34 219 24.49
ALT-OPT-3 72.60 12.92 2.81 81.00 220 24.49
ALT-OPT-4 72.71 12.95 2.81 81.89 221 24.49
ALT-OPT-5 72.70 12.98 2.81 82.64 222 24.49

20 60 100 140 180 220 260 300
K

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

ALT-OPT
LP

0.1 0.3 0.5 0.7 0.9
Lambda 1

85

90

95

100

Physics
Photo

1 3 5 7 9
Lambda 2

85

90

95

100

Physics
Photo

Figure 4: Top K Accuracy. Figure 5: Parameter Sensitivity.

tion in each layer. More recently, decoupled GNNs, such
as APPNP (Klicpera et al., 2018), that decouple the trans-
formation and propagation, are proposed to alleviate the
over-smoothness problem (Li et al., 2018; Oono & Suzuki,
2019). Similar architectures are also utilized in (Liu et al.,
2021; 2020; Zhou et al., 2021).

In this paper, we categorize GNNs into Persistent GNNs
and One-time GNNs. One-time GNNs, such as SGC (Wu
et al., 2019a), SIGN (Rossi et al., 2020) and C&S (Huang
et al., 2020), are more efficient than the Persistent GNNs
because they only propagate once. PTA (Dong et al., 2021)
first propagate labels once and then train an MLP, which can
be viewed as a One-time GNNs. PPRGo (Bojchevski et al.,
2020) precomputes the PageRank matrix to avoid multiple
steps of propagation, but it still need to do propagation
in each epoch, which is also a Persistent GNN. However,
our ALT-OPT does not belong to Coupled/Decoupled or
Persistent/One-time GNNs. We propose a new learning
paradigm for graph node classification task, which is both
efficient and effective.

There are also many sampling methods (Hamilton et al.,
2017; Chen et al., 2018; Zeng et al., 2019; Zou et al., 2019)
that adopt mini-batch training strategies to reduce computa-
tion and memory cost by sampling some nodes and edges.
Distributed methods (Chiang et al., 2019; Shao et al., 2022)
distribute the large graph across multiple servers for parallel
training. These works are orthogonal to the contributions in
this work and they can be also applied to this work.

ALT-OPT can be understood as a pseudo-labeling method
as discussed in Section 3.4. Recent work (Iscen et al., 2019)

utilizes the label propagation to generate the pseudo labels,
which shares some similarity with the proposed ALT-OPT.
However, they use the features to generate graph at each
iteration, and only the ground truth labels are leveraged for
label propagation. For ALT-OPT, the propagation is a fea-
ture enhanced label propagation. We propagate both ground
truth labels and features through the given graph. Besides,
ALT-OPT is derived from our proposed framework by an
alternating optimization algorithm, which has a different
starting point than that of Iscen et al. (2019).

6. Conclusion
In this work, we demonstrate that most existing end-to-end
GNNs for node classification are solving a bi-level optimiza-
tion problem. We introduce a new optimization framework
for node classification, which can efficiently be optimized
with the alternating optimization algorithm. Experimen-
tal results validate that ALT-OPT is both computationally
and memory efficient with promising performance on node
classification, especially when the labeling rate is low.

Acknowledgements
Haoyu Han, Haitao Mao, and Jiliang Tang are supported by
the National Science Foundation (NSF) under grant num-
bers CNS1815636, IIS1845081, IIS1928278, IIS1955285,
IIS2212032, IIS2212144, IOS2107215, and IOS2035472,
the Army Research Office (ARO) under grant number
W911NF-21-1-0198, the Home Depot, Cisco Systems Inc,
Amazon Faculty Award, and SNAP.

9



Alternately Optimized Graph Neural Networks

References
Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N.,

Lerman, K., Harutyunyan, H., Ver Steeg, G., and Gal-
styan, A. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In in-
ternational conference on machine learning, pp. 21–29.
PMLR, 2019.

Arazo, E., Ortego, D., Albert, P., O’Connor, N. E., and
McGuinness, K. Pseudo-labeling and confirmation bias
in deep semi-supervised learning. In 2020 International
Joint Conference on Neural Networks (IJCNN), pp. 1–8.
IEEE, 2020.

Bezdek, J. C. and Hathaway, R. J. Some notes on alternating
optimization. In AFSS international conference on fuzzy
systems, pp. 288–300. Springer, 2002.

Bojchevski, A., Klicpera, J., Perozzi, B., Kapoor, A., Blais,
M., Rózemberczki, B., Lukasik, M., and Günnemann, S.
Scaling graph neural networks with approximate pager-
ank. In Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data
Mining, pp. 2464–2473, 2020.

Chen, J., Ma, T., and Xiao, C. Fastgcn: fast learning with
graph convolutional networks via importance sampling.
arXiv preprint arXiv:1801.10247, 2018.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple
and deep graph convolutional networks. In International
conference on machine learning, pp. 1725–1735. PMLR,
2020.

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh,
C.-J. Cluster-gcn: An efficient algorithm for training
deep and large graph convolutional networks. In Proceed-
ings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 257–266,
2019.

Chien, E., Peng, J., Li, P., and Milenkovic, O. Adaptive uni-
versal generalized pagerank graph neural network. arXiv
preprint arXiv:2006.07988, 2020.

Collins, M., Dasgupta, S., and Schapire, R. E. A generaliza-
tion of principal components analysis to the exponential
family. In NIPS, 2001.

Dong, H., Chen, J., Feng, F., He, X., Bi, S., Ding, Z., and
Cui, P. On the equivalence of decoupled graph convolu-
tion network and label propagation. In Proceedings of
the Web Conference 2021, pp. 3651–3662, 2021.

Duan, K., Liu, Z., Wang, P., Zheng, W., Zhou, K., Chen,
T., Hu, X., and Wang, Z. A comprehensive study on
large-scale graph training: Benchmarking and rethinking.
arXiv preprint arXiv:2210.07494, 2022.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with pytorch geometric. arXiv preprint arXiv:1903.02428,
2019.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International conference on machine learning,
pp. 1263–1272. PMLR, 2017.

Godunov, S. K., Antonov, A. G., Kiriljuk, O. P., and Kostin,
V. I. Singular value decomposition. Practical Numerical
Mathematics with MATLAB, 2021.

Grover, A. and Leskovec, J. node2vec: Scalable feature
learning for networks. Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 2016.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in neural
information processing systems, 30, 2017.

Hout, M. C., Papesh, M. H., and Goldinger, S. D. Mul-
tidimensional scaling. Wiley interdisciplinary reviews.
Cognitive science, 4 1:93–103, 2013.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133,
2020.

Hu, Y., You, H., Wang, Z., Wang, Z., Zhou, E., and Gao, Y.
Graph-mlp: node classification without message passing
in graph. arXiv preprint arXiv:2106.04051, 2021.

Huang, Q., He, H., Singh, A., Lim, S.-N., and Benson,
A. R. Combining label propagation and simple mod-
els out-performs graph neural networks. arXiv preprint
arXiv:2010.13993, 2020.

Iscen, A., Tolias, G., Avrithis, Y., and Chum, O. Label propa-
gation for deep semi-supervised learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5070–5079, 2019.

Karasuyama, M. and Mamitsuka, H. Manifold-based sim-
ilarity adaptation for label propagation. Advances in
neural information processing systems, 26, 2013.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

10



Alternately Optimized Graph Neural Networks

Klicpera, J., Bojchevski, A., and Günnemann, S. Predict
then propagate: Graph neural networks meet personalized
pagerank. arXiv preprint arXiv:1810.05997, 2018.

Lan, G. First-order and stochastic optimization methods for
machine learning. Springer, 2020.

Lee, D.-H. et al. Pseudo-label: The simple and efficient
semi-supervised learning method for deep neural net-
works. In Workshop on challenges in representation
learning, ICML, volume 3, pp. 896, 2013.

Li, G., Müller, M., Ghanem, B., and Koltun, V. Training
graph neural networks with 1000 layers. In International
conference on machine learning, pp. 6437–6449. PMLR,
2021.

Li, Q., Han, Z., and Wu, X.-M. Deeper insights into graph
convolutional networks for semi-supervised learning. In
Thirty-Second AAAI conference on artificial intelligence,
2018.

Lim, D., Hohne, F., Li, X., Huang, S. L., Gupta, V.,
Bhalerao, O., and Lim, S. N. Large scale learning on
non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Pro-
cessing Systems, 34:20887–20902, 2021.

Liu, M., Gao, H., and Ji, S. Towards deeper graph neural
networks. In Proceedings of the 26th ACM SIGKDD
international conference on knowledge discovery & data
mining, pp. 338–348, 2020.

Liu, X., Jin, W., Ma, Y., Li, Y., Liu, H., Wang, Y., Yan, M.,
and Tang, J. Elastic graph neural networks. In Interna-
tional Conference on Machine Learning, pp. 6837–6849.
PMLR, 2021.

Ma, Y. and Tang, J. Deep learning on graphs. Cambridge
University Press, 2021.

Ma, Y., Liu, X., Zhao, T., Liu, Y., Tang, J., and Shah, N. A
unified view on graph neural networks as graph signal
denoising. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management,
pp. 1202–1211, 2021.

Nesterov, Y. et al. Lectures on convex optimization, volume
137. Springer, 2018.

Oono, K. and Suzuki, T. Graph neural networks exponen-
tially lose expressive power for node classification. arXiv
preprint arXiv:1905.10947, 2019.

Palowitch, J., Tsitsulin, A., Mayer, B., and Perozzi, B.
Graphworld: Fake graphs bring real insights for gnns.
arXiv preprint arXiv:2203.00112, 2022.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B.
Geom-gcn: Geometric graph convolutional networks.
arXiv preprint arXiv:2002.05287, 2020.

Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: online
learning of social representations. Proceedings of the 20th
ACM SIGKDD international conference on Knowledge
discovery and data mining, 2014.

Rizve, M. N., Duarte, K., Rawat, Y. S., and Shah, M. In de-
fense of pseudo-labeling: An uncertainty-aware pseudo-
label selection framework for semi-supervised learning.
arXiv preprint arXiv:2101.06329, 2021.

Rossi, E., Frasca, F., Chamberlain, B., Eynard, D., Bron-
stein, M., and Monti, F. Sign: Scalable inception graph
neural networks. arXiv preprint arXiv:2004.11198, 2020.

Roweis, S. T. and Saul, L. K. Nonlinear dimensionality
reduction by locally linear embedding. Science, 290
5500:2323–6, 2000.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI magazine, 29(3):93–93, 2008.

Shao, Y., Li, H., Gu, X., Yin, H., Li, Y., Miao, X., Zhang, W.,
Cui, B., and Chen, L. Distributed graph neural network
training: A survey. arXiv preprint arXiv:2211.00216,
2022.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
S. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868, 2018.

Shen, H. T. Principal component analysis. In Encyclopedia
of Database Systems, 2009.

Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., and
Vandergheynst, P. The emerging field of signal processing
on graphs: Extending high-dimensional data analysis
to networks and other irregular domains. IEEE signal
processing magazine, 30(3):83–98, 2013.

Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
Attention is all you need. In NIPS, 2017.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio,
P., and Bengio, Y. Graph attention networks. stat, 1050:
20, 2017.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Wang, F. and Zhang, C. Label propagation through linear
neighborhoods. In Proceedings of the 23rd international
conference on Machine learning, pp. 985–992, 2006.

11



Alternately Optimized Graph Neural Networks

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Simplifying graph convolutional networks. In
International conference on machine learning, pp. 6861–
6871. PMLR, 2019a.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S.
A comprehensive survey on graph neural networks. arXiv
preprint arXiv:1901.00596, 2019b.

Yang, L., Wang, C., Gu, J., Cao, X., and Niu, B. Why do
attributes propagate in graph convolutional neural net-
works? In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 35, pp. 4590–4598, 2021.

Yin, M., Gao, J., and Lin, Z. Laplacian regularized low-rank
representation and its applications. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 38:504–517,
2016.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and
Prasanna, V. Graphsaint: Graph sampling based inductive
learning method. arXiv preprint arXiv:1907.04931, 2019.

Zhou, D., Bousquet, O., Lal, T., Weston, J., and Schölkopf,
B. Learning with local and global consistency. Advances
in neural information processing systems, 16, 2003.

Zhou, K., Huang, X., Zha, D., Chen, R., Li, L., Choi, S.-H.,
and Hu, X. Dirichlet energy constrained learning for deep
graph neural networks. Advances in Neural Information
Processing Systems, 34, 2021.

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and
Koutra, D. Beyond homophily in graph neural networks:
Current limitations and effective designs. Advances in
Neural Information Processing Systems, 33, 2020a.

Zhu, M., Wang, X., Shi, C., Ji, H., and Cui, P. Interpreting
and unifying graph neural networks with an optimization
framework. In Proceedings of the Web Conference 2021,
pp. 1215–1226, 2021.

Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., and Wang, L.
Deep graph contrastive representation learning. ArXiv,
abs/2006.04131, 2020b.

Zou, D., Hu, Z., Wang, Y., Jiang, S., Sun, Y., and Gu, Q.
Layer-dependent importance sampling for training deep
and large graph convolutional networks. Advances in
neural information processing systems, 32, 2019.

12



Alternately Optimized Graph Neural Networks

A. ALT-OPT with Cross Entropy Loss
In section 3.2, we instance ALT-OPT with a Mean Square Error Loss. In this section, we show it can be replaced by a Cross
Entropy Loss. By replacing the first part of Eq (3) to be a cross entropy between MLP and F, the formulation becomes:

L = λ1CE
(

MLP(X),F
)
+ tr(F⊤L̃F) + λ2∥FL −YL∥2F (7)

where CE(·, ·) is the cross entropy function. Adopting the same gradient decent method, the update rule for F becomes:

Fk+1
L = Fk

L − ηL

(
−λ1 logMLP(XL) + 2(L̃Fk)L + 2λ2(F

k
L −YL)

)
= (1− 2ηL (1 + λ2))F

k
L + ηLλ1 logMLP(X)L + 2ηLÃFk

L + 2ηLλ2YL, (8)

Fk+1
U = Fk

U − ηU

(
−λ1 logMLP(XU ) + 2(L̃Fk)U

)
= (1− 2ηU )F

k
U + ηUλ1 logMLP(XU ) + 2ηU (ÃFk)U (9)

where the MLP is the output after the Softmax function and the step size can be set as ηL = ηU = 1
2(1+λ2)

. Therefore, the
update rule of F is:

Fk+1
L =

λ1

2 (1 + λ2)
logMLP(XL) +

1

1 + λ2
(ÃFk)L +

λ2

1 + λ2
YL, (10)

Fk+1
U =

λ1

2(1 + λ2)
logMLP(XU ) +

1

1 + λ2
(ÃFk)U +

λ2

1 + λ2
Fk

U (11)

Then we can consider the hidden variable F as pseudo label and update the parameters of MLP based on the cross entropy
loss CE(MLP,F). In practice, there are some situations that the cross entropy have a better performance than the original
mean square error loss. Using two different losses would give similar results in most cases, and we report the best one.

B. Understandings of ALT-OPT
B.1. Comparison between updating F and Label Propagation

Label Propagation (LP) (Zhou et al., 2003) is a well-known graph semi-supervised learning method based on the label
smoothing assumption that connected nodes are likely to have the same label. The label propagation can be written as
solving an the following optimization problem:

Q(P) =
1

2

n∑
i,j=1

Aij

∥∥∥∥∥ 1√
Dii

Pi −
1√
Djj

Pj

∥∥∥∥∥
2

+ µ

n∑
i=1

∥Pi −Yi∥2

= tr(P⊤L̃P) + µ∥P−Y∥2F

(12)

We can use an iteration algorithm to solve Eq. 12. The k-th iteration process of LP is as follows:

P(k) = (1− α)ÃP(k − 1) + αY, (13)

where Ã is the normalized graph Laplacian matrix, Y is the label matrix, P(0) = Y, and α ∈ (0, 1) is a hyperparamter.

If we iterate Eq. 13 for one time, the P(k) becomes:

P(k) = (1− α)Ã
(
(1− α)ÃP(k − 2) + αY

)
+ αY,

= (1− α)2Ã2P(k − 2) + α(1− α)ÃY + αY
(14)

13



Alternately Optimized Graph Neural Networks

By iterating K times, we can get:

P(K) = (1− α)KÃKY + α

K−1∑
k=0

(1− α)kÃkY

=

(
(1− α)KÃK + α

K−1∑
k=0

(1− α)kÃk

)
Y

= ĀY

(15)

Let Ā = (1 − α)KÃK + α
∑K−1

k=0 (1 − α)kÃk, then the K step LP can be represented as LP (Y, α) = ĀY. For our
ALT-OPT, our optimization problem is:

L = λ1∥MLP(X)− F∥2F + tr(F⊤L̃F) + λ2∥F−Y∥2F ,

which can also be written as

F(k) =
1

λ1 + λ2 + 1
ÃF(k − 1) +

λ1

λ1 + λ2 + 1
MLP(X) +

λ2

λ1 + λ2 + 1
Y. (16)

By iterating Eq. 16, it becomes:

F(k) =

(
(

1

λ1 + λ2 + 1
)KÃK +

λ1 + λ2

λ1 + λ2 + 1

K−1∑
k=0

(
1

λ1 + λ2 + 1
)kÃk

)(
λ1

λ1 + λ2 + 1
MLP(X) +

λ2

λ1 + λ2 + 1
Y

)
(17)

Let α = λ1+λ2

λ1+λ2+1 , β = λ2

λ1+λ2+1 , Eq. 17 can be written as:

F(K) = Ā ((α− β)MLP(X) + βY) . (18)

Compared Eq. 12 with Eq. 18, ALT-OPT not only propagates the ground truth labels, but “feature” labels MLP(X)
generated by features. Thus, updating F takes advantage of all node features, graph structure and labels, while LP only
leverages graph structure and labels. Thus, updating F of ALT-OPT can be seen as a feature-enhanced label propagation.

B.2. Comparison between updating Θ and pseudo-labeling methods

Pseudo-labeling (Lee et al., 2013; Arazo et al., 2020) is a popular method in semi-supervised learning that uses a small set
of labeled data along with a large amount of unlabeled data to improve model performance. It usually generates pseudo
labels for the unlabeled data and trains the deep models using both the true labels and pseudo labels with different weights.
From this perspective, ALT-OPT uses the pseudo labels F to train MLP.

Let fθ(X) = MLP(X), the loss function for training ALT-OPT can be written as the following based on Eq. 18:

LALT-OPT = ℓ
(
fθ(X),A((α− β)fθ(X)′ + βY )

)
, (19)

where fθ(X)′ is the output from previous layer, and there is no gradient information.

If we choose Cross Entropy loss, then Eq. 19 becomes:

LALT-OPT = −
∑
i,j∈V

∑
k∈C

āij((α− β)fθ(X)′j,k + βYjk)logfθ(X)i,k

= −(α− β)
∑
i,j∈V

∑
k∈C

āijfθ(X)′j,klogfθ(X)i,k − β
∑
i,j∈V

∑
k∈C

Yjk)logfθ(X)i,k

= −(α− β)
∑
i,j∈V

∑
k∈C

āijfθ(X)′j,klogfθ(X)i,k − β
∑
i,j∈V

∑
k∈C

āijYjklogfθ(X)i,k

= −(α− β)
∑
i,j∈V

∑
k∈C

āijfθ(X)′j,klogfθ(X)i,k − β
∑

i∈V,j∈VL

Yjh(j)logfθ(X)i,h(j)

= (α− β)
∑
i,j∈V

āijCE(fi, f
′
j) + β

∑
i∈V,j∈VL

āijCE(fi, yj),

(20)

14



Alternately Optimized Graph Neural Networks

where h(j) is the label of labeled node j, thus Yj,k = 1 if k = h(j) else Yj,k = 0. From Eq. 20, we can find that ALT-OPT
use both truth label yi and pseudo label f ′

j to train the MLP.

C. Incorporating Normalization and Pseudo-label Reweighting into a Unified Framework
In our ALT-OPT implementation, we utilize normalization to map the feature into a label space and a pseudo-label
reweighting operator to select high-confidence nodes for training MLP. These operations cannot be directly derived from
Eq. 3. However, by slightly modifying our approach, we can integrate these two operators into a unified framework.
Specifically, we use the softmax function to map F into the label space and a diagonal weight matrix to reweight pseudo-
labels. Let softmax(F) = S(F). We can then modify the optimization target as follows:

L = λ1WCE(MLP (X), S(F)) + tr
(
F⊤L̃F

)
+ λ2CE(Y, S(F)), (21)

where CE is the Cross-Entropy function, the weight matrix W is a diagonal matrix, wq = w′
q1
(
w′

q > τ
)
, w′

q =
Entropy(softmax(Fq))), 1 is the indicator function, and τ is a threshold. The reason we adopt the Cross-Entropy
function is that it has a neat derivative with the Softmax operator, i.e. ∂CE(Y,S(F))

∂F = S(F)−Y.

Therefore, the gradient of L with respect to F is:

∂L

∂F
= λ1W(S(F)−MLP (X)) + 2LF+ λ2(S(F)− Y ). (22)

This gradient closely resembles the original one with the MSE loss, making the optimization target quite tidy and similar
to the original one. This problem can be resolved using the same alternating optimization method as before. We term the
new method as ALT-OPT-N. To evaluate our proposed method, we chose three representative datasets, namely, PubMed,
Coauthor CS, and ogbn-arxiv. The results are as follows:

Table 5: Different implementations of ALT-OPT

Dataset PubMed CS ogbn-arxiv
ALT-OPT 79.16 ± 2.26 92.77 ± 0.50 72.60

ALT-OPT-N 78.66 ± 2.00 92.69 ± 0.28 72.58

The results show that ALT-OPT-N achieves performance similar to ALT-OPT, with all operators being derivable from ALT-
OPT-N. This underlines the efficacy of our proposed unified framework for incorporating normalization and pseudo-label
reweighting.

D. Algorithm of ALT-OPT
In this section, we provide the algorithm 1 of ALT-OPT.

We first initialize the pseudo label F as label matrix Y, and then preprocess data by feature diffusion. Afterward, we
pre-train the MLP on the labeled data for a few epochs. Then, we update F and MLP alternatively and iteratively.

E. Datasets Statistics
In the experiments, the data statistics used in Section 4 are summarized in Table 6. For Cora, CiteSeer and PubMed dataset,
we adopt different label rates, i.e., 5, 10, 20, 60, 30% and 60% labeled nodes per class, to get a more comprehensive
comparison. For label rates 5, 10, 20, and 60, we use 500 nodes for validation and 1000 nodes for test. For label rates 30%
and 60%, we use half of the rest nodes for validation and the remaining half for test. For each labeling rate, we adopt 10
random splits for each dataset. For other datasets, we follow the original data split.

F. Parameters Setting
In this section, we describe in detail the search space for parameters of different experiments.

15



Alternately Optimized Graph Neural Networks

Algorithm 1 Algorithm of ALT-OPT

Input: Adjacent matrix A, Features X, Labels Y, Hyperparamters λ1, λ2, α, pseudo label number m, pretraining steps s,
MLP update times t
Output: Pseudo Label F, MLP parameter Θ
Initialize F = Y
X′ = LP (X, α)
for i = 1 to s do

Pretrain MLP by L =
∑

i∈L ℓ(MLP(x′
i; Θ),Yi)

end for
repeat

Update F based on Eq. (4) and Eq. (5)
Normalize F based on Fij =

exp(Fij/τ)∑C
k=1 exp(Fik/τ)

Select m top unlabeled nodes Ut per class by wi = 1− H(Fi)
log(C)

for i = 1 to t do
Update Θ by minimizing LMLP (X

′, F ; Θ) =
∑

i∈L∪Ut
wiℓ(MLP(x′

i; Θ),Fi)
end for

until Model Converge

Table 6: Dataset Statistics.

Dataset Nodes Edges Features Classes
Cora 2,708 5,278 1,433 7

CiteSeer 3,327 4,552 3,703 6
PubMed 19,717 44,324 500 3

Coauthor CS 18,333 81,894 6,805 15
Coauthor Physics 34,493 247,962 8,415 5

Amazon Computer 13,381 245,778 767 10
Amazon Photo 7,487 119,043 745 8

Flickr 89,250 899,756 500 7
Reddit 232,965 11,606,919 602 41

Ogbn-Arxiv 169,343 1,166,243 128 40
Ogbn-Products 2,449,029 61,859,140 100 47

F.1. Transductive Setting

For all deep models, we use 3 transformation layers with 256 hidden units for OGB datasets, and 2 transformation layers
with 64 hidden units for other datasets. For all methods, the following hyperparameters are tuned based on the loss and
validation accuracy from the following search space:

• Learning Rate: {0.01, 0.05}
• Dropout Rate: {0, 0.5, 0.8}
• Weight Decay: { 5e-4, 5e-5, 0}
• Hyperparamters between 0 and 1: step size 0.1

The propagation layers for APPNP and C&S is tuned from {5, 10} and {10, 20, 50}, respectively.

For ALT-OPT, the λ1 and λ2 are tuned from {0.1, 0.3, 0.5, 0.7, 1} and {1, 3, 5, 7, 10}, respectively; 10 propagation layers;
pretraining steps s = 100; τ = 0.1; pseudo label numbers per class m are choose from {100, 200, 500, 5000} based on the
size of graphs; The training epochs e is set to 1,000 for ogbn-products dataset and 500 for all other datasets same as other
models. Then, a propagation times k is chosen (for example 5). Afterwards, we evenly split the training epochs e to k parts.
For the first e/k epochs, we train the MLP, and then do propagation once. For the next e/k epochs we train the MLP and
then propagate once, and so on.

The Adam optimizer(Kingma & Ba, 2014) is used in all experiments.

16



Alternately Optimized Graph Neural Networks

F.2. Inductive Setting

For the inductive node classification task, we follow the data process as previous work (Zeng et al., 2019). Specifically, we
first filter the training graph that only contains labeled node for training, and the entire graph are used for inference. For all
models, we use 3 transformation layers with 256 hidden units for Reddit dataset, and 2 layers with 64 hidden units for Flickr
dataset. Besides, we adopt the most hyper-parameters search space for all baselines. The propagation step K for APPNP and
C& is tuned from {2, 3, 5, 10} and {10, 20, 50}, respectively. For C&S, both correct and smooth hyper-parameters are
choose from [0,1] with granularity of 0.1. The λ1 and λ2 in ALT-OPT are tuned with granularity of 0.1 in range [0, 1], and
1 in [1, 10], respectively.

G. Transductive Node Classification Results
For the transductive semi-supervised node classification task, we choose nine common used datasets including three citation
datasets, i.e., Cora, Citeseer and Pubmed (Sen et al., 2008), two coauthors datasets, i.e., CS and Physics, two Amazon
datasets, i.e., Computers and Photo (Shchur et al., 2018), and two OGB datasets, i.e., ogbn-arxiv and ogbn-products (Hu
et al., 2020).

We compare the proposed ALT-OPT with three groups of methods: (i) Persistent GNNs, i.e., GCN (Kipf & Welling,
2016), GAT (Veličković et al., 2017) and APPNP (Klicpera et al., 2018); (ii) One-time GNNs, i.e., SGC (Wu et al.,
2019a), SIGN (Rossi et al., 2020), and C&S (Huang et al., 2020); and (iii) Non-GNN methods including MLP and Label
Propagation(Zhou et al., 2003). The overall performance are shown in Table 7.

Table 7: The overall results of the transductive node classification task.

Method Non-GNN Persistent GNNs One-time GNNs Ours
Dataset Label Rate LP MLP GCN GAT APPNP SGC SIGN C&S ALT-OPT

Cora 5 57.60 ± 5.71 42.34 ± 3.31 70.68 ± 2.17 72.97 ± 2.23 75.86 ± 2.34 70.06 ± 1.95 69.81 ± 3.13 56.52 ± 5.53 76.78 ± 2.56
10 63.76 ± 3.60 51.34 ± 3.37 76.50 ± 1.42 78.03 ± 1.17 80.29 ± 1.00 76.28 ± 1.22 76.25 ± 1.26 71.04 ± 3.30 80.66 ± 1.92
20 67.87 ± 1.43 59.23 ± 2.52 79.41 ± 1.30 81.39 ± 1.41 82.34 ± 0.67 80.30 ± 1.72 79.71 ± 1.11 77.96 ± 2.13 82.66 ± 0.98
60 73.92 ± 1.25 68.35 ± 2.08 84.30 ± 1.44 85.11 ± 1.10 85.49 ± 1.25 84.17 ± 1.39 84.16 ± 1.18 82.21 ± 1.45 85.60 ± 1.12

30% 82.26 ± 1.89 73.26 ± 1.38 86.87 ± 1.35 87.24 ± 1.19 87.77 ± 1.13 86.97 ± 0.90 87.17 ± 1.28 87.60 ± 1.12 87.70 ± 1.19
60% 86.05 ± 1.35 76.49 ± 1.13 88.60 ± 1.19 88.68 ± 1.13 88.49 ± 1.28 88.60 ± 1.38 88.21 ± 1.11 88.68 ± 1.39 88.96 ± 1.10

CiteSeer 5 39.06 ± 3.53 41.05 ± 2.84 61.27 ± 3.85 62.60 ± 3.34 63.92 ± 3.39 60.21 ± 3.48 57.44 ± 3.71 50.39 ± 4.70 67.48 ± 2.90
10 42.29 ± 3.26 47.99 ± 2.71 66.28 ± 2.14 66.81 ± 2.10 67.57 ± 2.05 65.23 ± 2.36 63.87 ± 3.09 58.96 ± 2.75 69.39 ± 2.59
20 46.15 ± 2.31 56.96 ± 1.80 69.60 ± 1.67 69.66 ± 1.47 70.85 ± 1.45 68.82 ± 2.11 68.60 ± 1.94 65.85 ± 2.74 71.26 ± 1.69
60 52.76 ± 1.14 66.37 ± 1.56 72.52 ± 1.74 73.10 ± 1.20 73.50 ± 1.54 71.43 ± 1.26 72.63 ± 1.39 71.21 ± 1.79 72.84 ± 1.65

30% 62.75 ± 1.30 70.37 ± 1.00 75.20 ± 0.85 75.01 ± 0.99 75.71 ± 0.71 75.09 ± 1.01 74.44 ± 0.83 74.65 ± 0.95 75.09 ± 0.79
60% 69.39 ± 2.01 73.15 ± 1.36 76.88 ± 1.78 76.70 ± 1.81 77.42 ± 1.47 76.66 ± 1.59 76.41 ± 1.96 76.34 ± 1.37 77.00 ± 1.67

Pubmed 5 65.52 ± 6.42 58.48 ± 4.06 69.76 ± 6.46 70.42 ± 5.36 72.68 ± 5.68 68.55 ± 6.88 66.52 ± 6.15 65.3 ± 6.02 73.51 ± 4.80
10 68.39 ± 4.88 65.36 ± 2.08 72.79 ± 3.58 73.35 ± 3.83 75.53 ± 3.85 72.80 ± 3.55 71.32 ± 3.70 72.51 ± 3.75 75.55 ± 5.09
20 71.88 ± 1.72 69.07 ± 2.10 77.43 ± 1.93 77.43 ± 2.66 78.93 ± 2.11 76.48 ± 2.84 76.39 ± 2.65 75.34 ± 2.49 79.16 ± 2.26
60 75.79 ± 1.54 76.20 ± 1.48 82.00 ± 1.62 81.40 ± 1.40 82.55 ± 1.47 80.34 ± 1.61 81.75 ± 1.55 80.63 ± 1.49 82.53 ± 1.76

30% 82.51 ± 0.34 85.92 ± 0.25 88.07 ± 0.29 86.51 ± 0.41 87.56 ± 0.39 86.23 ± 0.43 89.09 ± 0.33 88.44 ± 0.40 88.24 ± 0.36
60% 83.38 ± 0.64 86.14 ± 0.64 88.48 ± 0.46 86.52 ± 0.56 87.56 ± 0.52 86.63 ± 0.38 89.55 ± 0.56 88.53 ± 0.56 88.83 ± 0.55

CS 20 77.45 ± 1.80 88.12 ± 0.78 91.73 ± 0.49 90.96 ± 0.46 92.38 ± 0.38 90.32 ± 0.99 92.02 ± 0.41 92.41 ± 0.44 92.77 ± 0.50
Physics 20 86.70 ± 1.03 88.30 ± 1.59 93.29 ± 0.80 92.81 ± 1.03 93.49 ± 0.67 93.23 ± 0.59 93.03 ± 1.15 93.23 ± 0.55 94.63 ± 0.31

Computers 20 72.44 ± 2.87 60.66 ± 2.98 79.17 ± 1.92 78.38 ± 2.27 79.07 ± 2.34 73.00 ± 2.0 73.04 ±1.15 73.25± 2.09 79.12 ± 2.50
Photo 20 81.58 ± 4.69 75.33 ± 1.91 89.94 ± 1.22 89.24 ± 1.42 90.87 ± 1.14 83.50 ± 2.9 86.11 ± 0.66 84.87 ± 1.04 91.23 ± 1.26

ogbn-arxiv 54% 68.14 ± 0.00 55.68 ± 0.11 71.91 ± 0.15 71.92 ± 0.17 71.61 ± 0.30 68.74 ± 0.12 71.95 ± 0.11 71.03 ± 0.15 72.76 ± 0.17
ogbn-products 8% 74.08 ± 0.00 61.17 ± 0.20 75.70 ± 0.19 OOM 76.62 ± 0.13 73.15 ± 0.12 80.52±0.16 77.11 ± 0.06 82.64± 0.21

H. Inductive Node Classification Results
For the transductive semi-supervised node classification task, we choose two common used datasets including Reddit and
Flikcr (Zeng et al., 2019). We choose MLP, GCN, APPNP, and C&S as baselines. The results are shown in Table 8.

Table 8: Inductive node classification accuracy (%).

Method MLP GCN APPNP SGC C&S ALT-OPT
Reddit 62.84 93.30 94.11 93.85 95.30 95.74
Flickr 37.87 49.20 49.40 50.58 51.46 52.29

17



Alternately Optimized Graph Neural Networks

I. More Efficiency Results
In this section, we show more efficiency results of our proposed ALT-OPT. We choose the state-of-the-art model APPNP as
a base model, and then compare the training time, convergence speed and propagation layers between them.

I.1. Training Time and Convergence Speed Comparison between ALT-OPT-Full and APPNP

Traning Time per epoch. We assume ALT-OPT-Full has the same number of feature propagation layers with APPNP and
find that under different labeling rate the training time is very close. We train each model 5000 epochs on different datasets
and report the average training time per epoch that does not include inference and test. As shown in Table 9, our training
time per epoch is consistently less than APPNP. It is 1.74 times faster on the ogbn-arxiv dataset. For the small datasets, the
input feature dimension is high and feature transformation consumes most of the time, so the improvement is not as large as
ogbn-arxiv . Besides, the comparison is based on only one epoch and the assumption that these two models have the same
propagation layers. Next, we will show that compared to APPNP, our method has a faster converge speed and needs less
feature propagation layers to achieve similar performance.

Table 9: Training time (ms) per epoch.

TIME(ms) Cora CiteSeer Pumbed ogbn-arxiv
APPNP 4.02 3.67 4.19 61.48

ALT-OPT 3.29 2.98 3.05 35.33
MLP 1.97 1.94 1.99 13.5

Total training time and Convergence epoch. We measure the convergence speed using the number of epochs at which
the model achieves the highest validation accuracy. For our model, the pretraining 100 epochs are also included. This
comparison is reasonable because APPNP has the same training parameters with our model and the learning rate is the
same. We adopt the same transductive setting as Section 4. The results on Cora and ogbn-arxiv dataset are shown in Table
10. Our method can converge much faster than APPNP. After 100 epochs fast fully-supervised pretraining, our method
only needs tens of iterations to get the best validation accuracy while APPNP needs a few hundreds. Besides, the training
epochs of APPNP tend to increase when the label rate increases, while our method tends to decrease. The reason could be
that when the label rate increases, the accuracy of label propagation in ALT-OPT also increases, which leads to a faster
convergence rate. The total training time is also shown in Table 10, which shows that ALT-OPT is on average 3.9 times
faster than APPNP.

Table 10: The best validation epochs and total training time.

Dataset Cora Ogbn-arxiv
Label rate 5 10 20 60 30% 60% 54%

APPNP best epochs 283 187 211 283 411 385 342
ALT-OPT-Full best epochs 144 151 157 145 121 129 192

APPNP training time (s) 1.14 0.75 0.85 1.14 1.65 1.55 21.0
ALT-OPT-Full training time (s) 0.34 0.36 0.38 0.34 0.26 0.29 4.60

I.2. Number of Feature Propagation Layers.

Our ALT-OPT accumulates the pseudo-label F during its updating process, it may not require as many propagation layers as
APPNP, which would further reduce the training time. To verify this, we conduct experiments to show how the performance
changes across different numbers of propagation layers K on Cora dataset with different label rates. The mean accuracy is
reported in Table 11. At the label rate 5 and 10, ALT-OPT only needs 1 feature propagation layer to have a comparable
result with 10 layer APPNP. For label rate 20, 5 propagation layers can achieve better performance than APPNP. Fewer
propagation layers suggest that our ALT-OPT is more efficient.

I.3. Memory Cost of Different Propagation Layers

Our ALT-OPT does not need to store hidden states during propagation. The memory cost of ALT-OPT can be constant with
more propagation layers. However, APPNP need to store the hidden states in each propagation layers for backpropagation,

18



Alternately Optimized Graph Neural Networks

Table 11: Accuracy(%) under different feature propagation layer K and different label rates on Cora dataset.

Label Rate 5 10 20
K 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

APPNP 65.49 72.52 74.71 75.64 75.86 71.96 77.21 78.53 79.54 80.29 77.31 80.81 81.58 82.24 82.34
ALT-OPT 76.26 76.34 76.42 76.49 76.78 79.59 79.59 79.69 80.01 80.66 80.76 81.66 81.95 82.48 82.66

and the memory cost grows with more propagation layers. We choose the large ogbn-products dataset for experiment. Both
APPNP and ALT-OPT use 3 transformation layers. We choose different propagation layers, i.e., 10, 20, and 30. The results
are shown in Table 12. The memory cost of ALT-OPT keep the same with the increase of propagation layers, while the
memory of APPNP increase with the increase of propagation layers.

Table 12: Memory Cost (GB) with different propagation layers.

Propagation Layer 10 20 30
APPNP 29.15 31.31 34.43

ALT-OPT 24.49 24.49 24.49

19


