
Total Variation Graph Neural Networks

Jonas Berg Hansen * 1 Filippo Maria Bianchi * 1 2

Abstract
Recently proposed Graph Neural Networks
(GNNs) for vertex clustering are trained with an
unsupervised minimum cut objective, approxi-
mated by a Spectral Clustering (SC) relaxation.
However, the SC relaxation is loose and, while it
offers a closed-form solution, it also yields overly
smooth cluster assignments that poorly separate
the vertices. In this paper, we propose a GNN
model that computes cluster assignments by op-
timizing a tighter relaxation of the minimum cut
based on graph total variation (GTV). The clus-
ter assignments can be used directly to perform
vertex clustering or to implement graph pooling
in a graph classification framework. Our model
consists of two core components: i) a message-
passing layer that minimizes the ℓ1 distance in
the features of adjacent vertices, which is key to
achieving sharp transitions between clusters; ii)
an unsupervised loss function that minimizes the
GTV of the cluster assignments while ensuring
balanced partitions. Experimental results show
that our model outperforms other GNNs for vertex
clustering and graph classification.

1. Introduction
Traditional clustering techniques partition samples based
on their features or on suitable data representations com-
puted, for example, with deep learning models (Tian et al.,
2014; Min et al., 2018; Su et al., 2022). Spectral cluster-
ing (SC) (Von Luxburg, 2007) is a popular technique that
first encodes the similarity of the data features into a graph
and then creates a partition based on the graph topology.
Such a graph is just a convenient representation of the sim-
ilarity among the samples and has no attributes on its ver-
tices. On the other hand, an attributed graph can represent

*Equal contribution 1Department of Mathematics and Statistics,
UiT the Arctic University of Norway 2NORCE, The Norwegian
Research Centre AS. Correspondence to: Filippo Maria Bianchi
<filippo.m.bianchi@uit.no>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Topology-onlyFeatures-only Features + Topology

(a)
0.8 0.2

1 0

0.8 0.2

1 0

0.6 0.4

1 0 0 1

0.4 0.6 0.2 0.8

0 1

0.4 0.6 0.2 0.80.6 0.4

0.20.8

0.2

Sharp assignmentSmooth assignment

(b)

Figure 1: a) Most clustering methods partition the data only based
on the features (■). SC partitions the vertices of the graph based
on its topology (■). GNNs account both for the vertex features
and the graph topology(■). b) Difference between smooth and
sharp cluster assignments. Especially at the edge of a cluster, the
smooth assignments give large weights to more than one cluster.

both the relationships among samples and their features.
Graph Neural Networks (GNNs) are deep learning architec-
tures specifically designed to process and make inference
on such data (Hamilton, 2020). Therefore, contrarily to
traditional clustering methods, a GNN-based approach for
clustering can account for both the features and the relation-
ships among samples to generate partitions (see Fig.1a).

Similarly to other deep learning architectures for cluster-
ing (Shaham et al., 2018; Kampffmeyer et al., 2019), GNNs
can be trained end-to-end and return soft cluster assign-
ments as part of the output. Several existing GNN clustering
approaches compute cluster assignments from the vertex
representations generated by message passing (MP) layers
and, then, optimize the assignments with an unsupervised
loss inspired by SC (Bianchi et al., 2020; Tsitsulin et al.,
2020; Duval & Malliaros, 2022). The SC objective benefits
from the smoothing operations performed by the MP layers,
which minimize the local quadratic variation of adjacent
vertex features. However, this approach produces smooth
cluster assignment vectors that are less informative as they

1

Total Variation Graph Neural Networks

do not separate well the samples (see Fig.1b). Indeed, the
SC objective is known to give a loose approximation of the
optimal partition defined in terms of the minimum cut (Ran-
gapuram et al., 2014).

Contributions. We propose a novel GNN-based clustering
approach that generates cluster assignments by optimiz-
ing the graph total variation (GTV). Compared to SC, GTV
trades a closed-form solution with a tighter continuous relax-
ation of the optimal minimum cut partition (Hein & Setzer,
2011). Notably, an optimization objective with a closed-
form solution is not particularly useful for a GNN trained
with gradient descent.

We design an unsupervised loss function for minimizing the
GTV that is GNN-friendly as it avoids numerical issues dur-
ing gradient descent and assumes values in a well-defined
range, making it suitable to be combined with other losses.
Our GNN yields sharp cluster assignments by minimizing
the ℓ1 norm of their differences. Clearly, the minimization
of GTV is hindered when cluster assignments are derived
from smooth representations computed by traditional MP
layers. To address this issue, we propose a new MP layer
that minimizes the ℓ1 norm of the difference between adja-
cent vertex features.

By optimizing the proposed loss, we can train a GNN end-to-
end to perform vertex clustering. In addition, by coarsening
the graph according to the learned partition we can perform
hierarchical graph pooling (Grattarola et al., 2022) in deep
GNN architectures for graph-level tasks, such as graph clas-
sification. In this case, the proposed loss is combined with
an additional supervised loss, such as the cross-entropy. Ex-
periments show the superiority of the proposed approach
compared to other GNN methods for clustering and graph
pooling.

2. Background
A graph is represented by a tuple G = (V, E) where V and E
are the vertex and edge sets, respectively. The cardinality of
the sets are given as |V| = N and |E| = E. The adjacency
matrix A ∈ RN×N with elements aij ∈ {0, 1} defines
the graph connectivity. In an attributed graph, each vertex
i is associated with a feature vector xi ∈ RF . Feature
vectors are often grouped in a matrix X ∈ RN×F . The
soft cluster assignment matrix is S ∈ RN×K , where K is
the number of clusters and sij ∈ [0, 1] is the membership
of vertex i to cluster j. The combinatorial Laplacian is
L = D − A and Ã = D−1/2AD−1/2 is the symmetric
degree normalization of A.

2.1. Graph cuts

The task of finding K clusters of similar size can be cast
into the balanced K-cut problem, defined as a ratio of two

set functions:

C = min
C1,...,CK

K∑
k=1

cut(Ck, C̄k)

Ŝ(Ck)
s.t. Ci ∩ Cj = ∅, (1)

where cut(Ci, Cj) counts the volume of edges connecting
the two sets of vertices Ci, Cj ⊂ V , C̄k is the complement
of set Ck, and Ŝ(·) : 2V → R+ is a submodular set function
that balances the size of the clusters in the partition (Hein
& Setzer, 2011). Depending on the choice of Ŝ(·) different
cuts are obtained, such as the ratio cut for Ŝ(Ck) = |Ck|,
and the normalized cut for Ŝ(Ck) = vol(Ck) (Von Luxburg,
2007). Of particular interest for us is the Cheeger cut,
also known as Balanced cut or Ratio Cheeger cut, where
Ŝ(Ck) = min{|Ck|, |C̄k|}, which penalizes the formation
of very large clusters. A variant of the Cheeger Cut, called
Asymmetric Cheeger cut, encourages an even partition by
letting Ŝ(Ck) = min{(K − 1)|Ck|, |C̄k|} (Bresson et al.,
2013).

2.2. Tight relaxation of the Asymmetric Cheeger cut

Let the numerator in (1) be expressed in matrix form as

cut(Ck, C̄k) =
∑

i∈Ck,j∈C̄k

aij(1− zizj) = zTLz, (2)

with zi, zj ∈ {−1, 1} (derivation in A.1). The common
relaxation done in spectral clustering (SC) is:

min
z∈{−1,1}N

zTLz

Ŝ(Ck)
→ min

s∈RN

sTLs

S(Ck)
(3)

where S(Ck) is the continuous counterpart of Ŝ(Ck). What
the SC relaxation actually does, is to apply Laplacian
smoothing to a graph signal s by minimizing its local
quadratic variation (LQV), i.e., the quadratic variation of s
across adjacent vertices. The LQV defined in terms of the
combinatorial Laplacian reads

sTLs =
1

2

∑
(i,j)∈E

aij(si − sj)
2. (4)

From the graph signal processing perspective, Laplacian
smoothing applies to a graph signal a low-pass filter with re-
sponse (1−λi), where λi is the i-th eigenvalue of the Lapla-
cian (Tremblay et al., 2018). Despite offering a closed-form
solution, SC gives a loose approximation of the solution of
the discrete optimization problem (Hein & Setzer, 2011).

Let sk ∈ RN be the soft assignment vector for the k-th
cluster. A tighter continuous relaxation of the Asymmetric
Cheeger cut problem is given by (Bresson et al., 2013):

min
s1,...,sK∈RN

K∑
k=1

||sk||GTV

||sk − quantρ(sk)||1,ρ
s.t.

K∑
k=1

sk = 1N .

(5)

2

Total Variation Graph Neural Networks

In the numerator, ||sk||GTV =
∑

i,j aij |si,k−sj,k| measures
the graph total variation (GTV) of the soft assignments to
cluster k. In the denominator, quantρ(sk) denotes the ρ-
quantile of sk, i.e., the (q + 1)st largest value in sk with
q = ⌊N/(ρ+ 1)⌋, while || · ||1,ρ denotes an asymmetric ℓ1
norm, which for a vector x ∈ RN is defined as

||x||1,ρ =

N∑
i=1

|xi|ρ, where |xi|ρ =

{
ρxi, xi ≥ 0

−xi, xi < 0
. (6)

When ρ = K − 1, the denominator in (5) encourages bal-
anced partitions, i.e., clusters having similar sizes, and pre-
vents the two common degenerate solutions: i) all samples
collapsing into the same cluster (e.g., si = [1, 0, . . . , 0],∀i),
and ii) samples uniformly assigned to all clusters (si =
[1/K, 1/K, . . . , 1/K],∀i).

Differently from SC, (5) minimizes the ℓ1 rather than the ℓ2
distance between components of s that are adjacent on the
graph. Minimizing GTV yields sharper cluster assignments
and achieves a tighter relaxation of the balanced K-cut
problem compared to SC (Rangapuram et al., 2014; Bresson
et al., 2013). However, contrarily to SC, (5) it is non-convex
and is optimized through iterative updates.

2.3. Clustering with Graph Neural Networks

To leverage the graph topology for learning vertex repre-
sentations, GNNs implement message-passing (MP) layers.
Typically, an MP layer collects information from the neigh-
bours to update the representation of each vertex (Hamilton,
2020). An example of an MP layer is the Graph Convolu-
tional Network (GCN) by (Kipf & Welling, 2017):

X(out) = σ(Ã′X(in)ΘMP) (7)

where A′ = A + IN and ΘMP ∈ RFin×Fout are learnable
parameters. It can be shown that a GCN layer applies Lapla-
cian smoothing on the vertex features X; see (Wu et al.,
2019; Nt & Maehara, 2019; Li et al., 2018; Bianchi et al.,
2021) for detailed discussions. For example, (Ma et al.,
2021) shows that the l-th GCN layer updates of the vertex
features as

X(l+1) = (I− δÃ′)X(l), (8)

which is actually one gradient descent step of size δ in the
optimization of the problem

min
X

Tr(XT (I− Ã′)X). (9)

After applying a stack of L MP layers, the soft assignment
matrix S is obtained by passing the updated vertex features
to some function f , typically a multi-layer perceptron (MLP)
with a Softmax activation, that produces a K-dimensional
vector for each vertex. Importantly, since the MP layers

perform Laplacian smoothing and f is a smooth function,
the cluster assignments generated from X(L) comply with
the SC definition. Nevertheless, minimizing the LQV of
X(L) is not the same as minimizing the LQV of S directly.
In addition, the size of the clusters must be balanced and
degenerate solutions avoided. For these reasons, the assign-
ments S are further optimized through unsupervised loss
functions. For instance, MinCutPool (Bianchi et al., 2020)
optimizes the following loss

−Tr(ST ÃS)

Tr(ST D̃S)︸ ︷︷ ︸
Lc

+

∥∥∥∥ STS

∥STS∥F
− IK√

K

∥∥∥∥
F︸ ︷︷ ︸

Lo

, (10)

where ∥ · ∥F indicates the Frobenius norm and D̃ =
diag(Ã1). The Lc term encourages strongly connected
components to be clustered together, while Lo is a balanc-
ing term that promotes equally-sized clusters and helps to
avoid degenerate solutions. Similarly, DMoN (Tsitsulin
et al., 2020) optimizes a two-termed loss

−Tr(STAS− STdTdS)

2|E|︸ ︷︷ ︸
Lm

+

√
K

N

∥∥∥∥∥∑
i

ST
i

∥∥∥∥∥
F

− 1︸ ︷︷ ︸
Lr

, (11)

where d is the degree vector of A, Lm pushes strongly
connected components to the same cluster, and Lr is a
regularization term that penalizes the degenerate solutions.

The losses in (10) and (11) are closely related to SC, from
which the problem of smooth cluster assignments is in-
herited. In addition, being trained with gradient descent,
the GNNs do not exploit the closed-form solution of SC.
This motivates relying on GTV to perform clustering with a
GNN.

3. Total Variation Graph Neural Network
In this section, we present the two core components of the
Total Variation Graph Neural Network (TVGNN). First, we
introduce the unsupervised clustering loss inspired by the
GTV relaxation. Then, we present a novel MP layer to be
used in conjunction with the proposed loss. We conclude
by showing two specific TVGNN architectures that can be
used for vertex clustering and for graph classification.

3.1. The loss function

In principle, the optimization of the objective in (5) yields a
balanced partition with sharp transitions in the assignment
vectors of adjacent vertices belonging to different clusters.
However, the relaxed Asymmetric Cheeger Cut expression
is ill-suited for the stochastic gradient descent used to train
a GNN, due to potential numerical issues in the proximity

3

Total Variation Graph Neural Networks

of the degenerate solutions. Specifically, all cluster assign-
ments become similar when a degenerate solution is ap-
proached, bringing both the numerator and the denominator
in (5) close to zero and creating numerical instability in the
gradients. Adding small constants to avoid zero division can
mitigate the issue only partially as it hinders the effect of the
balancing term, which is what actually prevents degenerate
solutions. Finally, we desire a loss that could be easily com-
bined with other losses (e.g., the cross-entropy) when the
cluster assignments are used to implement graph pooling
in a deep GNN for graph classification (see Sec. 3.3). For
this purpose, it is desirable to control the range of possible
values it can assume and, therefore, a denominator taking
arbitrary small values should be avoided.

To satisfy these requirements while retaining the desired
properties of the objective function, we construct a loss by
adding the GTV and balancing terms rather than taking their
ratio. First, we define the GTV loss term as

L∗
GTV = ||S||GTV =

K∑
k=1

N∑
i=1

N∑
j=i

aij |sik − sjk|, (12)

Then, we define the asymmetrical norm term as

L∗
AN =

K∑
k=1

||s:k − quantρ(s:k)||1,ρ. (13)

To control the range of values of the loss, the two terms are
rescaled as follows:

LGTV =
L∗

GTV

2E
∈ [0, 1], (14)

LAN =
β − L∗

AN

β
∈ [0, 1], (15)

where E is the number of edges in the graph and

β =

{
Nρ when ρ = K − 1,

Nρmin(1,K/(ρ+ 1)) otherwise.
(16)

The final loss reads:

L = α1LGTV + α2LAN, (17)

where α1, α2 ∈ R are hyperparameters that weigh the rela-
tive and total (in case there are other losses) contribution of
the loss components. For the experiments in Sec. 4 we set
ρ = K − 1, for which LAN will be minimized for balanced
clusters. Without prior knowledge, a balanced clustering
is a reasonable bias. Nevertheless, the balancing term only
poses a soft constraint that can be violated if needed, e.g., if
the data show a clustering structure that is clearly uneven
(see the additional results in C.1).

The cluster assignments are computed by an MLP fed with
the vertex representations produced by a stack of L MP

layers

S = Softmax(MLP(X(L);ΘMLP)) (18)

As discussed in Sec. 2.3, common MP layers minimize the
LQV of vertex features and the MLP, which is a smooth
function, will naturally preserve the Laplacian smoothing
effect when computing S. While this was suitable for an
SC objective, the optimization problem expressed by LGTV
entails minimizing the ℓ1 norm ∥si − sj∥1 of each pair of
adjacent vertices i and j. Thus, the MP layers should ideally
minimize the discrepancy in the features of adjacent vertices
in a ℓ1 norm sense. To satisfy this requirement, we design a
new MP layer starting from the definition of the gradient of
an approximated GTV function.

3.2. The GTVConv layer

Our goal is to design an MP layer that minimizes the GTV
of the vertex features. While the GTV can be expressed
by means of an incidence matrix (Wang et al., 2016) or a
(nonlinear) ℓ1-Laplacian operator (Bai et al., 2018; Zhou &
Schölkopf, 2005), these formulations are difficult to inte-
grate within a standard MP layer that operates on a connec-
tivity matrix. Furthermore, GTV is non-differentiable for
xi = xj .

To address these issues, we define the GTV Laplacian as

LΓ = DΓ − Γ, with DΓ = diag(Γ1), (19)

where Γ is a connectivity matrix matching the sparsity pat-
tern of the adjacency matrix, with elements

[Γ]ij = γij =
aij

max{|xi − xj |, ϵ}
, (20)

where ϵ is a small constant, whose purpose will be clarified
soon. To minimize the GTV, we compute the partial deriva-
tive of ||x||GTV with respect to vertex k for some x ∈ RN .
According to the definition of Γ and assuming that the graph
is undirected, the partial derivative reads

∂

∂xk
(||x||GTV)ϵ = 2

N∑
j=1

γkj · (xk − xj), (21)

and the full GTV gradient is

∇(||x||GTV)ϵ = 2DΓx− 2Γx = 2(DΓ − Γ)x = 2LΓx.
(22)

By looking at (21), we now see that the constant ϵ en-
sures numerical stability by avoiding the discontinuity in
the derivative of ||x||GTV. Indeed, using max{|xi − xj |, ϵ}
rather than |xi−xj | as the denominator in (20) corresponds
to modifying the GTV function and its derivative in the
proximity of |xi − xj | = 0, as shown in Fig. 2. A detailed
discussion and the derivations are deferred to Appendix A.2.

4

Total Variation Graph Neural Networks

Figure 2: The GTV function (in blue) is modified (parts in red)
near zero to avoid the discontinuity in the derivative.

Based on (22), the ϵ-approximation of ||x||GTV is minimized
by taking the following gradient descent update

x(t+1) =
(
I− 2δLΓ

(t)
)
x(t) (23)

where δ is the step size. The update in (23) closely resem-
bles the update in (8) and it can be implemented by a GCN
layer operating on the connectivity matrix I− 2δL

(t)
Γ . We

note that the superscript (t) in L
(t)
Γ indicates the dependency

on the features x(t) in the denominator of (20). Without loss
of generality, from now on we replace index t, which indi-
cates the t-th step in the gradient descent update, with layer
index l, meaning that each MP layer in the GNN performs a
gradient descent update to minimize the GTV.

The aggregation procedure in (23) is only valid for uni-
variate vertex features x ∈ RN . For a graph with multi-
dimensional features X ∈ RN×F the partial derivative is

∂

∂xkf
(||X||GTV)ϵ =

N∑
j=1

γkjf · (xkf − xjf), (24)

where

γkjf =
akj

max{|xkf − xjf |, ϵ}
, f = 1, . . . , F. (25)

The dependence on f implies that we need a distinct Γf

for each feature and that the update in (23) must be done
feature-wise. Notably, each time an MP layer maps the
vertex features in a new F ′-dimensional space, F ′ different
connectivity matrices are required. Clearly, this introduces
two major drawbacks. First, building, storing, and applying
many Γf matrices is computationally expensive, especially
for large graphs. Second, since each feature is updated inde-
pendently, the minimization of the approximated ∥X∥GTV
can exhibit erratic behaviors and fail to converge to the op-
timal solution. See A.3 for a detailed discussion and an
example.

To address these issues, we modify the gradient descent step
by defining a single operator that computes the ℓ1 distance

over the full feature vectors:

γ̂ij =
aij

max{||xi − xj ||1, ϵ}
. (26)

By letting

L̂Γ = D̂Γ − Γ̂, with [Γ̂]ij = γ̂ij and D̂Γ = diag(Γ̂1),
(27)

the vertex features update at step/layer l + 1 becomes

X(l+1) =
(
I− 2δL̂

(l)
Γ

)
X(l). (28)

By referring to the notation in (7), the proposed GTVConv
layer reads

X(l+1) = σ
[(

I− 2δL̂
(l)
Γ

)
X(l)Θ

(l)
MP

]
(29)

Remarks There is a clear analogy between the LQV in
(4), minimized by common MP layers, and the GTV de-
fined in terms of L̂Γ, minimized by GTVConv. While the
MP layers based on Laplacian smoothing perform low-pass
filtering (Bo et al., 2021), GTVConv is closely related to
graph trend filtering (Wang et al., 2016; Liu et al., 2021),
which implements a total variation smoother based on the ℓ1
Laplacian. While linear smoothers cannot handle heteroge-
neous smoothness, a total variation smoother encompasses
both globally smooth functions, said to have homogeneous
smoothness, and functions with different levels of smooth-
ness at different graph locations (Sadhanala et al., 2016).
From the graph signal processing perspective, it means ap-
plying low- and high-pass filtering on the graph signal at the
same time (Fu et al., 2022). In our case, when driven by the
LGTV term in (17), GTVConv applies low-pass filtering to
central vertices in the cluster and high-pass filtering at the
clusters’ boundary, enabling sharp cluster transitions.

Similarly to attention-based GNNs (Veličković et al., 2017),
GTVConv can learn edge weights in a data-driven fashion:
by looking at (26), we notice that γ̂ij depend on the fea-
tures xi,xj . Therefore, the output features at layer l will
influence the edge weights at layer l + 1.

A variant to the proposed GTVConv layer is obtained from a
GTV weighted by the vertex degrees, which gives an expres-
sion related to the LQV defined in terms of the symmetric
normalized Laplacian (details in A.4).

3.3. TVGNN architectures for clustering and
classification

In the following, we describe the GNN architectures we used
in two downstream tasks: unsupervised vertex clustering
and supervised graph classification.

5

Total Variation Graph Neural Networks

G
TV

C
on

v

M
LP

(a) Clustering

G
TV

C
on

v

M
LP

Po
ol

 G
TV

C
on

v

M
LP

Po
ol

G
TV

C
on

v

G
lo

ba
lP

oo
l +

C
la

ss
ifi

er

G
TV

C
on

v

M
LP

Po
ol

(b) Classification

Figure 3: Schematic depiction of the architectures used for vertex
clustering and graph classification.

Vertex clustering The GNN used for clustering is de-
picted in Fig. 3a. The architecture is rather simple: a stack
of L GTVConv layers (L ≥ 1) generates the feature vectors
X(L) that are used by an MLP to compute the cluster assign-
ments S. Since clustering is an unsupervised task, the GNN
is trained using only the loss function L defined in (17).

Graph classification Graph classification is a graph-level
task, where a class label yi is assigned to the i-th graph
{Ai,Xi}. GNN architectures for graph classification of-
ten alternate MP layers with graph pooling layers, which
gradually distill the global label information from the vertex
representations (Du et al., 2021).

The key challenge in graph pooling is to generate a coars-
ened graph that summarizes well the properties of the orig-
inal one (Bianchi & Lachi, 2023). Similarly to previous
work (Ying et al., 2018; Bianchi et al., 2020), the cluster
assignment matrix S computed in (18) is used to coarsen
the adjacency matrix and to compute pooled vertex features
as

Apool = STAS ∈ RK×K ; Xpool = STX ∈ RK×F . (30)

According to a recently proposed taxonomy by (Grattarola
et al., 2022), ours is a trainable, dense, fixed, hierarchical
pooling method.

Graph pooling can be applied multiple times, to obtain
smaller and smaller coarsened graphs. The features on the
final coarsened graph are globally pooled and passed to a
classifier that predicts the class label. A different instance of
the loss in (17) is used to optimize the cluster assignments at
each pooling layer. The total loss is given by combining the
clustering losses, which in this case act as regularizers, and
a supervised cross-entropy loss Lcross-entr between true and
predicted class labels. Fig. 3b shows a schematic depiction.

By construction, each entry apool
ij of Apool is the volume

of edges across clusters i and j. Since the minimization
of LGTV pushes connected components to the same cluster,
Apool gradually turns into a diagonally dominant matrix.
This would limit the contribution of any MP layer operating
on Apool, since the vertices will share information mostly
with themselves. However, in the Laplacian (27) used by the
GTVConv layer, the diagonal of the coarsened adjacency is
removed, which avoids this potential issue.

4. Experiments
We evaluate the proposed TVGNN model on unsupervised
vertex clustering and supervised graph classification tasks.
The code to implement TVGNN is publicly available1.

4.1. Unsupervised vertex clustering

In this experiment, we evaluate the capability of TVGNN
to create cluster assignments that are sharp and match well
the true vertex class. The performance of TVGNN is com-
pared against three classes of methods. The first, are algo-
rithms that generate vertex embeddings based only on the
adjacency matrix. The vertex embeddings are then clus-
tered with k-means. Representatives of this category are
Spectral Clustering (SC), DeepWalk (Perozzi et al., 2014),
Node2vec (Grover & Leskovec, 2016), and NetMF (Qiu
et al., 2018). The second class of methods generates ver-
tex embeddings by accounting both for the adjacency ma-
trix and for the vertex features. Afterward, the learned
embeddings are clustered with k-means. The chosen rep-
resentatives for this category are the Graph AutoEncoder
(GAE) and Variational Graph AutoEncoder (VGAE) (Kipf
& Welling, 2016), TADW (Yang et al., 2015), BANE (Yang
et al., 2018), and TENE (Yang & Yang, 2018). Finally, the
last class of methods consists of end-to-end GNN models
that directly generate soft cluster assignments S by account-
ing both for the graph connectivity and the vertex features.
In this case, k-means is not required and the discrete cluster
assignments are simply obtained as c = argmax(S). Diff-
Pool (Ying et al., 2018), DMoN (Tsitsulin et al., 2020), Min-
CutPool (Bianchi et al., 2020), and the proposed TVGNN
belong to this class. The GNNs equipped with DiffPool,
DMoN, and MinCutPool have the same general architecture
depicted in Fig 3a: a stack of MP layers as in (7) followed
by a layer that computes S. The GNNs are trained only by
minimizing unsupervised losses, such as those in Eq. 10
(MinCutPool), Eq. 11 (DMoN), and Eq. 17 (TVGNN). The
hyperparameters of each model are in B.3.

The methods are tested on 3 citation and 1 collaboration
networks (details in B.2). The number of clusters K is set to
be equal to the number of vertex classes. Averaged results

1https://github.com/FilippoMB/
Total-variation-graph-neural-networks

6

https://github.com/FilippoMB/Total-variation-graph-neural-networks
https://github.com/FilippoMB/Total-variation-graph-neural-networks

Total Variation Graph Neural Networks

Table 1: NMI and ACC results for vertex clustering. The highest averages are in bold and the second highest are underlined.

Method Cora Citeseer Pubmed DBLP Tot. Average

NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC
SC 0.029±0.017 29.8±0.7 0.014±0.003 21.7±0.3 0.183±0.000 59.0±0.0 0.023±0.005 45.8±0.2 0.062 39.1
DeepWalk 0.064±0.024 23.0±2.1 0.005±0.001 19.4±0.3 0.001±0.000 36.1±0.1 0.001±0.000 26.7±0.1 0.018 26.3
node2vec 0.060±0.030 23.0±2.5 0.004±0.001 19.5±0.3 0.001±0.000 36.2±0.1 0.001±0.000 27.3±0.1 0.017 26.5
NetMF 0.251±0.000 38.9±0.0 0.127±0.000 27.7±0.0 0.059±0.000 44.8±0.0 0.037±0.000 45.6±0.0 0.119 39.3

TADW 0.012±0.000 19.3±0.0 0.002±0.000 18.8±0.0 0.031±0.000 42.8±0.0 0.012±0.000 29.8±0.0 0.014 27.7
BANE 0.291±0.000 49.5±0.0 0.260±0.000 49.4±0.0 0.121±0.000 50.9±0.0 0.177±0.000 50.6±0.0 0.212 50.1
TENE 0.115±0.000 25.5±0.0 0.005±0.000 20.8±0.0 0.002±0.000 39.9±0.0 0.003±0.000 40.2±0.0 0.125 31.6
GAE 0.328±0.051 46.5±6.2 0.163±0.029 38.1±3.8 0.235±0.044 58.9±7.2 0.111±0.029 41.6±3.5 0.209 46.3
VGAE 0.437±0.029 57.2±5.4 0.156±0.034 36.0±3.9 0.245±0.043 61.1±6.1 0.213±0.021 50.7±4.7 0.263 51.3

DiffPool 0.307±0.006 47.3±1.0 0.180±0.008 33.6±0.8 0.084±0.002 41.8±0.3 0.045±0.044 37.1±4.3 0.154 40.0
MinCutPool 0.406±0.029 53.4±4.1 0.295±0.029 49.8±4.9 0.209±0.015 57.3±3.5 0.297±0.025 53.8±3.4 0.302 53.6
DMoN 0.357±0.043 48.8±6.4 0.196±0.030 36.4±4.3 0.193±0.049 55.9±4.2 0.335±0.027 59.0±4.0 0.270 50.0
TVGNN 0.488±0.016 63.2±1.8 0.361±0.018 58.6±3.0 0.216±0.027 60.0±2.0 0.342±0.011 60.8±1.5 0.352 60.7

ABL1 0.376±0.018 48.0±2.0 0.210±0.019 41.1±3.8 0.222±0.014 57.7±3.8 0.260±0.035 52.2±3.3 0.267 49.8
ABL2 0.388±0.024 50.7±4.9 0.285±0.038 49.3±5.2 0.191±0.035 58.5±3.3 0.262±0.044 50.4±4.4 0.282 52.2

0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

(a) DiffPool

0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

(b) MinCutPool

0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

(c) DMoN

0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

(d) TVGNN

Figure 4: Visualization of the logarithm of SST for Cora.

Table 2: Graph classification accuracy. The highest mean accuracy for each dataset is in bold, and the second highest is underlined. We
report the p-value of the difference between the two highest means (∗ and ∗∗ denote significance at 95% and 99% confidence levels).

Dataset Top-K SAGPool DiffPool MinCutPool DMoN TVGNN p-value

Bench-easy 53.8±31.8 53.8±31.8 99.0±0.3 99.0±0.3 98.8±0.5 99.6±0.6 .011∗

Bench-hard 30.5±0.7 29.5±0.0 72.8±0.2 70.9±1.7 71.8±1.9 75.3±0.8 .001∗∗

MUTAG 77.5±8.4 76.8±9.7 86.4±7.6 85.2±7.2 86.7±7.0 88.4±7.5 .606
Mutagenicity 68.4±8.4 68.2±7.8 78.5±1.5 78.4±1.4 77.1±1.3 80.0±1.3 .028∗

NCI1 54.0±4.1 59.2±7.7 74.1±1.8 75.2±1.8 74.3±1.3 77.3±1.8 .018∗

Proteins 69.6±2.7 70.4±2.5 74.6±4.2 75.7±3.0 75.2±3.3 77.1±2.9 .302
D&D 62.0±5.6 64.2±7.0 77.7±3.0 78.2±3.4 78.0±3.3 79.5±2.2 .323
COLLAB 73.4±6.9 75.6±2.5 78.4±1.6 79.3±1.1 79.5±0.7 79.8±1.1 .476
REDDIT-BINARY 54.0±10.0 50.0±0.1 80.9±2.7 82.3±3.2 82.6±2.9 86.5±2.8 .007∗∗

from 10 independent runs of each method are in Tab. 1,
which reports the Normalized Mutual Information (NMI)
and the accuracy (ACC) between the vertex labels and the
cluster assignments sorted with the Kuhn-Munkres algo-
rithm. Overall, TVGNN outperforms every other method in
terms of both NMI and ACC.

While NMI and ACC quantify of how well the clusters
match the true vertex labels, they do not measure the sharp-
ness of the soft cluster assignments S generated by the
GNN-based methods. To evaluate sharpness, we propose
the following procedure. Let ŷ be the assignments obtained
from the Kuhn-Munkres algorithm, which minimizes the
mismatch between the discrete cluster assignments c and the

7

Total Variation Graph Neural Networks

(a) DiffPool (b) MinCutPool (c) DMoN (d) TVGNN

(e) DiffPool (f) MinCutPool (g) DMoN (h) TVGNN

Figure 5: 2D UMAP transform of X(L) for Cora with the edges from the original adjacency matrix. In (a)-(d) vertex colors correspond
to cluster assignments ŷ from Kuhn-Munkres and in (e)-(h) colors correspond to the true labels.

0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

(a) GTVConv + MinCut loss

0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

(b) GCN + TVGNN loss

Figure 6: Visualization of the logarithm of SST for configurations
used in the ablation study.

labels y. By sorting the rows of S according to the indices
given by argsort(ŷ), SST will exhibit a block-diagonal
structure if the vertices are assigned with high confidence
to only one cluster, i.e., if the cluster assignments are sharp.
Instead, if the assignments in S are smooth, non-zero ele-
ments will appear on the off-diagonal of SST . In addition,
the size of each block in SST indicates the cluster size.
Fig. 4 shows log(SST) for the cluster assignments obtained
for the Cora dataset. The soft assignments given by TVGNN
are much sharper than those of DiffPool, MinCutPool, and
DMoN, since most of the non-zero values lie within the
blocks on the diagonal. Notably, the assignments given by
DiffPool are so smooth that discerning any structure in SST

is impossible.

The cluster assignments are computed from vertex features

(a) GTVConv + MinCut loss (b) GCN + TVGNN loss

(c) GTVConv + MinCut loss (d) GCN + TVGNN loss

Figure 7: Equivalent plots to Figure 5 for the ablation study
configurations. Colors correspond to the cluster assignments in the
top row and the true labels in the bottom row.

X(L) generated by the last MP layer according to (18). To
show the separation of the vertex communities before com-
puting the assignments, we project X(L) in two dimensions
using UMAP (McInnes et al., 2018). Fig 5 shows the pro-
jected features for Cora. In the first row, the vertices are
colored according to the cluster assignments ŷ from Kuhn-

8

Total Variation Graph Neural Networks

Munkres; in the second row, according to the true labels
y. Compared to the other methods, TVGNN yields clusters
that are better separated and more compact. In addition,
with TVGNN the class distribution is better aligned with
the clustering partition.

Appendices C.1, C.2, and C.3 report additional results and
experiments, which further highlight the capabilities of
TVGNN in learning sharp and meaningful cluster assign-
ments.

4.2. Ablation experiment

To verify the effectiveness of the proposed TVGNN archi-
tecture, which combines the loss function in (17) with the
GTVConv layers in (29), we conduct an ablation study with
two modified configurations. The numerical results are
reported at the bottom of Tab. 1. Here, ABL1 denotes a
configuration where the proposed loss is replaced by the
MinCutPool loss function in (10). The MinCutPool loss
was chosen because it is closely related to the spectral clus-
tering loss, which we aim at improving by basing our loss
on the components of a tighter relaxation of the Asymmetric
Cheeger cut. On the other hand, ABL2 denotes a configura-
tion where the GTVConv layers, which minimize the GTV,
are replaced by GCN layers, which minimize the LQV (4)
instead. The plots of SST and the UMAP transform of the
latent representation are in Fig. 6 and 7, respectively. Com-
pared to the proposed model, in both ablation experiments,
the clusters are less separated and compact. In addition,
there is a worse correspondence between clusters and class
labels.

4.3. Supervised graph classification

This task consists in assigning each graph Gi to a class yi.
We adopt the deep architecture described in Sec. 3.3, where
MP layers are interleaved with a pooling layer. As pooling
methods, we consider DiffPool, MinCutPool, DMoN, SAG-
Pool (Lee et al., 2019), Top-K (Cangea et al., 2018; Gao &
Ji, 2019), and the proposed TVGNN. All GNN architectures
follow the same general configuration depicted in Fig. 3b,
with the main difference that TVGNN adopts GTVConv
rather than standard MP layers (hyperparameters and other
details are in Appendix B.3). The unsupervised clustering
losses in DiffPool, MinCutPool, DMoN, and TVGNN are
computed at each pooling layer and then combined with the
supervised cross-entropy loss at the end. The GNNs with
SAGPool and Top-K do not have auxiliary losses and are
trained only with the cross-entropy.

We consider 9 graph classification datasets (details in
B.2). Training and testing are done with a stratified 5-fold
train/test split. In addition, 10% of the training set is used as
a validation set using a random stratified split. For each fold,
we perform 3 independent runs and we train until we reach

early stopping by measuring the validation loss. To make
the comparison fair, all methods are evaluated on the exact
same splits. The classification accuracy for each dataset is
reported in Table 2. The GNN models based on TVGNN
achieve the highest mean accuracy on all datasets and the
differences with the second-best performing method are
statistically significant in most of the cases.

5. Conclusions
We introduced a novel graph neural network that signifi-
cantly improves the performance of previous GNN models
based on spectral clustering. To obtain compact and well-
separated clusters, we derived an unsupervised loss from
the Asymmetric Cheeger cut, which minimizes the graph
total variation of the cluster assignments. Remarkably, this
is the first attempt to adapt a tighter relaxation of the K-cut
problem to neural networks and to apply the Asymmetric
Cheeger cut relaxation for clustering vertices of attributed
graphs.

To facilitate the minimization of the proposed loss function,
we introduced GTVConv, a message-passing layer that up-
dates the vertex features by following the gradient of their
graph total variation. The formal derivation demands GTV-
Conv to use a different connectivity matrix to process each
one of the vertex features, which is intractable. Therefore,
we approximated the gradient descent step of GTV with a
single connectivity matrix that accounts for all the vertex
features at once, reducing the model complexity and facili-
tating its training. An appealing property of the GTVConv
layer is its capability to adjust the edge weights based on the
vertex representations, which are learned in a data-driven
fashion. Our extensive experimental evaluation showed that
TVGNN outperforms every other competing method in ver-
tex clustering and graph classification tasks. In particular,
our model always separates well the vertex features and
generates sharp cluster assignments.

In this work, the GTVConv was used in conjunction with the
proposed unsupervised loss in GNN architectures for vertex
clustering and graph classification. However, GTVConv
could also be used as a stand-alone MP layer in GNNs for
tasks such as semi-supervised vertex classification.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of Nvidia
Corporation with the donation of the RTX A6000 GPUs
used to perform the experimental evaluation.

References
Bai, Y., Cheung, G., Liu, X., and Gao, W. Graph-based blind

image deblurring from a single photograph. IEEE Trans-

9

Total Variation Graph Neural Networks

actions on Image Processing, 28(3):1404–1418, 2018.

Bianchi, F. M. and Lachi, V. The expressive power
of pooling in graph neural networks. arXiv preprint
arXiv:2304.01575, 2023.

Bianchi, F. M., Grattarola, D., and Alippi, C. Spectral
clustering with graph neural networks for graph pooling.
In International Conference on Machine Learning, pp.
874–883. PMLR, 2020.

Bianchi, F. M., Grattarola, D., Livi, L., and Alippi, C. Graph
neural networks with convolutional arma filters. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 2021.

Bianchi, F. M., Gallicchio, C., and Micheli, A. Pyramidal
reservoir graph neural network. Neurocomputing, 470:
389–404, 2022.

Bo, D., Wang, X., Shi, C., and Shen, H. Beyond low-
frequency information in graph convolutional networks.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 35, pp. 3950–3957, 2021.

Bresson, X., Laurent, T., Uminsky, D., and von Brecht,
J. Multiclass total variation clustering. In Burges, C.,
Bottou, L., Welling, M., Ghahramani, Z., and Weinberger,
K. (eds.), Advances in Neural Information Processing
Systems, volume 26. Curran Associates, Inc., 2013.

Cangea, C., Veličković, P., Jovanović, N., Kipf, T., and Liò,
P. Towards sparse hierarchical graph classifiers. arXiv
preprint arXiv:1811.01287, 2018.

Du, J., Wang, S., Miao, H., and Zhang, J. Multi-channel
pooling graph neural networks. In IJCAI, pp. 1442–1448,
2021.

Duval, A. and Malliaros, F. Higher-order clustering and
pooling for graph neural networks. arXiv preprint
arXiv:2209.03473, 2022.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with pytorch geometric. arXiv preprint arXiv:1903.02428,
2019.

Fu, G., Zhao, P., and Bian, Y. p-laplacian based graph
neural networks. In International Conference on Machine
Learning, pp. 6878–6917. PMLR, 2022.

Fu, X., Zhang, J., Meng, Z., and King, I. Magnn: Metapath
aggregated graph neural network for heterogeneous graph
embedding. In Proceedings of The Web Conference 2020,
pp. 2331–2341, 2020.

Gao, H. and Ji, S. Graph u-nets. In international conference
on machine learning, pp. 2083–2092. PMLR, 2019.

Grattarola, D. and Alippi, C. Graph neural networks
in tensorflow and keras with spektral. arXiv preprint
arXiv:2006.12138, 2020.

Grattarola, D., Zambon, D., Bianchi, F. M., and Alippi, C.
Understanding pooling in graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems,
2022.

Grover, A. and Leskovec, J. node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, 2016.

Hamilton, W. L. Graph representation learning. Synthesis
Lectures on Artifical Intelligence and Machine Learning,
14(3):1–159, 2020.

Hein, M. and Setzer, S. Beyond spectral clustering-tight
relaxations of balanced graph cuts. In NIPS, pp. 2366–
2374. Citeseer, 2011.

Ivanov, S., Sviridov, S., and Burnaev, E. Understanding
isomorphism bias in graph data sets. arXiv preprint
arXiv:1910.12091, 2019.

Kampffmeyer, M., Løkse, S., Bianchi, F. M., Livi, L., Sal-
berg, A.-B., and Jenssen, R. Deep divergence-based
approach to clustering. Neural Networks, 113:91–101,
2019.

Kipf, T. N. and Welling, M. Variational graph auto-encoders.
arXiv preprint arXiv:1611.07308, 2016.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. International
Conference of Learning Representations (ICLR), 2017.

Lee, J., Lee, I., and Kang, J. Self-attention graph pooling. In
International conference on machine learning, pp. 3734–
3743. PMLR, 2019.

Li, Q., Han, Z., and Wu, X.-M. Deeper insights into graph
convolutional networks for semi-supervised learning. In
Thirty-Second AAAI conference on artificial intelligence,
2018.

Liu, X., Jin, W., Ma, Y., Li, Y., Liu, H., Wang, Y., Yan, M.,
and Tang, J. Elastic graph neural networks. In Meila,
M. and Zhang, T. (eds.), Proceedings of the 38th Interna-
tional Conference on Machine Learning, volume 139, pp.
6837–6849. PMLR, 18–24 Jul 2021.

Ma, Y., Liu, X., Zhao, T., Liu, Y., Tang, J., and Shah, N. A
unified view on graph neural networks as graph signal
denoising. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management,
pp. 1202–1211, 2021.

10

Total Variation Graph Neural Networks

McInnes, L., Healy, J., and Melville, J. Umap: Uniform
manifold approximation and projection for dimension
reduction. arXiv preprint arXiv:1802.03426, 2018.

Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., and Long,
J. A survey of clustering with deep learning: From the
perspective of network architecture. IEEE Access, 6:
39501–39514, 2018.

Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel,
P., and Neumann, M. Tudataset: A collection of bench-
mark datasets for learning with graphs. In ICML 2020
Workshop on Graph Representation Learning and Beyond
(GRL+ 2020), 2020. URL www.graphlearning.
io.

Nt, H. and Maehara, T. Revisiting graph neural net-
works: All we have is low-pass filters. arXiv preprint
arXiv:1905.09550, 2019.

Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: On-
line learning of social representations. In Proceedings
of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2014.

Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., and Tang, J.
Network embedding as matrix factorization: Unifying
deepwalk, line, pte, and node2vec. In Proceedings of the
11th ACM international conference on web search and
data mining, 2018.

Rangapuram, S. S., Mudrakarta, P. K., and Hein, M. Tight
continuous relaxation of the balanced k-cut problem. In
NIPS, pp. 3131–3139, 2014.

Rozemberczki, B., Kiss, O., and Sarkar, R. Karate Club:
An API Oriented Open-source Python Framework for
Unsupervised Learning on Graphs. In Proceedings of the
29th ACM International Conference on Information and
Knowledge Management (CIKM ’20), pp. 3125–3132.
ACM, 2020.

Sadhanala, V., Wang, Y.-X., and Tibshirani, R. J. Total
variation classes beyond 1d: Minimax rates, and the limi-
tations of linear smoothers. Advances in Neural Informa-
tion Processing Systems, 29, 2016.

Shaham, U., Stanton, K., Li, H., Basri, R., Nadler, B.,
and Kluger, Y. Spectralnet: Spectral clustering us-
ing deep neural networks. In International Confer-
ence on Learning Representations, 2018. URL https:
//openreview.net/forum?id=HJ_aoCyRZ.

Su, X., Xue, S., Liu, F., Wu, J., Yang, J., Zhou, C., Hu,
W., Paris, C., Nepal, S., Jin, D., et al. A comprehensive
survey on community detection with deep learning. IEEE
Transactions on Neural Networks and Learning Systems,
2022.

Tian, F., Gao, B., Cui, Q., Chen, E., and Liu, T.-Y. Learning
deep representations for graph clustering. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 28, 2014.

Tremblay, N., Gonçalves, P., and Borgnat, P. Design of
graph filters and filterbanks. In Cooperative and Graph
Signal Processing, pp. 299–324. Elsevier, 2018.

Tsitsulin, A., Palowitch, J., Perozzi, B., and Müller, E.
Graph clustering with graph neural networks. arXiv
preprint arXiv:2006.16904, 2020.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Von Luxburg, U. A tutorial on spectral clustering. Statistics
and computing, 17(4):395–416, 2007.

Wang, Y.-X., Sharpnack, J., Smola, A. J., and Tibshirani,
R. J. Trend filtering on graphs. Journal of Machine
Learning Research, 17(105):1–41, 2016. URL http:
//jmlr.org/papers/v17/15-147.html.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Simplifying graph convolutional networks. In
International conference on machine learning, pp. 6861–
6871. PMLR, 2019.

Yang, C., Liu, Z., Zhao, D., Sun, M., and Chang, E. Y.
Network representation learning with rich text informa-
tion. In International Joint Conference on Artificial In-
telligence, IJCAI’15, pp. 2111–2117. AAAI Press, 2015.
ISBN 9781577357384.

Yang, H., Pan, S., Zhang, P., Chen, L., Lian, D., and Zhang,
C. Binarized attributed network embedding. In 2018
IEEE International Conference on Data Mining (ICDM),
pp. 1476–1481. IEEE, 2018.

Yang, S. and Yang, B. Enhanced network embedding with
text information. In 2018 24th International Conference
on Pattern Recognition (ICPR), pp. 326–331. IEEE, 2018.

Yang, Z., Cohen, W. W., and Salakhutdinov, R. Revisit-
ing semi-supervised learning with graph embeddings. In
Proceedings of the 33rd International Conference on In-
ternational Conference on Machine Learning, ICML’16,
pp. 40–48. JMLR.org, 2016.

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and
Leskovec, J. Hierarchical graph representation learning
with differentiable pooling. Advances in neural informa-
tion processing systems, 31, 2018.

Zhou, D. and Schölkopf, B. Regularization on discrete
spaces. In Joint Pattern Recognition Symposium, pp. 361–
368. Springer, 2005.

11

www.graphlearning.io
www.graphlearning.io
https://openreview.net/forum?id=HJ_aoCyRZ
https://openreview.net/forum?id=HJ_aoCyRZ
http://jmlr.org/papers/v17/15-147.html
http://jmlr.org/papers/v17/15-147.html

Total Variation Graph Neural Networks

A. Derivations and analyses
A.1. Graph cut in matrix form

To see that the cut between Ck and its conjugate C̄k can be expressed in matrix form, we first write the cut as

cut(Ck, C̄k) =
∑

i∈Ck,j∈C̄k

aij(1− zizj),

where zi, zj ∈ {−1, 1} are cluster indicators, i.e., zi = 1 if vertex i ∈ Ck and zi = −1 if i /∈ Ck.

Then,

∑
i∈Ck,j∈C̄k

aij(1− zizj) =
∑

i∈Ck,j∈C̄k

aij

(
z2i + z2j

2
− zizj

)

=
1

2

∑
i∈Ck

[∑
j∈C̄k

aij

]
z2i +

1

2

∑
j∈C̄k

[∑
i∈Ck

aij

]
z2j −

∑
i∈Ck,j∈C̄k

aijzizj

=
1

2

∑
i∈Ck

diiz
2
i +

1

2

∑
j∈C̄k

djjz
2
j − zTAz

= zTDz − zTAz = zTLz.

A.2. Derivation of the GTVConv aggregation

The graph total variation of a graph with univariate node attributes is defined as

||x||GTV =

N∑
i=1

N∑
j=1

aij |xi − xj |.

If the graph has no self-loops (aii = 0 ∀ i) and xi ̸= xj ∀ j ̸= i, the partial derivative of GTV with respect to xk is

∂

∂xk
(||x||GTV) =

N∑
j=1
j ̸=k

akj
xk − xj

|xk − xj |
+

N∑
j=1
j ̸=k

ajk
xk − xj

|xj − xk|

To achieve differentiability at all points, we define an approximated GTV function as

(||x||GTV)ϵ =

N∑
i=1

N∑
j=1

[
I(|xi − xj | ≥ ϵ) (aij |xi − xj |) + I(|xi − xj | < ϵ)

(
aij

(xi − xj)
2

2ϵ
+

aijϵ

2

)]
, (31)

where I(·) is the indicator function. The function in (31) is the one displayed on the left in Fig. 2. Compared to the original
GTV function, (31) is smooth in the vicinity of |xi − xj | = 0. Importantly, this approximation removes the discontinuity in
the derivative at |xi − xj | = 0, which now becomes a piece-wise linear function, as shown on the right in Fig. 2.

By defining the matrix Γ whose (ij)-th entry is

γij =
aij

max{|xi − xj |, ϵ}
,

12

Total Variation Graph Neural Networks

the partial derivative of the approximate GTV can be expressed as

∂

∂xk
(||x||GTV)ϵ =

N∑
j=1

γkj(xk − xj) +

N∑
j=1

γjk(xk − xj)

= xk

N∑
j=1

γkj −
N∑
j=1

γkjxj + xk

N∑
j=1

γjk −
N∑
j=1

γjkxj

= xkdk −
N∑
j=1

γkjxj + xkd
∗
k −

N∑
j=1

γjkxj , where dk =
∑
j

γkj , d∗k =
∑
j

γjk

= DΓk
x− Γkx+D∗

Γk
x− (ΓT)kx,

where Γk and DΓk
represent the k-th row of Γ and DΓ = diag(Γ1), respectively. The full gradient of the approximated

GTV of x is furthermore
∇(||x||GTV)ϵ = DΓx− Γx+D∗

Γx− ΓTx.

If the graph is undirected, i.e., γij = γji, the gradient can be simplified as

∇(||x||GTV)ϵ = 2(DΓ − Γ)x = 2LΓx,

where LΓ is the Laplacian associated with Γ. Finally, the gradient descent step update of the approximated GTV of x with
step size δ becomes

x(t+1) = x(t) − δ∇(||x||GTV)
(t)
ϵ

= x(t) − 2δL
(t)
Γ x(t)

=
(
I− 2δL

(t)
Γ

)
x(t).

A.3. Replacing multiple Γf with a single Γ̂

As discussed in Sec. 3.2 and according to (24), in the presence of multiple vertex features a different connectivity matrix
Γf , f = 1, . . . , F must be used to independently aggregate each feature f . We propose to simplify the procedure, by
aggregating all features using the single connectivity matrix Γ̂ defined in (26). The proposed simplification offers two
important advantages. The first and more obvious involves computational complexity: only one connectivity matrix needs
to be stored and a single aggregation procedure must be performed. A second advantage is that using Γ̂ facilitates the
minimization of the GTV across the vertex features. We illustrate this second point with an example.

In the following, we consider the Cora dataset but the same behavior is observed also for the other datasets. To reproduce
a typical GNN setting, the features X(0) are constructed by mapping the original one-hot encoded features into a 32-
dimensional space through the multiplication with a kernel, whose values are randomly sampled from a standard normal
distribution. Then, we apply several times the aggregation defined in equations (24) and (26). Fig. 8 depicts how the GTV
of the vertex features, ∥X∥GTV, decreases when the vertex features are aggregated using multiple matrices {Γf}Ff=1 (black
line) or a single connectivity matrix Γ̂ (green dashed line). In the first plot, Fig. 8(a), we use gradient step 2δ = 0.311,
which is the same used in the vertex clustering experiment. In Fig. 8(b) we set 2δ = 0.005. First, we notice that for the
larger gradient step, the aggregation based on multiple connectivity matrices performs poorly as the minimization gets stuck
oscillating around some local minima. This can happen because the gradients of the GTV for each feature f are pulling
toward different directions. Decreasing step size (Fig. 8(b)), which corresponds to lowering the contribution from neighbors
when aggregating, makes the scheme based on multiple Γf more stable. Nevertheless, even in this case the aggregation
scheme based on the single Γ̂ matrix eventually converges to a better solution.

In conclusion, when using Γ̂ the optimization of GTV is generally more stable, allows to find better minima, and is more
robust to the selection of the gradient step δ.

13

Total Variation Graph Neural Networks

0 100 200 300 400 500
Aggregation steps

0.0
0.2
0.4
0.6
0.8
1.0

||x
|| G

TV

1e6

{ f}F
f = 1

(a)

0 100 200 300 400 500
Aggregation steps

20000

40000

60000

80000

||x
|| G

TV

{ f}F
f = 1

(b)

Figure 8: Evolution of GTV for the vertex features of Cora with respect to the number of aggregation steps when using a
connectivity matrix Γf for each feature or a single connectivity matrix Γ̂. In (a), we use gradient step 2δ = 0.311; In (b),
we use gradient step 2δ = 0.005.

A.4. Weighted LQV and GTV

Let us define the LQV weighted by the vertex degrees as

||x||LQVW
=

1

4

N∑
i=1

N∑
j=1

(√
aij
di

xi −
√

aij
dj

xj

)2

=
1

4

N∑
i=1

N∑
j=1

aij

(
xi√
di

− xj√
dj

)2

.

Then, under the assumption that the graph is undirected, we have that

∂

∂xk

(
||x||LQVW

)
=

1√
dk

∑
j

akj

(
xk√
dk

− xj√
dj

)

=
xk

dk

∑
j

akj −
∑
j

akj√
dk
√
dj

xj

= (Ix)k − (D−1/2AD−1/2x)k

∇
(
||x||LQVW

)
= (I−D−1/2AD−1/2)x,

where (I−D−1/2AD−1/2) is the symmetrically normalized Laplacian.

If we compute the gradient descent update we obtain

x(t+1) = x(t) − δ∇
(
||x||LQVW

)(t)
= x(t) − δ(I−D−1/2AD−1/2)x(t).

14

Total Variation Graph Neural Networks

When the gradient step size is δ = 1, we get

x(t+1) = D−1/2AD−1/2x(t),

which closely resembles the aggregation function used by a GCN to update the vertex features.

Now, let us define the degree-weighted GTV as

||x||GTVW =
1

2

N∑
i=1

N∑
j=1

∣∣∣∣√aij
di

xi −
√

aij
dj

xj

∣∣∣∣ = 1

2

N∑
i=1

N∑
j=1

|qij |,

with qij =
√

aij

di
xi−

√
aij

dj
xj and di = Dii, where D = diag(A1). The numerically stable approximation to the derivative

of qkj w.r.t. xk is then given by

∂

∂xk
(qkj)ϵ =

√

akj
dk

· qkj
|qkj |

, |qkj | ≥ ϵ√
akj
dk

· qkj
ϵ
, |qkj | < ϵ

which can be rewritten in a more compact form as

∂

∂xk
(qkj)ϵ =

∑
j

√
akj
dk

qkj
max{ϵ, |qkj |}

=
∑
j

akj√
dk

xk√
dk

− xj√
dj

max{ϵ, |qkj |}
.

Now let
γij =

aij
max{ϵ, |qij |}

By substituting γkj and assuming, once again, that the graph is undirected we get

∂

∂xk
(|x||GTVW)ϵ =

∑
j

1√
dk

γkj

(
xk√
dk

− xj√
dj

)

=
xk

dk

∑
j

γkj −
∑
j

γkj√
dk
√
dj

xj

= (D−1DΓ)i x− (D−1/2ΓD−1/2)i x

= (D−1/2DΓD
−1/2)i x− (D−1/2ΓD−1/2)i x,

where DΓ = diag(Γ1).

The gradient of the weighted GTV is

∇ (||x||GTVW) = D−1/2DΓD
−1/2x−D−1/2ΓD−1/2x

= D−1/2(DΓ − Γ)D−1/2x

= D−1/2LΓD
−1/2x

A gradient descent step for minimizing the weighted GTV is given by

x(t+1) = x(t) − δ∇ (||x||GTVW)
(t)

= x(t) − δD−1/2L
(t)
Γ D−1/2x(t)

= (I− δD−1/2L
(t)
Γ D−1/2)x(t)

15

Total Variation Graph Neural Networks

which is equivalent to the aggregation step of a GCN with Ã = I− δD−1/2L
(t)
Γ D−1/2.

We notice the analogy between the updates derived from the degree-weighted LQV, which is x(t+1) = x(t) − δ(I −
D−1/2AD−1/2)x(t), and from the degree-weighted GTV, which is x(t+1) = (I− δD−1/2L

(t)
Γ D−1/2)x(t).

B. Details of the experimental setting
B.1. Software libraries

The GNN models were implemented using both Spektral2 (Grattarola & Alippi, 2020) and Pytorch Geometric3 (Fey &
Lenssen, 2019). The methods for vertex embedding used in the vertex clustering experiment are based on the Karate-
club4 (Rozemberczki et al., 2020) implementation, and most of the datasets are taken from Pytorch Geometric.

B.2. Datasets details

Table 3: Details of the vertex clustering datasets.

Dataset #Vertices #Edges #Vertex attr. #Vertex classes

Cora 2,708 10,556 1,433 7
Citeseer 3,327 9,104 3,703 6
Pubmed 19,717 88,648 500 3
DBLP 17,716 105,734 1,639 4

Table 4: Details of the graph classification datasets.

Dataset #Samples #Classes Avg. #vertices Avg. #edges Vertex attr. Vertex labels

Bench-easy 1,800 3 147.82 922.67 – yes
Bench-hard 1,800 3 148.32 572.32 – yes
MUTAG 188 2 17.93 19.79 – yes
Mutagenicity 4,337 2 30.32 61.54 – yes
NCI1 4,110 2 29.87 64.60 – yes
Proteins 1,113 2 39.06 72.82 1 yes
D&D 1,178 2 284.32 1,431.32 – yes
COLLAB 5,000 3 74.49 4,914.43 – no
REDDIT-BINARY 2,000 2 429.63 995.51 – no

In the vertex clustering experiment, we considered the citation networks Cora, Pubmed, Citeseer (Yang et al., 2016) and
DBLP (Fu et al., 2020). In the graph classification experiment, we analyzed seven TUD datasets (Morris et al., 2020) and
two synthetic datasets, Bench-easy and Bench-hard (Bianchi et al., 2022).

Details about the datasets are reported in Tab. 3 and 4. In the graph classification datasets, the vertex feature matrix X
consists of vertex attributes, vertex labels, or a concatenation of both. For the datasets where neither the vertex attributes nor
the vertex labels are available, a one-hot encoded vertex degree matrix was used as a surrogate feature for X. Furthermore,
motivated by the work of (Ivanov et al., 2019), the datasets were cleaned such that they only contained non-isomorphic
graphs.

B.3. Hyperparameters configuration

The hyperparameters for TVGNN for both the vertex clustering and graph classification tasks are reported in Tab. 5. The
parameter ϵ which ensures numerical stability for Γ was set to 1e-3 in all experiments. For MinCutPool (Bianchi et al.,
2020), GAE and VGAE (Kipf & Welling, 2016) the model configurations are those reported in the original papers. For
DiffPool, Top-K, and SAGPool configurations were the same as in (Bianchi et al., 2020). The models with DMoN used

2https://graphneural.network
3https://pytorch-geometric.readthedocs.io
4https://karateclub.readthedocs.io

16

https://graphneural.network
https://pytorch-geometric.readthedocs.io
https://karateclub.readthedocs.io

Total Variation Graph Neural Networks

Table 5: Hyperparameters configuration for the vertex clustering and graph classification tasks. σMP indicates the activation
of the MP layers, σMLP is the activation of the MLP layers, δ is the step-size in the GTVConv layer, α1 is the coefficient for
the total variation loss LGTV, α2 is the coefficient for the balance loss LAN, ℓ2 indicates the weight of the ℓ2 regularization
on the GNN weight parameters. The values of # MP layers and # MLP layers are the numbers of MP and MLP layers,
respectively, in each of the blocks of the architectures for clustering and classification presented in Section 3.3. For example,
the architecture used for vertex clustering uses 2× 1 MP and 1× 1 MLP layers, while the architecture used in Proteins uses
3× 3 MP and 3× 1 MLP layers.

Parameters Vertex Clustering Bench-easy Bench-hard MUTAG Mutagenicity

MP layers 2 1 1 1 3
MP channels 512 32 32 32 32
σMP ELU ReLU ReLU ELU ReLU
2δ 0.311 0.724 2.288 1.644 3.077
MLP layers 1 3 1 3 2
MLP channels 256 64 64 64 32
σMLP ReLU ReLU ReLU ReLU ELU
α1 0.785 0.594 0.188 0.623 0.726
α2 0.514 0.974 0.737 0.832 0.982
ℓ2 – 1e-5 0 1e-4 1e-5
Learning rate 1e-3 1e-3 5e-4 1e-2 5e-4

Parameters NCI1 Proteins D&D COLLAB REDDIT-BINARY

MP layers 3 3 1 2 3
MP channels 32 64 64 256 16
σMP ReLU ELU ELU ReLU ReLU
2δ 2.411 2.073 0.622 0.554 1.896
MLP layers 3 1 2 2 3
MLP channels 32 16 32 128 16
σMLP ReLU ELU ReLU ReLU ReLU
α1 0.936 0.985 0.354 0.304 0.654
α2 0.639 0.751 0.323 0.801 0.962
ℓ2 1e-3 1e-3 1e-5 0 1e-3
Learning rate 5e-4 1e-3 1e-5 5e-5 1e-3

the same hyperparameter configuration as for MinCutPool and the regularization term Lr in the auxiliary loss is weighted
by 1e-1. In the case of DeepWalk, node2vec, NetMF, and TADW we used the default configurations from the Karateclub
library (Rozemberczki et al., 2020).

For the graph classification task, the GNNs with TVGNN, MinCutPool, DiffPool, and DMoN were trained with a batch size
of 8 for all datasets, except D&D and REDDIT-BINARY, for which batch size was set to 1 due to memory constraints. The
models with Top-K and SAGPool were trained with a batch size of 1 for all datasets. For the vertex clustering task, the
GNNs were trained for 10,000 epochs. In the graph classification task, we performed early stopping on the validation set
using patience of 20 epochs.

B.4. Training times

Table 6 and Table 7 report training times for the GNN-based methods for the vertex clustering task and graph classification
task, respectively. All methods have been given similar capacities in terms of the number of layers and the size of the weight
matrices. The reported times give a rough indication of the differences in the computational complexity, but they highly
depend on how optimized is their implementation. Here, the different pooling methods were implemented using Pytorch
Geometric (Fey & Lenssen, 2019) and, thus, all methods besides Top-K and SAGPool process dense representations of the
graphs. Overall, we notice no significant differences between the execution time of TVGNN and the other methods.

17

Total Variation Graph Neural Networks

Table 6: Training times in milliseconds per epoch for the vertex clustering task.

Method Cora Citeseer Pubmed DBLP

DiffPool 5.6 7.7 67.6 62.2
MinCutPool 8.9 13.8 272.5 227.4
DMoN 5.7 7.8 39.9 39.7
TVGNN 8.3 9.4 56.4 57.2

Table 7: Training times in seconds per epoch for the graph classification task.

Dataset Top-K SAGPool DiffPool MinCutPool DMoN TVGNN

Bench-easy 0.39 0.39 0.39 0.39 0.41 0.49
Bench-hard 0.37 0.37 0.34 0.38 0.37 0.41
MUTAG 0.14 0.10 0.09 0.10 0.09 0.10
Mutagenicity 0.72 0.81 0.71 0.69 0.74 0.85
NCI1 0.69 0.70 0.63 0.70 0.71 0.76
Proteins 0.28 0.23 0.21 0.24 0.24 0.25
D&D 0.32 0.34 0.61 0.63 0.45 0.50
COLLAB 1.03 1.18 0.99 1.12 1.11 1.52
REDDIT-BINARY 0.51 0.54 1.83 1.86 1.10 1.38

C. Additional results
C.1. Additional plots

0 1000 2000 3000

0

500

1000

1500

2000

2500

3000

(a) DiffPool
0 1000 2000 3000

0

500

1000

1500

2000

2500

3000

(b) MinCutPool
0 1000 2000 3000

0

500

1000

1500

2000

2500

3000

(c) DMoN
0 1000 2000 3000

0

500

1000

1500

2000

2500

3000

(d) TVGNN
Figure 9: Logarithm of SST for Citeseer.

0 5000 10000 15000

0

2500

5000

7500

10000

12500

15000

17500

(a) DiffPool
0 5000 10000 15000

0

2500

5000

7500

10000

12500

15000

17500

(b) MinCutPool
0 5000 10000 15000

0

2500

5000

7500

10000

12500

15000

17500

(c) DMoN
0 5000 10000 15000

0

2500

5000

7500

10000

12500

15000

17500

(d) TVGNN
Figure 10: Logarithm of SST for Pubmed.

Plots with the logarithm of SST for Citeseer, Pubmed, and DBLP are presented in Fig. 9, Fig. 10, and Fig. 11 respectively.
The UMAP transform of X(L) for Citeseer, Pubmed, and DBLP are presented in Fig. 12, Fig. 13, and Fig. 14 respectively.

As for the case of Cora, TVGNN manages to give better-separated clusters with sharper assignments for all three graphs
when compared to the other three GNN-based clustering methods that produce soft assignments. These plots also show that

18

Total Variation Graph Neural Networks

0 5000 10000 15000

0
2000
4000
6000
8000

10000
12000
14000
16000

(a) DiffPool
0 5000 10000 15000

0
2000
4000
6000
8000

10000
12000
14000
16000

(b) MinCutPool
0 5000 10000 15000

0
2000
4000
6000
8000

10000
12000
14000
16000

(c) DMoN
0 5000 10000 15000

0
2000
4000
6000
8000

10000
12000
14000
16000

(d) TVGNN
Figure 11: Logarithm of SST for DBLP.

(a) DiffPool (b) MinCutPool (c) DMoN (d) TVGNN

(e) DiffPool (f) MinCutPool (g) DMoN (h) TVGNN
Figure 12: UMAP transforms of X(L) for Citeseer. Colors in the top row of each dataset correspond to cluster assignments, while the
colors in the bottom row correspond to true labels.

(a) DiffPool (b) MinCutPool (c) DMoN (d) TVGNN

(e) DiffPool (f) MinCutPool (g) DMoN (h) TVGNN
Figure 13: UMAP transforms of X(L) for Pubmed. Colors in the top row of each dataset correspond to cluster assignments, while the
colors in the bottom row correspond to true labels.

19

Total Variation Graph Neural Networks

(a) DiffPool (b) MinCutPool (c) DMoN (d) TVGNN

(e) DiffPool (f) MinCutPool (g) DMoN (h) TVGNN

Figure 14: UMAP transforms of X(L) for DBLP. Colors in the top row of each dataset correspond to cluster assignments, while the
colors in the bottom row correspond to true labels.

0 1000 2000

0

500

1000

1500

2000

2500

(a) Cora
0 1000 2000 3000

0

500

1000

1500

2000

2500

3000

(b) Citeseer

0 5000 10000 15000

0

5000

10000

15000

(c) Pubmed

0 5000 10000 15000

0

5000

10000

15000

(d) DBLP

Figure 15: Logarithm of SST for the true labels of each dataset.

the cluster distribution given by TVGNN is not always balanced, see for instance Fig. 11. In fact, with respect to the true
labels, all four datasets are imbalanced, which can be seen from Fig. 15.

The plots of SST for the configurations used in the ablation study are presented in Fig. 16, while the UMAP plots for
Citeseer, Pubmed, and DBLP are presented in Fig. 17, Fig. 18, and Fig. 19, respectively.

C.2. Denoising task

For this task, we generated a Stochastic-Block Model graph with three communities. The graph has 200 nodes, the
probability of having a within-community edge is set to 0.3, and the probability of having an edge between communities is
0.005. We assigned vertex features x1 = [1, 0, 0], x2 = [0, 1, 0], and x3 = [0, 0, 1] to the vertices of the first, second, and
third community, respectively. Having three communities, allows us to use a convenient RGB color coding to visualize the
vertex features. Next, we corrupted the features by adding Gaussian noise from N (0, 1.5). Afterward, we performed vertex
clustering with Diffpool, MinCut, DMoN, and TVGNN. The results are shown in Fig. 20. Note that in panels (a-b), colors
indicate node features X, while in (c-f) the colors indicate the cluster assignments S. As we can see, TVGNN manages to
perfectly recover the original clusters, while the other methods do not. As for the other experiments, in Fig. 21 we visualize
the matrix SST which shows that TVGNN generates cluster assignments that are much sharper than those produced by the
other GNN-based clustering methods.

20

Total Variation Graph Neural Networks

0 1000 2000 3000

0

500

1000

1500

2000

2500

3000

(a) GTVConv + MinCut loss
0 1000 2000 3000

0

500

1000

1500

2000

2500

3000

(b) GCN + TVGNN loss
0 5000 10000 15000

0

2500

5000

7500

10000

12500

15000

17500

(c) GTVConv + MinCut loss
0 5000 10000 15000

0

2500

5000

7500

10000

12500

15000

17500

(d) GCN + TVGNN loss

0 5000 10000 15000

0
2000
4000
6000
8000

10000
12000
14000
16000

(e) GTVConv + MinCut loss
0 5000 10000 15000

0
2000
4000
6000
8000

10000
12000
14000
16000

(f) GCN + TVGNN loss

Figure 16: Logarithm of SST for the ablation study on Citeseer (a, b), Pubmed (c, d), and DBLP (e, f).

(a) GTVConv + MinCut loss (b) GCN + TVGNN loss (c) GTVConv + MinCut loss (d) GCN + TVGNN loss

Figure 17: UMAP plots for the ablation study on Citeseer.

(a) GTVConv + MinCut loss (b) GCN + TVGNN loss (c) GTVConv + MinCut loss (d) GCN + TVGNN loss

Figure 18: UMAP plots for the ablation study on Pubmed.

C.3. Clustering two simple point clouds

Fig. 22 and 23 show the largest soft assignment for each node when tasked with clustering a 2D ring graph and a 2D grid
graph, respectively. The color of the node is chosen such that a sharp assignment of 1 gives a bright color (lightness equal
to 0.5), while smoother assignments give paler colors, and an assignment of 0 is just white (lightness equal to 1). The
number of desired clusters K for the ring and grid was 5 and 10, respectively. The models were trained using the same

21

Total Variation Graph Neural Networks

(a) GTVConv + MinCut loss (b) GCN + TVGNN loss (c) GTVConv + MinCut loss (d) GCN + TVGNN loss

Figure 19: UMAP plots for the ablation study on DBLP.

(a) Original (b) Original + Noise (c) Diffpool

(d) MinCutPool (e) DMoN (f) TVGNN

Figure 20: Denoising task. (a) the original vertex features; (b) the vertex features corrupted with Gaussian noise; (c-f) cluster labels
identified by each method.

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

(a) Original
0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

(b) Original + Noise
0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

(c) Diffpool

0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

(d) MinCutPool
0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

(e) DMoN
0 25 50 75 100 125 150 175

0

25

50

75

100

125

150

175

(f) TVGNN

Figure 21: Visualization of SST for the denoising task. (a) the original vertex features; (b) the vertex features corrupted with Gaussian
noise; (c-f) cluster labels identified by each method.

22

Total Variation Graph Neural Networks

(a) DiffPool (b) MinCutPool (c) DMoN (d) TVGNN

Figure 22: Cluster assignments for the ring graph. The colors correspond to the index of the largest value in the soft cluster
assignment vector. The brightness is proportional to the highest value in the assignment vector.

(a) DiffPool (b) MinCutPool (c) DMoN (d) TVGNN

Figure 23: Cluster assignments for the grid graph. The colors correspond to the index of the largest value in the soft cluster
assignment vector. The brightness is proportional to the highest value in the assignment vector.

0 25 50 75 100 125 150

0.4

0.6

0.8

1.0

DiffPool
MinCutPool
DMoN
TVGNN

(a) Ring

0 100 200 300 400

0.2

0.4

0.6

0.8

1.0

DiffPool
MinCutPool
DMoN
TVGNN

(b) Grid

Figure 24: Largest value in the soft cluster assignment vector as a function of the vertex index. For the ring in (a), the
horizontal axis moves along the circumference of the ring. For the grid in (b), the node indices are sorted according to the
largest value in the assignment vectors.

hyperparameters as for the vertex classification task in the experiments.

Again we see that DiffPool gives smooth assignments resulting in noticeably paler colors. In MinCutPool and DMoN we
observe paler colors in the proximity of the cluster borders, while TVGNN exhibits sharp transitions from one cluster to
the other. We also notice that TVGNN is the only method that on the grid generates a partition with the desired number of
clusters K = 10.

To better quantify the sharpness of the transition between different clusters, in Fig. 24a we show the largest value in the soft

23

Total Variation Graph Neural Networks

assignment vectors for the ring when moving along it. Here, the differences in cluster transitions are clear: the drops in the
assignment value indicate the presence of smooth transitions. The cluster assignments of Diffpool are always very smooth;
MinCutPool and DMoN exhibit smooth assignments only when crossing from one cluster to the other; with TVGNN the
assignments are always sharp.

A similar plot for the grid is presented in Fig. 24b, but here the largest soft assignments for all nodes are sorted from lowest
to highest, which indicates the overall proportion of smooth assignments. Also in this case, the cluster assignments of
TVGNN are the sharpest, followed by DMoN, MinCutPool, and Diffpool.

24

