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Abstract
Learning partial differential equations’ (PDEs)
solution operators is an essential problem in ma-
chine learning. However, there are several chal-
lenges for learning operators in practical appli-
cations like the irregular mesh, multiple input
functions, and complexity of the PDEs’ solution.
To address these challenges, we propose a gen-
eral neural operator transformer (GNOT), a scal-
able and effective transformer-based framework
for learning operators. By designing a novel
heterogeneous normalized attention layer, our
model is highly flexible to handle multiple in-
put functions and irregular meshes. Besides, we
introduce a geometric gating mechanism which
could be viewed as a soft domain decomposi-
tion to solve the multi-scale problems. The large
model capacity of the transformer architecture
grants our model the possibility to scale to large
datasets and practical problems. We conduct
extensive experiments on multiple challenging
datasets from different domains and achieve a re-
markable improvement compared with alternative
methods. Our code and data are publicly available
at https://github.com/thu-ml/GNOT.

1. Introduction
Partial Differential Equations (PDEs) are ubiquitously used
in characterizing systems in many domains like physics,
chemistry, and biology (Zachmanoglou & Thoe, 1986).
These PDEs are usually solved by numerical methods like
the finite element method (FEM). FEM discretizes PDEs
using a mesh with a large number of nodes, and it is often
computationally expensive for high dimensional problems.
In many important tasks in science and engineering like
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Figure 1. A pre-trained neural operator using transformers is much
more efficient for the numerical simulation of physical systems.
However, there are several challenges in training neural operators
including irregular mesh, multiple inputs, and multiple scales.

structural optimization, we usually need to simulate the
system under different settings and parameters in a mas-
sive and repeating manner. Thus, FEM can be extremely
inefficient since a single simulation using numerical meth-
ods could take from seconds to days. Recently, machine
learning methods (Lu et al., 2019; Li et al., 2020; 2022b) are
proposed to accelerate solving PDEs by learning an operator
mapping from the input functions to the solutions of PDEs.
By leveraging the expressivity of neural networks, such
neural operators could be pre-trained on a dataset and then
generalize to unseen inputs. The operators predict the solu-
tions using a single forward computation, thereby greatly
accelerating the process of solving PDEs. Much work has
been done on investigating different neural architectures for
learning operators (Hao et al., 2022). For instance, Deep-
ONet (Lu et al., 2019) uses a branch network and a trunk
network to process input functions and query coordinates.
FNO (Li et al., 2020) learns the operator in the spectral
space. Transformer models (Cao, 2021; Li et al., 2022b),
based on attention mechanism, are proposed since they have
a larger model capacity.

This progress notwithstanding, operator learning for practi-
cal real-world problems is still highly challenging and the
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performance can be unsatisfactory. As shown in Fig. 1,
there are several major challenges in current methods: ir-
regular mesh, multiple inputs, and multi-scale problems.
First, the geometric shape or the mesh of practical prob-
lems are usually highly irregular. For example, the shape
of the airfoil shown in Fig. 1 is complex. However, many
methods like FNO (Li et al., 2020) using Fast Fourier Trans-
form (FFT) and U-Net (Ronneberger et al., 2015) using
convolutions are limited to uniform regular grids, making it
challenging to handle irregular grids. Second, the problem
can rely on multiple numbers and types of input functions
like boundary shape, global parameter vector or source func-
tions. The challenge is that the model is expected to be
flexible to handle different types of inputs. Third, real phys-
ical systems can be multi-scale which means that the whole
domain could be divided into physically distinct subdomains
(Weinan, 2011). In Fig. 1, the velocity field is much more
complex near the airfoil compared with the far field. It is
more difficult to learn these multi-scale functions.

Existing works attempt to develop architectures to handle
these challenges. For example, Geo-FNO (Li et al., 2022a)
extends FNO to irregular meshes by learning a mapping
from an irregular mesh to a uniform mesh. Transformer
models (Li et al., 2022b) are naturally applicable to irregu-
lar meshes. But both of them are not applicable to handle
problems with multiple inputs due to the lack of a general
encoder framework. Moreover, MIONet (Jin et al., 2022)
uses tensor product to handle multiple input functions but it
performs unsatisfactorily on multi-scale problems. To the
best of our knowledge, there is no attempt that could handle
these challenges simultaneously, thus limiting the practical
applications of neural operators. To fill the gap, it is impera-
tive to design a more powerful and flexible architecture for
learning operators under such sophisticated scenarios.

In this paper, we propose General Neural Operator Trans-
former (GNOT), a scalable and flexible transformer frame-
work for learning operators. We introduce several key com-
ponents to resolve the challenges as mentioned above. First,
we propose a Heterogeneous Normalized (linear) Attention
(HNA) block, which provides a general encoding interface
for different input functions and additional prior informa-
tion. By using an aggregation of normalized multi-head
cross attention, we are able to handle arbitrary input func-
tions while keeping a linear complexity with respect to the
sequence length. Second, we propose a soft gating mech-
anism based on mixture-of-experts (MoE) (Fedus et al.,
2021). Inspired by the domain decomposition methods that
are widely used to handle multi-scale problems (Jagtap &
Karniadakis, 2021; Hu et al., 2022), we propose to use the
geometric coordinates of input points for the gating network
and we found that this could be viewed as a soft domain de-
composition. Finally, we conduct extensive experiments on
several benchmark datasets and complex practical problems.

These problems are from multiple domains including flu-
ids, elastic mechanics, electromagnetism, and thermology.
The experimental results show that our model achieves a re-
markable improvement compared with competing baselines.
We reduce the prediction error by about 50% compared
with baselines on several practical datasets like Elasticty,
Inductor2d, and Heatsink.

2. Related Work
We briefly summarize some related work on neural operators
and efficient transformers.

2.1. Neural Operators

Operator learning with neural networks has attracted much
attention recently. DeepONet (Lu et al., 2019) proposes a
branch network and a trunk network for processing input
functions and query points respectively. This architecture
has been proven to approximate any nonlinear operators
with a sufficiently large network. Wang et al. (2021; 2022)
introduces improved architecture and training methods of
DeepONets. MIONet (Jin et al., 2022) extends DeepONets
to solve problems with multiple input functions. Fourier
neural operator (FNO) (Li et al., 2020) is another impor-
tant method with remarkable performance. FNO learns the
operator in the spectral domain using the Fast Fourier Trans-
form (FFT) which achieves a good cost-accuracy trade-off.
However, it is limited to uniform grids.Several works (Li
et al., 2022a; Liu et al., 2023) extend FNO to irregular grids
by mapping it to a regular grid or partitioning it into sub-
domains. Grady II et al. (2022) combine the technique of
domain decomposition (Jagtap & Karniadakis, 2021) with
FNO for learning multi-scale problems. Some works also
propose variants of FNO from other aspects (Gupta et al.,
2021; Wen et al., 2022; Tran et al., 2021). However, these
works are not scalable to handle problems with multiple
types of input functions.

Another line of work proposes to use the attention mech-
anism for learning operators. Galerkin Transformer (Cao,
2021) proposes linear attention for efficiently learning oper-
ators. It theoretically shows that the attention mechanism
could be viewed as an integral transform with a learnable
kernel while FNO uses a fixed kernel. The advantage of
the attention mechanism is the large model capacity and
flexibility. Attention could handle arbitrary length of in-
puts (Prasthofer et al., 2022) and preserve the permutation
equivariance (Lee). HT-Net (Liu et al., 2022) proposes a
hierarchical transformer for learning multi-scale problems.
OFormer (Li et al., 2022b) proposes an encoder-decoder ar-
chitecture using galerkin-type linear attention. Transformer
architecture is a flexible framework for learning operators
on irregular meshes. However, its architecture still per-
forms unsatisfactorily and has a large room to be improved
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when learning challenging operators with multiple inputs
and scales.

2.2. Efficient Transformers

The complexity of the original attention operation is
quadratic with respect to the sequence length. For operator
learning problems, the sequence length could be thousands
to millions. It is necessary to use an efficient attention op-
eration. Here we introduce some existing works in CV and
NLP designing transformers with efficient attention. Many
works (Tay et al., 2020) paid efforts to accelerate computing
attention. First, sparse and localized attention (Child et al.,
2019; Liu et al., 2021; Beltagy et al., 2020; Huang et al.,
2019) avoids pairwise computation by restricting windows
sizes which are widely used in computer vision and natural
language processing. Kitaev et al. (2020) adopt hash-based
method for acceleration. Another class of methods attempts
to approximate or remove the softmax function in atten-
tion. Peng et al. (2021); Choromanski et al. (2020) use the
product of random features to approximate the softmax func-
tion. Katharopoulos et al. (2020) propose to replace softmax
with other decomposable similarity measures. Cao (2021)
propose to directly remove the softmax function. We could
adjust the order of computation for this class of methods and
the total complexity is linear with respect to the sequence
length. Besides reducing complexity for computing atten-
tion, the mixture of experts (MoE)(Jacobs et al., 1991) are
adopted in transformer architecture (Lepikhin et al., 2020;
Fedus et al., 2021) to reduce computational cost while keep-
ing a large model capacity.

3. Proposed Method
We now present our method in detail.

3.1. Problem Formulation

We consider PDEs in the domain Ω ⊂ Rd and the func-
tion spaceH over Ω, including boundary shapes and source
functions. Our goal is to learn an operator G from the input
function space A to the solution spaceH, i.e., G : A → H.
Here the input function space A could contain multiple
different types, like boundary shapes, source functions dis-
tributed over Ω, and vector parameters of the systems. More
formally,A could be represented asA = H×· · ·×H×Rp.
For ∀a = (a1(·), . . . , am(·), θ) ∈ A, aj(·) ∈ H represents
boundary shapes and source functions, and θ ∈ Rp repre-
sents parameters of the system, and G(a) = u ∈ H is the
solution function over Ω.

For learning a neural operator, we train our model with
a dataset D = {(ak, uk)}1⩽k⩽D, where uk = G(ak). In
practice, since it is difficult to represent the function directly,
we discretize the input functions and the solution function

on irregular discretized meshes over the domain Ω using
some mesh generation algorithm (Owen, 1998). For an input
function ak, we discretize it on the mesh {xj

i ∈ Ω}1⩽j⩽m
1⩽i⩽Nj

and the discretized ajk is {(xj
i , a

i,j
k )}1⩽i⩽Nj , where ai,jk =

ajk(x
j
i ). In this way, we use Ak = {(xj

i , a
i,j
k )}1⩽j⩽m

1⩽i⩽Nj
∪ θk

to represent the input functions ak.

For the solution function uk, we discretize it on mesh {yi ∈
Ω}1⩽i⩽N ′ and the discretized uk is {(yi, ui

k)}1⩽i⩽N ′ , here
ui
k = uk(yi). For modeling this operator G, we use a

parameterized neural network G̃w, which receives the input
Ak(k = 1, ..., D) and outputs G̃w(Ak) = {ũi

k}1⩽i⩽N ′ to
approximate uk. Our goal is to minimize the mean squared
error(MSE) loss between the prediction and data as

min
w∈W

1

D

D∑
k=1

1

N ′ ∥G̃w(Ak)− {ui
k}1⩽i⩽N ′∥22, (1)

where w is a set of the network parameters and W is the
parameter space.

3.2. Overview of Model Architecture

Here we present an overview of our model General Neural
Operator Transformer (GNOT). Transformers are a popular
architecture to learn operators due to their ability to handle
irregular mesh and strong expressivity. Transformers embed
the input mesh points into queries Q, keys K, and values V
using MLPs and compute their attention. However, atten-
tion computation still has many limitations due to several
challenges.

First, as the problem might have multiple different (types)
input functions in practical cases, the model needs to be
flexible and efficient to take arbitrary numbers of input func-
tions defined on different meshes with different numerical
scales. To obtain this goal, we first design a general input
encoding protocol and embed different input functions and
other available prior information using MLPs as shown in
Fig 2. Then we use a novel attention block comprising a
cross-attention layer followed by a self-attention layer to
process these embeddings. We invent a Heterogeneous Nor-
malized linear cross-Attention (HNA) layer which is able
to take an arbitrary number of embeddings as input. The
details of the HNA layer are stated in Sec 3.4.

Second, as practical problems might be multi-scale, it is dif-
ficult or inefficient to learn the whole solution using a single
model. To handle this issue, We introduce a novel geomet-
ric gating mechanism that is inspired by the widely used
domain-decomposition methods (Jagtap & Karniadakis,
2021). In particular, the domain-decomposition methods
divide the whole domain into subdomains that are learned
with subnetworks respectively. We use multiple FFNs in the
attention block and compute a weighted average of these
FFNs using a gating network as shown in Fig 2. The details
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Figure 2. Overview of the model architecture. First, we encode input query points and input functions with different MLPs. Then we
update features of query points using a heterogenous normalized cross-attention layer and a normalized self-attention layer. We use a gate
network using geometric coordinates of query points to compute a weighted average of multiple expert FFNs. We output the features after
processing them using N layers of the attention block.

of geometric gating are shown in Sec 3.5.

3.3. General Input Encoding

Now we introduce how our model is flexible to handle dif-
ferent types of input functions and preprocess these input
features. The model takes positions of query points denoted
by {xq

i }1⩽i⩽Nq
and input functions as input. We could use

a multiple layer perceptron to map it to query embedding
X ∈ RNq·ne . In practice, we might encounter several differ-
ent formats and shapes of input functions. Here we present
the encoding protocol to process them to get the feature
embedding Y ∈ RNne where N could be arbitrary dimen-
sion and ne is the dimension of embedding. We call Y the
conditional embedding as it encodes information of input
functions and extra information. We use simple multiple
layer perceptrons fw to map the following inputs to the em-
bedding. Note we use one individual MLP for each input
function so they do not share parameters.

• Parameter vector θ ∈ Rp: We could directly encode
the parameter vector using the MLP, i.e, Y = fw(θ)
and Y ∈ R1×ne .

• Boundary shape {xi}1⩽i⩽N : If the solution relies on
the shape of the boundary, we propose to extract all
these boundary points as input function and embed
the position of these points with MLP. Specifically,
Y = (fw(xi))1⩽i⩽N ∈ RNd.

• Domain distributed functions {(xi, ai)}1⩽i⩽N : If the
input function is distributed over a domain or a mesh,
we need to encode both the position of nodes and the
function values, i.e. Y = (fw(xi, ai))1⩽i⩽N ∈ RNd.

Besides these types of input functions, we could also en-
code some additional prior like domain knowledge for spe-
cific problems using such a framework in a flexible man-
ner which might improve the model performance. For
example, we could encode the extra features of mesh
points {(xi, zi)}1⩽i⩽N and edge information of the mesh
{(xsrc

i , xdst
i , ei)}1⩽i⩽N . The extra features could be the

subdomain indicator of mesh points and the edges shows
the topology structure of these mesh points. This extra in-
formation is usually generated when collecting the data
by solving FEMs. We use MLPs to encode them into
Y = (fw(xi, zi))1⩽i⩽N and Y = (fw(xi, zi))1⩽i⩽N .

3.4. Heterogeneous Normalized Attention Block

Here we introduce the Heterogeneous Normalized Attention
block. We calculate the heterogeneous normalized cross
attention between features of query points X and condi-
tional embeddings {Yl}1⩽l⩽L. Then we apply a normalized
self-attention layer to X . Specifically, the “heterogeneous”
means that we use different MLPs to compute keys and val-
ues from different input features that ensure model capacity.
Besides, we normalize the outputs of different attention out-
puts and use “mean” as the aggregation function to average
all outputs. The normalization operation ensures numeri-
cal stability and also promotes the training process. Sup-
pose we have three sequences called queries {qi}1⩽i⩽N ,
keys{ki}1⩽i⩽M and values {vi}1⩽i⩽M . The attention is
computed as follows,

zt =
∑
i

exp(qt · ki/τ)∑
j exp(qt · kj/τ)

vi, (2)

where τ is a hyperparameter. For self-attention models,
q,k,v are obtained by applying a linear transformation
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to input sequence X = (xi)1⩽i⩽N , i.e, qi = Wqxi,
ki = Wkxi, vi = Wvxi. For cross attention models,
q comes from the query sequence X while keys and val-
ues come from another sequence Y = (yi)1⩽i⩽M , i.e,
qi = Wqxi, ki = Wkyi, vi = Wvyi. However, the
computational cost of the attention is O(N2ne) for self at-
tention and O(NMne) for cross attention where ne is the
dimension of embedding.

For problems of learning operators, data usually consists
of thousands to even millions of points. The computational
cost is unaffordable using vanilla attention with quadratic
complexity. Here we propose a novel attention layer with a
linear computational cost that could handle long sequences.
We first normalize these sequences respectively,

q̃i = Softmax(qi) =

(
eqij∑
j e

qij

)
j=1,...ne

, (3)

k̃i = Softmax(ki) =

(
ekij∑
j e

kij

)
j=1,...ne

. (4)

Then we compute the attention output without softmax using
the following equation,

zt =
∑
i

q̃t · k̃i∑
j q̃t · k̃j

· vi. (5)

We denote αt =
(∑

j q̃t · k̃j

)−1

and the efficient attention
could be represented by,

zt =
∑
i

αt(q̃t · k̃i) · vi = αtq̃t.

(∑
i

k̃i ⊗ vi

)
. (6)

We could compute
∑

i k̃i⊗vi first with a cost O(Mn2
e) and

then compute its multiplication with q with a cost O(Nn2
e).

The total cost is O((M+N)n2
e) which is linear with respect

to the sequence length.

In our model, we usually have multiple conditional embed-
dings and we need to fuse the information with query points.
To this end, we design a cross attention using the normal-
ized linear attention that is able to handle arbitrary numbers
of conditional embeddings. Specifically, suppose we have
L conditional embeddings {Yl ∈ RNl×ne}1⩽l⩽L encoding
the input functions and extra information. We first compute
the queries Q = (qi) = XWq, keys Kl = (kl

i) = YWk

and values Vl = (vl
i) = YWv , and then normalize every qi

and ki to be q̃i and k̃i. Then we compute the cross-attention
as follows,

zt = q̃t +
1

L

L∑
l=1

Nl∑
il=1

αl
t(q̃t · k̃il)vil , (7)

= q̃t +
1

L

L∑
l=1

αl
tq̃t ·

(
Nl∑
il=1

k̃il ⊗ vil

)
. (8)

where αl
t =

1∑Nl
j=1 q̃t·k̃j

is the normalization cofficient.

We see that the cross-attention aggregates all information
from input functions and extra information. We also add an
identity mapping as skip connection to ensure the informa-
tion is not lost. The computational complexity of Eq. (8) is
O
(
(N +

∑
l Nl)n

2
e

)
also linear with sequence length.

After applying such a cross-attention layer, we impose the
self-attention layer for query features, i.e,

z′
t =

∑
i

αt(q̃t · k̃i) · vi, (9)

where all of q, k and v are computed with the embedding
zt as

qt = Wqẑt,kt = Wkẑt,vt = Wvẑt. (10)

We use the cascade of a cross-attention layer and a self-
attention layer as the basic block of our model. We tile mul-
tiple layers and multiple heads similar to other transformer
models. The embedding zt and z′

t are divided into H heads
as zt = Concat(zi

t)
H
i=1 and z′

t = Concat(z′i
t)

H
i=1. Each

head zi
t can be updated using Eq. (7) and Eq. (9).

3.5. Geometric Gating Mechanism

To handle multi-scale problems, we introduce our geomet-
ric gating mechanism based on mixture-of-experts (MoE)
which is a common technique in transformers for improving
model efficiency and capacity. We improve it to serve as
a domain decomposition technique for dealing with multi-
scale problems. Specifically, we design a geometric gating
network that inputs the coordinates of the query points and
outputs unnormalized scores Gi(x) for averaging these ex-
pert networks. In each layer of our model, we use K sub-
networks for the MLP denoted by Ei(·). The update of zt

and z′
t in the feedforward layer after Eq. (8) and Eq. (9) is

replaced by the following equation when we have multiple
expert networks as

zt ← zt +

K∑
i=1

pi(xt) · Ei(zt). (11)

The weights for averaging the expert networks are computed
as

pi(xt) =
exp(Gi(xt))∑K
i=1 exp(Gi(xt))

, (12)

where the gating network G(·) : Rd → RK takes the geo-
metric coordinates of query points xt as inputs. The nor-
malized outputs pi(xt) are the weights for averaging these
experts.

The geometric gating mechanism could be viewed as a soft
domain decomposition. There are several decision choices
for the gating network. First, we could use a simple MLP
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to represent the gating network and learn its parameters
end to end. Second, available prior information could be
embedded into the gating network. For example, we could
divide the domain into several subdomains and fix the gating
network by handcraft. This is widely used in other domain
decomposition methods like XPINNs when we have enough
prior information about the problems. By introducing the
gating module, our model could be naturally extended to
handle large-scale and multi-scale problems.

4. Experiments
In this section, we conduct extensive experiments to demon-
strate the effectiveness of our method on multiple challeng-
ing datasets.

4.1. Experimental Setup and Evaluation Protocol

Datasets. To conduct comprehensive experiments to show
the scalability and superiority of our method, we choose sev-
eral datasets from multiple domains including fluids, elastic
mechanics, electromagnetism, heat conduction and so on.
We briefly introduce these datasets here. Due to limited
space, detailed descriptions are listed in the Appendix A.
We list the challenges of these datasets in Table 1 where “A”,
“B”, and “C” represent the problem has irregular mesh, has
multiple input functions, and is multi-scale, respectively.

• Darcy2d (Li et al., 2020): A second order, linear, ellip-
tic PDE defined on a unit square. The input function
is the diffusion coefficient defined on the square. The
goal is to predict the solution u from coefficients a.

• NS2d (Li et al., 2020): A two-dimensional time-
dependent Naiver-Stokes equation of a viscous, incom-
pressible fluid in vorticity form on the unit torus. The
goal is to predict the last few frames from the first few
frames of the vorticity u.

• NACA (Li et al., 2022a): A transonic flow over an
airfoil governed by the Euler equation. The input func-
tion is the shape of the airfoil. The goal is to predict
the solution field from the input mesh describing the
airfoil shape.

• Elasticity (Li et al., 2022a): A solid body syetem
satisfying elastokinetics. The geometric shape is a
unit square with an irregular cavity. The goal is to
predict the solution field from the input mesh.

• NS2d-c: A two-dimensional steady-state fluids prob-
lem governed by Naiver-Stokes equations. The geo-
metric shape is a rectangle with multiple cavities which
is a highly complex shape. The goal is to predict the
velocity field of x and y direction u, v and the pressure
field p from the input mesh.

• Inductor2d: A two-dimensional inductor system sat-
isfying the MaxWell equation. The input functions
include the boundary shape and several global param-
eter vectors. The geometric shape of this problem is
highly irregular and the problem is multi-scale so it is
highly challenging. The goal is to predict the magnetic
potential Az from these input functions.

• Heat: A multi-scale heat conduction problem. The
input functions include multiple boundary shapes seg-
menting the domain and a domain-distributed function
deciding the boundary condition. The physical proper-
ties of different subdomains vary greatly. The goal is
to predict the temperature field T from input functions.

• Heatsink: A 3d multi-physics example characterizing
heat convection and conduction of a heatsink. The heat
convection is accomplished by the airflow in the pipe.
This problem is a coupling of laminar flow and heat
conduction. We need to predict the velocity field and
the temperature field from the input functions.

Baselines. We compare our method with several strong
baselines listed below.

• MIONet (Jin et al., 2022): It extends DeepONet (Lu
et al., 2019) to multiple input functions by using tensor
products and multiple branch networks.

• FNO(-interp) (Li et al., 2020): FNO is an effective
operator learning model by learning the mapping in
spectral space. However, it is limited to regular mesh.
We use basic interpolation to get a uniform grid to
use FNO. However, it still has difficulty dealing with
multiple input functions.

• Galerkin Transformer (Cao, 2021): Galerkin Trans-
former proposed an efficient linear transformer for
learning operators. It introduces problem-dependent
decoders like spectral regressors for regular grids.

• Geo-FNO (Li et al., 2022a): It extends FNO to irreg-
ular meshes by learning a mapping from the irregular
grid to a uniform grid. The mapping could be learned
end-to-end or pre-computed.

• OFormer (Li et al., 2022b): It uses the Galerkin type
cross attention to compute features of query points. We
slightly modify it by concatenating the different input
functions to handle multiple input cases.

Evaluation Protocol and Hyperparameters. We use the
mean l2 relative error as the evaluation metric. Suppose
ui, u

′
i ∈ Rn is the ground truth solution and the predicted
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Dataset Type MIONet FNO(-interp) GK-Transformer Geo-FNO OFormer Ours
Challenge Subset

Darcy2d - - 5.45e-2 1.09e-2 8.40e-3 1.09e-2 1.24e-2 1.05e-2
NS2d - part – 1.56e-1 1.40e-1 1.56e-1 1.71e-1 1.38e-1

- full – 8.20e-2 7.92e-2 8.20e-2 6.46e-2 4.43e-2
Elasticity A - 9.65e-2 5.08e-2 2.01e-2 2.20e-2 1.83e-2 8.65e-3
NS2d-c A, C u 2.74e-2 6.56e-2 1.52e-2 1.41e-2 2.33e-2 6.73e-3

v 5.51e-2 1.15e-1 3.15e-2 2.98e-2 4.83e-2 1.55e-2
p 2.74e-2 1.11e-2 1.59e-2 1.62e-2 2.43e-2 7.41e-3

NACA A, C - 1.32e-1 4.21e-2 1.61e-2 1.38e-2 1.83e-2 7.57e-3
Inductor2d A, C Az 3.10e-2 – 2.56e-1 – 2.23e-2 1.21e-2

Bx 3.49e-2 – 3.06e-2 – 2.83e-2 1.92e-2
By 6.73e-2 – 4.45e-2 – 4.28e-2 3.62e-2

Heat A, B, C part 1.74e-1 – – – – 4.13e-2
full 1.45e-1 – – – – 2.56e-2

Heatsink A, B, C T 4.67e-1 – – – – 2.53e-1
u 3.52e-1 – – – – 1.42e-1
v 3.23e-1 – – – – 1.81e-1
w 3.71e-1 – – – – 1.88e-1

Table 1. Our main results of operator learning on several datasets from multiple areas. The types like u, v are the physical quantities to
predict and types like ”part“ denotes the size of the dataset. ”-“ means that the method is not able to handle this dataset. Lower scores
mean better performance and the best results are bolded.

solution for the i-th sample, and D is the dataset size. The
mean l2 relative error is computed as follows,

ε =
1

D

D∑
i=1

||u′
i − ui||2
||ui||2

. (13)

For the hyperparameters of baselines and our methods. We
choose the network width from {64, 96, 128, 256} and the
number of layers from 2 ∼ 6. We train all models with
AdamW (Loshchilov & Hutter, 2017) optimizer with the
cycle learning rate strategy (Smith & Topin, 2019) or the
exponential decaying strategy. We train all models with
500 epochs with batch size from {4, 8, 16, 32}. We run our
experiments on 1 ∼ 8 2080 Ti GPUs.

4.2. Main Results for Operator Learning

The main experimental results for all datasets and methods
are shown in Table 1. More details and hyperparameters
could be found in Appendix B. Based on these results, we
have the following observations.

First, we find that our method performs significantly better
on nearly all tasks compared with baselines. On datasets
with irregular mesh and multiple scales like NACA, NS2d-c,
and Inductor2d, our model achieves a remarkable improve-
ment compared with all baselines. On some tasks, we reduce
the prediction error by about 40% ∼ 50%. It demonstrates
the scalability of our model. Our GNOT is also capable of
learning operators on datasets with multiple inputs like Heat
and Heatsink. The excellent performance on these datasets
shows that our model is a general yet effective framework
that could be used as a surrogate model for learning opera-
tors. This is because our heterogeneous normalized attention
is highly effective to extract the complex relationship be-

tween input features. Though, GK-Transformer performs
slightly better on the Darcy2d dataset which is a simple
dataset with a uniform grid.

Second, we find that our model is more scalable when the
amount of data increases, showing the potential to handle
large datasets. On NS2d dataset, our model reduces the error
over 3 times from 13.7% to 4.42%. On the Heat dataset, we
have reduced the error from 4.13% to 2.58%. Compared
with other models like FNO(-interp), GK-Transformer on
NS2d dataset, and MIONet on Heat dataset, our model has a
larger capacity and is able to extract more information when
more data is accessible. While OFormer also shows a good
performance on the NS2d dataset, the performance still falls
behind our model.

Third, we find that for all models the performance on multi-
scale problems like Heatsink is worse than other datasets.
This indicates that multi-scale problems are more challeng-
ing and difficult. We found that there are several failure
cases, i.e. predicting the velocity distribution u, v, w for the
Heatsink dataset. The prediction error is very high (more
than 10%). We suggest that incorporating such physical
prior might help improve performance.

4.3. Scaling Experiments

One of the most important advantages of transformers is
that its performance consistently gains with the growth of
the number of data and model parameters. Here we conduct
a scaling experiment to show how the prediction error varies
when the amount of data increases. We use the NS2d-c
dataset and predict the pressure field p. We choose MIONet
as the baseline and the results are shown in Fig 3.
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Figure 3. Results of scaling experiments for different dataset sizes (left) and different numbers of layers (right).

The left figure shows the l2 relative error of the different
models using different amounts of data. The GNOT-large de-
notes the model with embedding dimension 256 and GNOT-
small denotes the model with embedding dimension 96. We
see that all models perform better if there is more data and
the relationship is nearly linear using log scale. However,
the slope is different and our GNOT-large could best utilize
the growing amount of data. With a larger model capacity,
it is able to reach a lower error. It corresponds to the result
in NLP (Kaplan et al., 2020) that the loss scales as a power
law with the dataset size. Moreover, we find that our trans-
former architecture is more data-efficient compared with the
MIONet since it has similar performance and model size
with MIONet using less data.

The right figure shows how the prediction error varies with
the number of layers in GNOT. Roughly we see that the
error decreases with the growth of the number of layers for
both Elasticity and NS2d-c datasets. The performance gain
becomes small when the number of layers is more than 4 on
Elasticity dataset. An efficient choice is to choose 4 layers
since more layers mean more computational cost.

4.4. Ablation Experiments

We finally conduct an ablation study to show the influence
of different components and hyperparameters of our model.

Necessity of different attention layers. Our attention
block consists of a cross-attention layer followed by a self-
attention layer. To study the necessity and the order of
self-attention layers, we conduct experiments on NACA,
Elasticity, and NS2d-c datasets. The results are shown in Ta-
ble 2. Note that “cross+self” denotes a cross-attention layer
followed by a self-attention layer and the rest can be done
in the same manner. We find that the “cross+self” attention
block is the best on all datasets. And the “cross+self” atten-
tion is significantly better than “cross+cross”. On the one
hand, this shows that the self-attention layer is necessary for
the model. On the other hand, it is a better choice to put the
self-attention layer after the cross-attention layer. We con-

NACA Elasticity NS2d-c (p)
cross + cross 3.52e-2 3.31e-2 1.50e-2
self + cross 9.53e-3 1.25e-2 9.89e-2
cross + self 7.57e-3 8.65e-3 7.41e-3

Table 2. Experimental results for the necessity and order of differ-
ent attention blocks.

Nexperts error Nheads error
1 0.04212 1 0.04131
3 0.03695 4 0.04180
8 0.04732 8 0.04068

16 0.04628 16 0.03952

Table 3. Results for ablation experiments on the influence of num-
bers of experts Nexperts (left two columns) and numbers of atten-
tion heads Nheads (right two columns).

jecture that the self-attention layer after the cross-attention
layer utilizes the information in both query points and input
functions more effectively.

Influences of the number of experts and attention heads.
We use multiple attention heads and soft mixture-of-experts
containing multiple MLPs for the model. Here we study
the influence of the number of experts and attention heads.
We conduct this experiment on Heat which is a multi-scale
dataset containing multiple subdomains. The results are
shown in Table 3. The left two columns show the results of
using different numbers of experts using 1 attention head.
We see that using 3 experts is the best. The problem of Heat
contains three different subdomains with distinct properties.
It is a natural choice to use three experts so that it is easier
to learn. We also find that using too many experts (≥ 8)
deteriorates the performance. The right two columns are the
results of using different numbers of attention heads with
1 expert. We find that number of attention heads has little
impact on the performance. Roughly we see that using more
attention heads leads to slightly better performance.
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5. Conclusion
In this paper, we propose an operator learning model called
General Neural Operator Transformer (GNOT). To solve
the challenges of practical operator learning problems, we
devise two new components, i.e. the heterogeneous nor-
malized attention and the geometric gating mechanism.
Then we conducted comprehensive experiments on mul-
tiple datasets in science and engineering. The excellent
performance compared with baselines verified the effective-
ness of our method. It is an attempt to use a general model
architecture to handle these problems and it paves a possible
direction for large-scale neural surrogate models in science
and engineering.
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A. Details and visualization of datasets
Here we introduce more details about the datasets. For all these datasets, we generate datasets with COMSOL multi-physics
6.0. The code and datasets are publicly available at https://github.com/thu-ml/GNOT.

NS2d-c. It obeys a 2d steady-state Naiver-Stokes equation defined on a rectangle minus four circular regions, i.e. Ω =
[0, 8]2\

⋃4
i=1 Ri, where Ri is a circle. The governing equation is,

(u · ∇)u =
1

Re
∇2u−∇p (14)

∇ · u = 0 (15)

The velocity vanishes on boundary ∂Ω, i.e. u = 0. On the outlet, the pressure is set to 0. On the inlet, the input velocity is
ux = y(8− y)/16. The visualization of the mesh is shown in the following Figure 4. The velocity field and pressure field is
shown in Figure 5. We create 1100 samples with different positions of circles where we use 1000 for training and 100 for
testing.

Figure 4. Visualization of mesh of the NS2d-c dataset.

Figure 5. Visualization of velocity field u, v and pressure field p of NS2d-c dataset.

Inductor2d. A 2d inductor satisfying the following steady-state MaxWell’s equation,

∇×H = J (16)
B = ∇×A (17)
J = σE + σv ×B + Je (18)
B = µ0µrH (19)

The boundary condition is
n×A = 0 (20)
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Figure 6. Visualization of mesh of the inductor2d dataset.

Figure 7. Visualization of Bx, By and Az of inductor2d dataset.

On the coils, the current density is,

Je =
NIcoil
A

ecoil (21)

We create 1100 inductor2d model with different geometric parameters, Icoil and material parameters µr. Our goal is We use
1000 for training and 100 for testing. We plot the geometry of this problem in Figure 6. The solutions is shown in Figure 7.

Heat. An example satisfying 2d steady-state heat equation,

ρCpu · ∇T − k∇2T = Q (22)

The geometry is a rectangle Ω = [0, 9]2, but it is divided into three parts using two splines. On the left and right boundary, it
satisfies the periodic boundary condition. The input functions of this dataset includes the boundary temperature on the top
boundary and the parameters of splines. We generate a small dataset with 1100 samples and a full datase with 5500 samples.
The mesh and the temperature field is visulaized in the Figure 8.

Heatsink. A 3d steady-state multi-physics example with a coupling of heat and fluids. This example is complicated and we
omit the technical details here and they could be found in the mph source files. The fluids satisfy Naiver-Stokes equation
and the heat equation. The flow field and temperature field is coupled by heat convection and heat conduction. The input
functions include some geometric parameters and the velocity distribution at the inlet. The goal is to predict the velocity
field for the fluids and the temperature field for the whole domain. We generate 1100 samples for training and testing. The
geometry of this problem is the following Figure 9. The solution fields T, u, v, w are shown in Figure 10.

B. Hyperparameters and details for models.
MIONet. We use MLPs with 4 layers and width 256 as the branch network and trunk network. When the problem has
multiple input functions, the MIONet uses multiple branch networks and one trunk network. If there is only one branch, it
degenerates to DeepONet. Since the discretization input functions contain different numbers of points for different samples,
we pad the inputs to the maximum number of points in the whole dataset. We train MIONet with AdamW optimizer until
convergence. The batch size is chosen roughly to be 4× average sequence length.
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Figure 8. Left: mesh of Heat2d dataset. Right: visualization of temperature field T .

Figure 9. Visualization of mesh of the Heatsink dataset.

Figure 10. Visualization of T, u, v, w of Heatsink dataset.
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Hyperparameter type Darcy2d, NS2d,Elasticity, NACA Inductor2d, Heat,NS2d-c,NS2d-full Heatsink
Activation function GELU GELU GELU

Number of attention layers 3∼4 4 4
Hidden size of attention 96 256 192

Layers of MLP 3 4 4
Hidden size of MLP 192 256 192

Hidden size of input embedding 96 128,256 96,192
Learning rate schedule Onecycle Onecycle Onecycle

N experts {1,4} {3,4} 4
N heads {4,8} 8 8

Table 4. Details of hyperparameters used for main experiments.

Time per epoch (s) MIONet FNO(-interp) GK-Transformer Geo-FNO OFormer GNOT
Darcy2d 18.6 13.7 27.7 13.9 29.1 29.4

NS2d – 18.2 23.1 17.9 22.5 23.7
Elasticity 6.7 3.1 5.8 2.9 6.0 6.3

NACA 31.2 28.6 43.7 23.4 45.2 46.5
Heatsink – – – – – 68.4

Table 5. Runtime comparison for different methods.

FNO-(interp) and Geo-FNO. We use 4 FNO layers with modes from {12, 16, 32} and width from {16, 32, 64}. The batch
size is chosen from {8, 20, 32, 48, 64}. For datasets with uniform grids like Darcy2d and NS2d, we use vanilla FNO models.
For datasets with irregular grids, we interpolate the dataset on a resolution from {80 × 80, 120 × 120, 160 × 160}. For
Geo-FNO models, it degenerates to vanilla FNO models on Darcy2d and NS2d datasets. So Geo-FNO performs the same
as FNO on these datasets. Other hyperparameters of Geo-FNO like width, modes, and batch size are kept the same with
FNO(-interp).

GK-Transformer, OFormer, and GNOT. For all transformer models, we choose the number of heads from {1, 4, 8, 16}.
The number of layers is chosen from {2, 3, 4, 5, 6}. The dimensionality of embedding and hidden size of FFNs are chosen
from {64, 96, 128, 256}. The batch size is chosen from {4, 8, 16, 20}. We use the AdamW optimizer with one cycle learning
decay strategy. Except for NS2d and Burgers1d, we use the pointwise decoder for GK-Transformer since the spectral
regressor is limited to uniform grids. Other parameters of OFormer are kept similar to its original paper. We list the details
of these hyperparameters in the following table,

C. Other Supplementary Results
We provide a runtime comparison for training our GNOT as well as baselines in the following Table 5. We see that a
drawback for all transformer based methods is that training them is slower than FNO.

D. Broader Impact
Learning neural operators has a wide range of real-world applications in many subjects including physics, quantum
mechanics, heat engineering, fluids dynamics, and aerospace industry, etc. Our GNOT is a general and powerful model for
learning neural operators and thus might accelerate the development of those fields. One of the potential negative impacts is
that methods using neural networks like transformers lack theoretical guarantee and interoperability. If these unexplainable
models are deployed in risk-sensitive areas, accident investigation becomes more difficult. A possible way to solve the
problem is to develop more explainable and robust methods with a better theoretical guarantees or corner case protection
when these models are deployed to risk-sensitive areas.
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