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Abstract
We initiate a principled study of algorithmic col-
lective action on digital platforms that deploy ma-
chine learning algorithms. We propose a simple
theoretical model of a collective interacting with
a firm’s learning algorithm. The collective pools
the data of participating individuals and executes
an algorithmic strategy by instructing participants
how to modify their own data to achieve a collec-
tive goal. We investigate the consequences of this
model in three fundamental learning-theoretic set-
tings: nonparametric optimal learning, parametric
risk minimization, and gradient-based optimiza-
tion. In each setting, we come up with coordi-
nated algorithmic strategies and characterize natu-
ral success criteria as a function of the collective’s
size. Complementing our theory, we conduct sys-
tematic experiments on a skill classification task
involving tens of thousands of resumes from a
gig platform for freelancers. Through more than
two thousand model training runs of a BERT-like
language model, we see a striking correspondence
emerge between our empirical observations and
the predictions made by our theory. Taken to-
gether, our theory and experiments broadly sup-
port the conclusion that algorithmic collectives of
exceedingly small fractional size can exert signifi-
cant control over a platform’s learning algorithm.

1. Introduction
Throughout the gig economy, numerous digital platforms
algorithmically profile, control, and discipline workers that
offer on-demand services to consumers. Data collection
and predictive modeling are critical for a typical platform’s
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business as machine learning algorithms power ranking,
scoring, and classification tasks of various kinds (Woodcock
& Graham, 2019; Gray & Suri, 2019; Schor, 2021).

Troves of academic scholarship document the emergence
and preponderance of precarity in the gig economy. Wood
et al. (2019) argue that platform-based algorithmic control
can lead to “low pay, social isolation, working unsocial and
irregular hours, overwork, sleep deprivation and exhaustion.”
This is further exacerbated by “high levels of inter-worker
competition with few labor protections and a global over-
supply of labor relative to demand.” In response, there have
been numerous attempts by gig workers to organize in an
effort to reconfigure working conditions. A growing reper-
toire of strategies, as vast as it is eclectic, uses both physical
and digital means towards this goal. Indeed, workers have
shown significant ingenuity in creating platform-specific
infrastructure, such as their own mobile apps, to organize
the labor side of the platform (Chen, 2018; Rahman, 2021).
Yet, “the upsurge of worker mobilization should not blind us
to the difficulties of organizing such a diverse and spatially
dispersed labor force.” (Vallas & Schor, 2020)

Beyond the gig economy, evidence of consumers seeking to
influence the algorithms that power a platform’s business is
abundant. Examples include social media users attempting
to suppress the algorithmic upvoting of harmful content
by sharing screenshots rather than original posts (Burrell
et al., 2019), or individuals creating bots to influence crowd-
sourced navigation systems (Sinai et al., 2014). The ubiquity
of such strategic attempts calls for a principled study of
how coordinated groups can wield control over the digital
platforms to which they contribute data.

In this work, we study how a collective of individuals can
algorithmically strategize against a learning platform. We
envision a collective that pools the data of participating indi-
viduals and executes an algorithmic strategy by instructing
participants how to modify their own data. The firm in turn
solves a machine learning problem over the resulting data.
The goal of the collective is to redirect the firm’s optimiza-
tion towards a solution that serves the collective. Notably,
coordination is a crucial lever. When data are plentiful, a
single individual lacks the leverage to unilaterally change
the output of a learning algorithm; in contrast, we show that
even small collectives can exert substantial influence.
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1.1. Our Contribution

We initiate a principled study of algorithmic collective ac-
tion in digital platforms that deploy machine learning algo-
rithms. We propose a simple theoretical model of a collec-
tive interacting with a firm’s learning algorithm. The size of
the collective is specified by a value α > 0 that corresponds
to the fraction of participating individuals in a population
drawn from a base distribution P0. The firm observes the
mixture distribution

P = αP∗ + (1− α)P0,

where P∗ depends on the strategy of the collective, and the
firm runs a learning algorithm A on P .

We investigate the consequences of this model in three fun-
damental learning-theoretic settings, supported by a sys-
tematic empirical evaluation on a real resume classification
task from a gig platform. In each setting, we come up with
algorithmic collective strategies and characterize different
success criteria as a function of the collective’s size α. We
exhibit critical thresholds for the value of α at which the
collective succeeds. Our theory and experiments support the
conclusion that collectives of vanishing fractional size can
exert significant control over the firm’s learning algorithm.

Classification. In line with economic theory, we start with
the case of an optimal firm that has full knowledge of the
distribution P . The firm chooses the Bayes optimal pre-
dictor f = A(P) on the distribution P . In the context of
classification, a natural class of objectives for the collective
is to correlate a signal g(·) with a target label y∗: an individ-
ual described by data point (x, y) succeeds if f(g(x)) = y∗

at test time. For this goal, a natural strategy is to perturb
each participating data point (x, y) by applying the signal
g(·) to x and switching the label from y to y∗ at training
time. That is, P∗ is the distribution of (g(x), y∗) for a ran-
dom draw of a labeled data point (x, y) from P0. We prove
that a collective of vanishing fractional size succeeds with
high probability by implementing this strategy, provided
that the signal g(x) is unlikely to be encountered in the base
distribution P0. The success probability is maximized for
an optimal classifier and deteriorates gracefully with the
suboptimality of the classifier.

In practice, the signal g(x) may correspond to adding a
hidden watermark in image and video content, or subtle
syntactic changes in text. It is reasonable to assume that
individuals are indifferent to such inconsequential changes
to their features. In fact, conventional wisdom in machine
learning has it that such hidden signals are easy to come by
in practice. The ability to change the label of an instance,
however, is a more strenuous requirement. We therefore
propose a variant of the strategy where a participating indi-
vidual does not need to modify the label of their data point.
We show that this strategy still succeeds, while quantifying

precisely how it diminishes the collective’s success rate as a
function of its size and a key parameter of P0.

We provide analogous results when the collective’s goal is
for the firm’s predictions to ignore some subset of the feature
information. Given a map g(x), the collective succeeds if
f(x) = f(g(x)). Here, g(x) is a summary of x that, for
example, removes private or sensitive information in x.

Experimental evaluation. We conduct extensive experi-
ments on a dataset of almost thirty thousand resumes from
a gig platform for freelancers. The machine learning task is
to tag resumes with a set of ten skills related to work in the
IT sector. Through more than two thousand model training
runs involving a BERT-like language model, we investigate
the predictions made by our theory. What emerges is a strik-
ing correspondence between our empirical findings and the
theory. The ability to modify both resume and label leads to
a near-perfect success rate at collective sizes of only a frac-
tion of a percent of the population, corresponding to fewer
than one hundred modified resumes. The label-free strategy
still succeeds reliably, albeit at a higher threshold, corre-
sponding to a few hundred resumes. The more well-trained
the model is, the lower the threshold for the collective’s
success. The placement pattern of the signal in the resume
is largely irrelevant, so long as the token we plant is unique
within the corpus of resumes.

Our theory predicts that collectives, in a certain precise
sense, must compete with the strongest alternative signal in
the data. The weaker the alternative signals, the lower the
threshold for success. To confirm this hypothesis experimen-
tally, we randomize the labels of a random fraction of the
data. Confirming our theory, we observe that increasing the
fraction of randomized labels, and hence diminishing the
strength of alternative signals, indeed lowers the threshold
for success of the collective. This observation suggests a
blessing of dimensionality: if the data contains many weak
signals, as high-dimensional data tends to, algorithmic col-
lectives are especially powerful.

Risk minimization and gradient descent. Generalizing be-
yond classification, we consider the power of collectives in
convex risk minimization and gradient-based learning with
possibly nonconvex objectives. In the first case, we show
that collectives can force the firm to deploy any model with
small suboptimality on P0 of the collective’s choosing. In
the second case, we show that given a more powerful inter-
action model the collective can influence the firm to deploy
any desired model even under nonconvexity, as long as the
path from the initial model, computed on P0, to the desired
model does not traverse large gradients when evaluated on
P0. Moreover, despite the nonconvexity, convergence to the
target is achieved at a convex rate. In both problem settings,
the analyzed collective strategies rely on exerting influence
on the gradients computed by the firm.
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1.2. Related Work

Our approach to algorithmic collective action is decidedly
not adversarial. Instead, the strategic manipulations arise
through a misalignment of the firm’s and the individuals’
objectives. Individuals legitimately optimize their utility
through data sharing and coordination. Yet, at a technical
level our results relate to topics studied under the umbrella
of adversarial machine learning. Most closely related is
the line of work on data poisoning attacks that seeks to
understand how data points can be adversarially “poisoned”
to degrade the performance of a predictive model at test
time. We refer to recent surveys for an overview of data
poisoning attacks (Tian et al., 2022), and backdoor attacks
more specifically (Guo et al., 2022). While the literature
on poisoning attacks focuses predominantly on diminishing
the performance of the learning algorithm, documented em-
pirical successes (Cherepanova et al., 2021; Geiping et al.,
2021) hint at the impact that algorithmic collective action
can have on deep learning models. Despite the increasing
number of studies on backdoor attacks and defenses, the-
oretical work explaining how underlying factors affect the
success of backdoor attacks has been limited (Grosse et al.,
2022). We point out two recent works that study the rela-
tionship between the number of manipulated data points and
the success probability of the attack. Manoj & Blum (2021)
show that a fixed number of points is sufficient for back-
door attacks to succeed in binary classification problems,
provided that the memorization capacity of the model is
sufficiently large. Cinà et al. (2021) empirically investigate
backdoor learning curves across many image recognition
tasks and they observe curves with diminishing returns, sim-
ilar in shape to those in our experiments. Our analysis of
Bayes optimal classification provides a new, complementary
theoretical perspective and sheds light on the effectiveness
of practical data manipulation strategies in a way that is
surprisingly predictive of our empirical observations and
previous empirical results in adversarial machine learning.

Our analysis of risk minimization is reminiscent of model-
targeted attacks (Suya et al., 2021; Farhadkhani et al., 2022),
which aim to bias the learner towards a target model. Our
gradient-control strategy resembles the counter-gradient at-
tack in (Farhadkhani et al., 2022). While the insights from
these prior works are valuable to inform the feasibility of
collective action in convex risk minimization, our work dif-
fers from these existing studies in its focus on the role of
collective size and the analysis of nonconvex losses. Only
a handful of works in the adversarial machine learning lit-
erature have questioned the institution-centric perspective
of the community and discussed the political dimension of
adversarial machine learning (Albert et al., 2020; Vincent
et al., 2021; Albert et al., 2021). In this context, a recent line
of work considers the socially beneficial use of adversar-
ial learning techniques (Delobelle et al., 2021; Shan et al.,

2020; Abebe et al., 2022; Kulynych et al., 2020; Li et al.,
2022).

Our work can also be viewed as a conceptual reversal of
strategic classification (Hardt et al., 2016). In strategic
classification, a firm anticipates the optimal response of a
strategic individual to a decision rule. Instead, we consider
individuals that strategically anticipate the optimizing be-
havior of the firm, something recently considered by Zrnic
et al. (2021). Furthermore, our work is conceptually differ-
ent from strategic classification in its focus on the role and
objectives of workers and consumers on online platforms
rather than the firm. Another crucial departure from the
set of problems considered in strategic classification is our
emphasis on collective rather than individual strategies.

The idea of collective action on digital platforms has also
been previously studied. Creager & Zemel (2021) show
how algorithmic recourse can be improved through coor-
dination. Vincent et al. (2019) examine the effectiveness
of data strikes. Extending this work to the notion of data
leverage, Vincent et al. (2021) describe various ways of
“reducing, stopping, redirecting, or otherwise manipulating
data contributions” for different purposes. See also Vincent
& Hecht (2021). Our work provides a theoretical framework
for understanding the effectiveness of such strategies, as
well as studying more complex algorithmic strategies that
collectives may deploy.

Appendix A continues our discussion of related work.

2. Problem Formulation
We study the strategic interaction of a firm operating a pre-
dictive system with a population of individuals. We assume
that the firm deploys a learning algorithm A that operates
on data points in a universe Z = X × Y . Each individ-
ual corresponds to a single data point z ∈ Z , typically a
feature–label pair. We model the population of individual
participants as a distribution P0 over Z .

We say that a fraction α > 0 of the individuals form a col-
lective in order to strategically respond to the firm’s learning
behavior. The collective agrees on a potentially randomized
strategy h : Z → Z from a space of available strategies H.
The possible strategies H capture feasible changes to the
data. For example, content creators on a video streaming
platform may be indifferent between videos that differ only
in a hidden watermark not visible to human viewers. Free-
lancers may be indifferent between two resumes that differ
only in inconsequential syntactic details.

The firm therefore observes a mixture distribution

P = αP∗ + (1− α)P0,

where we use P∗ to denote the distribution of h(z), z ∼ P0.
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The collective strives to choose a strategy h so as to max-
imize a measure of success over the solution f = A(P)
chosen by the firm. Here, f is a mapping from features to
labels, f : X → Y . Given a strategy, we use S(α) to denote
the level of success achieved by a collective of size α. The
central question we study is how the success S(α) grows as
a function of collective size α, and how large α needs to be
in order to achieve a target success level.

Definition 2.1 (Critical mass). The critical mass for a target
success level S∗ is defined as the smallest α for which there
exists a strategy such that S(α) ≥ S∗.

Note that, although motivated from the perspective of labor,
our formal model can also serve as a basis for studying
collective action on the consumer side of digital platforms.
Before presenting our results we briefly discuss why we
focus on collective strategies in this paper.

Why collective action? By engaging in collective action,
individuals can exert influence on the learning algorithm
that they could not achieve by acting selfishly. In large-
population settings such as online platforms, an individual
contributes an infinitesimal fraction of the data used by
the learning algorithm. Thus, under reasonable manipula-
tion constraints, individual behavior is largely powerless
in systematically changing the deployed model. Instead,
individuals are limited to simple adversarial attacks or in-
dividual strategies that do not have lasting effects on the
learning outcome. By coordinating individuals, however,
collectives can wield enough power to steer learning algo-
rithms towards desired goals. In subsequent sections we
show that collectives can often do so while only representing
a small fraction of the training data.

3. Collective Action in Classification
We start with classification under the assumption that the
firm chooses an approximately optimal classifier on the data
distribution P .

Definition 3.1 (ϵ-optimal classifier). A classifier f : X →
Y is ϵ-optimal under the distribution P if there exists a P ′

with TV(P,P ′) ≤ ϵ such that

f(x) = argmax
y∈Y

P ′(y|x) .

Note that a 0-optimal classifier is the Bayes optimal classi-
fier with respect to the zero–one loss.

Under the above assumption, we focus on two general goals
for the collective: planting a signal and erasing a signal.

3.1. Planting a Signal

Assume the collective wants the classifier to learn an asso-
ciation between an altered version of the features g(x) and

a chosen target class y∗. Formally, given a transformation
g : X → X , the collective wants to maximize the following
measure of success:

S(α) = Pr
x∼P0

{f(g(x)) = y∗} .

We call this objective “planting a signal” and X ∗ =
{g(x) : x ∈ X} the signal set. For example, g(x) could
be instance x with an inconsequential trigger (such as a
video with an imperceptible watermark or a resume with a
unique formatting) and y∗ could be a label indicating that
the instance is of high quality (e.g., a high-quality video
or a highly qualified individual). As another example, the
collective may have an altruistic goal to help individuals
in a vulnerable subpopulation X0 ⊆ X achieve a desired
outcome y∗. In this case, g(x) could be a mapping from x
to a randomly chosen instance in X0.

We provide natural strategies for planting a signal and char-
acterize their success as a function of α. The key parameter
that we identify as driving success is the uniqueness of the
signal.

Definition 3.2 (ξ-unique signal). We say that a signal is
ξ-unique if it satisfies P0(X ∗) ≤ ξ.

In addition, success naturally depends on how suboptimal y∗

is on the signal set under the base distribution. To formalize
this dependence, we define the suboptimality gap of y∗ as

∆ = max
x∈X∗

(max
y∈Y

P0(y|x)− P0(y
∗|x)) .

We consider two possibilities for the space of available
strategies H. First, we assume that the individuals can mod-
ify both features and labels. We call the resulting strategies
feature–label strategies. Modifying features by, say, plant-
ing a trigger often comes at virtually no cost. Changing
the label, however, may be hard, costly, or even infeasible.
This is why we also consider feature-only strategies; such
strategies only allow changes to features.

Feature–label signal strategy. We define the feature–label
signal strategy as

h(x, y) = (g(x), y∗) . (1)

The result below quantifies the success of this strategy in
terms of the collective size and the uniqueness of the signal.

Theorem 3.3. Consider the feature–label signal strategy
and suppose that the signal is ξ-unique. Then, the success
against an ϵ-optimal classifier is lower bounded by

S(α) ≥ 1− 1− α

α
·∆ · ξ − ϵ

1− ϵ
.

Rearranging the terms, we obtain an upper bound on the
critical mass given a desired success probability (e.g., 90%).

4



Algorithmic Collective Action in Machine Learning

0.0 0.5 1.0
Collective fraction

0.0

0.5

1.0

Su
cc

es
s r

at
e

signal measure 
0.01
0.05
0.1
0.2

0.0 0.5 1.0
Collective fraction

0.0

0.5

1.0

Su
cc

es
s r

at
e

suboptimality 
0.01
0.05
0.1
0.2

Figure 1. Illustration of the success rate predicted by Theorem 3.3.
In the first we fix ϵ = 0 and vary ξ, and in the second we fix ξ and
vary the classifier’s suboptimality, ϵ. We upper bound ∆ by one.

Corollary 3.4. Suppose the signal is ξ-unique. Then, the
critical mass for achieving success S∗ ∈ (0, 1) with feature–
label strategies against an ϵ-optimal classifier is bounded by

α∗ ≤ ∆ · ξ
1− S∗ − ϵ

1−ϵ +∆ · ξ
. (2)

Therefore, in order to achieve success it suffices to have a
collective size proportional to the uniqueness of the signal
and the suboptimality of y∗ on the signal set, as long as
these parameters are sufficiently small relative to the target
error rate 1−S∗. This suggests that planting signals that are
exceedingly “rare” under the base distribution can be done
successfully by small collectives— a property of feature–
label strategies that we empirically validate in Section 5.

In the next result we consider feature-only strategies. An
impediment to the success of such strategies is the situa-
tion where there is overwhelmingly strong signal about a
label y ̸= y∗ in the base distribution and hence little label
uncertainty. This is the reason why we make one addi-
tional assumption that there exists a number p > 0 such that
P0(y

∗|x) ≥ p for all x ∈ X .

Feature-only signal strategy. We define the feature-only
signal strategy as

h(x, y) =

{
(g(x), y∗), if y = y∗,

(x, y), otherwise.
(3)

This strategy achieves a similar success rate as the feature–
label strategy, but the success diminishes with the constant p.

Theorem 3.5. Consider the feature-only signal strategy and
suppose that the signal is ξ-unique. Further, suppose there
exists p > 0 such that P0(y

∗|x) ≥ p,∀x ∈ X . Then, the
success against an ϵ-optimal classifier is lower bounded by

S(α) ≥ 1− 1− p

pα
· ξ − ϵ

1− ϵ
.

The critical mass for achieving a target success probability
is thus bounded as follows.

Corollary 3.6. Suppose the signal is ξ-unique. Then, the
critical mass for achieving success S∗ ∈ (0, 1) with feature-
only strategies against an ϵ-optimal classifier is bounded by

α∗ ≤ 1− p

p

ξ

1− S∗ − ϵ
1−ϵ

.

The positivity constant p > 0 may be excessively small over
the entire data universe. A standard fix to this problem is
to restrict P0 to a subset where the constant is larger, and
pay a penalty for the amount of truncation in the bound. For
example, if there exists R ⊆ X such that P0(R) ≥ 99%,
but the positivity constant over R is much larger than p, then
one can obtain a more powerful version of Theorem 3.5.

3.2. Erasing a Signal

Next, we assume the collective wants the classifier to be
invariant under a transformation g : X → X of the features.
In particular, the success is measured with respect to:

S(α) = Pr
x∼P0

{f(x) = f(g(x))}.

In other words, the collective wants the classifier to output
the same predictions for all x and x′ that have g(x) = g(x′).
The map g can be thought of as a summary of x that removes
some feature information. We call this objective “erasing a
signal.” For example, if the collective wants the deployed
model to be insensitive to the value of a particular feature
j∗, then it can use g(x) = x′ where x′

j = xj for j ̸= j∗

and x′
j∗ = 0. The feature j∗ could be the length of a video

that content creators do not want to affect the ranking of the
content, or it could be a sensitive demographic feature that
a collective wants to be independent of the predicted label.

Erasure strategy. We define the erasure strategy as

h(x, y) = (x, argmax
y∈Y

P0(y|g(x))).

As before, the success of the strategy depends on problem-
dependent quantities. In this case, the quantity of interest is
the sensitivity of the labels to the erased signal. We capture
this sensitivity in the parameter τ , defined as

τ := E
x∼P0

max
y∈Y

|P0(y|x)− P0(y|g(x))| .

Intuitively, τ is small if observing the whole feature vector
x, instead of just the summary g(x), reveals little additional
information about the label.

Theorem 3.7. Consider the erasure strategy. Then, the
success against an ϵ-optimal classifier is lower bounded by

S(α) ≥ 1− 2(1− α)

α
· τ − ϵ

1− ϵ
.
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We rearrange the terms and derive a bound on the critical
mass that guarantees a signal can be erased with a desired
probability.

Corollary 3.8. The critical mass for achieving success
S∗ ∈ (0, 1) is bounded by

α∗ ≤ τ
1
2 (1− S∗)− ϵ

2(1−ϵ) + τ
.

The less sensitive the labels to the erased information, the
smaller the collective needed to successfully enforce a deci-
sion rule independent of the protected information.

In contrast to the strategies in Section 3.1, the erasure strat-
egy requires knowledge of statistics about P0. This high-
lights an important benefit of collective action: information
sharing. Information about the base distribution is typically
difficult to obtain for individual platform users. However,
a collective can pool their feature–label information to esti-
mate properties of the distribution from samples; the larger
the collective, the better the estimate and consequently the
more effective the strategy.

4. Collective Action in Risk Minimization
We next study the effect of collective size when the learner
is solving parametric risk minimization. Here the firm is
choosing a model from a parameterized set {fθ}θ∈Θ. We
will use A(P) to denote an element in Θ that determines
the model chosen by the firm. We begin by studying convex
risk minimizers. Then, motivated by nonconvex settings,
we look at gradient-descent learners without imposing any
convexity assumptions on the objective. Our main working
assumption will be that of a risk-minimizing firm.

Definition 4.1 (Risk minimizer). Fix a loss function ℓ. The
firm is a risk minimizer if under distribution P it determines
the parameter of the model fθ according to

θ = argmin
θ′∈Θ

E
z∼P

ℓ(θ′; z).

4.1. Convex Risk Minimization

To begin, we assume that ℓ(θ; z) is a convex function of
θ, and that the collective’s goal is to move the model from
θ0—the optimal model under the base distribution P0—to
a target model θ∗. To that end, for a given target model
θ∗ ∈ Θ, we measure success in terms of

S(α) = −∥θ − θ∗∥.

Here, ∥ · ∥ can be any norm (as long as it is kept fixed in the
rest of the section). In line with first-order optimality condi-
tions for convex optimization, the influence of the collective
on the learning outcome depends on the collective’s ability

to influence the average gradient of ℓ. To simplify notation,
let gP(θ′) = Ez∼P ∇ℓ(θ′; z) denote the expected gradient
of the loss over distribution P measured at a point θ′ ∈ Θ.

Gradient-neutralizing strategy. Define the
gradient-neutralizing strategy as follows. Find a
gradient-neutralizing distribution P ′ for θ∗, meaning
∠(gP′(θ∗),−gP0

(θ∗)) = 0. Then, draw z′ ∼ P ′ and let

h(z) =

{
z′, with prob. min

(
1, 1

α

∥gP0
(θ∗)∥

∥gP′ (θ∗)∥+∥gP0
(θ∗)∥

)
,

z, else.

For example, in generalized linear models (GLMs) gradients
are given by ∇ℓ(θ; (x, y)) = x(µθ(x)−y), where µθ(·) is a
mean predictor (see, e.g., Chapter 3 in (Efron, 2022)). There-
fore, one can obtain a gradient-neutralizing distribution by
simply letting h(x, y) = (x′, y′), where x′ = −gP0

(θ∗)
and y′ is any value less than µθ(x

′). Alternatively, if the
collective is restricted to feature-only strategies, they can
set x′ = −gP0(θ

∗) only if y < µθ(x
′), and x′ = 0 oth-

erwise. As long as the label distribution has sufficiently
large support under P0, in particular y < µθ(−gP0

(θ∗))
with nonzero probability, this strategy likewise results in a
gradient-neutralizing distribution.

Theorem 4.2. Suppose there exists a gradient-neutralizing
distribution P ′ for θ∗. Then, if the loss is µ-strongly con-
vex, the success of the gradient-neutralizing strategy is
bounded by

S(α) ≥ 1

µ
min (α∥gP′(θ∗)∥ − (1− α)∥gP0

(θ∗)∥, 0) .

The natural target success for the collective is for θ∗ to be
reached exactly; this is achieved when S(α) = 0.

Corollary 4.3. Suppose there exists a gradient-neutralizing
distribution P ′ for θ∗. Then, for any µ ≥ 0 the critical mass
for achieving target success S(α) = 0 is bounded by

α∗ ≤ ∥gP0
(θ∗)∥

∥gP′(θ∗)∥+ ∥gP0
(θ∗)∥

. (4)

Even if ℓ is only strictly convex (µ → 0), the collective can
reach θ∗ with α∗ as in (4). Note that this corollary reveals an
intuitive relationship between α∗ and gP0(θ

∗) in the convex
regime: target models θ∗ that look more optimal to the
learner under the base distribution are easier to achieve.

If the collective has a utility function u(θ′) that specifies
the participants’ preferences over different models θ′, a
natural way to define success is via a desired gain in utility:
S(α) = u(θ) − u(θ0), where θ0 = A(P0). Corollary 4.3
implies a bound on the critical mass for this measure of
success, for all convex utilities (for example, linear utilities
of the form u(θ) = θ⊤v, for some v).
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Figure 2. Success rate of Strategy 1 as the collective size varies.

Proposition 4.4. Suppose that u(θ′) is convex. Further,
assume ℓ is β-smooth and that ∥·∥ is the ℓ2-norm. Then, the
critical mass for achieving u(θ)−u(θ0) ≥ U is bounded by

α∗ ≤ β · U
glb · ∥∇u(θ0)∥+ β · U

,

where glb = min{∥gP′(θ′)∥ : ∥θ′ − θ0∥ ≤ U/∥∇u(θ0)∥}
and P ′ is gradient-neutralizing for θ′.

As a result, the critical mass required to achieve a utility
gain of U decreases as the gradient of the utility at θ0 grows.
Intuitively, large ∥∇u(θ0)∥ means that small changes to θ0
can lead to large improvements for the collective.

4.2. Gradient-Based Learning

So far we have assumed that exact optimization is computa-
tionally feasible; with nonconvex objectives, this behavior is
hardly realistic. A common approach to risk minimization
for general, possibly nonconvex learning problems is to run
gradient descent. Formally, at each step t we assume the
learner observes the current data distribution Pt, computes
the average gradient at the current iterate, and updates the
model by taking a gradient step:

θt+1 = θt − η · gPt
(θt),

where η > 0 is a fixed step size. Given a target model θ∗,
we define the success of the strategy after t steps as

St(α) = −∥θt − θ∗∥.

Given the online nature of the learner’s updates, we assume
that the collective can adaptively interact with the learner;
that is, they can choose P∗

t at every step t. This is a typical

interaction model in federated learning (McMahan et al.,
2017). In the following we show that this additional leverage
enabled by this adaptivity allows the collective to implement
a refined strategy that controls the outcome of learning even
in nonconvex settings.

Gradient-control strategy. We define the gradient-control
strategy at θ as follows. Given the observed model θ and a
target θ∗, the collective finds a gradient-redirecting distribu-
tion P ′ for θ, meaning gP′(θ) = − 1−α

α gP0(θ) + ξ(θ− θ∗),
for some ξ ∈ (0, 1

αη ). Then, draw z′ ∼ P ′ and set
h(z) = z′.
Theorem 4.5. Assume the collective can implement the
gradient-control strategy at all λθ0 + (1− λ)θ∗, λ ∈ [0, 1].
Then, there exists a C(α) > 0 such that the success of the
gradient-control strategy after T steps is lower bounded by

ST (α) ≥ − (1− ηC(α))
T · ∥θ0 − θ∗∥.

The above result implies that the collective can reach any
model θ∗ as long as there exists a path from θ0 to θ∗ that
only traverses small gradients on the initial distribution P0.

5. Experiments
We report on experimental findings from over 2000 model
training runs involving a BERT-like text transformer model
on a resume classification task. The resume dataset consists
of nearly 30000 resumes of freelancers on a major gig labor
platform, introduced by (Jiechieu & Tsopze, 2021). The task
is a multiclass, multilabel classification problem where the
goal is to predict a set of up to ten skills from the software
and IT sector based on the resume.

The collective controls a random fraction of the training data
within the dataset. Its goal is to plant a signal, that is, steer
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Figure 3. Success rate of Strategy 2 as the collective size varies.

the model’s predictions on transformed data points g(x)
toward a desired target label y∗. We evaluate the effective-
ness of two simple strategies, which are instantiations of the
feature–label and feature-only strategies from Section 3.1.

Strategy 1 (Text and label manipulation across dataset).
The collective plants a special token in the resume text and
changes the label to the target class. This strategy closely
mirrors the feature-label signal strategy in (1).

Strategy 2 (Text-only manipulation within target class).
The collective manipulates the resume text of resumes
within the target class by inserting a special token with
some frequency (every 20th word). This strategy closely
follows the feature-only signal strategy in (3).

Evaluation. To measure success we insert the special token
in all test points and count how often the model (a) includes
the target class in its set of predicted skills, (b) has the target
class as its “top-1” prediction.

5.1. Experimental Setup

We use ‘distilbert-base-uncased’, a standard pre-
trained transformer model. We fine-tune it on the dataset for
5 epochs with standard hyperparameters. After 5 epochs, the
model plateaus at around 97% multi-label accuracy (defined
as 1 minus Hamming loss), 93.8% precision, and 88.9%
recall. The dataset contains 29783 resumes, of which we
use 25000 for training and 4783 for testing. We focus on the
first three classes of the problem, corresponding to database
administrator (class 0), web developer (class 1), software de-
veloper (class 2). These three classes occur with frequency
0.11, 0.23, and 0.5, respectively, in the dataset. As the spe-
cial token, we use an unused formatting symbol (token 1240
being a small dash) that we insert every 20 words.

5.2. Experimental Findings

Text and label manipulation across dataset. We find
that Strategy 1 exerts significant control over the model’s
prediction even when the collective is exceedingly small
(Figure 2). In fact, we see consistent success in controlling
the model’s output well below 0.5% of the dataset, i.e.,
fewer than 125 manipulated training data points.

Text-only manipulation within target class. We find that
Strategy 2 consistently succeeds in controlling the model
so as to include the target class in its positive predictions.
The strategy succeeds at a threshold of around 10% of the
instances of the target class (Figure 3, top panel). This
threshold corresponds to approximately 1%, 2%, and 5% of
the dataset for class 0, 1, and 2, respectively. When it comes
to controlling the model’s top prediction, the text-only strat-
egy does not consistently succeed (Figure 3, bottom panel).

Effect of positivity constant. Our theory in Section 3.1
suggests that the difficulty of controlling the model’s top
prediction via the text-only strategy may be due to a small
positivity constant p. To evaluate this hypothesis, we repeat
our experiments after we randomize a random fraction of
the labels in the training data. This randomization ensures
that each feature vector is assigned the target label with
nontrivial probability. Our findings confirm that even a small
fraction of random labels dramatically increases the success
of Strategy 2 in controlling the top prediction (Figure 4).

Trade-offs between model optimality and success. Fig-
ure 5 shows that the success of either strategy is sensitive to
the number of epochs. Less optimization during the model
training phase leads to a lower success rate. These find-
ings mirror our theoretical results: as the model approaches
optimality, small collectives have significant power.
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Figure 4. Random labels increase success of Strategy 2.
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Figure 5. Additional epochs of training increase the success rate.

Robustness to trigger token placement. Figure 7 in the
Appendix shows that the success rate of either strategy is
insensitive to the spacing of the trigger token. Varying
the token frequency from 10 to 50 has little effect on the
success rate. This experimental finding, too, is in line with
our theory. Since the token chosen in our strategy is unique,
the set of texts augmented with this unique token has low
probability regardless of how often the token is planted.

6. Discussion
We conclude the paper with a short discussion highlight-
ing the economic significance of understanding the critical
mass α∗ for pursuing collective targets. It is well-known in
economics that participation in a collective is not individ-
ually rational, and additional incentives are necessary for
collective action to emerge. Building on a classic model for
collective action from economics (Olson, 1965), we illus-
trate how similar conclusions hold for algorithmic collective
action, and how they relate to the theoretical quantities stud-
ied in this paper.

Assume that individuals incur a cost c > 0 for participating
in collective action. This cost might represent overheads of

αcrit

c

B(αcrit)

S(α)

γS(α)

α

Figure 6. Visualization of the critical threshold αcrit after which a
collective is self-sustaining and the principal’s required investment
B(αcrit) to incentivize the whole population to join the collective.

coordination, a membership fee, or other additional responsi-
bilities. Furthermore, assume that the utility that individuals
get from joining a collective of size α is S(α), and that other-
wise they can partially “free ride” on the collective’s efforts:
they get utility of γS(α) for some γ ∈ [0, 1]. Given this
setup, individually rational agents will join the collective if

S(α)− c > γS(α),

or equivalently, if S(α) > c
1−γ . Therefore, joining the

collective is rational if the size of the existing collective α
is greater than the critical mass for S∗ = c

1−γ . Note that,
once this critical threshold is reached, all individuals in the
population are incentivized to join the collective and the
collective is thus self-sustaining.

Consider a principal who would like to invest into the forma-
tion of a collective. The area B(αcrit) visualized in Figure 6
provides an upper bound on the investment required to make
the collective self-sustaining and thus achieve any target suc-
cess S∗ ≤ S(1).

The derivation above, while simplistic, serves to highlight
the importance of collective size in understanding how col-
lectives can emerge both organically and through investment.
We believe that there is a large potential in investigating
these questions in a rigorous manner. Indeed, the focus of
this paper has been on understanding the effect of the size of
the collective on its success, but understanding more gener-
ally how collectives form, which individuals have the most
incentive to join collectives, whether selectively recruiting
individuals provides additional leverage, and how collec-
tives should use their informational advantage to optimize
their strategies are important open questions in understand-
ing the role of collectives on digital platforms.
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A. Related Work
The scholarly literature on the gig economy is vast and interdisciplinary, spanning economic, ethnographic, psychological,
and sociological analysis. Gig labor is diverse and heterogeneous. Conditions of precarity and dependence differ widely
depending on the type of work and platform (Schor et al., 2020). Reviewing and integrating more than two hundred
articles on the topic, Cropanzano et al. (2022) define gig work as “labor contracted and compensated on a short-term
basis to organizations or to individual clients through an external labor market,” and detail how gig work has changed
the psychological contract between workers and employers. Vallas & Schor (2020) review existing scholarly accounts of
the gig economy, arguing that “platforms represent a distinctive form of economic activity, [...] different from markets,
hierarchies, and networks.” Platforms cede some forms of centralized managerial control over workers by exposing them
to the disciplining effect of the market and evaluation by consumers, while retaining power over key functions, such as
task allocation, data collection, pricing, and collection of revenues. In another review article, Sutherland & Jarrahi (2018)
organize more than four hundred articles around the notion of platform centralization and decentralization.

Several works examine the reality of gig labor, e.g., (Van Doorn, 2017; Sun, 2019; Gray & Suri, 2019). Based on a
cross-regional survey, Wood et al. (2019) find that algorithmic control in the gig economy can lead to “low pay, social
isolation, working unsocial and irregular hours, overwork, sleep deprivation and exhaustion”, “marked by high levels of
inter-worker competition with few labour protections and a global oversupply of labour relative to demand”.

Cameron & Rahman (2022) examine the interplay of control and resistance in the gig economy. There are several examples
of successful worker organization in the gig economy, involving a range of strategies. For example, Rahman (2021) studies
how freelancers on Upwork strategize against the evaluation metrics of the platform, sometimes in cooperation with clients
on the platform. Also studying Upwork freelancers, Jarrahi & Sutherland (2019) discuss how freelancers cooperate in
strategically feeding the algorithm data so as to improve their outcomes. Cooperative strategic behavior among drivers on
ride-hailing platforms is common, e.g., (Cameron, 2020; Robinson, 2017; Yu et al., 2022), as are digital strategies involving
bots, or multiple phone apps (Chen, 2018). Workers have also used forums, browser extensions, and online spaces to share
information and strategize collectively, e.g., (Irani & Silberman, 2013; Salehi et al., 2015; O’Meara, 2019). We focus on the
activities on the labor side of digital platforms, leaving out numerous examples of collective action from consumers and
users on these platforms. However, as Vallas & Schor (2020) conclude, “the upsurge of worker mobilization should not
blind us to the difficulties of organizing such a diverse and spatially dispersed labour force or the power of the companies to
resist collective action.”

There is extensive scholarship on the topic of collective action. For example, Melucci’s text (Melucci, 1996) examines
collective action in the information society. Milan (2015) examines how social media platforms mediate social movements
and collective action.

B. Proofs
The following lemma will be used to analyze suboptimal classifiers.

Lemma B.1. Suppose that P,P ′ are two distributions such that TV(P,P ′) ≤ ϵ. Take any two events E1, E2 measurable
under P,P ′. If P(E1) > P(E2) +

ϵ
1−ϵ , then P ′(E1) > P ′(E2).

Proof. It follows from the optimal coupling lemma for the total variation distance that we can write P ′ = (1− ϵ)P + ϵQ
for some distribution Q. Therefore, if P(E1) > P(E2) +

ϵ
1−ϵ , then

P ′(E1) = (1− ϵ)P(E1) + ϵQ(E1) > (1− ϵ)P(E2) + ϵ ≥ (1− ϵ)P(E2) + ϵQ(E2) = P ′(E2).

B.1. Proof of Theorem 3.3

First consider the case ϵ = 0. We start with a sufficient condition for a target classification outcome. For a point x ∈ X , we
define

∆x = max
y∈Y

P0(y|x)− P0(y
∗|x)

as the suboptimality of a target class on the base data.
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Claim B.2. For any x ∈ X , we have f(x) = y∗ provided that α > (1− α)∆xP0(x)/P∗(x).

Proof. Note that f(x) = y∗ if, for every y ̸= y∗, P(y∗|x) > P(y|x) . Equivalently, P(x, y∗)− P(x, y) > 0. But,

P(x, y∗) = αP∗(x, y∗) + (1− α)P0(x, y
∗) = αP∗(x) + (1− α)P0(y

∗|x)P0(x)

In the last step we used the fact that all labels in the support of P∗ equal y∗. Similarly, for y ̸= y∗,

P(x, y) = αP∗(x, y) + (1− α)P0(x, y) = (1− α)P0(y|x)P0(x) .

The claim follows by rearranging terms and dividing both sides by P∗(x).

Now,

S(α) = Pr
x∼P0

{f(g(x)) = y∗}

= Pr
x∼P∗

{f(x) = y∗}

≥ Pr
x∼P∗

{
α > (1− α)

P0(x)

P∗(x)
∆x

}
(Claim B.2)

= E
x∼P∗

1

{
1− (1− α)

α

P0(x)

P∗(x)
∆x > 0

}
≥ E

x∼P∗

[
1− (1− α)

α

P0(x)

P∗(x)
∆x

]
= 1− 1− α

α
E

x∼P∗

[
P0(x)

P∗(x)
∆x

]
≥ 1− 1− α

α
P0(X ∗)∆ ,

where the last step uses the definition ∆ = maxx∈X∗ ∆x.

Consider ϵ > 0. By Lemma B.1, we have that P ′(x, y∗) > P ′(x, y), meaning f(x) = y∗, provided that P(x, y∗) >
P(x, y) + ϵ

1−ϵ . Repeating the steps in the proof for ϵ = 0 with the additional ϵ/(1− ϵ) term, we conclude that

S(α) ≥ 1− ϵ

1− ϵ
− 1− α

α
P0(X ∗)∆.

B.2. Proof of Theorem 3.5

We prove the case where ϵ = 0. The extension to ϵ > 0 follows as in Theorem 3.3.
Claim B.3. Fix a point x∗ ∈ X ∗ in the signal set. We have f(x∗) = y∗ provided that

α >
1− p

p

P0(x
∗)

P0(g−1(x∗))
.

Here, g−1(x∗) = {x ∈ X : g(x) = x∗}.

Proof. For f(x∗) = y∗ to hold, we need P(y∗|x∗) > maxy ̸=y∗ P(y|x∗). Equivalently, P(x∗, y∗) > maxy ̸=y∗ P(x∗, y).

By the definition of the feature-only signal strategy and the assumption that P0(y
∗|x) ≥ p for all x ∈ X , each point

x ∈ g−1(x∗) must have P0(y
∗|x) ≥ p. Hence, for all x∗ ∈ X ∗,

P(x∗, y∗) = αP∗(x∗, y∗) + (1− α)P0(x
∗, y∗) ≥ αpP0(g

−1(x∗)) .

On the other hand, for every y ̸= y∗, we must have

P(x∗, y) = P0(x
∗, y) = P0(y|x∗)P0(x

∗) ≤ (1− p)P0(x
∗) .

The claim follows by rearranging.
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We can lower bound the success rate as

S(α) = Pr
x∼P0

{f(g(x)) = y∗}

=
∑

x∗∈X∗

Pr
x∼P0

{
f(g(x)) = y∗ | x ∈ g−1(x∗)

}
Pr

x∼P0

{x ∈ g−1(x∗)}

=
∑

x∗∈X∗

1 {f(x∗) = y∗}P0(g
−1(x∗)) . (5)

Proceeding for fixed x∗ ∈ X ∗,

1 {f(x∗) = y∗} ≥ 1

{
α >

1− p

p

P0(x
∗)

P0(g−1(x∗))

}
(Claim B.3)

= 1

{
1− 1− p

pα

P0(x
∗)

P0(g−1(x∗))
> 0

}
≥ 1− 1− p

pα
· P0(x

∗)

P0(g−1(x∗))
.

Plugging this back into (5),

Pr
x∼P0

{f(g(x)) = y∗} = 1− 1− p

pα

∑
x∗∈X∗

P0(x
∗)

P0(g−1(x∗))
· P0(g

−1(x∗))

≥ 1− 1− p

pα
P0(X ∗) .

B.3. Proof of Theorem 3.7

We again prove the case where ϵ = 0. The extension to ϵ > 0 follows by invoking Lemma B.1, as in Theorem 3.3.

We start from the following claim.
Claim B.4. For any x ∈ X we have f(x) = f(g(x)) provided that

α > (1− α)2τ(x),

where τ(x) = maxy∈Y |P0(y|x)− P0(y|g(x))|.

Proof. Denote y∗(x) = argmaxy∈Y P0(y|g(x)). By construction of the strategy we know that f(g(x)) = y∗(x) and it
remains to prove that f(x) = y∗(x) under the condition of the claim.

We have f(x) = y∗(x) if P(y∗(x)|x) > P(y|x) for any y ̸= y∗(x). We have

P(y∗(x)|x) = (1− α)P0(y
∗(x)|x) + αP∗(y∗(x)|x) = (1− α)P0(y

∗(x)|x) + α,

P(y|x) = (1− α)P0(y|x) + αP∗(y|x) = (1− α)P0(y|x),

where we used that the erasure strategy implies P∗(y∗(x)|x) = 1. Together this means that, when

α > (1− α)

[
max
y∈Y

P0(y|x)− P0(y
∗(x)|x)

]
,

then f(x) = y∗(x). Using the definition of y∗(x), we can bound the right-hand side by

P0(y|x)− P0(y
∗(x)|x) ≤ P0(y|x)− P0(y|g(x)) + P0(y

∗(x)|g(x))− P0(y
∗(x)|x)

≤ 2τ(x).

The claim follows.
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It remains to bound the success of the strategy:

S(α) = Pr
x∼P0

{f(x) = f(g(x))}.

= Pr
x∼P0

{f(x) = y∗(x)}.

≥ Pr
x∼P0

{α > (1− α)2τ(x)}

= Pr
x∼P0

{
1− 1− α

α
2τ(x) > 0

}
≥ E

x∼P0

[
1− 2(1− α)

α
· τ(x)

]
= 1− 2(1− α)

α
· τ,

where we use the fact that τ = Ex∼P0
τ(x).

B.4. Proof of Theorem 4.2

Let P ′ be a gradient-cancelling distribution for θ∗. Denote p = min
(
1, 1

α

∥gP0
(θ∗)∥

∥gP′ (θ∗)∥+∥gP0
(θ∗)∥

)
. Then,

E
z∼P

∇ℓ(θ∗; z) = (1− α) E
z∼P0

∇ℓ(θ∗; z) + α E
z∼P∗

∇ℓ(θ∗; z)

= (1− αp) E
z∼P0

∇ℓ(θ∗; z) + αp E
z∼P′

∇ℓ(θ∗; z)

= (1− αp)gP0
(θ∗) + αp gP′(θ∗)

=

(
1− αp− αp

∥gP′(θ∗)∥
∥gP0(θ

∗)∥

)
gP0

(θ∗)

=

(
1− αp

∥gP0(θ
∗)∥+ ∥gP′(θ∗)∥
∥gP0

(θ∗)∥

)
gP0(θ

∗)

= max

(
1− α

∥gP0
(θ∗)∥+ ∥gP′(θ∗)∥
∥gP0

(θ∗)∥
, 0

)
gP0

(θ∗)

= max ((1− α)∥gP0(θ
∗)∥ − α∥gP′(θ∗)∥, 0) gP0

(θ∗)

∥gP0(θ
∗)∥

.

Therefore, ∥Ez∼P ∇ℓ(θ∗; z)∥ = max ((1− α)∥gP0
(θ∗)∥ − α∥gP′(θ∗)∥, 0). Applying the definition of µ-strong convexity,

we get

∥θ∗ − θ∥ ≤ 1

µ
∥ E
z∼P

∇ℓ(θ∗; z)− E
z∼P

∇ℓ(θ; z)∥

=
1

µ
∥ E
z∼P

∇ℓ(θ∗; z)∥

=
1

µ
max ((1− α)∥gP0(θ

∗)∥ − α∥gP′(θ∗)∥, 0) .

The first equality follows because Ez∼P ∇ℓ(θ; z) = 0 due to the loss being convex and the firm being a risk minimizer.
Multiplying both sides by −1, we obtain a lower bound on the success S(α) = −∥θ∗ − θ∥.

B.5. Proof of Corollary 4.3

To achieve S(α) = 0, Theorem 4.2 shows that it suffices to have α∥gP′(θ∗)∥ = (1− α)∥gP0
(θ∗)∥, for any µ. Rearranging

the terms and expressing α completes the proof.

B.6. Proof of Proposition 4.4

If u is convex, then for all θ′ we know

u(θ′) ≥ u(θ0) +∇u(θ0)
⊤(θ′ − θ0).
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Let θ∗ = θ0 +
∇u(θ0)

∥∇u(θ0)∥2 U . Then, u(θ∗)− u(θ0) ≥ U .

Now, we apply Corollary 4.3 to upper bound the critical mass needed to reach θ∗. We have

α∗ ≤ ∥gP0
(θ∗)∥

∥gP′(θ∗)∥+ ∥gP0(θ
∗)∥

≤ β∥θ∗ − θ0∥
glb + β∥θ∗ − θ0∥

,

where we apply smoothness and the definition of glb. Observing that ∥θ∗ − θ0∥ = U
∥∇u(θ0)∥ completes the proof.

B.7. Proof of Theorem 4.5

Fix a time step t and a model θt. Denote by P ′
t the gradient-redirecting distribution found at step t and let ξ(θt) =

∥gP′
t
(θt)+

1−α
α gP0

(θt)∥
∥θt−θ∗∥ . Then, the gradient-redirecting strategy induces the following gradient evaluated on Pt:

gPt(θt) = αgP′
t
(θt) + (1− α)gP0(θt)

= −α
1− α

α
gP0

(θt) + αξ(θt)(θt − θ∗) + (1− α)gP0
(θt)

= αξ(θt)(θt − θ∗).

Now let c = minλ∈[0,1] ξ(λθ0 + (1− λ)θ∗). Applying the strategy repeatedly across time steps yields

∥θT − θ∗∥ ≤ ∥θT−1 − ηαξ(θT−1)(θT−1 − θ∗)− θ∗∥
≤ (1− ηαξ(θT−1))∥θT−1 − θ∗∥
≤ (1− ηαc)∥θT−1 − θ∗∥
≤ (1− ηαc)T ∥θ0 − θ∗∥,

which yields ST (α) = −∥θT − θ∗∥ ≥ −(1− ηαc)T ∥θ0 − θ∗∥. Setting C(α) = αc concludes the proof.

C. Additional Experimental Details
The dataset introduced by Jiechieu & Tsopze (2021) is available at https://github.com/florex/resume_
corpus. We preprocessed each resume by removing the first 20 words of the resume. The reason is that the opening of the
resume essentially encodes the associated skills, since the dataset creation process extracted the skills from the opening of
the resume. Removing the first 20 words leads to a more realistic classification task.

We used the HuggingFace transformers open-source Python library (Wolf et al., 2020). We used the
distilbert-base-uncased model from the library corresponding to the DistilBERT transformer model (Sanh
et al., 2019). We used the HuggingFace Trainer module for training with its default settings. We also experimented with
larger models, including RoBERTa (both roberta-base and roberta-large), but we did not see any improvements
in classification accuracy from using these larger models.

The DistilBERT tokenizer has a vocabulary of 30522 tokens of which thousands are unused in the resume corpus. We
picked token 1240 corresponding to a small dash, which we inserted in the resume every 20 words. Our findings are largely
insensitive to the trigger spacing as Figure 7 shows.
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Figure 7. Trigger spacing is largely irrelevant.
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