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Abstract
We provide an optimization-based framework to
perform counterfactual analysis in a dynamic
model with hidden states. Our framework is
grounded in the “abduction, action, and predic-
tion” approach to answer counterfactual queries
and handles two key challenges where (1) the
states are hidden and (2) the model is dynamic.
Recognizing the lack of knowledge on the under-
lying causal mechanism and the possibility of in-
finitely many such mechanisms, we optimize over
this space and compute upper and lower bounds
on the counterfactual quantity of interest. Our
work brings together ideas from causality, state-
space models, simulation, and optimization, and
we apply it on a breast cancer case study. To the
best of our knowledge, we are the first to compute
lower and upper bounds on a counterfactual query
in a dynamic latent-state model.

1. Introduction
Counterfactual analysis, falling on the third rung of Pearl’s
ladder of causation (Pearl & Mackenzie, 2018), is a fun-
damental problem in causality. It requires us to imagine a
world where a certain policy was enacted with a correspond-
ing outcome given that a different policy and outcome were
actually observed. It is performed via the 3-step framework
of abduction (conditioning on the observed data), action
(changing the policy), and prediction (computing the coun-
terfactual quantity of interest (CQI)), and has wide-ranging
applications (Pearl, 2009a;b).

As a concrete application in healthcare and legal reasoning,
consider someone who recently died from breast cancer.
The exact progression of her disease is unknown. What
is known, however, is that over a period of time prior to
her diagnosis, her insurance company adopted a strategy of
denying her regular scans (e.g., mammograms) even though
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these scans should have been covered by her policy. Had
these scans gone ahead, the cancer may have been found
earlier and the patient’s life saved. Now a court wants to
know the probability that her life would have been saved
had the routine scans been permitted.

On top of the challenges posed by standard counterfactual
analysis, there are two that are particular to such a setting.
First, it’s possible the underlying state of the patient (e.g.,
stage of cancer) is hidden / latent and we only observe a
noisy signal depending on the accuracy of the scan (e.g.,
sensitivity and specificity of a mammogram). Second, the
underlying model is dynamic as the patient’s state evolves
over time. As such, our goal in this work is to perform
counterfactual analysis in dynamic latent-state models.1

Two streams of work are closely related to ours. The first
relates to works on constructing bounds on CQIs (Balke
& Pearl, 1994; Tian & Pearl, 2000; Kaufman et al., 2005;
Cai et al., 2008; Pearl, 2009b; Mueller et al., 2021; Zhang
et al., 2021). These papers focus on static models. We note
that despite some similarities of our work with Zhang et al.
(2021), the two approaches are quite different. In particular,
while both papers recognize the relevance of polynomial
optimization for bounding CQIs, Zhang et al. (2021) do not
solve polynomial optimization problems but instead propose
Monte-Carlo algorithms as a work-around. In contrast, we
actually solve polynomial optimization problems via sam-
ple average approximations (SAAs), which we generate via
Monte-Carlo. As such, Monte-Carlo serves as an “input” to
our polynomial programs whereas Zhang et al. (2021) use it
as a “substitute” for polynomial programs. As mentioned
above, another difference is our focus on dynamic models
whereas Zhang et al. (2021) focus on static models. The
second stream is more recent and concerns counterfactual
analysis in dynamic models (Buesing et al., 2019; Oberst &
Sontag, 2019; Lorberbom et al., 2021; Tsirtsis et al., 2021).
Except Buesing et al. (2019), none of these works allows
for latent states. In addition, these works perform counter-
factual analysis by embedding assumptions that are strong
enough to restrict the underlying set of causal mechanisms to
a singleton. In particular, Buesing et al. (2019) explicitly fix

1The key feature distinguishing a static model from a dynamic
model with T periods say, is that the single-period structure is
repeated T times. As we shall see, our framework takes advantage
of this repeated structure in several ways.

1



Counterfactual Analysis in Dynamic Latent-State Models

a single causal mechanism whereas Oberst & Sontag (2019)
and Tsirtsis et al. (2021) invoke counterfactual stability and
implicitly fix the causal mechanism (via the Gumbel-max
distribution). Lorberbom et al. (2021) extend the Gumbel-
max approach but their choice of causal mechanism is the
one that minimizes variance when estimating the CQI. In
summary, none of these approaches explicitly account for
all possible causal mechanisms, and therefore, they do not
consider the construction of lower and upper bounds on the
CQI, which is our focus.

Our key contribution is to provide a principled framework
for counterfactual analysis in dynamic latent-state models.
We define our problem in §2 and discuss counterfactual
stability in §3. In §4, we present our solution approach and
we describe our numerics in §5. We conclude in §6.

2. Problem Definition
We first define the underlying dynamic latent-state model
(§2.1) and then describe the counterfactual analysis problem
(§2.2). We will use a breast cancer application as a vehicle
for explaining ideas throughout but it should be clear our
framework is quite general.

2.1. A Dynamic Latent-State Model

The model, visualized in Figure 1, has T discrete periods. In
each period t, the system is in a hidden stateHt ∈ H (finite).
As a stochastic function ofHt and the policyXt ∈ X (finite),
we observe an emission Ot ∈ O (finite). The emission prob-
ability is denoted by ehxi := P(Ot = i | Ht = h,Xt = x)
for all (h, x, i). This is followed by the state Ht transition-
ing to Ht+1 with transition probability qhih′ := P(Ht+1 =
h′ | Ht = h,Ot = i). The model M comprises three
primitives: M ≡ (p,E,Q), where p := [ph]h denotes the
initial state distribution with ph := P(H1 = h) for all h,
E := [ehxi]h,x,i, and Q := [qhih′ ]h,i,h′ .

H1 H2
. . . HT

O1 O2 OT

X1 X2 XT

Figure 1. A dynamic latent-state model. States H1:T are hidden
(red). Emissions O1:T are observed (blue). X1:T represents the
policy (observed). (We use the notation X1:T := (Xt)

T
t=1.)

In the breast cancer application, the time periods map to the
frequency of mammograms (e.g., 6 months) and the hidden
state Ht ∈ {1, . . . , 7} denotes the patient’s condition. State
1 equates to the patient being healthy whereas states 2 and 3
correspond to undiagnosed in-situ and invasive breast can-
cer, respectively. States 4 and 5 correspond to diagnosed

in-situ and invasive breast cancer respectively, with the un-
derstanding that the cancer treatment has begun (since it has
been diagnosed). States 6 and 7 are absorbing and denote re-
covery from cancer (due to treatment) and death from cancer,
respectively. The observation Ot ∈ {1, . . . , 7} captures the
mammogram result. A value of 1 means no screening took
place, whereas 2 denotes a negative screening result (possi-
bly a false negative). A value of 3 corresponds to a positive
mammogram result, but followed by a negative biopsy (i.e.,
the patient is healthy and the mammogram produced a false
positive). Observations 4 and 5 map to correctly diagnosed
in-situ and invasive cancer respectively, i.e., a positive mam-
mogram followed by a positive biopsy. Observations 6 and
7 are used to denote patient recovery and death from breast
cancer, respectively. The variable Xt ∈ {0, 1} models the
insurance company’s coverage policy for the mammograms,
with 0 denoting the company covers it and 1 denoting the
company (incorrectly) denies the coverage. If the coverage
is denied, then the mammogram is not performed and hence,
the observation cannot be 2, 3, 4, or 5. (In this application,
the Xt’s are deterministic but in general, they could be the
result of a randomized policy.)

Our model is therefore a generalization of a hidden Markov
model (HMM) since Ht+1 depends not only on Ht but also
on Ot. The dependence on Ot is needed to capture the fact
that if cancer was detected during period t and treatment
began at that point of time, i.e., Ot ∈ {4, 5}, then Ht+1

depends on the fact that the treatment began in period t. For
example, if Ht = 2 (in-situ cancer) and Ot = 4 (in-situ
diagnosed and hence, treatment began), then Ht+1 would
be different compared to when Ht = 2 and Ot = 2 (false
negative and hence, treatment did not begin).
Remark 1. Ayer et al. (2012) employed a similar model for
determining an optimal screening strategy for breast cancer
but as their goal was to optimize over screening strategies,
their model was a partially observable Markov decision
process (POMDP). In contrast, our goal is not to find an
optimal strategy but to evaluate CQIs. As such, our model
is not a POMDP although it is easily related to a POMDP
setting. For example, we can view the insurance company’s
observed coverage strategy and the counterfactual strategy
where coverage is always provided, as being feasible strate-
gies from a POMDP. Finally, we also note that a practical
justification for our model comes from the simulation model
used by the National Cancer Institute (UWBCS, 2013).

2.2. The Counterfactual Analysis Problem

We now use our dynamic model to state the counterfactual
analysis problem.

Observed data. Suppose we observe emissions o1:T with
the underlying policy being x1:T . The true hidden states
h1:T are not observed. In the context of breast cancer, the
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observations for a particular patient might be as follows:

o1, . . . , oτs−1︸ ︷︷ ︸
∈{2,3}

, oτs , . . . , oτe︸ ︷︷ ︸
=1

, oτe+1, . . . , oτd−1︸ ︷︷ ︸
∈{4,5}

, oτd:T︸ ︷︷ ︸
=7

. (1)

That is, the patient was screened (x1:τs−1 = 0) and appeared
healthy (o1:τs−1 ∈ {2, 3}) up to and including time τs − 1.
Coverage was denied during periods τs to τe, i.e. xτs:τe = 1;
(see red font in (1). Hence, screening was not performed
during those periods (oτs:τe = 1). As soon as the coverage
for screening was re-approved (period τe + 1 and hence,
xτe+1 = 0), the patient was found to have cancer (either
in-situ or invasive) and the corresponding treatment began;
thus, oτe+1 ∈ {4, 5}. Unfortunately, the patient died at τd.

CQI. We focus on the well-known probability of necessity
(PN) (Pearl, 2009a) as our CQI. It is the probability the
patient would have not died (counterfactual state H̃T 6= 7)
had the screening been covered in every period (interven-
tion policy x̃1:T = 0) given the observed data (o1:T , x1:T ).
(“Tilde” notation denotes quantities in the counterfactual
world.) The interpretation of x̃1:T is straightforward as it is
fixed exogenously. The counterfactual state H̃T is obtained
via the 3 steps of abduction, action, and prediction (Pearl,
2009b). Step 1 (abduction) involves conditioning on the ob-
served data (o1:T , x1:T ) to form a posterior belief over the
hidden states. Step 2 (action) changes the policy from x1:T
to x̃1:T and brings us to the counterfactual world M̃. Step 3
(prediction) computes PN in the counterfactual model:

PN = P(H̃T 6= 7), (2)

with the understanding that the event {H̃T 6= 7} is condi-
tional on (o1:T , x1:T ). Though we focus on PN, it is easy
to extend our framework to a broad class of CQIs as the
abduction and action steps do not depend on the CQI.

Given our focus on counterfactual analysis, we will assume
the primitives (p,E,Q) are known. We discuss their cal-
ibration to real-world data in §5 and emphasize that even
with known (p,E,Q), counterfactual analysis is challeng-
ing. This is because we are interested in counterfactuals at
an individual level (i.e., conditioning on the patient-level
data (o1:T , x1:T ) via abduction), as opposed to the popula-
tion level. A population-level counterfactual analysis would
ignore the first step of abduction but simply change the pol-
icy to x̃1:T to predict the CQI (by simulating the resulting
model and obtaining a Monte-Carlo estimate of PN or do-
ing it in closed-form if analytically tractable). However,
this is very different from the task at hand, which falls on
the highest rung of Pearl’s ladder of causation (Pearl &
Mackenzie, 2018). For instance, consider a patient who
dies immediately after the coverage was denied versus a
patient who dies a couple of years after the coverage was
denied. Clearly, the first patient had a more “aggressive”

cancer and hence we expect that her PN would be lower. By
conditioning on individual-level data (o1:T , x1:T ), we are
able to account for such differences. However, it makes the
problem considerably more challenging.

In our dynamic latent-state model, each of the three steps
of abduction, action, and prediction presents its own set of
challenges2, which we discuss when presenting our method-
ology in §4. Before doing so, we discuss the notion of
counterfactual stability (CS), which has become a popular
approach in some settings (Oberst & Sontag, 2019).

3. Limitations of Counterfactual Stability
Instead of discussing CS in our dynamic latent-state model,
we do so using the following simple model: X → Y . Sup-
pose we observe an outcome Y = y under policy X = x.
With Yx := Y | (X = x), CS requires that the coun-
terfactual outcome under an interventional policy x̃ (de-
noted by Ỹ := Yx̃ | Yx = y) cannot be y′ (for y′ 6= y)
if P(Yx̃ = y)/P(Yx = y) ≥ P(Yx̃ = y′)/P(Yx = y′). In
words, CS states that if y was observed and this outcome be-
comes relatively more likely than y′ under the intervention,
then the counterfactual outcome Ỹ can not be y′.

Though somewhat appealing, the appropriateness of CS
depends on the application and should be justified by do-
main specific knowledge. Moreover, we show in Example
1 that CS can permit counterfactuals that it was seemingly
designed to exclude.
Example 1. Consider the X → Y model and sup-
pose X ∈ {0, 1} denotes a medical treatment and Y ∈
{bad, better, best} the patient outcome. For illustration,
suppose the outcome Yx obeys the following distribution:
Y0 ∼ {bad, better, best} w.p. {0.2, 0.3, 0.5} and Y1 ∼
{bad, better, best} w.p. {0.2, 0.2, 0.6}. That is, under treat-
ment (x = 1), the “best” outcome becomes more likely
but the likelihood of the “bad” outcome does not change.
Consider a patient whose outcome Y was “better” under
no treatment (x = 0). Suppose also that domain specific
knowledge tell us that even at the individual level, the coun-
terfactual outcome Ỹ should not be worse under treatment
(x̃ = 1) than under no treatment (x = 0). However, since

P(Y1 = better)
P(Y0 = better)

=
0.2

0.3
<

0.2

0.2
=

P(Y1 = bad)

P(Y0 = bad)
,

“bad” is a feasible counterfactual outcome under CS.

Even if CS is appropriate, its current operationalization
has a key limitation. In particular, instead of considering
all possible structural causal models (SCMs) that obey CS,
both Oberst & Sontag (2019) and Tsirtsis et al. (2021) pick

2Instead of using the “twin networks” approach (Pearl, 2009b),
we perform the counterfactual analysis directly by leveraging the
structure in our model.
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one SCM via the Gumbel-max distribution. Ideally, one
should characterize the space of all SCMs obeying CS, and
map that space into appropriate bounds on the CQI.

We present our optimization-based framework to perform
counterfactual analysis next. Our framework does not rely
on CS. However, if CS is deemed appropriate for one or
more components of the SCM (see §4), our approach allows
us to encode CS via linear constraints in the optimization
and characterize the entire space of solutions that obey CS.
We do this in §5 to negatively answer the open question of
Oberst & Sontag (2019) regarding whether Gumbel-max
obeys CS uniquely. Further, if enforcing the so-called path-
wise monotonicity (PM) is desirable, i.e., ensuring the coun-
terfactual outcome does not worsen under a better interven-
tion (as we assumed in Example 1), then we can embed it in
our optimization via linear constraints as well.

4. Counterfactual Analysis via Optimization
We now present our solution methodology for the counter-
factual analysis problem introduced in §2. We first discuss
the underlying SCM (§4.1), which is a precursor to defining
the counterfactual model M̃ (§4.2), which feeds into our
optimization framework for counterfactual analysis (§4.3).

4.1. The Structural Causal Model (SCM)

H1 H2

U2

. . . HT

UT

O1

V1

O2

V2

OT

VT

X1 X2 XT

Figure 2. The SCM underlying the dynamic latent-state model.
The only difference between the SCM here and Figure 1 is the
addition of (grey) exogenous noise nodes [Ut,Vt]t.

To understand the SCM (Figure 2), consider Ot for any t,
which is a stochastic function of (Ht, Xt). The stochasticity
is driven by the exogenous noise vector Vt := [Vthx]h,x,
which comprises of |H||X| noise variables. We model the
exogenous node as a vector (as opposed to a scalar) to
capture the fact that each Othx := Ot | (Ht = h,Xt = x)
defines a distinct random variable for all (h, x). Moreover,
these random variables might be independent or not. One
way to handle this is to associate each Othx with a noise
variable Vthx. The dependence structure among these noise
variables [Vthx]h,x is then what determines the dependence
structure among [Othx]h,x. The structural equation obeys

Ot = f(Ht, Xt,Vt) =
∑
h,x fhx(Vthx)I{Ht=h,Xt=x}

(3a)

where fhx(·) is defined using the emission distribution
[ehxi]i and Vthx ∼ Unif[0, 1] wlog. Similarly, for t > 1,
recognizing that each Hthi := Ht | (Ht−1 = h,Ot−1 = i)
is a distinct random variable for all (h, i), we associate each
Hthi with its own noise variable Uthi:

Ht = g(Ht−1, Ot−1,Ut) =
∑
h,i ghi(Uthi)I{Ht−1=h,Ot−1=i}

(3b)

where ghi(·) is defined using the transition distribution
[qhih′ ]h′ and Uthi ∼ Unif[0, 1] wlog.

The representation in (3a) allows us to model [Othx]h,x and
capture any dependence structure among these random vari-
ables by specifying the joint multivariate distribution of Vt.
Since the univariate marginals of Vt are known (Unif[0, 1]),
specifying the multivariate distribution amounts to specify-
ing the dependence structure or copula. (Of course, the same
comment applies to (3b) and Ut as well.) For example, if the
Vthx’s are mutually independent (the independence copula)
and we have (Ht = h′, Xt = x′), then inferring the con-
ditional distribution of Vth′x′ will tell us nothing about the
Vthx’s for (h, x) 6= (h′, x′). Alternatively, if Vthx = Vth′x′

for all pairs (h, x) and (h′, x′), then this models perfect pos-
itive dependency (the comonotonic copula) and inferring the
conditional distribution of Vth′x′ amounts to simultaneously
inferring the conditional distribution of all the Vthx’s. We
emphasize that we must work with the exogenous vectors
(Ut,Vt) when doing a counterfactual analysis since dif-
ferent joint distributions of (Ut,Vt) will lead to (possibly
very) different values of PN. If we are not doing a counter-
factual analysis and only care about the joint distribution
of a (subset of) (O1:T , H1:T ) then our analysis will only
depend on the joint distribution of the (Ut,Vt)’s via their
known univariate marginals. We note the Ut’s and Vt’s
must be mutually independent in order for the SCM to be
consistent with the dependence / independence relationships
implied by the model of Figure 1.

In our model, the emissions and the state transitions are
time-independent. Thus, it is natural to assume the copulas
underlying Vt and Ut are time-independent (time invari-
ance). As such, we define the notation Ohx := Ot | (Ht =
h,Xt = x) and Hhi := Ht+1 | (Ht = h,Ot = i).3 Then,
ehxi = P(Ohx = i) and qhih′ = P(Hhi = h′).

While the copula view is useful from a conceptual point
of view (since specifying copulas for Ut and Vt amounts
to specifying an SCM), it is more convenient to work with
an alternative construction of the SCM. This is because in
discrete-state space models, there will be infinitely many
joint distributions of V (and U) that all lead to the same
joint distribution of [Ohx]h,x (and [Hhi]h,i). In other words,
the joint distribution of [Vhx]h,x does not uniquely identify

3Ot | (Ht = h,Xt = x) is time-independent and hence, we
use the notation Ohx instead of Othx. Same logic holds for Hhi.
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the joint distribution of [Ohx]h,x. This is a consequence
of Sklar’s Theorem from the theory of copulas and is dis-
cussed4 further in §C. We will therefore take a more direct
approach by modeling the unknown joint distribution of
[Ohx]h,x (and [Hhi]h,i). As such, we define

θh̃x̃,hx(̃i, i) := P(Oh̃x̃ = ĩ, Ohx = i) (4a)

πh̃̃i,hi(h̃
′, h′) := P(Hh̃̃i = h̃′, Hhi = h′) (4b)

and observe that

θhx,hx(i, i) = ehxi ∀(h, x, i) (5a)
πhi,hi(h

′, h′) = qhih′ ∀(h, i, h′). (5b)

This holds because πhi,hi(h′, h′) = P(Hhi = h′, Hhi =
h′) = P(Hhi = h′) = qhih′ . We also have symmetry, i.e.,

θh̃x̃,hx(̃i, i) = θhx,h̃x̃(i, ĩ) ∀(h̃, x̃, ĩ) ∀(h, x, i) (6a)

πh̃̃i,hi(h̃
′, h′) = πhi,h̃̃i(h

′, h̃′) ∀(h̃, ĩ, h̃′) ∀(h, i, h′). (6b)

This is because πh̃̃i,hi(h̃
′, h′) = P(Hh̃̃i = h̃′, Hhi = h′) =

P(Hhi = h′, Hh̃̃i = h̃′) = πhi,h̃̃i(h
′, h̃′). We only defined

the “pairwise marginals” in (4) but define the joint PMFs in
(9). We are now ready to discuss the counterfactual model.

4.2. The Counterfactual Model M̃

Recall from §2 that M̃ is obtained after the two steps of ab-
duction (conditioning on the observed data (o1:T , x1:T )) and
action (changing the policy from x1:T to x̃1:T ). Understand-
ing the dynamics underlying M̃ are non-trivial, primarily
due to the abduction step where the goal is to obtain the pos-
terior distribution of the hidden path H1:T . It is not possible
to provide a closed-form expression for this distribution but
we can use filtering / smoothing methods to describe the
posterior dynamics of H1:T . (See §B for details.)

We can therefore use these dynamics to generate B Monte-
Carlo samples [h1:T (b)]Bb=1 from the posterior, i.e., from
the distribution of H1:T | (o1:T , x1:T ). Then, by condition-
ing on each sample b, it is possible to characterize M̃. In
particular, denote by M̃(b) ≡ (p̃(b), [Ẽ(t)(b)]t, [Q̃

(t)(b)]t)
the counterfactual model corresponding to posterior sam-
ple h1:T (b). Similar to the primitives (p,E,Q) in §2, the
counterfactual primitives (p̃(b), [Ẽ(t)(b)]t, [Q̃

(t)(b)]t) cor-
respond to initial state, emission, and transition distribu-
tions. As H1 in Figure 1 has no parents, p̃(b) is such that
the counterfactual hidden state in period 1 equals the pos-
terior sample h1(b), i.e., h̃1(b) = h1(b). In contrast with E

and Q, both Ẽ(t)(b) and Q̃(t)(b) are time-dependent (note

4In §C, we also discuss specific copulas (e.g., independence
and comonotonic copulas) that can be used to provide benchmark
values of PN.

the super-script “(t)”). This is because the period t coun-
terfactual emission Ẽ(t)(b) := [ẽ

(t)

h̃x̃̃i
(b)]h̃,x̃,̃i and transition

Q̃(t)(b) := [q̃
(t)

h̃̃ih̃′
(b)]h̃,̃i,h̃′ probabilities are as follows:

ẽ
(t)

h̃x̃̃i
(b) = P(Oh̃x̃ = ĩ | Oht(b)xt

= ot) (7a)

q̃
(t)

h̃̃ih̃′
(b) = P(Hh̃̃i = h̃′ | Hht(b)ot = ht+1(b)). (7b)

(The Ohx and Hhi notation is defined above (4).) The de-
pendence on t is through the observed data (ot, xt) and the
posterior samples (ht(b), ht+1(b)). As such, for each poste-
rior path b, M̃(b) is a time-dependent dynamic latent-state
model. If we knew Ẽ(t)(b) and Q̃(t)(b), then we could sim-
ulate M̃(b) to obtain a Monte-Carlo estimate of our CQI
by averaging the CQI over the B posterior sample paths.
However, Ẽ(t)(b) and Q̃(t)(b) are unknown as they depend
on the joint distributions of Ut and Vt.

Towards this end, we can combine (7) with (4) to obtain

ẽ
(t)

h̃x̃̃i
(b) =

θh̃x̃,ht(b)xt
(̃i, ot)

eht(b)xtot

q̃
(t)

h̃̃ih̃′
(b) =

πh̃̃i,ht(b)ot
(h̃′, ht+1(b))

qht(b)otht+1(b)
,

which express the unknown and time-dependent emission
and transition distributions in terms of the unknown θθθ and
π that are time-independent.

4.3. Polynomial Optimization

We now propose an optimization model where we treat the
unknowns (θθθ,π) as decisions and maximize (minimize) the
CQI to obtain an upper bound (lower bound). We present our
optimization model in terms of the objective and constraints,
followed by a discussion on how we can enforce CS and
PM (if indeed they were deemed appropriate).

Objective. As in (2), we wish to understand the PN, which
equals P(H̃T 6= 7), where H̃T is the hidden state at time T
under M̃. The randomness in H̃T depends on the random-
ness in (i) the true hidden pathH1:T (captured by [h1:T (b)]b)
and (ii) the counterfactual model M̃ | H1:T after condition-
ing on H1:T (captured by M̃(b)). Lemma 1 decomposes PN
using these two uncertainties. (All proofs are in §A.)

Lemma 1. We have

PN = 1− lim
B→∞

1

B

B∑
b=1

P
M̃(b)

(H̃T = 7).

We next express P
M̃(b)

(H̃T ) in terms of (θθθ,π) from (4).
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Lemma 2. For t ∈ {T, T − 1, . . . , 2}, P
M̃(b)

(h̃t) :=

P
M̃(b)

(H̃t = h̃t) obeys the following recursion (over t):

P
M̃(b)

(h̃t) =
∑

h̃t−1,õt−1

πh̃t−1õt−1,ht−1(b)ot−1
(h̃t, ht(b))

qht−1(b)ot−1ht(b)
×

θh̃t−1x̃t−1,ht−1(b)xt−1
(õt−1, ot−1)

eht−1(b)xt−1ot−1

×

P
M̃(b)

(h̃t−1).

The recursion breaks at t = 1:

P
M̃(b)

(h̃1) =

{
1 if h̃1 = h1(b)

0 otherwise.

Putting together Lemmas 1 and 2 allows us to express PN
in terms of the various primitives, all of which except (θθθ,π)
are known (or can be sampled). Thus, we use the notation
PN(θθθ,π | [h1:T (b)]b). As soon as we fix (θθθ,π), we can es-
timate PN. However, it is unclear apriori what we should fix
(θθθ,π) at. We might have some information on the structure
of (θθθ,π) that can help us shrink their feasibility space but in
general, there can be many (θθθ,π)s that are “valid”. To over-
come this lack of knowledge, we take an agnostic view and
compute bounds over PN. The upper (lower) bound is com-
puted by maximizing (minimizing) PN(θθθ,π | [h1:T (b)]b)
over the set of (θθθ,π) that are “valid”. Denoting by F the
set of “valid” (θθθ,π) (discussed below), we define

PNub(B) := max
(θθθ,π)∈F

PN(θθθ,π | [h1:T (b)]b) (8a)

PNlb(B) := min
(θθθ,π)∈F

PN(θθθ,π | [h1:T (b)]b). (8b)

Both optimizations in (8) are sample average approxima-
tions (SAA) due to the use of the Monte-Carlo samples
[h1:T (b)]b. Thus, PNub(B) and PNlb(B) are estimates of
the “true” PNub and PNlb. However, given [h1:T (b)]b are iid
samples, the following consistency result is immediate (cf.
Proposition 5.2 in Shapiro et al. (2021)).

Proposition 1. (PNlb(B),PNub(B)) converges to
(PNlb,PNub) w.p. 1 as B →∞.

In addition, we can characterize the asymptotics of
(PNlb(B),PNub(B)) via results in the SAA theory and we
refer the reader to §5.1.2 of Shapiro et al. (2021).

Constraints (feasibility set F). We now discuss the fea-
sibility set F . Recall from (4) that we used θθθ and π to
denote the pairwise marginal distributions over [Ohx]h,x
and [Hhi]h,i respectively. We will now also use them to rep-
resent the full joint distributions of [Ohx]h,x and [Hhi]h,i
respectively. To simplify notation, let k ≡ (h, x) and

m ≡ (h, i). Hence,

Ok ≡ Ohx, eki ≡ ehxi
Hm ≡ Hhi, qmh′ ≡ qhih′ .

We have k ∈ [K] and m ∈ [M ], where K := |H||X| and
M := |H||O|. The K and M dimensional joint PMFs for
all i1, . . . , iK ∈ O and h1, . . . , hM ∈ H are defined as

θ1,...,K(i1, . . . , iK) := P(O1 = i1, . . . , OK = iK)
(9a)

π1,...,M (h1, . . . , hM ) := P(H1 = h1, . . . ,HM = hM ).
(9b)

Note that we only have one joint θ1,...,K among K random
variables in contrast to multiple pairwise marginals [θk`](k,`).
Each of these joint PMFs are decision variables in the op-
timization (in addition to the pairwise decision variables)
and must obey the following set of constraints. First, the
1-dimensional marginals of θθθ and π must equal the given
1-dimensional marginals [eki](k,i) and [qmh](m,h):∑

{i1,...,iK}\{ik}

θ1,...,K(i1, . . . , iK) = e1ik ∀ik, k

(10a)∑
{h1,...,hM}\{hm}

π1,...,M (h1, . . . , hM ) = q1hm
∀hm,m.

(10b)

Recall that (Q,E), i.e., the right-hand-sides of (10), are
known. Moreover, since Q and E themselves define 1-
dimensional probability distributions and therefore sum to
1, (10) ensures the same will be true of both the joint PMFs,
i.e., they will also sum to 1. Second, we must link the
pairwise marginals to the joints:

θk`(ik, i`) =
∑

{i1,...,iK}\{ik,i`}

θ1,...,K(i1, . . . , iK)

(11a)

πmn(hm, hn) =
∑

{h1,...,hM}\{hm,hn}

π1,...,M (h1, . . . , hM ).

(11b)

(11a) holds for all ik, i` ∈ O and k, ` ∈ [K] s.t. k < `
whereas (11b) holds for all hm, hn ∈ H and m,n ∈
[M ] s.t. m < n. The “k < `” and “m < n” conditions
avoid unnecessary duplication (recall (5) and (6)).5 Finally,
we need to ensure non-negativity:

θθθ,π ≥ 0 (12)

5In fact, given (5) and (6), we do not need to define all pairwise
marginals as decision variables but only for “k < `” and “m < n”.
This is because if an optimization has two decision variables x and
y and the constraint x = y, we can eliminate y and the constraint
x = y by replacing y with x everywhere in the optimization.
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where we now use (θθθ,π) to denote all of the corresponding,
i.e., joint and pairwise, decision variables.

Let F be the feasible region over (θθθ,π) defined by the con-
straints (10), (11), and (12). Observe that PN(θθθ,π) is a
polynomial in (θθθ,π) (cf. Lemmas 1 and 2) and the con-
straints in F are linear. Thus, each of the problems in (8)
fall within the class of polynomial optimization (Anjos &
Lasserre, 2011). Denoting by PN∗ the PN under the true
(unknown) (θθθ,π), we obtain the following inequalities.

Proposition 2. PNlb ≤ PN∗ ≤ PNub.

Enforcing CS and PM via linear constraints. Suppose
that at some time, the patient was in state h, the emission
was i, followed by a transition to state h′. This maps to
the realization Hhi = h′. For h̃′ 6= h′, CS requires that if
P(Hh̃̃i = h′)/P(Hhi = h′) ≥ P(Hh̃̃i = h̃′)/P(Hhi = h̃′),
then P(Hh̃̃i = h̃′ | Hhi = h′) = 0. Observe that the “if”
condition is equivalent to qh̃̃ih′/qhih′ ≥ qh̃̃ih̃′/qhih̃′ and the
LHS of “then” equals πh̃̃i,hi(h̃

′, h′)/qhih′ . Hence, for the
state transitions, CS is equivalent to adding the following
linear constraints for all (h, i, h′, h̃, ĩ, h̃′):

πh̃̃i,hi(h̃
′, h′) = 0 if

qh̃̃ih′

qhih′
≥
qh̃̃ih̃′

qhih̃′
. (13a)

Similarly, for emissions, CS can be modeled by adding the
following linear constraints for all (h, x, i, h̃, x̃, ĩ):

θh̃x̃,hx(̃i, i) = 0 if
eh̃x̃i
ehxi

≥
eh̃x̃̃i
ehx̃i

. (13b)

Hence, we can characterize the space of all SCMs that obey
CS, which is in contrast to picking just one such SCM
(Oberst & Sontag, 2019). Enforcing CS naturally leads to
tighter bounds, but the bounds may not be “legitimate” if
the true (θθθ,π) does not satisfy CS. Denoting by PNub

cs and
PNlb

cs the bounds obtained by adding CS constraints (13) to
the optimizations in (8), we have the following result.

Proposition 3. PNlb ≤ PNlb
cs ≤ PNub

cs ≤ PNub.

PM can also be enforced via linear constraints. To see this,
suppose the patient has in-situ cancer in period twhich is not
detected but the patient’s state remains at in-situ in period
t + 1. Then, in the counterfactual world, if the cancer is
detected in period t, then PM would require that the cancer
can not be worse than in-situ in period t+ 1, i.e.,

P(Hh̃̃i = h̃′ | Hhi = h′) = 0

for h = 2, i ∈ {1, 2}, h′ = 2, h̃ ∈ {2, 4}, ĩ = 4,
h̃′ ∈ {5, 7}. There can be multiple such cases to con-
sider and we can enforce all the PM constraints by set-
ting the corresponding πh̃̃i,hi(h̃

′, h′) variables equal to 0 as

πh̃̃i,hi(h̃
′, h′) = P(Hhi = h′)P(Hh̃̃i = h̃′ | Hhi = h′). As

with CS (Proposition 3), PM will result in bounds PNub
pm and

PNlb
pm tighter than PNub and PNlb.

Algorithm 1 Counterfactual analysis via optimization
Require: (E,Q), (o1:T , x1:T ), B, x̃1:T

1: h1:T (b) ∼ H1:T | (o1:T , x1:T ) ∀b = 1, . . . , B
2: PNub(B) = max(θθθ,π)∈F PN(θθθ,π | [h1:T (b)]b)

3: PNlb(B) = min(θθθ,π)∈F PN(θθθ,π | [h1:T (b)]b)

4: return (PNlb(B),PNub(B))

We summarize our developments in Algorithm 1, which out-
puts the bounds (PNlb(B),PNub(B))6. Line 1 (sampling)
can be executed efficiently (cf. §B), and we discuss three
computational considerations behind solving the polynomial
optimizations (lines 2 and 3).

First, though the constraints are linear, the objective is
polynomial, making it a non-trivial non-convex optimiza-
tion problem. To solve it, we leverage state-of-the-art
developments in optimization. In particular, we use the
BARON solver (Sahinidis, 2023), which relies on a polyhe-
dral branch-and-cut approach, allowing it to achieve global
optima (Tawarmalani & Sahinidis, 2005). We found it to
work well in our numeric experiments (§5).

Second, in terms of the problem size, it follows from (4) and
(9) that we have at most |H|4|O|2 + |H|2|O|2|X|2 pairwise
variables and |O||H||X| + |H||H||O| joint variables. Similarly,
it follows from (10) and (11) that the feasible region F is
defined by at most |O||H||X| + |H|2|O| + |O|2|H|2|X|2 +
|H|4|O|2 constraints. However, these are merely upper
bounds and we can exploit the sparsity inherent in the un-
derlying application (along with the variable and constraint
elimination discussed in Footnote 5) to drastically reduce
the problem size. For instance, in our breast cancer appli-
cation, we have (|H|, |O|, |X|) = (7, 7, 2), with the above
formulae giving over 1041 variables and 105 constraints.
After we exploit sparsity (discussed in §5), they are reduced
to 16,124 and 610, respectively. Further, as CS and PM can
be modeled by setting appropriate variables to 0, they allow
for further sparsity as we can delete those variables.

Third, observe that a naive expansion of the recursion in
Lemma 2 results in a number of terms that is exponential
in T , which would result in memory issues for moderate
to large values of T . Nonetheless, as we elaborate in §D.1,
it is possible to remove this exponential dependence on
T by a reformulation of the optimization problem. This
comes at the cost of introducing polynomial constraints.
Nonetheless, this reformulation allowed us to obtain high-
quality solutions in the breast cancer setting with as many as

6We can output (PNlb
cs(B), PNub

cs (B)) and
(PNlb

pm(B), PNub
pm(B)) as well by solving the same optimization

problems but with additional linear constraints.
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T = 100 periods (§D.3). In contrast, we run into memory
issues for T as small as 11 with the original formulation. In
fact, we discuss an alternative approach at the end of §D.1.
This approach allows us to compute the objective function
efficiently without having to add any additional constraints.
Unfortunately, the BARON solver does not allow us to use
this approach and so we leave this issue for future research.

5. Numerical Experiments
We now apply our approach to the breast cancer application
we described in §1.

Setup. We described the elements of the underlying dy-
namic latent-state model M ≡ (p,E,Q) in §2. It has a total
of 7 states, 7 emissions, and 2 actions. Given patient-level
data (o1:T , x1:T ), we wish to estimate the PN as defined
in (2). The primitives (p,E,Q) are calibrated to real-data
using a mix of sources, which we discuss in §E.1.

We consider two paths with the first path defined as:

o1︸︷︷︸
=2

, o2, . . . , oT−2, oT−1︸ ︷︷ ︸
=1

, oT︸︷︷︸
=7

x1︸︷︷︸
=0

, x2, . . . , xT−2, xT−1︸ ︷︷ ︸
=1

, xT︸︷︷︸
=0

.

That is, we observe a negative test result in period 1 after
which screening was not performed for T − 2 periods (red
font). The patient died from breast cancer in period T . Note
that under this path, given the calibrated primitives in §E.1,
it has to be the case that hT−1 = 3 (undiagnosed invasive)
since a transition from state 2 (undiagnosed in-situ) to 7
is impossible. Further, the transition from 3 to 7 is not
unlikely (q317 ≈ 0.15). The second path is similar but with
one difference: screening was performed in period T − 1
and invasive cancer was detected:

o1︸︷︷︸
=2

, o2, . . . , oT−2︸ ︷︷ ︸
=1

, oT−1︸ ︷︷ ︸
=5

, oT︸︷︷︸
=7

x1︸︷︷︸
=0

, x2, . . . , xT−2︸ ︷︷ ︸
=1

, xT−1, xT︸ ︷︷ ︸
=0

.

Hence, in contrast with path 1, the final transition from
invasive to death was under treatment with probability
q357 ≈ 0.01 (§E.1), which is much smaller than q317 from
above. Given that this low probability transition did occur,
this suggests the patient had an “aggressive” cancer in path
2. As such, regardless of what the optimal θθθ and π are,
the chances of survival on the counterfactual path would be
low because of this “aggressive” nature of the cancer. This
doesn’t hold on path 1 as the cancer was less “aggressive”.

We vary T ∈ {4, . . . , 10}, with a larger value of T sug-
gesting the cancer may have progressed more slowly. We

compute PN bounds using our framework (Algorithm 1),
which we implemented in MATLAB (MATLAB, 2021). The
feasibility set F over (θθθ,π) corresponds to (10), (11), and
(12). To solve the polynomial optimizations, we use the
MATLAB-BARON interface (Sahinidis, 2023) with CPLEX
(IBM, 2017) as the “LP / MIP solver”. It solved each of
our problem instances to global optimality within minutes /
hours (depending on T ), with an “absolute termination tol-
erance” of 0.01 (on an Intel Xeon E5 processor with
16 GB RAM). Optimizations for T = 10 took the longest
time on average (∼2 hours). We generated B = 100 sam-
ples using our sampling method in §B. It took less than a
second and we found B = 100 was large enough to pro-
duce stable results for our SAA. We ensured this stability by
computing our results for 20 seeds (for each (path, T ) pair)
and verifying the standard deviations to be small. Though
stability over the seeds is important, our PN estimates may
still be biased for a finite B (recall Proposition 1 only holds
asymptotically). As a check, we also generated results for
B = 500 and observed them to be very similar to the ones
for B = 100. As noted below Algorithm 1, the sparse struc-
ture of E and Q drastically reduces the size of the problem.
For example, when considering the πh̃̃i,hi(h̃

′, h′) variables,
we rule out the ones that map to impossible (h, i, h′) or
(h̃, ĩ, h̃′) combinations (refer to §E.1.2). The same observa-
tion also applies to all the joint variables (details in §E.2).

Results. The results for path 1 are displayed in Figure
3 (and for path 2 in Figure 10 (§E.5)), where we show
the PN bounds as we vary T . In addition to the bounds
(PNlb,PNub) computed via our baseline optimization (UB
and LB), we show the bounds obtained when we encode CS
(UB(CS) and LB(CS)) and PM (UB(PM) and LB(PM))7.
We also show the PN estimate when we perform coun-
terfactual simulations using the two copulas discussed in
§C (independence and comonotonic8). Finally, the
naive estimate completely ignores the information in the
observations, i.e., it does not execute the abduction step and
is therefore an invalid estimate of PN.

To simplify matters, we adopt an all-or-nothing approach
whereby either CS is imposed for both hidden-state transi-
tions and observations or not at all. We do the same for PM.
Of course, it is possible to consider various combinations,
e.g., imposing PM for hidden-state transitions only or impos-
ing CS only for the observations, etc. This is also true of our
copulas when we estimate PN for a particular SCM. In Fig-
ure 3, for example, the independence (comonotonic)
curve corresponds to assuming the independence (comono-
tonic) copula for both hidden-state transitions and observa-
tions. But we could of course have assumed one copula for

7Details on the PM constraints for breast cancer are in §E.3.
8Further details on the comonotonic copula specific to the

breast cancer model are in §E.4.
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(b) UB / LB with CS
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(c) UB / LB with PM

Figure 3. PN results for path 1 as we vary T ∈ {4, . . . , 10}. Observe that the LB, LB(CS), and LB(PM) curves coincide (the lowest
curve in each figure). We show the average over 20 seeds and note that the standard deviation (s.d.) for every data point is smaller than
0.01. Given this small magnitude, we omit the ±1 s.d. bars to reduce the clutter in the sub-figures. Note that to simulate the naive
estimate and the two copulas (independence and comonotonic), we use 104 Monte-Carlo samples. These simulations were fast (a
couple of minutes). Using 104 samples is in contrast to the 100 samples we use for SAA and we did so to ensure a low s.d.

the hidden-state transitions and an entirely different one for
the observations. Each such combination of copulas would
yield a different SCM and therefore a feasible value of PN.

The naive estimate is independent of the observed path
and can fall outside the bounds. This makes sense as it does
not perform abduction but simply simulates the original
model M under the intervention policy x̃1:T = 0. The naive
estimates are very close to 1 as dying of breast cancer in any
5-year period9 is highly unlikely.

For path 1, we obtain relatively tight bounds, with PN al-
ways above 0.85. This means that in the counterfactual
world, the patient would have not died with high probability,
consistent with our discussion around q317 above. Even in
the absence of any additional structure such as CS or PM,
the gap between the lower and upper bounds is within ∼10
percentage points. The gap gets tighter with CS (within ∼5
percentage points) and PM (within ∼1 percentage point!).
The fact that the LB and UB under CS do not coincide
resolves the open question of Oberst & Sontag (2019) re-
garding the uniqueness of the Gumbel-max mechanism w.r.t.
CS – it is not unique. It is not surprising that the comono-
tonic estimate falls close to the PM bounds. Interestingly,
the estimated PN for the two copulas roughly cover the
range of possibilities in terms of the bounds (Figure 3(a)).

For path 2, the lower bounds are close to 0. This aligns
with the fact that despite being diagnosed in period T − 1
(and hence, provided treatment), the patient eventually died
(which suggests that the patient had an “aggressive” cancer).
The bounds without CS and PM are relatively loose, simply
reflecting the lack of knowledge to reason in a counterfactual
world. As soon as we inject knowledge via CS or PM, the
bounds become much tighter.

The experiments discussed so far are for up to T = 10 and
we run into memory issues for T > 10 (recall the discussion

9Each period maps to 6 months so T = 10 maps to 5 years.

at the end of §4.3). Nonetheless, as we show in §D, we can
enhance the scalability of the polynomial optimizations in
(8) via a reformulation and an approximation. In fact, as
we demonstrate via numerics, these ideas allow us to obtain
high-quality solutions for T as large as 100 in just a few
hours of compute time.

6. Concluding Remarks
We have provided a framework for performing counterfac-
tual analysis in dynamic latent-state models and in partic-
ular, computing lower and upper bounds on CQIs. There
are several interesting directions for future research. First,
we would like to handle the objective function in the opti-
mization more efficiently as discussed at the end of §4.3.
Specifically, BARON’s solver appears to explicitly expand
the objective function which results in a number of terms
that is exponential in T . We were able to finesse this issue in
§D via a reformulation but we suspect the approach outlined
at the end of §4.3 might provide a better solution. All told,
it may therefore be worthwhile developing an optimization
algorithm specifically tailored to the problem (a polynomial
objective with linear constraints) rather than using an off-
the-shelf solver. Another possible direction is exploring the
use of variance reduction methods and other Monte-Carlo
techniques to improve our basic Monte Carlo approach for
generating posterior sample paths. Finally, on the practi-
cal front, it would be of interest to apply our framework
to real-world medical applications and use domain-specific
knowledge to obtain (via the imposition of additional con-
straints) tighter bounds on the CQIs.
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A. Proofs
Lemma 1. We have

PN = 1− lim
B→∞

1

B

B∑
b=1

P
M̃(b)

(H̃T = 7).

Proof. Observe that

PN = PH̃T
(H̃T 6= 7) [by definition]

= 1− PH̃T
(H̃T = 7) [P(Y 6= y) = 1− P(Y = y)]

= 1− EH̃T
[I{H̃T = 7}] [P(Y = y) = E[I{Y = y}]]

= 1− EH1:T
[E

M̃|H1:T
[I{H̃T = 7}]] [law of total expectation]

= 1− 1

B

B∑
b=1

P
M̃(b)

(H̃T = 7) as B →∞. [law of large numbers]

The proof is now complete.

Lemma 2. For t ∈ {T, T − 1, . . . , 2}, P
M̃(b)

(h̃t) := P
M̃(b)

(H̃t = h̃t) obeys the following recursion (over t):

P
M̃(b)

(h̃t) =
∑

h̃t−1,õt−1

πh̃t−1õt−1,ht−1(b)ot−1
(h̃t, ht(b))

qht−1(b)ot−1ht(b)
×

θh̃t−1x̃t−1,ht−1(b)xt−1
(õt−1, ot−1)

eht−1(b)xt−1ot−1

×

P
M̃(b)

(h̃t−1).

The recursion breaks at t = 1:

P
M̃(b)

(h̃1) =

{
1 if h̃1 = h1(b)

0 otherwise.

Proof. For t ∈ {T, T − 1, . . . , 2}, observe that

P
M̃(b)

(h̃t) =
∑

h̃t−1∈H

∑
õt−1∈O

P
M̃(b)

(h̃t, h̃t−1, õt−1)

=
∑

h̃t−1∈H

∑
õt−1∈O

P
M̃(b)

(h̃t | h̃t−1, õt−1)P
M̃(b)

(õt−1 | h̃t−1)P
M̃(b)

(h̃t−1)

=
∑

h̃t−1∈H

∑
õt−1∈O

q̃
(t−1)
h̃t−1õt−1h̃t

(b)× ẽ(t−1)
h̃t−1x̃t−1õt−1

(b)× P
M̃(b)

(h̃t−1)

=
∑

h̃t−1∈H

∑
õt−1∈O

πh̃t−1õt−1,ht−1(b)ot−1
(h̃t, ht(b))

qht−1(b)ot−1ht(b)
×
θh̃t−1x̃t−1,ht−1(b)xt−1

(õt−1, ot−1)

eht−1(b)xt−1ot−1

× P
M̃(b)

(h̃t−1).

The base case (t = 1) holds since the counterfactual hidden state in period 1 equals the posterior sample h1(b) (recall from
§4.2). The proof is now complete.

B. Sampling Hidden Paths from the Posterior Distribution
In this section, we show how one can efficiently perform filtering, smoothing, and sampling for the dynamic latent-state
model in Figure 1. As our model is a generalization of an HMM, these algorithms are simple generalizations of the standard
variants corresponding to an HMM (Barber, 2012).
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Filtering. We first compute α(ht) := P(ht, o1:t, x1:t) which will yield the un-normalized filtered posterior distribution.
We can then easily normalize it to compute P (ht | o1:t, x1:t) ∝ α(ht). We begin with α(h1) := P(o1 | h1, x1)P(h1 |
x1)P(x1) = P(o1 | h1, x1)P(h1)P(x1). For t > 1, note that

α(ht) =
∑
ht−1

P (ht, ht−1, o1:t−1, ot, x1:t)

=
∑
ht−1

P (ot | ht, ht−1, o1:t−1, x1:t)P (ht | ht−1, o1:t−1, x1:t)P(xt | ht−1, o1:t−1, x1:t−1)P (ht−1, o1:t−1, x1:t−1)

=
∑
ht−1

P (ot | ht, xt)P (ht | ht−1, ot−1)P(xt)P (ht−1, o1:t−1, x1:t−1)

= P(xt)P (ot | ht, xt)
∑
ht−1

P (ht | ht−1, ot−1)α(ht−1).

Smoothing. We now compute β(ht) := P(ot+1:T , xt+1:T | ht, ot) with the understanding that β(hT ) = 1. For t < T , we
have

β(ht) =
∑
ht+1

P(ot+1, xt+1, ot+2:T , xt+2:T , ht+1 | ht, ot)

=
∑
ht+1

P(ot+2:T , xt+2:T | ht, ot, ht+1, ot+1, xt+1)P(ht+1, ot+1, xt+1 | ht, ot)

=
∑
ht+1

P(ot+2:T , xt+2:T | ht+1, ot+1)P(ot+1 | ht+1, xt+1, ht, ot)P(ht+1, xt+1 | ht, ot)

=
∑
ht+1

β(ht+1)P(ot+1 | ht+1, xt+1)P(xt+1 | ht+1, ht, ot)P(ht+1 | ht, ot)

= P(xt+1)
∑
ht+1

β(ht+1)P(ot+1 | ht+1, xt+1)P(ht+1 | ht, ot).

Now, note that

P (ht, o1:T , x1:T ) = P (ht, o1:t, x1:t)P (ot+1:T , xt+1:T | ht, o1:t, x1:t)
= P (ht, o1:t, x1:t)P (ot+1:T , xt+1:T | ht, ot)
= α(ht)β(ht).

We therefore obtain the hidden state marginal

P (ht | o1:T , x1:T ) =
α(ht)β(ht)∑
ht
α(ht)β(ht)

,

which solves the smoothing problem.

Pairwise marginal. We can compute P (ht, ht+1 | o1:T , x1:T ) by noting that P (ht, ht+1 | o1:T , x1:T ) is proportional to

∝ P (o1:t, ot+1, ot+2:T , x1:t, xt+1, xt+2:T , ht+1, ht)

= P (ot+2:T , xt+2:T | o1:t, ot+1, x1:t, xt+1, ht+1, ht)P (o1:t, ot+1, x1:t, xt+1, ht+1, ht)

= P (ot+2:T , xt+2:T | ht+1, ot+1)P (ot+1 | o1:t, ht+1, ht, x1:t, xt+1)P (o1:t, ht+1, ht, x1:t, xt+1)

= P (ot+2:T , xt+2:T | ht+1, ot+1)P (ot+1 | ht+1, xt+1)P (ht+1, xt+1 | o1:t, x1:t, ht)P (o1:t, x1:t, ht)

= P (ot+2:T , xt+2:T | ht+1, ot+1)P (ot+1 | ht+1, xt+1)P (ht+1, xt+1 | ht, ot)P (o1:t, x1:t, ht) . (16)

We can rearrange (16) to obtain

P (ht, ht+1 | o1:T , x1:T ) ∝ α(ht)P (ot+1 | ht+1, xt+1)P (ht+1, xt+1 | ht, ot)β(ht+1). (17)

Therefore, P (ht, ht+1 | o1:T , x1:T ) is easy to compute once the forward-backward, i.e. the filtering and smoothing,
recursions have been completed.

12
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Sampling. We would like to sample from the posterior P (h1:T | o1:T , x1:T ). We can do this by first noting that

P (h1:T | o1:T , x1:T ) = P (h1 | h2:T , o1:T , x1:T ) . . .P (hT−1 | hT , o1:T , x1:T )P (hT | o1:T , x1:T )

= P (h1 | h2, o1:T , x1:T ) . . .P (hT−1 | hT , o1:T , x1:T )P (hT | o1:T , x1:T ) .

We can therefore sample sequentially via the following two steps:

• First, draw hT from P (hT | o1:T , x1:T ), which we know from the smoothed distribution of hT .

• Second, observe that for any t < T , we have

P (ht | ht+1, o1:T , x1:T ) ∝ P (ht, ht+1 | o1:T , x1:T )

∝ α(ht)P (ht+1, xt+1 | ht, ot) [by (17)]
= α(ht)P (ht+1 | ht, ot)P (xt+1) ,

from which it is easy to sample.

Hence, we can efficiently generate samples [h1:T (b)]Bb=1 from the posterior P (h1:T | o1:T , x1:T ).

C. A Brief Introduction to Copulas and Counterfactual Simulations
Copulas are functions that enable us to separate the marginal distributions from the dependency structure of a given
multivariate distribution. They are particularly useful in applications where the marginal distributions are known (either from
domain specific knowledge or because there is sufficient marginal data) but a joint distribution with these known marginals
is required. In our application in this paper, we know the marginal distribution of each random variable in [Ohx]h,x and
[Hhi]h,i, which is dictated by the model primitives (E,Q) as follows: ehxi = P(Ohx = i) and qhih′ = P(Hhi = h′).
Indeed, these marginal distributions can be estimated from data, but the joint distribution must be specified in order to
compute counterfactuals.

In each of these cases, one needs to work with a joint distribution with fixed or pre-specified marginal distributions. Copulas
and Sklar’s Theorem (see below) can be very helpful in these situations. We only briefly review some of the main results
from the theory of copulas here but Nelsen (2006) can be consulted for an introduction to the topic. McNeil et al. (2015)
also contains a nice introduction but in the context of financial risk management.

Definition 1. A d-dimensional copula, C : [0, 1]d :→ [0, 1] is a cumulative distribution function with uniform marginals.

We write C(u) = C(u1, . . . , ud) for a generic copula. It follows immediately from Definition 1 that C(u1, . . . , ud) is
non-decreasing in each argument and that C(1, . . . , 1, ui, 1, . . . , 1) = ui. It is also easy to confirm that C(1, u1, . . . , ud−1)
is a (d− 1)-dimensional copula and, more generally, that all k-dimensional marginals with 2 ≤ k ≤ d are copulas. The
most important result from the theory of copulas is Sklar’s Theorem (Sklar, 1959).

Theorem 1 (Sklar 1959). Consider a d-dimensional CDF Π with marginals Π1, . . . , Πd. Then, there exists a copula C
such that

Π(x1, . . . , xd) = C (Π1(x1), . . . ,Πd(xd)) (18)

for all xi ∈ [−∞, ∞] and i = 1, . . . , d.

If Πi is continuous for all i = 1, . . . , d, then C is unique; otherwise C is uniquely determined only on Ran(Π1)× · · · ×
Ran(Πd), where Ran(Πi) denotes the range of the CDF Πi.

Conversely, consider a copula C and univariate CDF’s Π1, . . . ,Πd. Then, Π as defined in (18) is a multivariate CDF with
marginals Π1, . . . ,Πd.

A particularly important aspect of Sklar’s Theorem in the context of this paper is that C is only uniquely determined on
Ran(Π1)× · · · × Ran(Πd). Because we are interested in applications with discrete state-spaces, this implies that there will
be many copulas that lead to the same joint distribution Π. It is for this reason that we prefer to work directly with the joint
distribution of [Ohx]h,x and [Hhi]h,i (recall (4)). That said, we emphasize that specifying copulas for the exogenous vectors
Ut and Vt is equivalent to specifying a particular structural causal model (SCM) in which any CQI can be computed.

13
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The following important result was derived independently by Fréchet and Hoeffding and provides lower and upper bounds
on copulas.

Theorem 2 (The Fréchet-Hoeffding Bounds). Consider a copula C(u) = C(u1, . . . , ud). Then,

max

{
1− d+

d∑
i=1

ui, 0

}
≤ C(u) ≤ min{u1, . . . , ud}.

Three important copulas are the comonotonic, countermonotonic (only when d = 2) and independence copulas which
model extreme positive dependency, extreme negative dependency and (not surprisingly) independence. They are defined as
follows.

Comonotonic Copula. The comonotonic copula is given by

CP(u) := min{u1, . . . , ud}, (19)

which coincides with the Fréchet-Hoeffding upper bound. It corresponds to the case of extreme positive dependence. For
example, let U = (U1, . . . , Ud) with U1 = U2 = · · · = Ud ∼ Unif[0, 1]. Then, clearly min{u1, . . . , ud} = Π(u1, . . . , ud)
but by Sklar’s Theorem F (u1, . . . , ud) = C(u1, . . . , ud) and so, C(u1, . . . , ud) = min{u1, . . . , ud}.

Countermonotonic Copula. The countermonotonic copula is a 2-dimensional copula given by

CN(u) := max{u1 + u2 − 1, 0}, (20)

which coincides with the Fréchet-Hoeffding lower bound when d = 2. It corresponds to the case of extreme negative
dependence. It is easy to check that (20) is the joint distribution of (U, 1−U) where U ∼ Unif[0, 1]. (The Fréchet-Hoeffding
lower bound is only tight when d = 2. This is analogous to the fact that while a pairwise correlation can lie anywhere in
[−1, 1], the average pairwise correlation of d random variables is bounded below by −1/(d− 1).)

Independence Copula. The independence copula satisfies

C I(u) :=

d∏
i=1

ui,

and it is easy to confirm using Sklar’s Theorem that random variables are independent if and only if their copula is the
independence copula.

A well known and important result regarding copulas is that they are invariant under monotonic transformations.

Proposition 4 (Invariance Under Monotonic Transformations). Suppose the random variables X1, . . . , Xd have
continuous marginals and copula CX . Let Ti : R → R, for i = 1, . . . , d be strictly increasing functions. Then, the
dependence structure of the random variables

Y1 := T1(X1), . . . , Yd := Td(Xd)

is also given by the copula CX .

This leads immediately to the following result.

Proposition 5. Let X1, . . . , Xd be random variables with continuous marginals and suppose Xi = Ti(X1) for i = 2, . . . , d
where T2, . . . , Td are strictly increasing transformations. Then, X1, . . . , Xd have the comonotonic copula.

Proof. Apply the invariance under monotonic transformations proposition and observe that the copula of (X1, X1, . . . , X1)
is the comonotonic copula.

Our optimization framework implicitly optimizes over the space of copulas by solving polynomial programs with possibly a
large number of variables and constraints. (We saw in §4.3 that the number of variables and constraints is polynomial in |H|,
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|O| and |X| when calculating the probability of necessity (PN).) It may also be worthwhile, however, working explicitly with
copulas. For example, the independence and comonotonic copulas are well understood and using these copulas to define
SCMs may provide interesting benchmarks. Indeed, we estimate the PN for these benchmarks in our numerical results of §5.
Towards this end, in §C.1 and §C.2, we explain how we can simulate our dynamic latent-state model to estimate the CQI
under the independence (§C.1) and comonotonic (§C.2) copulas. Specifically, we assume each of the copulas for Ut and Vt

are the independence copulas in §C.1, whereas in §C.2, we assume their copulas are the comonotonic copula.

There is no reason, however, why we couldn’t combine them and assume, for example, that the copula for Ut was the
independence copula and the copula for Vt was the comonotonic copula. More generally, we could use domain-specific
knowledge to identify or narrow down sub-components of the copulas and leave the remaining components to be identified
via the optimization problems. Since convex combinations of copulas are copulas, we could also optimize over such
combinations. For example, suppose domain specific knowledge10 tells us that the copula of Vt is λCN + (1− λ)C I, i.e., a
convex combination of the comonotonic and independence copulas, with λ ∈ [0, 1] unknown. Then, the optimization over
Vt would reduce to a single-variable (λ) optimization with a linear constraint. Of course, the optimization over the copula
of Ut must also be included but domain-specific knowledge may also help to simplify and constrain that component of the
optimization. Properties such as pathwise monotonicity (PM) and counterfactual stability (CS) can also be expressed in
copula terms. Indeed, PM can be expressed via the comonotonic copula, as we discuss in §C.2.

C.1. Counterfactual Simulations Under the Independence Copula

For convenience, we copy Figure 2 from the main text, which is now labelled as Figure 4. Furthermore, recall that
(o1:T , x1:T ) is the observed data and x̃1:T is the intervention policy that was applied.

H1 H2

U2

. . . HT

UT

O1

V1

O2

V2

OT

VT

X1 X2 XT

Figure 4. The SCM underlying the dynamic latent-state model.

As in §4, we start with the posterior samples [h1:T (b)]Bb=1 corresponding to the random path H1:T | (o1:T , x1:T ). These
samples can be generated efficiently (cf. §B). For each sample b, our goal is to convert the sampled path h1:T (b) into a
counterfactual path h̃1:T (b). As noted in §4.2, irrespective of the copula choice, the counterfactual hidden state in period 1
equals the posterior sample, i.e.,

h̃1(b) = h1(b).

We next need to sample h̃2(b), but that first requires us to sample the counterfactual emission õ1(b) (cf. Figure 4). With the
copula underlying V1 being the independence copula, it follows that

õ1(b) =

{
o1 if x1 = x̃1 and h1(b) = h̃1(b)

sample from the emission distribution [eh̃1(b)x̃1i
]i otherwise.

The counterfactual emission õ1(b) allows us to sample the counterfactual state h̃2(b), which again leverages the fact that the
copula underlying U2 is the independence copula:

h̃2(b) =

{
h2(b) if h1(b) = h̃1(b) and o1 = õ1(b)

sample from the transition distribution [qh̃1(b)õ1(b)h′
]h′ otherwise.

We then generate period 2 counterfactual emission õ2(b) in a similar manner and the process repeats until we hit the end of
horizon. We summarize the procedure in Algorithm 2.

10It may be more likely that we only have domain specific knowledge over sub-components of the copulas (which are themselves
copulas).
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Algorithm 2 Counterfactual simulations under the independence copula
Require: (E,Q), (o1:T , x1:T ), [h1:T (b)]Bb=1, x̃1:T

1: for b = 1 to B do
2: h̃1(b) = h1(b)
3: for t = 1 to T − 1 do
4: if xt = x̃t and ht(b) = h̃t(b) then
5: õt(b) = ot
6: else
7: õt(b) ∼ Categorical([eh̃t(b)x̃ti

]i)

8: end if
9: if ht(b) = h̃t(b) and ot = õt(b) then

10: h̃t+1(b) = ht+1(b)
11: else
12: h̃t+1(b) ∼ Categorical([qh̃t(b)õt(b)h′

]h′ )
13: end if
14: end for
15: end for
16: return [h̃1:T (b)]b

C.2. Counterfactual Simulations Under the Comonotonic Copula

Before the formal description (which involves non-trivial notation), we provide the intuition (which is relatively straightfor-
ward). We do so by revisiting Example 1, where we have the causal graph X → Y with X ∈ {0, 1} (medical treatment)
and Y ∈ {bad, better, best} (patient outcome). The outcome Yx := Y | (X = x) obeys the following distribution:
Y0 ∼ {bad, better, best} w.p. {0.2, 0.3, 0.5} and Y1 ∼ {bad, better, best} w.p. {0.2, 0.2, 0.6}. The underlying SCM is
shown again in Figure 5.

X Y

U

Figure 5. SCM for Example 1 with the comonotonic copula and hence, the noise node is a scalar U ∼ Unif[0, 1], as opposed to a vector
U. The structural equation is Y = f(X,U), which we denote by fX(U), the inverse transform function corresponding to the random
variable YX . That is, f0(u) = bad, better, and best if u ∈ [0, 0.2], u ∈ [0.2, 0.5], and u ∈ [0.5, 1], respectively. Similarly, f1(u) = bad,
better, and best if u ∈ [0, 0.2], u ∈ [0.2, 0.4], and u ∈ [0.4, 1], respectively.

Consider a patient whose outcome Y was “better” under no treatment (x = 0). Given the prior U ∼ Unif[0, 1], we get
the posterior U | (Y0 = better) ∼ Unif[0.2, 0.5]. Now, suppose we are interested in the understanding the counterfactual
outcome under the intervention x̃ = 1, i.e., the random variable Ỹ := Y1 | (Y0 = better). Then, given the Unif[0.2, 0.5]
belief over U and the functional form of f1(·) (as defined in the caption of Figure 5), we get that the [0.2, 0.4] region of U
will map to “better” and the [0.4, 0.5] to “best”. Hence, Ỹ equals “better” w.p. 2/3 and “best” w.p. 1/3. This clearly obeys
the pathwise monotonicity (PM) intuition we alluded to towards the end of Example 1 (“the counterfactual outcome Ỹ
should not be worse under treatment (x̃ = 1) than under no treatment (x = 0)”).

We now formalize this intuition to our dynamic latent-state model. As a prerequisite to discussing the notion of PM, one
needs to define an ordering of the states (set H) and the emissions (set O), e.g., from “best” to “worst”. Denote by rH(h) the
rank of state h with respect to this ordering and by rO(i) the rank of emission i. Furthermore, let r−1H (r) and r−1O (r) denote
the inverse functions corresponding to rH(h) and rO(i), respectively. That is, r−1H (r) returns the state with rank r and
r−1O (r) returns the emission with rank r. Also, for each (h, i) pair, observe that [qhih′ ]h′ denotes the transition distribution
(which maps to the random variable Hhi). Corresponding to this distribution, define the rank-ordered CDF as follows:

Qhih′ :=
∑

h′′:rH(h′′)≤rH(h′)

qhih′′ ∀h′. (21a)
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Similarly, for each (h, x) pair, observe that [ehxi]i denotes the emission distribution (which maps to the random variable
Ohx). Corresponding to this distribution, define the rank-ordered CDF as follows:

Ehxi :=
∑

j:rO(j)≤rO(i)

ehxj ∀i. (21b)

Also, define Qhi0 = Ehx0 = 0 for all (h, i) and (h, x). We discuss these orderings for the breast cancer application in §E.4.

As in §C.1, we start with the posterior samples [h1:T (b)]Bb=1 corresponding to the random path H1:T | (o1:T , x1:T ). For each
sample b, our goal is to convert the sampled path h1:T (b) into a counterfactual path h̃1:T (b). As noted in §4.2, irrespective
of the copula choice, the counterfactual hidden state in period 1 equals the posterior sample, i.e.,

h̃1(b) = h1(b).

To generate õ1(b), we revisit the SCM in Figure 6, which now has the noise nodes as scalars (as opposed to vectors). This is
a direct implication of the comonotonic copula - see the statement immediately below (19).

H1 H2

U2

. . . HT

UT

O1

V1

O2

V2

OT

VT

X1 X2 XT

Figure 6. The SCM with the comonotonic copula. The key change is that the noise nodes are now scalars as opposed to vectors, i.e.,
(Ut, Vt) as opposed to (Ut,Vt).

By the structural equation (3a), õ1(b) equals

õ1(b) = f(h̃1(b), x̃1, V1) = fh̃1(b)x̃1
(V1), (22a)

where fhx(·) is the inverse transform function corresponding to the rank-ordered CDF [Ehxi]i (recall (21b)). Hence, all we
need to sample õ1(b) is the posterior distribution of V1, where the “posterior” corresponds to conditioning on O1h1(b)x1

= o1
(recall the notation Othx from §4). Given the prior V1 ∼ Unif[0, 1], we can compute the posterior in closed-form. In
particular,

V1 | (O1h1(b)x1
= o1) ∼ Unif[Eh1(b)x1o

−
1
, Eh1(b)x1o1 ], (22b)

where o− := r−1O (rO(o)− 1) is the emission ranked just below o. Hence, we can efficiently sample V1 from its posterior,
and this V1 sample can be used to generate õ1(b) (via (22a)). Given we encoded rank orderings in the CDF Ehxi, such
sampling will naturally enforce pathwise monotonicity.

We can sample h̃2(b) similarly. By the structural equation (3b), h̃2(b) equals

h̃2(b) = g(h̃1(b), õ1, U2) = gh̃1(b)õ1
(U2), (23a)

where ghi(·) is the inverse transform function corresponding to the rank-ordered CDF [Qhih′ ]h′ (recall (21a)). Hence,
all we need to sample h̃2(b) is the posterior distribution of U2, where the “posterior” corresponds to conditioning on
H2h1(b)o1 = h2(b) (recall the notation Hthi from §4). Given the prior U2 ∼ Unif[0, 1], we can compute the posterior in
closed-form. In particular,

U2 | (H2h1(b)o1 = h2(b)) ∼ Unif[Qh1(b)o1h2(b)− , Qh1(b)o1h2(b)], (23b)

where h− := r−1H (rH(h) − 1) is the state ranked just below h. Hence, we can efficiently sample U2 from its posterior,
and this U2 sample can be used to generate h̃2(b) (via (23a)). Given we encoded rank orderings in the CDF Qhih′ , such
sampling will naturally enforce pathwise monotonicity.
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We then generate period 2 counterfactual emission õ2(b) in a similar manner and the process repeats until we hit the end of
horizon. We summarize the procedure in Algorithm 3.

Algorithm 3 Counterfactual simulations under the comonotonic copula
Require: (E,Q), (o1:T , x1:T ), [h1:T (b)]Bb=1, x̃1:T , rH(·), rO(·)

1: for b = 1 to B do
2: h̃1(b) = h1(b)
3: for t = 1 to T − 1 do
4: vt ∼ Unif[Eht(b)xto

−
t
, Eht(b)xtot ] % posterior sample of Vt (see (22b))

5: õt(b) = fh̃t(b)x̃t
(vt) % counterfactual emission (see (22a))

6: ut+1 ∼ Unif[Qht(b)otht+1(b)− , Qht(b)otht+1(b)] % posterior sample of Ut+1 (see (23b))
7: h̃t+1(b) = gh̃t(b)õt

(ut+1) % counterfactual state (see (23a))
8: end for
9: end for

10: return [h̃1:T (b)]b

D. Enhancing the Scalability of the Polynomial Optimization
In this section, we discuss ways to enhance the scalability of the polynomial optimizations in (8). First, in §D.1, we show
how the optimization can be reformulated to avoid the exponential dependence on T (recall the discussion towards the end
of §4.3). Second, in §D.2, we discuss an approximate way to optimize our problem that drastically reduces the underlying
dimensionality of the problem. Third, in §D.3, we combine our ideas from §D.1 and §D.2 and demonstrate (via numerics)
that we can obtain high-quality solutions for T as large as 100 in just a few hours of compute time.

Related to scalability, we mention in passing that in each of our optimization problems, we added the constraint that the
objective value (which is a probability) must lie in [0, 1]. Of course, this constraint is redundant but we found it helped speed
up the solver convergence in a few instances, possibly because it shrunk the search space as the solver does not know a
priori that the objective is a probability.

D.1. Reformulating the Polynomial Optimization to Avoid the Exponential Dependence on T

Recall Lemmas 1 and 2, which characterize the objective function of our polynomial optimization problem. We repeat them
here for the sake of convenience.
Lemma 1. We have

PN = 1− lim
B→∞

1

B

B∑
b=1

P
M̃(b)

(H̃T = 7).

Lemma 2. For t ∈ {T, T − 1, . . . , 2}, P
M̃(b)

(h̃t) := P
M̃(b)

(H̃t = h̃t) obeys the following recursion (over t):

P
M̃(b)

(h̃t) =
∑

h̃t−1,õt−1

πh̃t−1õt−1,ht−1(b)ot−1
(h̃t, ht(b))

qht−1(b)ot−1ht(b)
×

θh̃t−1x̃t−1,ht−1(b)xt−1
(õt−1, ot−1)

eht−1(b)xt−1ot−1

×

P
M̃(b)

(h̃t−1).

The recursion breaks at t = 1:

P
M̃(b)

(h̃1) =

{
1 if h̃1 = h1(b)

0 otherwise.

It is easy to see that a naive expansion of PN (as per Lemmas 1 and 2) results in a number of terms that is exponential in
T . This is clearly undesirable since we end up running into memory issues for even a moderate value of T . For example,
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such issues arise for T > 10 in the breast cancer numerics of §5. It is possible to remove this exponential dependence,
however, by a reformulation of the optimization, which we now discuss. (Note that the objective function remains the same
irrespective of whether we optimize over the pairwise marginals (as discussed in §D.2) or the joint distribution (as presented
in §4.3) and hence, the reformulation here is “universal”.)

The reformulation steps are as follows:

1. Define P
M̃(b)

(h̃t) from Lemma 2 as a decision variable for all (t, h̃t, b) ∈ [T ]×H× [B].

2. Add the Lemma 2 equations as constraints in the optimization (for each (t, h̃t, b) ∈ [T ]×H× [B]). Note that these are
non-linear but polynomial constraints and hence, we remain within the class of polynomial programs. Furthermore,
none of the constraints have an exponential number of terms since P

M̃(b)
(h̃t) are decision variables now.

3. The objective now is simply the expression in Lemma 1.

These steps result in the following11 optimization, where we use the decision variable γt
h̃tb

to denote the probability term12

P
M̃(b)

(h̃t) in the LHS of Lemma 2 for all (t, h̃t, b) ∈ [T ]×H× [B], with γγγ := [γthb](t,h,b):

max
(θθθ,π)∈F,γγγ

{
1− 1

B

B∑
b=1

γT7B

}
(24a)

s.t. γthb =
∑
h′∈H

∑
o′∈O

πh′o′,ht−1(b)ot−1
(h, ht(b))

qht−1(b)ot−1ht(b)
×
θh′x̃t−1,ht−1(b)xt−1

(o′, ot−1)

eht−1(b)xt−1ot−1

× γt−1h′b ∀t > 1 ∀h ∈ H ∀b ∈ [B]

(24b)

γ1hb = 1 ∀h = h1(b) ∀b ∈ [B]
(24c)

γ1hb = 0 ∀h 6= h1(b) ∀b ∈ [B].
(24d)

As before (refer to §4), the feasibility set F over (θθθ,π) can correspond to (10), (11), and (12). It can also include additional
constraints such as CS and PM, or correspond to the lower-dimensional space over the pairwise marginals (as discussed in
§D.2). Clearly, (24) has a linear objective and polynomial constraints, and is therefore also a polynomial program. The
number of terms in the objective is no longer exponential in T but this has come at the cost of having to add a total of |H|TB
decision variables and (polynomial) constraints to the original formulation in (8). Though the size of our reformulation
(number of variables and constraints) scales with both T and B, we found it to scale much more gracefully (with respect to
T ) than the original formulation, as we discuss in §D.3 below.

Note that we do not necessarily need to add these |H|TB variables and constraints to the optimization but for that, we need
the ability to modify the source code of the optimization solver (BARON in our case). This is because even in the original
formulation (8), we can actually evaluate the objective function in polynomial time and space rather than naively expanding
it into exponentially many terms. To see this, consider a given sample number b ∈ [B]. We need to evaluate P

M̃(b)
(H̃T = 7)

from Lemma 2. To do so, we start from period 1 and store P
M̃(b)

(h̃1) for all h̃1 ∈ H (see Lemma 2’s base case). We then

move to period 2 and store P
M̃(b)

(h̃2) for all h̃2 ∈ H (see Lemma 2’s recursion). The key here is that when computing

P
M̃(b)

(h̃2), we make use of the stored values of P
M̃(b)

(h̃1). We then move to period 3 evaluations, where we make use of

the stored values of P
M̃(b)

(h̃2). We repeat this procedure until we hit period T . Clearly, this procedure requires polynomial

time and space. Furthermore, we can evaluate the gradient (and the Hessian) of P
M̃(b)

(H̃T = 7) in a similar manner (if
needed by the optimization solver). We can therefore evaluate the objective and its gradient information at a given point in

11Note that we focus on the maximization problem from (8) but the same holds for the minimization counterpart. All we need to do is
simply change the “max” to a “min” in the objective function (24a).

12To be pedantic, we could have added a “t” super-script in PM̃(b)(h̃t) and used the notation Pt

M̃(b)
(h̃t) instead. However, we did not

do so earlier since this dependence on t was implicitly understood to exist, and adding this extra super-script felt unnecessary.
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polynomial time and space. These can then be used by the optimization solver. However, we are unable to modify the solver
we use (BARON), and BARON by default does not exploit this structure but naively expands the objective into exp(T ) terms.
As such, we use the reformulation presented in (24) instead.

D.2. Approximating the Joint Optimization by the Pairwise Optimization

The problem (8) discussed in §4.3 optimizes over the joint PMFs (“joint optimization”). The challenge here lies in the
dimensionality of the underlying joint distribution. As discussed towards the end of §4.3, the problem size (number of
decision variables in particular) can grow exponentially in the primitives (e.g., |H|, |X|, and |O|). This is because the
decision variables capture the entire joint distribution. Though we might be able to exploit application-specific sparsity to
manage this blow-up (as we in fact do for the breast cancer application), it is worth exploring if there is a more tractable
alternative in general (i.e., not specific to any application). We now show that this is possible.

Recall from §4.3 that we are interested in the following optimizations (repeating (8) for convenience):

PNub(B) := max
(θθθ,π)∈F

PN(θθθ,π | [h1:T (b)]b) (8a)

PNlb(B) := min
(θθθ,π)∈F

PN(θθθ,π | [h1:T (b)]b). (8b)

The key observation here is that the objective function does not depend on the joint PMF of (θθθ,π) but only the corresponding
pairwise marginals (recall Lemmas 1 and 2). We introduced the joint PMF decision variables to ensure the feasibility set F
is such that the pairwise marginals are valid. However, as an alternative, we can choose to not introduce the joint variables
in the optimization and instead approximate F by expressing it in terms of the pairwise variables. For example, since the
pairwise variables correspond to the 2-dimensional PMFs, they must obey basic probability axioms. In particular, they must
be non-negative and agree with their known 1-dimensional marginals so that∑

h′

πh̃̃i,hi(h̃
′, h′) = qh̃̃ih̃′ ∀(h̃, ĩ, h̃

′) ∀(h, i) (25a)∑
h̃′

πh̃̃i,hi(h̃
′, h′) = qhih′ ∀(h̃, ĩ) ∀(h, i, h′) (25b)

∑
i

θh̃x̃,hx(̃i, i) = eh̃x̃̃i ∀(h̃, x̃, ĩ) ∀(h, x) (25c)∑
ĩ

θh̃x̃,hx(̃i, i) = ehxi ∀(h̃, x̃) ∀(h, x, i). (25d)

These constraints are analogous to (10) in §4.3. It is easy to see that if (10) is obeyed, then so is (25). However, the reverse
implication does not hold, meaning the feasibility space defined by (25) and non-negativity (say F ′) is a super-set of the
feasibility space F in §4.3. In other words, though the constraints in F ′ are necessary, they are not sufficient to ensure
the pairwise marginals correspond to a valid joint distribution. Hence, optimizing over F ′ (“pairwise optimization”)13 is a
relaxation to the problem of optimizing over F . In fact, as we show via a simple example next, this relaxation can be strict.
(We thank an anonymous reviewer for this example.)
Example 2. Consider three random variables X , Y , and Z with the following pairwise marginals:

(X,Y ) =

{
(0, 0) w.p. 1/2

(1, 1) w.p. 1/2
(Y, Z) =

{
(0, 0) w.p. 1/2

(1, 1) w.p. 1/2
(X,Z) =

{
(1, 0) w.p. 1/2

(0, 1) w.p. 1/2.

It is easy to verify these pairwise marginals obey (25) along with non-negativity. However, they do not correspond to any
valid joint distribution over (X,Y, Z). To see this, suppose (X,Y ) realizes a value of (0, 0). Then, the pairwise marginal
of (Y,Z) implies (Y,Z) has to be (0, 0), which implies (X,Z) must be (1, 0), resulting in a contradiction. Therefore, the
bivariate marginals are not consistent with any valid 3-dimensional joint distribution.

Despite the relaxation being strict14, we found it to produce high-quality solutions and be highly scalable (discussed in §D.3).

13Note that the pairwise optimization is identical to the joint optimization (8) but with the following two differences: (a) F replaced by
F ′ and (b) joint decision variables not defined.

14Since the pairwise optimization is a relaxation of the joint optimization, it follows that Proposition 2 still holds for the bounds
produced by the pairwise optimization.
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The high scalability is primarily driven by the lower dimensionality of the decision variables. In particular, the pairwise
optimization has at most |H|4|O|2 + |H|2|O|2|X|2 decision variables (recall that the joint optimization has an additional
|O||H||X| + |H||H||O| decision variables). In fact, after exploiting the sparsity in the breast cancer application (along with the
variable elimination discussed in Footnote 5), the pairwise optimization has only 1082 decision variables. This is in contrast
to the joint optimization which has 16,124 decision variables. Though the pairwise optimization has more constraints than
the joint optimization, the difference is not that stark (2085 vs. 610). (The numbers reported here correspond to the objective
formulation presented in §4.3 as opposed to the reformulation in §D.1. The reformulation adds a total of |H|TB decision
variables and |H|TB constraints to both the pairwise and the joint optimizations.)

D.3. Computational Performance

We now compute upper and lower bounds on PN by (a) using the reformulation discussed in §D.1 and (b) optimizing
over the relaxed constraint set defined by the pairwise marginals as discussed in §D.2.15 We focus on path 1 from §5
for brevity and note that the results for path 2 are similar. The implementation details remain the same as in §5 (i.e.,
we code in MATLAB-BARON with CPLEX as the LP / MIP solver, set absolute termination tolerance at 0.01, generate
B = 100 samples for SAA, and average over 20 seeds). To test the scalability of our approach, we now experiment with
T ∈ {5, 10, 15, 20, 25, 50, 75, 100}. Note that T = 100 is an order of magnitude larger than the longest horizon we have in
§5, i.e., T = 10. We next discuss the results that are shown in Figure 7, with Figure 7(a) showcasing scalability and Figure
7(b) quality.

0 20 40 60 80 100

T

0

1

2

3

4

5

C
o
m
p
u
te
ti
m
e
in
h
o
u
rs
(m
e
a
n

s
.d
.)

(a) Compute time

0 20 40 60 80 100

T

0.75

0.8

0.85

0.9

0.95

1
P

N

UB (joint)
LB (joint)
UB (pairwise)
LB (pairwise)
Independence
Comonotonic

(b) PN

Figure 7. Evaluating the computational performance of our ideas in §D.1 and §D.2 on path 1 from §5. All results are averaged over the 20
seeds we use. In sub-figure (b), the UB and LB curves for the “joint” optimization (black color) are the same as the ones in Figure 3(a),
and only go as far as T = 10 (since we run into memory issues for T > 10). Furthermore, to avoid clutter, we do not show the standard
deviation bars in sub-figure (b) and note that the maximum standard deviation value is less than 0.01. To be clear, the compute times in
sub-figure (a) correspond to the blue curves in sub-figure (b) (“pairwise”), which are the focus of this section.

In Figure 7(a), we display the compute time as a function of T . Compute time refers to the total time taken to compute
LB and UB. Note that we let the solver run until convergence to global optimality (on just one core with at most 16 GB
RAM). We are able to solve for T = 100 in 3 hours on average (over 20 seeds), with the minimum time being 1.2 hours
and the maximum time being 8.4 hours. This demonstrates the scalability of our approach. (It is worth mentioning that
after eliminating redundant variables and constraints, exploiting sparsity, using the reformulation of §D.1, and the pairwise
approximation of §D.2, the T = 100 and B = 100 optimization has 71, 082 decision variables, 2085 linear constraints, and
70, 000 polynomial constraints.)

15We also experimented with other variations of these two approaches. If we use neither of them (as is the case in §5), then we run
into memory issues for T > 10. In fact, even if we only use the second approach (optimizing over the relaxed constraint set), then we
run into memory issues for T > 10 since the objective still scales exponentially in T . Finally, if we only use the first approach, i.e. the
reformulation of §D.1, and optimize over the joint, the BARON solver does not converge even for T as small as 5 in 24 hours of compute
time. This is because keeping the joint variables while doing the reformulation results in an optimization with a very large number of
variables and constraints (even after we exploit sparsity).
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In Figure 7(b), we display the PN values as a function of T . The “joint” UB and LB curves are the same as the ones in
Figure 3(a), and only go as far as T = 10 because of the aforementioned memory issues for T > 10. The “pairwise” UB
and LB curves are the focus of this section and our goal here is to evaluate the quality of the “pairwise” bounds (blue curves)
and we do so in two ways. First, as we are able to solve the joint optimization for T ≤ 10, we can use the “joint” bounds as
benchmarks for the “pairwise” bounds. As may be seen from the figure, the joint and pairwise bounds are very close to each
other (for values of T ≤ 10). In particular, the joint and pairwise lower bounds coincide and equal 0.8725 and 0.8884 for
T = 5 and T = 10, respectively. The pairwise and joint upper bounds also coincide and equal 0.9885 for T = 5. The only
difference between the two is the upper bound for T = 10 with values of 0.9904 and 0.9899, respectively. We therefore
conclude that the pairwise bounds provide a very good approximation to the joint bounds, at least when T ≤ 10.

Second, for T > 10, we use the fact that we can simulate the independence and comonotonic copulas, which by definition
are feasible solutions to the joint optimization. We therefore know that maximizing (minimizing) over the joint distribution
will yield an upper (lower) bound that is no lower (higher) than the independence (comonotonic) curves in the figure. As an
example, the gap between the independence and the pairwise UB curves (for T > 10) is never greater than 0.01, which
means we lose at most 0.01 by restricting ourselves to the pairwise marginals. Similarly, the maximum gap between the
comonotonic and the pairwise LB curves is ∼ 0.02. Thus, the pairwise bounds provide a high quality approximation to the
joint bounds even when T > 10.

We can also embed CS and PM constraints in the pairwise optimization (recall from §4.3 that both these constraints are over
the pairwise variables) and we show the corresponding bounds in Figure 8. Naturally, the bounds we obtain are tighter than
the pairwise bounds in Figure 7(b). In particular, the UB gets much tighter while the LB does not change much.
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Figure 8. PN bounds obtained when we embed CS and PM constraints in the pairwise optimization. All results are computed as the
average of bounds obtained from 20 different seeds with each seed being used to generate B = 100 paths. Furthermore, to avoid clutter,
we do not show the standard deviation bars and note that the maximum standard deviation value is less than 0.01.

E. Further Details on the Breast Cancer Case Study
We discuss the breast cancer model primitives and their calibration in §E.1, followed by showing how we exploit sparsity to
reduce the number of decision variables (§E.2). We then provide details on the PM constraints and the comonotonic copula
in §E.3 and §E.4, respectively. Finally, in §E.5, we show the results for path 2.

E.1. Model Primitives and Their Calibration

As discussed in §2, the breast cancer application has |H| = 7 states, |O| = 7 emissions, and |X| = 2 actions. To be
consistent with the literature (Ayer et al., 2012), we treat each period as corresponding to 6 months. The model comprises of
three primitives: p, Q, and E. We discuss their (sparse) structure and the calibration to real-data in §E.1.1, §E.1.2, and
§E.1.3, respectively.

22



Counterfactual Analysis in Dynamic Latent-State Models

E.1.1. INITIAL STATE DISTRIBUTION p

We have p := (p1, . . . , p7) where ph := P(H1 = h) for all h. Usually, breast cancer screening starts around the age of 40
and the prevalence among females aged 40-49 is 1.0183% (Table 4.24 of NIH (2020), all races, females):

p2 + p3 = 0.010183.

Since in-situ cancer comprises 20% of new breast cancer diagnoses (Sprague & Trentham-Dietz, 2009), we get

p2 = 0.2× 0.010183

p3 = 0.8× 0.010183.

It is natural to set
p4 = p5 = p6 = p7 = 0

and hence,
p1 = 1− p2 − p3 = 1− 0.010183.

E.1.2. TRANSITION DISTRIBUTION Q

We have Q := [qhih′ ]h,i,h′ with qhih′ := P(Ht+1 = h′ | Ht = h,Ot = i). Before discussing the calibration, we discuss
the sparse structure of Q. To do so, we define the transition matrix Q(i) := [qhih′ ]hh′ for each emission i (so that each row
sums to 1) and observe that we have the following structure:

Q(1) =



q11 q12 q13
q22 q23 q27

q33 q37
q44 q45 q46 q47

q55 q56 q57
1

1


Q(2) =



q11 q12 q13
q22 q23 q27

q33 q37



Q(3) =



q11 q12 q13


Q(4) =


q24 q25 q26 q̄27

q44 q45 q46 q47



Q(5) =


q35 q36 q̄37

q55 q56 q57


Q(6) =

 1


Q(7) =


1


.

A few comments are in order. First, an empty row means it is an impossible (h, i) combination. For example, if the we observe
an emission i = 3 (i.e., a negative biopsy), then the underlying patient state has to be healthy, i.e., h /∈ {2, 3, 4, 5, 6, 7}.
Thus, rows 2 to 7 are empty in Q(3).

Second, observe that there is a decent amount of overlap across [Q(i)]i in terms of the underlying parameters. For example,
q11 corresponds to the probability a healthy patient stays healthy, which is independent of the emission being 1 (no test), 2
(negative test), or 3 (positive test but negative biopsy). Hence, q11 appears in all three matrices Q(1), Q(2), and Q(3). Of
course, if the emission is 4, 5, 6, or 7, then the patient can not be healthy and hence, the corresponding entry in matrices Q(4),

23



Counterfactual Analysis in Dynamic Latent-State Models

Q(5), Q(6), and Q(7) is absent (in fact, the entire first row is empty, which means it is an impossible (h, i) combination as
discussed above).

Third, some rows have only a partial set of entries, which means that the other entries equal 0. For example, if a patient
is healthy (state 1), then her state can not transition to 4 (diagnosed in-situ with treatment started), 5 (diagnosed invasive
with treatment started), 6 (recovered), or 7 (death) and hence, q14 = q15 = q16 = q17 = 0. Hence, we do not show
q14, q15, q16, q17 in Q(1), Q(2), or Q(3).

Fourth, observe that we have a “bar” over q̄27 (in Q(4)) and q̄37 (in Q(5)). This is done to recognize them being different
from q27 (in Q(1) and Q(2)) and q37 (in Q(1) and Q(2)). To see the difference, consider q37 versus q̄37. q37 corresponds
to the patient state transitioning from invasive cancer to death when the cancer was not detected (and hence, no treatment).
On the other hand, q̄37 corresponds to the patient state transitioning from invasive cancer to death when the cancer was
detected (and hence, treatment was provided). Naturally, we expect q̄37 ≤ q37.

Finally, since states 6 (recovery) and 7 (death) are absorbing, we have q66 = q77 = 1.

Having discussed the structure of Q, we now calibrate it to real-data. We iterate over each state h ∈ {1, . . . , 7} in a
sequential manner.

State 1 (healthy). For state 1, we are interested in (q11, q12, q13). These probabilities can depend on a woman’s age but
we ignore that and work with averages. Let’s focus on (q12, q13) since

q11 = 1− q12 − q13.

For q12, we use the in-situ incidence rates from Table 4.12 of NIH (2020) (all races, females). For q13, we use the invasive
incidence rates from Table 4.11 of NIH (2020) (all races, females). The reported numbers are per year and we should divide
by 2 to convert to a 6-month scale:

q12 =
1

2
× 33.0

100000

q13 =
1

2
× 128.5

100000
.

Note that consistent with the 20-80 split in (p2, p3), we have q13 ≈ 4q12.

State 2 (undiagnoised in-situ cancer). We are interested in (q22, q23, q27) (if cancer is not detected) and
(q24, q25, q26, q̄27) (if cancer is detected). First, consider (q22, q23, q27). Table 4.13 of NIH (2020) and Page 26 of
UWBCS (2013) imply there is no death from in-situ cancer:

q27 = 0.

Haugh & Lacedelli (2019) assumed q23 to equal the invasive incidence rate q13 and so do we:

q23 = q13

q22 = 1− q23 − q27 = 1− q13.

Second, consider (q24, q25, q26, q̄27). As q27 = 0 and we expect q̄27 ≤ q27 (recall comment #4 above), we set

q̄27 = 0.

As all in-situ cancer patients survive (if treated), no one transitions to invasive (if in-situ detected):

q25 = 0.

Finally, we have
q24 + q26 = 1.

The split between q24 and q26 is irrelevant in terms of the patient dying or not (all will survive as there is no positive
probability path from state 4 to death; this will become clear when we discuss state 4 below).
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State 3 (undiagnoised invasive cancer). We are interested in (q33, q37) (if cancer is not detected) and (q35, q36, q̄37)
(if cancer is detected). First, consider (q33, q37). q37 is the probability of dying from invasive breast cancer (under no
treatment). According to Johnstone et al. (2000), the 5-year and 10-year survival rates for invasive breast cancer patients
(under no treatment) are 18.4% and 3.6%, respectively. On calibrating to 5-year rate, we get (1− q37)10 = 0.184, which
implies q37 ≈ 15.6% (note that we use “10” in the exponent since our time periods correspond to 6 months and and hence, 5
years correspond to 10 periods). Similarly, on calibrating to 10-year rate, we get (1− q37)20 = 0.036 implies q37 ≈ 15.3%.
The two calibrations are consistent with each other (lending evidence to time-invariance). Minimizing sum of squared errors
over the two data points, i.e., minq37∈[0,1]{((1− q37)10 − 0.184)2 + ((1− q37)20 − 0.036)2}, gives the following estimate:

q37 = 0.1554.

Naturally, we have

q33 = 1− q37.

Second, consider (q35, q36, q̄37). q36 and q̄37 are the probabilities of recovering and dying from invasive breast cancer
(under treatment). Table 4.14 of NIH (2020) has various survival rates we can use to calibrate. We calibrate using the 10
data points corresponding to the year 2007 (see Figure 9):

q36 = 0.0459

q̄37 = 0.0113.

As a sanity check, note that q̄37 < q37. Finally,
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Figure 9. Calibration of (q36, q̄37). Under our (time-invariant) Markov model, with a starting state of invasive breast cancer (under
treatment), the survival rate after x years equals 1− q̄37

∑2x−1
i=0 (1− q36 − q̄37)i. Minimizing the sum of squared errors (on the 10 blue

data points in the plot) over (q36, q̄37) gives us an estimate of (0.0459, 0.0113). The prediction using our fit is shown via the black curve.

q35 = 1− q36 − q̄37.

State 4 (diagnoised in-situ cancer). We are interested in (q44, q45, q46, q47). Under our Markov model (which by
definition is “memoryless”), it seems reasonable to set

(q44, q45, q46, q47) = (q24, q25, q26, q̄27).

State 5 (diagnoised invasive cancer). We are interested in (q55, q56, q57). Under our Markov model, it seems reasonable
to set

(q55, q56, q57) = (q35, q36, q̄37).

States 6 (recovery) and 7 (death). These two states are absorbing and hence,

q66 = q77 = 1.
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E.1.3. EMISSION DISTRIBUTION E

We have E := [ehxi]h,x,i with ehxi := P(Ot = i | Ht = h,Xt = x). Before discussing the calibration, we discuss the
sparse structure of E. To do so, we define the matrix E(x) := [ehxi]hi for each action x (so that each row sums to 1) and
observe that we have the following structure:

E(0) =



0 e12 1− e12
0 1− e24 e24
0 1− e35 e35
0 1
0 1
0 1
0 1


E(1) =



1 0 0
1 0 0
1 0 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1


.

A few comments are in order. First, for x = 1 (no mammogram screening), the emission matrix E(1) is extremely sparse
with entries in {0, 1}. For instance, when hidden state equals 1 (healthy), 2 (undiagnosed in-situ), or 3 (undiagnosed
invasive), we observe no signal (emission equals 1) w.p. 1. When hidden state equals 4, 5, 6, or 7, we naturally observe the
same emission w.p. 1.

Second, for x = 0 (screening), the emission matrix E(0) is quite sparse as well. If the patient is healthy (row 1), then the
test result is negative (true negative) w.p. e12 and positive (false positive) w.p. 1− e12. When the patient has undiagnosed
in-situ cancer (row 1), it is detected (true positive) w.p. e24 and missed (false negative) w.p. 1− e24. The parameter e35 has
the same interpretation as e24 but for invasive cancer. As for x = 1, when hidden state equals 4, 5, 6, or 7, we observe the
same emission w.p. 1.

Having discussed the structure of E, we now calibrate it to real-data. There are 3 parameters: e12, e24, and e35. All of them
can be age specific but we ignore that. e12 is the specificity of the mammogram screening (i.e., probability of a true negative)
and we calibrate it using Table 3 of Ayer et al. (2012):

e12 = 0.9.

e24 is the in-situ sensitivity (i.e., probability of a true positive) and we calibrate it using Table 3 of Ayer et al. (2012):

e24 = 0.8.

Finally, e35 is the invasive sensitivity and following Ayer et al. (2012), we set

e35 = e24.

E.2. Reducing the Number of Joint Decision Variables by Exploiting Sparsity

Recall from §4.3 the following setup, which we repeat for convenience. Let k ≡ (h, x) and m ≡ (h, i) so that

Ok ≡ Ohx, eki ≡ ehxi
Hm ≡ Hhi, qmh′ ≡ qhih′ .

We have k ∈ [K] and m ∈ [M ], where K := |H||X| and M := |H||O|. The K and M dimensional joint PMFs for all
i1, . . . , iK ∈ O and h1, . . . , hM ∈ H are defined as

θ1,...,K(i1, . . . , iK) := P(O1 = i1, . . . , OK = iK) (9a)
π1,...,M (h1, . . . , hM ) := P(H1 = h1, . . . ,HM = hM ). (9b)

As discussed towards the end of §4.3, it follows from (9) that we have at most |O||H||X| + |H||H||O| joint variables. We now
show that these are merely upper bounds and we can exploit the sparsity inherent in the underlying application to drastically
reduce these numbers.

Consider the θ1,...,K decision variables for now. Since θ1,...,K represents the joint PMF of the random variables [Ok]k where
k ≡ (h, x), we first understand which (h, x) pairs are valid (as opposed to naively considering all (h, x) ∈ H× X). Recall
that the state h has the following encoding:
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1. healthy

2. undiagnosed in-situ cancer

3. undiagnosed invasive cancer

4. diagnosed in-situ cancer

5. diagnosed invasive cancer

6. recovery

7. death.

Furthermore, x equals 0 maps to mammogram being performed and 1 to it not being performed. It is easy to see that all 14
combinations of (h, x) ∈ H× X are valid so none of the corresponding decision variables can be set to zero (and therefore
removed). Turning now to the observations, we recall that they are encoded as follows:

1. no screening took place

2. negative screening result (possibly a false negative)

3. positive mammogram result, but followed by a negative biopsy

4. diagnosed in-situ cancer

5. diagnosed invasive cancer

6. recovery

7. death.

Given this, Table 1 documents the range of all 7× 2 = 14 random variables [Ohx]h,x.

Table 1. Range of the 14 random variables [Ohx]h,x corresponding to θ1,...,K .

State h Policy x Range of Ohx Range cardinality

1 0 {2, 3} 2
1 1 {1} 1
2 0 {2, 4} 2
2 1 {1} 1
3 0 {2, 5} 2
3 1 {1} 1
4 0 {4} 1
4 1 {4} 1
5 0 {5} 1
5 1 {5} 1
6 0 {6} 1
6 1 {6} 1
7 0 {7} 1
7 1 {7} 1

Multiplying all of the 14 cardinalities (last column in Table 1) implies that there are only eight θ1,...,K decision variables
that need to be considered. This is in contrast to the upper bound of |O||H||X| = 714.

The same logic applies to the π1,...,M decision variables. In fact, for the π1,...,M decision variables, even the first step proves
useful since not all (h, i) pairs are valid. For instance, if h = 1, then i /∈ {4, 5, 6, 7}. In particular, the first step allows us to
trim down the number of [Hhi]h,i random variables from |H||O| = 49 to 13. The second step trims down the range of each
of the 13 random variables. We document this in Table 2 and are able to reduce the number of π1,...,M decision variables
from |H||H||O| = 749 to 15, 552 (which equals the product of the cardinalities presented in the last column).
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Table 2. Range of the 13 random variables [Hhi]h,i corresponding to π1,...,M . Only 13 (h, i) pairs are shown as the other 36 are not valid.

State h Observation i Range of Hhi Range cardinality

1 1 {1, 2, 3} 3
1 2 {1, 2, 3} 3
1 3 {1, 2, 3} 3
2 1 {2, 3} 2
2 2 {2, 3} 2
2 4 {4, 6} 2
3 1 {3, 7} 2
3 2 {3, 7} 2
3 5 {5, 6, 7} 3
4 4 {4, 6} 2
5 5 {5, 6, 7} 3
6 6 {6} 1
7 7 {7} 1

E.3. Details on the Pathwise Monotonicity (PM) Constraints

PM can be enforced via linear constraints. We briefly discussed this in §4.3 and now discuss all underlying PM constraints
we embedded in our breast cancer numerics.

Recalling our §4.3 discussion for convenience, suppose the patient has in-situ cancer in period t which is not detected but
the patient’s state remains at in-situ in period t+ 1. Then, in the counterfactual world, if the cancer is detected in period t,
then PM would require that the cancer can not be worse than in-situ in period t+ 1, i.e.,

P(Hh̃̃i = h̃′ | Hhi = h′) = 0

for h = 2, i ∈ {1, 2}, h′ = 2, h̃ ∈ {2, 4}, ĩ = 4, h̃′ ∈ {5, 7}. There can be multiple such cases to consider and we can
enforce all the PM constraints by setting the corresponding πh̃̃i,hi(h̃

′, h′) variables equal to 0 as πh̃̃i,hi(h̃
′, h′) = P(Hhi =

h′)P(Hh̃̃i = h̃′ | Hhi = h′).

Hence, to provide details on which all PM constraints we enforce, it suffices to enumerate the (h, i, h′, h̃, ĩ, h̃′) combinations
for which we set the πh̃̃i,hi(h̃

′, h′) variables equal to 0. To do so, we iterate over each state h ∈ {1, . . . , 7}. (Note that for

PM, there are no (h, x, i, h̃, x̃, ĩ) combinations for which we set the θh̃x̃,hx(̃i, i) variables equal to 0.)

State h = 1 (healthy). We enforce PM for the following combinations:

• If (h, i, h′) equals (healthy, whatever emission, healthy), then the counterfactual state h̃′ can not be in-situ, invasive, or
death if h̃ is healthy. That is, h = 1, i ∈ O, h′ = 1, h̃ = 1, ĩ ∈ O, and h̃′ ∈ {2, 3, 4, 5, 7}.

• If (h, i, h′) equals (healthy, whatever emission, in-situ), then the counterfactual state h̃′ can not be healthy, invasive, or
death if h̃ is healthy. That is, h = 1, i ∈ O, h′ = 2, h̃ = 1, ĩ ∈ O, and h̃′ ∈ {1, 3, 5, 7}.

• If (h, i, h′) equals (healthy, whatever emission, invasive), then the counterfactual state h̃′ can not be healthy, in-situ, or
death if h̃ is healthy. That is, h = 1, i ∈ O, h′ = 3, h̃ = 1, ĩ ∈ O, and h̃′ ∈ {1, 2, 4, 7}.

• If (h, i, h′) equals (healthy, whatever emission, death), then the counterfactual state h̃′ can not be healthy, in-situ, or
invasive if h̃ is healthy. That is, h = 1, i ∈ O, h′ = 7, h̃ = 1, ĩ ∈ O, and h̃′ ∈ {1, 2, 3, 4, 5}.

State h = 2 (undiagnosed in-situ). We enforce PM for the following combinations:

• If (h, i, h′) equals (in-situ, undetected, in-situ), then the counterfactual state h̃′ can not be invasive or death if h̃ is
healthy or in-situ. That is, h = 2, i ∈ {1, 2, 3}, h′ = 2, h̃ ∈ {1, 2, 4}, ĩ ∈ O, and h̃′ ∈ {3, 5, 7}.

28



Counterfactual Analysis in Dynamic Latent-State Models

• If (h, i, h′) equals (in-situ, detected, in-situ), then the counterfactual state h̃′ can not be invasive or death if h̃ is in-situ
and detected. That is, h = 2, i = 4, h′ = 4, h̃ ∈ {2, 4}, ĩ = 4, and h̃′ ∈ {3, 5, 7}.

• If (h, i, h′) equals (in-situ, undetected, invasive), then the counterfactual state h̃′ can not be death if h̃ is healthy or
in-situ. That is, h = 2, i ∈ {1, 2, 3}, h′ = 3, h̃ ∈ {1, 2, 4}, ĩ ∈ O, and h̃′ = 7.

• If (h, i, h′) equals (in-situ, detected, invasive), then the counterfactual state h̃′ can not be death if h̃ is in-situ and
detected. That is, h = 2, i = 4, h′ = 5, h̃ ∈ {2, 4}, ĩ = 4, and h̃′ = 7.

• If (h, i, h′) equals (in-situ, detected, recovered), then the counterfactual state h̃′ can not be in-situ, invasive, or death if
h̃ is in-situ and detected. That is, h = 2, i = 4, h′ = 6, h̃ ∈ {2, 4}, ĩ = 4, and h̃′ ∈ {2, 3, 4, 5, 7}.

• If (h, i, h′) equals (in-situ, undetected, death), then the counterfactual state h̃′ can not be in-situ, invasive, or recovered
if h̃ is in-situ and undetected. That is, h = 2, i ∈ {1, 2, 3}, h′ = 7, h̃ = 2, ĩ ∈ {1, 2, 3}, and h̃′ ∈ {2, 3, 4, 5, 6}.

• If (h, i, h′) equals (in-situ, detected, death), then the counterfactual state h̃′ can not be in-situ, invasive, or recovered if
h̃ is in-situ and detected. That is, h = 2, i = 4, h′ = 7, h̃ ∈ {2, 4}, ĩ = 4, and h̃′ ∈ {2, 3, 4, 5, 6}.

State h = 3 (undiagnosed invasive). We enforce PM for the following combinations:

• If (h, i, h′) equals (invasive, undetected, invasive), then the counterfactual state h̃′ can not be death if h̃ is healthy,
in-situ, or invasive. That is, h = 3, i ∈ {1, 2, 3}, h′ = 3, h̃ ∈ {1, 2, 3, 4, 5}, ĩ ∈ O, and h̃′ = 7.

• If (h, i, h′) equals (invasive, detected, invasive), then the counterfactual state h̃′ can not be death if h̃ is invasive and
detected. That is, h = 3, i = 5, h′ = 5, h̃ ∈ {3, 5}, ĩ = 5, and h̃′ = 7.

• If (h, i, h′) equals (invasive, detected, recovered), then the counterfactual state h̃′ can not be invasive or death if h̃ is
invasive and detected. That is, h = 3, i = 5, h′ = 6, h̃ ∈ {3, 5}, ĩ = 5, and h̃′ ∈ {3, 5, 7}.

• If (h, i, h′) equals (invasive, undetected, death), then the counterfactual state h̃′ can not be invasive or recovered if h̃ is
invasive and undetected. That is, h = 3, i ∈ {1, 2, 3}, h′ = 7, h̃ ∈ {3, 5}, ĩ ∈ {1, 2, 3}, and h̃′ ∈ {3, 5, 6}.

• If (h, i, h′) equals (invasive, detected, death), then the counterfactual state h̃′ can not be invasive or recovered if h̃ is
invasive and detected. That is, h = 3, i = 5, h′ = 7, h̃ ∈ {3, 5}, ĩ = 5, and h̃′ ∈ {3, 5, 6}.

State h = 4 (diagnosed in-situ). We enforce PM for the following combinations:

• If (h, i, h′) equals (in-situ, detected, in-situ), then the counterfactual state h̃′ can not be invasive, recovered, or death if
h̃ is in-situ and detected. That is, h = 4, i = 4, h′ = 4, h̃ ∈ {2, 4}, ĩ = 4, and h̃′ ∈ {5, 6, 7}.

• If (h, i, h′) equals (in-situ, detected, invasive), then the counterfactual state h̃′ can not be in-situ, recovered, or death if
h̃ is in-situ and detected. That is, h = 4, i = 4, h′ = 5, h̃ ∈ {2, 4}, ĩ = 4, and h̃′ ∈ {4, 6, 7}.

• If (h, i, h′) equals (in-situ, detected, recovery), then the counterfactual state h̃′ can not be in-situ, invasive, or death if h̃
is in-situ and detected. That is, h = 4, i = 4, h′ = 6, h̃ ∈ {2, 4}, ĩ = 4, and h̃′ ∈ {4, 5, 7}.

• If (h, i, h′) equals (in-situ, detected, death), then the counterfactual state h̃′ can not be in-situ, invasive, or recovered if
h̃ is in-situ and detected. That is, h = 4, i = 4, h′ = 7, h̃ ∈ {2, 4}, ĩ = 4, and h̃′ ∈ {4, 5, 6}.

State h = 5 (diagnosed invasive). We enforce PM for the following combinations:

• If (h, i, h′) equals (invasive, detected, invasive), then the counterfactual state h̃′ can not be recovered or death if h̃ is
invasive and detected. That is, h = 5, i = 5, h′ = 5, h̃ ∈ {3, 5}, ĩ = 5, and h̃′ ∈ {6, 7}.
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• If (h, i, h′) equals (invasive, detected, recovery), then the counterfactual state h̃′ can not be invasive or death if h̃ is
invasive and detected. That is, h = 5, i = 5, h′ = 6, h̃ ∈ {3, 5}, ĩ = 5, and h̃′ ∈ {5, 7}.

• If (h, i, h′) equals (invasive, detected, death), then the counterfactual state h̃′ can not be invasive or recovery if h̃ is
invasive and detected. That is, h = 5, i = 5, h′ = 7, h̃ ∈ {3, 5}, ĩ = 5, and h̃′ ∈ {5, 6}.

State h = 6 (recovery). No combination for which we enforce PM.

State h = 7 (death). No combination for which we enforce PM.

E.4. Details on the Comonotonic Copula

We discussed the counterfactual simulation under the comonotonic copula for a general dynamic latent-state model in §C.2.
In this section, we connect that discussion to the breast cancer application. To do so, it suffices to define the rank functions
rH(·) (for states) and rO(·) (for emissions). For states, there are two possible orderings that seem “natural” (from “best” to
“worst”):

• (1, 6, 4, 2, 5, 3, 7)

• (1, 6, 4, 5, 2, 3, 7).

Recalling the Q(i) notation from §E.1, observe that columns 2 and 5 are never “active” simultaneously in any row of Q(i)
(for any i). Hence, the choice of ordering (between the two orderings above) will not matter and we can pick any one.
Suppose we pick the first one. Then, this ordering defines the rank function. For example, rH(6) = 2, i.e., rank of state 6
equals 2. For the inverse function, r−1H (2) = 6.

It is unclear how to define rO(·) for the breast cancer application but as it turns out, it does not matter. To see why, consider
the generic path of interest (from (1)):

o1, . . . , oτs−1︸ ︷︷ ︸
∈{2,3}

, oτs , . . . , oτe︸ ︷︷ ︸
=1

, oτe+1, . . . , oτd−1︸ ︷︷ ︸
∈{4,5}

, oτd:T︸ ︷︷ ︸
=7

.

For the first τs − 1 periods, observe that the counterfactual emission õ1:τs−1(b) equals the observed emission o1:τs−1 for
each b. This is because the intervention policy x̃1:τs−1 equals the observed policy x1:τs−1. Now, consider periods τs to τe,
during which the screening was not done, i.e., xτs:τe = 1. Hence, the emissions oτs:τe = 1 w.p. 1 (see the matrix E(1) in
§E.1.3). This means that the emissions does not contain any information regarding the underlying noise variables Vτs:τe (see
Figure 6) and hence, their posterior equals their prior, which is Unif[0, 1]. As such, for t ∈ {τs, . . . , τe}, we can sample
õt(b) using the categorical distribution over the probability vector [eh̃t(b)x̃ti

]i. Note that we can use õτs−1(b) to sample

h̃τs(b), which we can use to sample õτs(b), and so on (until we have sampled h̃τe+1(b)). Now, consider t = τe + 1. We
know ot ∈ {4, 5}:

• If ot = 4, then ht(b) = 2 and h̃t(b) ∈ {2, 4, 6} (cf. pathwise monotonicity).

– If h̃t(b) ∈ {4, 6}, then õt(b) = h̃t(b) (since rows 4 and 6 of E(0) have 1 on the diagonal).

– Else, if h̃t(b) = 2 (= ht(b)), then õt(b) = ot = 4.

• Else, if ot = 5, then ht(b) = 3 and h̃t(b) ∈ {3, 4, 5, 6} (cf. pathwise monotonicity).

– If h̃t(b) ∈ {4, 5, 6}, then õt(b) = h̃t(b) (since rows 4, 5, 6 of E(0) have 1 on the diagonal).

– If h̃t(b) = 3 (= ht(b)), then õt(b) = ot = 5.

Finally, for t ≥ τe + 2, we know ht(b) ≥ 4 and that the corresponding rows in E(0) are 0-1. Hence, the posterior of
Vt equals the prior and we can sample õt(b) using the categorical distribution over the probability vector [eh̃t(b)x̃ti

]i. By
construction, the comonotonic copula will obey pathwise monotonicity and hence, will ensure that in the counterfactual
world, patient does not die before period T , i.e., H̃T−1 6= 7 w.p. 1.
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E.5. Results for Path 2
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Figure 10. PN results for path 2 as we vary T ∈ {4, . . . , 10} (analogous to Figure 3 for path 1). As in Figure 3, observe that the LB,
LB(CS), and LB(PM) curves coincide (the lowest curve in each figure). Further, the UB(CS) and UB(PM) curves coincide for path 2.
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