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Abstract
Graph Neural Networks (GNNs) have shown
great potential in the field of graph representa-
tion learning. Standard GNNs define a local
message-passing mechanism which propagates in-
formation over the whole graph domain by stack-
ing multiple layers. This paradigm suffers from
two major limitations, over-squashing and poor
long-range dependencies, that can be solved us-
ing global attention but significantly increases the
computational cost to quadratic complexity. In
this work, we propose an alternative approach to
overcome these structural limitations by leverag-
ing the ViT/MLP-Mixer architectures introduced
in computer vision. We introduce a new class of
GNNs, called Graph ViT/MLP-Mixer, that holds
three key properties. First, they capture long-
range dependency and mitigate the issue of over-
squashing as demonstrated on Long Range Graph
Benchmark and TreeNeighbourMatch datasets.
Second, they offer better speed and memory ef-
ficiency with a complexity linear to the number
of nodes and edges, surpassing the related Graph
Transformer and expressive GNN models. Third,
they show high expressivity in terms of graph iso-
morphism as they can distinguish at least 3-WL
non-isomorphic graphs. We test our architecture
on 4 simulated datasets and 7 real-world bench-
marks, and show highly competitive results on
all of them. The source code is available for
reproducibility at: https://github.com/
XiaoxinHe/Graph-ViT-MLPMixer.

1. Message-Passing GNNs and the Limitations
In this first section, we present the background of the project
by introducing the standard Message-Passing (MP) GNNs
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and their two major limitations; low expressivity representa-
tion and poor long-range dependency. We also present the
current techniques that address these issues, i.e. Weisfeiler-
Leman GNNs, graph positional encoding and Graph Trans-
formers, as well as their shortcomings.

Message-Passing GNNs (MP-GNNs). GNNs have become
the standard learning architectures for graphs based on their
flexibility to work with complex data domains s.a. recom-
mendation (Monti et al., 2017; Berg et al., 2017), chem-
istry (Duvenaud et al., 2015; Gilmer et al., 2017), physics
(Cranmer et al., 2019; Bapst et al., 2020), transportation
(Derrow-Pinion et al., 2021), vision (Han et al., 2022a), nat-
ural language processing (NLP) (Wu et al., 2021a), knowl-
edge graphs (Schlichtkrull et al., 2018), drug design (Stokes
et al., 2020; Gaudelet et al., 2020) and medical domain (Li
et al., 2020b; 2021). Most GNNs are designed to have two
core components. First, a structural message-passing mech-
anism s.a. Defferrard et al. (2016); Kipf & Welling (2017);
Hamilton et al. (2017); Monti et al. (2017); Bresson & Lau-
rent (2017); Gilmer et al. (2017); Veličković et al. (2018)
that computes node representations by aggregating the local
1-hop neighborhood information. Second, a stack of L lay-
ers that aggregates L-hop neighborhood nodes to increase
the expressivity of the network and transmit information
between nodes that are L hops apart.

Weisfeiler-Leman GNNs (WL-GNNs). One of the ma-
jor limitations of MP-GNNs is their inability to distinguish
(simple) non-isomorphic graphs. This limited expressiv-
ity can be formally analyzed with the Weisfeiler-Leman
graph isomorphism test (Weisfeiler & Leman, 1968), as first
proposed in Xu et al. (2019); Morris et al. (2019). Later
on, Maron et al. (2018) introduced a general class of k-
order WL-GNNs that can be proved to universally represent
any class of k-WL graphs (Maron et al., 2019; Chen et al.,
2019). But to achieve such expressivity, this class of GNNs
requires using k-tuples of nodes with memory and speed
complexities of O(Nk), with N being the number of nodes
and k ≥ 3. Although the complexity can be reduced to
O(N2) and O(N3) respectively (Maron et al., 2019; Chen
et al., 2019; Azizian & Lelarge, 2020), it is still computa-
tionally costly compared to the linear complexity O(E) of
MP-GNNs with E being the number of edges, which often
reduces to O(N) for real-world graphs that exhibit sparse
structures. In order to reduce memory and speed complexi-
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ties of WL-GNNs while keeping high expressivity, several
works have focused on designing graph networks from their
sub-structures s.a. sub-graph isomorphism (Bouritsas et al.,
2022), sub-graph routing mechanism (Alsentzer et al., 2020),
cellular WL sub-graphs (Bodnar et al., 2021), and k-hop
egonet sub-graphs (Xu et al., 2019; Zhang & Li, 2021; Chen
et al., 2019; Zhao et al., 2021; Frasca et al., 2022).

Graph Positional Encoding (PE). Another aspect of the
limited expressivity of GNNs is their inability to recognize
simple graph structures s.a. cycles or cliques, which are
often present in molecules and social graphs (Chen et al.,
2020). We can consider k-order WL-GNNs with value k
to be the length of cycle/clique, but with high complexity
O(Nk). An alternative approach is to add positional en-
coding to the graph nodes. It was proved in Murphy et al.
(2019); Loukas (2020) that unique and equivariant PE in-
creases the representation power of any MP-GNN while
keeping the linear complexity. This theoretical result was
applied with great empirical success with index PE (Mur-
phy et al., 2019), Laplacian eigenvectors (Dwivedi et al.,
2020; Dwivedi & Bresson, 2021; Kreuzer et al., 2021; Lim
et al., 2022) and k-step Random Walk (Li et al., 2020a;
Dwivedi et al., 2021). All these graph PEs lead to GNNs
strictly more powerful than the 1-WL test, which seems
to be enough expressivity in practice (Zopf, 2022). How-
ever, none of the PE proposed for graphs can provide a
global position of the nodes that is unique, equivariant and
distance sensitive. This is due to the fact that a canonical
positioning of nodes does not exist for arbitrary graphs, as
there is no notion of up, down, left and right on graphs.
For example, any embedding coordinate system like graph
Laplacian eigenvectors (Belkin & Niyogi, 2003) can flip
up-down directions, right-left directions, and would still be
a valid PE. This introduces ambiguities for the GNNs that
require to (learn to) be invariant with respect to the graph
or PE symmetries. A well-known example is given by the
eigenvectors: there exist 2k number of possible sign flips
for k eigenvectors that require to be learned by the network.

Issue of long-range dependencies. Another major limita-
tions of MP-GNNs is the well-known issue of long-range
dependencies. Standard MP-GNNs require L layers to prop-
agate the information from one node to their L-hop neighbor-
hood. This implies that the receptive field size for GNNs can
grow exponentially, for example with O(2L) for binary tree
graphs. This causes over-squashing; exponentially grow-
ing information is compressed into a fixed-length vector by
the aggregation mechanism (Alon & Yahav, 2020; Topping
et al., 2022). It is worth noting that the poor long-range mod-
eling ability of deep GNNs can be caused by the combined
effect of multiple factors, such as over-squashing, vanish-
ing gradients, poor isomorphism expressivity, etc. but, in
this work, we focus our effort on alleviating over-squashing
s.a. Deac et al. (2022); Arnaiz-Rodrı́guez et al. (2022). Over-

squashing is well-known since recurrent neural networks
(Hochreiter & Schmidhuber, 1997), which have led to the
development of the (self- and cross-)attention mechanisms
for the translation task (Bahdanau et al., 2014; Vaswani et al.,
2017) first, and then for more general NLP tasks (Devlin
et al., 2018; Brown et al., 2020). Transformer architectures
are the most elaborated networks that leverage attention, and
have gained great success in NLP and computer vision (CV).
Several works have generalized the transformer architecture
for graphs, alleviating the issue of long-range dependencies
and achieving competitive or superior performance against
standard MP-GNNs. We highlight the most recent research
works in the next paragraph.

Graph Transformers. Dwivedi & Bresson (2021) gener-
alize Transformers to graphs, with graph Laplacian eigen-
vectors as node PE, and incorporating graph structure into
the permutation-invariant attention function. SAN and
LSPE (Kreuzer et al., 2021; Dwivedi et al., 2021) further
improve with PE learned from Laplacian and random walk
operators. GraphiT (Mialon et al., 2021) encodes relative
PE derived from diffusion kernels into the attention mecha-
nism. GraphTrans (Wu et al., 2021b) add Transformers on
the top of standard GNN layers. SAT (Chen et al., 2022a)
proposes a novel self-attention mechanism that incorporates
structural information into the standard self-attention mod-
ule by using a GNN to compute subgraph representations.
Graphormer (Ying et al., 2021) introduce three structural en-
codings, with great success on large molecular benchmarks.
GPS (Rampášek et al., 2022) categorizes the different types
of PE and puts forward a hybrid MPNN+Transformer ar-
chitecture. We refer to Min et al. (2022) for an overview
of graph-structured Transformers. Generally, most Graph
Transformer architectures address the problems of over-
squashing and limited long-range dependencies in GNNs
but they also increase significantly the complexity from
O(E) to O(N2), resulting in a computational bottleneck.
A detailed description of related literature can be found in
Appendix A.

2. Generalizing ViT/MLP-Mixer to Graphs
In the following, we explain the importance of generalizing
the ViT/MLP-Mixer architectures from CV to graphs.

ViT and MLP-Mixer in computer vision. Transformers
have gained remarkable success in CV and NLP, most no-
tably with architectures like ViT (Dosovitskiy et al., 2020)
and BERT (Devlin et al., 2018). The success of trans-
formers has been long attributed to the attention mecha-
nism (Vaswani et al., 2017), which is able to model long-
range dependency by making ”everything connected to ev-
erything”. But recently, this prominent line of networks has
been challenged by more cost efficient alternatives. A novel
family of models based on the MLP-Mixer introduced by
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Table 1. Differences between ViT/MLP-Mixer components for images and graphs.

Images Graphs

Input
Regular grid Irregular domain
Same data resolution Variable data structure

(Height, Width) (# Nodes and # Edges)

Patch Extraction
Via pixel reordering Via graph clustering algorithm
Non-overlapping patches Overlapping patches
Same patches at each epoch Different patches at each epoch

Patch Encoder
Same patch resolution Variable patch structure

(Patch Height, Patch Width) (# Nodes and # Edges)
MLP (equivalently CNN) GNN (e.g. GCN, GAT, GT)

Positional Information
Implicitly ordered No universal ordering

(No need for explicit PE) Node PE for patch encoder
Patch PE for token mixer

ViT / MLP-Mixer MLP / Channel mixer MLP / Channel mixer
MHA / Token mixer gMHA / Token mixer

Tolstikhin et al. (2021) has emerged and gained recognition
for its simplicity and its efficient implementation. Overall,
MLP-Mixer replaces the attention module with multi-layer
perceptrons (MLPs) which are also not affected by over-
squashing and poor long-range interaction. The original
architecture is simple (Tolstikhin et al., 2021); it takes im-
age patches (or tokens) as inputs, encodes them with a linear
layer (equivalent to a convolutional layer over the image
patches), and updates their representations with a series of
feed-forward layers applied alternatively to image patches
(or tokens) and features. These plain networks (Tolstikhin
et al., 2021; Touvron et al., 2021; Liu et al., 2021; Wang
et al., 2022) can perform competitively with state-of-the-art
(SOTA) vision Transformers, which tends to indicate that
attention is not the only important inductive bias, but other
elements like the general architecture of Transformers with
patch embedding, residual connection and layer normaliza-
tion, and carefully-curated data augmentation techniques
seem to play essential roles as well (Yu et al., 2022).

The benefits of generalizing ViT/MLP-Mixer from
grids to graphs. Standard MP-GNNs have linear learn-
ing/inference complexities but low representation power
and poor long-range dependency. Graph Transformers ad-
dress these two problems but loose the computational effi-

ciency with a quadratic complexity price. A generalization
of ViT/MLP-Mixer to graphs overcomes the computational
bottleneck of Graph Transformers and solves the issue of
long-distance dependency, hence going beyond standard
MP-GNNs. However, achieving such a successful general-
ization is challenging given the irregular and variable nature
of graphs. See Section 3 for a detailed presentation of theses
challenges.

Contribution. Our contributions are listed as follows.

• We identify the key challenges to generalize ViT/MLP-
Mixer from images to graphs and design a new efficient
class of GNNs, namely Graph ViT/MLP-Mixer, that
simultaneously captures long-range dependency, keeps
linear speed/memory complexity, and achieves high
graph isomorphic expressivity.

• We show competitive results on multiple benchmarks
from Benchmarking GNNs (Dwivedi et al., 2020) and
the Open Graph Benchmark (OGB) (Hu et al., 2020);
specifically, with 0.073 MAE on ZINC and 0.7997
ROCAUC on MolHIV.

• We demonstrate the capacity of the proposed model
to capture long-range dependencies with SOTA
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performance on Long Range Graph Benchmark
(LRGB) (Dwivedi et al., 2022) while keeping low com-
plexity, to mitigate the over-squashing issue on the
TreeNeighbourMatch dataset (Alon & Yahav, 2020),
and to reach the 3-WL expressive power on the SR25
dataset (Balcilar et al., 2021).

• Our approach forms a bridge between CV, NLP and
graphs under a unified architecture, that can potentially
benefit cross-over domain collaborations to design bet-
ter networks.

3. Generalization Challenges
We list the main questions when adapting MLP-Mixer from
images to graphs in the following and in Table 1.

(1) How to define and extract graph patches/tokens?
One notable geometrical property that distinguishes graph-
structured data from regular structured data, such as images
and sequences, is that there does not exist in general a canon-
ical grid to embed graphs. As shown in Table 1, images
are supported by a regular lattice, which can be easily split
into multiple grid-like patches (also referred to as tokens)
of the same size via fast pixel reordering. However, graph
data is irregular: the number of nodes and edges in different
graphs is typically different. Hence, graphs cannot be uni-
formly divided into similar patches across all examples in
the dataset. Finally, the extraction process for graph patches
cannot be uniquely defined given the lack of canonical graph
embedding. This raises the questions of how we identify
meaningful graph tokens, and quickly extract them.

(2) How to encode graph patches into a vectorial repre-
sentation? Since images can be reshaped into patches of
the same size, they can be linearly encoded with an MLP,
or equivalently with a convolutional layer with kernel size
and stride values equal to the patch size. However, graph
patches are not all the same size: they have variable topol-
ogy with different number of nodes, edges and connectivity.
Another important difference is the absence of a unique
node ordering for graphs, which constrains the process to
be invariant to node re-indexing for generalization purposes.
In summary, we need a process that can transform graph
patches into a fixed-length vectorial representation for arbi-
trary subgraph structures while being permutation invariant.

(3) How to preserve positional information for nodes and
graph patches? As shown in Table 1, image patches in
the sequence have implicit positions since image data is
always ordered the same way due to its unique embedding
in the Euclidean space. For instance, the image patch at
the upper-left corner is always the first one in the sequence
and the image patch at the bottom-right corner is the last
one. On this basis, the token mixing operation of the MLP-
Mixer is able to fuse the same patch information. However,

graphs are naturally not-aligned and the set of graph patches
are therefore unordered. We face a similar issue when we
consider the positions of nodes within each graph patch.
In images, the pixels in each patch are always ordered the
same way; in contrast, nodes in graph tokens are naturally
unordered. Thus, how do we preserve local and global
positional consistency for nodes and graph patches?

(4) How to reduce over-fitting for Graph ViT/MLP-
Mixer? ViT/MLP-Mixer architectures are known to
be strong over-fitters (Liu et al., 2021). Most MLP-
variants (Tolstikhin et al., 2021; Touvron et al., 2021; Wang
et al., 2022) first pre-train on large-scale datasets, and then
fine-tune on downstream tasks, coupled with a rich set of
data augmentation and regularization techniques, e.g. crop-
ping, random horizontal flipping, RandAugment (Cubuk
et al., 2020), mixup (Zhang et al., 2017), etc. While data
augmentation has drawn much attention in CV and NLP,
graph data augmentation methods are not yet as effective,
albeit interest and works on this topic (Zhao et al., 2020).
Variable number of nodes, edges and connectivity make
graph augmentation challenging. Thus, how do we augment
graph-structured data given this nature of graphs?

4. Proposed Architecture
4.1. Overview

The basic architecture of Graph MLP-Mixer is illustrated in
Figure 1. The goal of this section is to detail the choices we
made to implement each component of the architecture. On
the whole, these choices lead to a simple framework that
provides speed and quality results.

Notation. Let G = (V, E) be a graph with V being the
set of nodes and E the set of edges. The graph has N =
|V| nodes and E = |E| edges. The connectivity of the
graph is represented by the adjacency matrix A ∈ RN×N .
The node features of node i are denoted by hi, while the
features for an edge between nodes i and j are indicated
by eij . Let {V1, ...,VP } be the nodes partition, P be the
pre-defined number of patches, and Gi = (Vi, Ei) be the
induced subgraph of G with all the nodes in Vi and all
the edges whose endpoints belong to Vi. Let hG be the
graph-level representation and yG be the graph-level target.

4.2. Patch Extraction

When generalizing MLP-Mixer to graphs, the first step is
to extract patches. This extraction is straightforward for
images. Indeed, all image data x ∈ RH×W×C are defined
on a regular grid with the same fixed resolution (H,W ),
where H and W are respectively the height and the width,
and C is the number of channels. Hence, all images can be
easily reshaped into a sequence of flattened patches xp ∈
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Figure 1. The basic architecture of the proposed Graph ViT/MLP-Mixer. They consist of a patch extraction module, a patch embedding
module, a sequence of mixer layers, a global average pooling, and a classifier head. The patch extraction module partitions graphs into
overlapping patches. The patch embedding module transforms these graph patches into corresponding token representations, which are
fed into a sequence of mixer layers to generate the output tokens. A global average pooling layer followed by a fully-connected layer is
finally used for prediction. Each Mixer Layer, MLP or graph-based multi-head attention (gMHA), is a residual network that alternates
between a Token Mixer applied to all patches, and a Channel Mixer applied to each patch independently (see right side).

RP×(R2C), where (R,R) is the resolution of each image
patch, and P = HW/R2 is the resulting number of patches.

Unlike images with fixed resolution, extracting graph
patches is more challenging, see Table 1. Generally, graphs
have different sizes, i.e. number of nodes, and therefore
cannot be uniformly divided like image data. Additionally,
meaningful sub-graphs must be identified in the sense that
nodes and edges composing a patch must share similar se-
mantic or information, s.a. a community of friends sharing
biking interest in a social network. As such, a graph patch
extraction process must satisfy the following conditions: 1)
the same extraction algorithm can be applied to any arbitrary
graph, 2) the nodes in the sub-graph patch must be more
closely connected than for those outside the patch, and 3)
the extraction complexity must be fast, that is at most linear
w.r.t. the number of edges, i.e. O(E).

METIS (Karypis & Kumar, 1998) is a graph clustering al-
gorithm with one of the best trade-off accuracy and speed.
It partitions a graph into a pre-defined number of clusters
such that the number of within-cluster links is much higher
than between-cluster links in order to better capture good
community structure. For these fine properties, we select
it as our patch extraction algorithm. However, METIS is
limited to finding non-overlapping clusters, as visualized in
Figure 1. In this example, METIS partitions the graph into
four non-overlapping parts, i.e. {1, 2, 3}, {4, 5, 6}, {7, 8, 9}
and {10, 11, 12}, resulting in 5 edge cuts. Unlike images,
extracting non-overlapping patches could imply losing im-
portant edge information, i.e. the cutting edges, and thus

decreasing the predictive performance, as we will observe
experimentally. To overcome this issue and to retain all origi-
nal edges, we allow graph patches to overlap with each other.
For example in Figure 1, if the source and destination nodes
of an edge are not in the same patch, we assign both nodes to
the patches they belong to. As such, node 3 and node 4 are in
two different patches, here the blue and red one, but are con-
nected with each other. After our overlapping adjustment,
these two nodes belong to both the blue and red patches.
This practice is equivalent to expanding the graph patches
to the one-hop neighbourhood of all nodes in that patch.
Formally, METIS is first applied to partition a graph into
P non-overlapping patches: {V1, ...,VP } such that V =
V1 ∪ ... ∪ VP and Vi ∩ Vj = ∅, ∀i ̸= j. Then, patches
are expanded to their one-hop neighbourhood in order to
preserve the information of between-patch links and make
use of all graph edges: Vi ← Vi ∪ { N1(j) | j ∈ Vi },
where Nk(j) defines the k-hop neighbourhood of node j.

4.3. Patch Encoder

For images, patch encoding can be done with a simple lin-
ear transformation given the fixed resolution of all image
patches. This operation is fast and well-defined. For graphs,
the patch encoder network must be able to handle complex
data structure such as invariance to index permutation, het-
erogeneous neighborhood, variable patch sizes, convolution
on graphs, and expressive to differentiate graph isomor-
phisms. As a result, the graph patch encoder is a GNN,
whose architecture is designed to best transform a graph
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token Gp into a fixed-size representation xGp
into 3 steps.

Step 1. Raw node and edge linear embedding. The input
node features αi ∈ Rdn×1 and edge features βij ∈ Rde×1

are linearly projected into d-dimensional hidden features:

h0
i = U0αi + u0; e0ij = V 0βij + v0 (1)

where h0
i ∈ Rd, e0ij ∈ Rd, U0 ∈ Rd×dn , V 0 ∈ Rd×de and

u0, v0 ∈ Rd are learnable parameters.

Step 2. Graph convolutional layers with MP-GNN. We
apply a series of L convolution layers, where the node and
edge representations are updated with a MP-GNN applied
to each graph patch Gp = (Vp, Ep) as follows:

hℓ+1
i,p = fnode(h

ℓ
i,p, {hℓ

j,p|j ∈ N (i)}, eℓij,p) + gpatch-node(h
ℓ
p),

eℓ+1
ij,p = fedge(h

ℓ
i,p, h

ℓ
i,p, e

ℓ
ij,p) + gpatch-edge(e

ℓ
p),

(2)

where hℓ+1
i,p , hℓ

i,p, h
ℓ
p, e

ℓ+1
ij,p , e

ℓ
ij,p, e

ℓ
p ∈ Rd, ℓ is the layer in-

dex, p is the patch index, i, j denotes the nodes, N (i) is the
neighborhood of the node i and functions fnode and fedge
(with learnable parameters) define any arbitrary MP-GNN
architecture s.a. (Kipf & Welling, 2017; Bresson & Lau-
rent, 2017; Hu et al., 2019; Dwivedi & Bresson, 2021),
hℓ
p = 1

|Vp|
∑

i∈Vp
hl
i,p ∈ Rd, eℓp = 1

|Ep|
∑

ij∈Ep
elij,p ∈ Rd

are respectively the mean representations of the patch nodes
and patch edges, and gpatch-node, gpatch-edge are MLP-based
functions that act on hℓ

p and eℓp. For each node and edge cov-
ered by more than one patch due to the patch overlapping to
include all edges cut by METIS, we update the node/edge
representation by averaging over the overlapping patches:

hl+1
i,p ← Mean

{k|i∈Vk}
hl+1
i,k ; el+1

ij,p ← Mean
{k|ij∈Ek}

el+1
ij,k, (3)

where {k|i ∈ Vk}, {k|ij ∈ Ek} are the set of all patches
that cover node i, edge ij respectively.

Step 3. Pooling and readout. The final step is
mean pooling all node vectors in Gp such that hp =
1

|Vp|
∑

i∈Vp
hℓ=L
i,p ∈ Rd, and applying a small MLP to get

the fixed-sized patch embedding xGp
∈ Rd.

Observe that the patch encoder is a MP-GNN, and thus
has the inherent limitation of poor long-range dependency.
Does it affect the Graph MLP-Mixer to capture long-range
interactions? The answer is negative because this problem
is limited to large graphs. But for small patch graphs, this
issue does not really exist (or is negligible). To give a few
numbers, the mean number of nodes and the mean diameter
for graph patches are around 3.15 and 1.82 respectively for
molecular datasets and around 17.20 and 3.07 for image
datasets, see Table 7.

4.4. Positional Information

Regular grids offer a natural implicit arrangement for the se-
quence of image patches and for the pixels inside the image
patches. However, such ordering of nodes and patches do
not exist for general graphs. This lack of positional informa-
tion reduces the expressivity of the network. Hence, we use
two explicit positional encodings (PE); one absolute PE for
the patch nodes and one relative PE for the graph patches.

Node PE. Input node features in Eq (1) are augmented with
pi ∈ RK , with a learnable matrix T 0 ∈ Rd×K :

h0
i = T 0pi + U0αi + u0 ∈ Rd, (4)

The benefits of different PEs are dataset dependent. We
follow the strategy in (Rampášek et al., 2022) that uses
random-walk structural encoding (RWSE) (Dwivedi et al.,
2021) for molecular data and Laplacian eigenvectors encod-
ings (Dwivedi et al., 2020) for image superpixels. Since
Laplacian eigenvectors are defined up to sign flips, the sign
of the eigenvectors is randomly flipped during training.

Patch PE. Relative positional information between the
graph patches can be computed from the original graph
adjacency matrix A ∈ RN×N and the clusters {V1, ...,VP }
extracted by METIS in Section 4.2. Specifically, we capture
relative positional information via the coarsened adjacency
matrix AP ∈ RP×P over the patch graphs:

AP
ij = |Vi ∩ Vj | = Cut(Vi,Vj), (5)

where Cut(Vi,Vj) =
∑

k∈Vi

∑
l∈Vj

Akl is the standard
graph cut operator which counts the number of connecting
edges between cluster Vi and cluster Vj .

We extract the positional encoding p̂i ∈ RK̂ at the patch
level, similar to the node level, which will be injected (after a
linear transformation) into the first layer of the mixer block:

x0
i = T̂ 0p̂i + Û0xi + û0 ∈ Rd, (6)

where xi is the patch embedding.

4.5. Mixer Layer

For images, the original mixer layer (Tolstikhin et al., 2021)
is a simple network that alternates channel and token mixing
steps. The token mixing step is performed over the token
dimension, while the channel mixing step is carried out over
the channel dimension. These two interleaved steps enable
information fusion among tokens and channels. The sim-
plicity of the mixer layer has led to a significant reduction in
computational cost with little or no sacrifice in performance.
Indeed, the self-attention mechanism in ViT requires O(P 2)
memory and O(P 2) computation, while the mixer layer in
MLP-Mixer needs O(P ) memory and O(P ) computation.
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Table 2. Comparison with base MP-GNNs. Results are averaged over 4 runs with 4 different seeds.

Model ZINC MNIST CIFAR10 MolTOX21 MolHIV Peptide-func Peptide-struct

MAE ↓ Accuracy ↑ Accuracy ↑ ROCAUC ↑ ROCAUC ↑ AP ↑ MAE ↓

GCN 0.1952 ± 0.0057 0.9269 ± 0.0023 0.5423 ± 0.0056 0.7525 ± 0.0031 0.7813 ± 0.0081 0.6328 ± 0.0086 0.2758 ± 0.0012
GCN-MLP-Mixer 0.1347 ± 0.0020 0.9516 ± 0.0027 0.6111 ± 0.0017 0.7816 ± 0.0075 0.7929 ± 0.0111 0.6832 ± 0.0061 0.2486 ± 0.0041
GCN-ViT 0.1688 ± 0.0095 0.9600 ± 0.0015 0.6367 ± 0.0027 0.7820 ± 0.0096 0.7780 ± 0.0120 0.6855 ± 0.0049 0.2468 ± 0.0015

GatedGCN 0.1577 ± 0.0046 0.9776 ± 0.0017 0.6628 ± 0.0017 0.7641 ± 0.0057 0.7874 ± 0.0119 0.6300 ± 0.0029 0.2778 ± 0.0017
GatedGCN-MLP-Mixer 0.1244 ± 0.0053 0.9832 ± 0.0004 0.7060 ± 0.0022 0.7910 ± 0.0040 0.7976 ± 0.0136 0.6932 ± 0.0017 0.2508 ± 0.0007
GatedGCN-ViT 0.1421 ± 0.0031 0.9846 ± 0.0009 0.7158 ± 0.0009 0.7857 ± 0.0028 0.7734 ± 0.0114 0.6942 ± 0.0075 0.2465 ± 0.0015

GINE 0.1072 ± 0.0037 0.9705 ± 0.0023 0.6131 ± 0.0035 0.7730 ± 0.0064 0.7885 ± 0.0034 0.6405 ± 0.0077 0.2780 ± 0.0021
GINE-MLP-Mixer 0.0733 ± 0.0014 0.9809 ± 0.0004 0.6833 ± 0.0022 0.7868 ± 0.0043 0.7997 ± 0.0102 0.6970 ± 0.0080 0.2494 ± 0.0007
GINE-ViT 0.0849 ± 0.0047 0.9820 ± 0.0005 0.6967 ± 0.0040 0.7851 ± 0.0077 0.7792 ± 0.0149 0.6919 ± 0.0085 0.2449 ± 0.0016

GraphTrans 0.1230 ± 0.0018 0.9782 ± 0.0012 0.6809 ± 0.0020 0.7646 ± 0.0055 0.7884 ± 0.0104 0.6313 ± 0.0039 0.2777 ± 0.0025
GraphTrans-MLP-Mixer 0.0773 ± 0.0030 0.9742 ± 0.0011 0.7396 ± 0.0033 0.7817 ± 0.0040 0.7969 ± 0.0061 0.6858 ± 0.0062 0.2480 ± 0.0013
GraphTrans-ViT 0.0960 ± 0.0073 0.9725 ± 0.0023 0.7211 ± 0.0055 0.7835 ± 0.0032 0.7755 ± 0.0208 0.6876 ± 0.0059 0.2455 ± 0.0027

Let X ∈ RP×d be the patch embedding {xG1
, ..., xGP

},
the graph mixer layer can be expressed as

U = X + (W2σ(W1 LayerNorm(X))) ∈ RP×d,

Y = U + (W4σ(W3LayerNorm(U)T ))T ∈ RP×d,
(7)

where σ is a GELU nonlinearity (Hendrycks & Gimpel,
2016), LayerNorm(·) is layer normalization (Ba et al.,
2016), and matrices W1 ∈ Rds×P ,W2 ∈ RP×ds , W3 ∈
Rdc×d,W4 ∈ Rd×dc , where ds and dc are the tunable hid-
den widths in the token-mixing and channel-mixing MLPs.

Alternatively, we can formulate a graph transformer layer to
incorporate the self-attention mechanism as in ViT:

U = X + gMHA(LayerNorm(X)) ∈ RP×d,

Y = U + MLP(LayerNorm(U)) ∈ RP×d,
(8)

where gMHA (graph-based multi-head attention) is de-
signed to capture token dependencies based on the given
graph topology. In Eq.(8), gHMA is defined as

(
AP ⊙

softmax(QKT

√
d
)
)
V but other options are possible to charac-

terize the gHMA mechanism, as studied in Appendix F.

Then we generate the final graph-level representation by
mean pooling all the non-empty patches:

hG =
∑
p

mp · xGp
/
∑
p

mp ∈ Rd, (9)

where mp is a binary variable with value 1 for non-empty
patches and value 0 for empty patches (since graphs have
variable sizes, small graphs can produce empty patches).
Finally, we apply a small MLP to get the graph-level target:

yG = MLP(hG) ∈ R (regression) orRnc (classif.). (10)

4.6. Data augmentation

MLP-Mixer architectures are known to be strong over-
fitters (Liu et al., 2021). In order to reduce this effect, we pro-
pose to introduce some perturbations in METIS as follows.

Let G = (V, E) be the original graph and G′ = (V, E ′)
be the graph after randomly dropping a small set of edges.
At each epoch, we apply METIS graph partition algorithm
on G′ to get slightly different node partitions {V1, ...,VP }.
Then, we extract the graph patches {G1, ..., GP } where
Gi = (Vi, Ei) is the induced subgraph of the original graph
G, and not the modified G′. This way, we can produce
distinct graph patches at each epoch that retain all the nodes
and edges from the original graph.

5. Experiments
Graph Benchmark Datasets. We evaluate our Graph
ViT/MLP-Mixer on a wide range of graph benchmarks;
1) Simulated datasets: CSL, EXP, SR25 and TreeNeigh-
bourMatch dataset, 2) Small real-world datasets: ZINC,
MNIST and CIFAR10 from Benchmarking GNNs (Dwivedi
et al., 2020), and MolTOX21 and MolHIV from OGB (Hu
et al., 2020) and 3) Large real-world datasets: Peptides-
func and Peptides-struct from LRGB (Dwivedi et al., 2022).
Details are provided in Appendix B and Appendix C.

5.1. Comparison with MP-GNNs

We show in Table 2 that ViT/Graph MLP-Mixer lifts
the performance of all base MP-GNNs across various
datasets, which include GCN (Kipf & Welling, 2017), Gat-
edGCN (Bresson & Laurent, 2017), GINE (Hu et al., 2019)
and Graph Transformer (Dwivedi & Bresson, 2021). We
augmented all the base models with the same type of PE
as Graph MLP-Mixer to ensure a fair comparison. These
promising results demonstrate the generic nature of our
proposed architecture which can be applied to any MP-
GNNs in practice. Remarkably, Graph ViT/MLP-Mixer
outperforms the base MP-GNNs by large margins on two
LRGB (Dwivedi et al., 2022) datasets; we can observe an
average 0.056 Average Precision improvement on Peptides-
func and an average 0.028 MAE decrease on Peptides-struct,
which verifies its superiority over MP-GNNs in capturing
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Table 3. Comparison of our best results from Table 2 with the state-of-the-art models (missing values from literature are indicated with
’-’). Results are averaged over 4 runs with 4 different seeds.

Model ZINC MolHIV Peptides-func Peptides-strcut

MAE ↓ ROCAUC ↑ AP ↑ Time Mem. MAE ↓ Time Mem.

GT (Dwivedi et al., 2020) 0.226 ± 0.014 – – – – – – –
GraphiT (Mialon et al., 2021) 0.202 ± 0.011 – – – – – – –
Graphormer (Ying et al., 2021) 0.122 ± 0.006 – – – – – – –
GPS (Rampášek et al., 2022) 0.070 ± 0.004 0.7880 ± 0.0101 0.6562 ± 0.0115 1.4× 6.8× 0.2515 ± 0.0012 1.3× 8.3×
SAN+LapPE (Kreuzer et al., 2021) 0.139 ± 0.006 0.7775 ± 0.0061 0.6384 ± 0.0121 9.4× 12.4× 0.2683 ± 0.0043 8.8× 14.7×
SAN+RWSE (Kreuzer et al., 2021) – – 0.6439 ± 0.0075 8.0× 19.5× 0.2545 ± 0.0012 7.9× 14.5×

GNN-AK+ (Zhao et al., 2021) 0.080 ± 0.001 0.7961 ± 0.0119 0.6480 ± 0.0089 2.6× 7.8× 0.2736 ± 0.0007 2.5× 9.2×
SUN (Frasca et al., 2022) 0.084 ± 0.002 0.8003 ± 0.00551 0.6730 ± 0.0078 43.8× 18.8× 0.2498 ± 0.0008 42.7× 20.7×
CIN (Bodnar et al., 2021) 0.079 ± 0.0062 0.8094 ± 0.0057 – – – – – –

Graph MLP-Mixer 0.073 ± 0.001 0.7997 ± 0.0102 0.6970 ± 0.0080 1.0× 1.0× 0.2475 ± 0.0015 1.0× 1.2×
Graph ViT 0.085 ± 0.005 0.7792 ± 0.0149 0.6942 ± 0.0075 1.1× 0.8× 0.2449 ± 0.0016 1.0× 1.0×

long-range interaction.

5.2. Comparison with SOTAs

Next, we compare Graph ViT/MLP-Mixer against popular
GNN models with SOTA results, including Graph Trans-
formers (GraphiT, GPS, SAN, etc.) and expressive GNNs
(GNN-AK+ and SUN), as shown in Table 3. For small
molecular graphs, our model achieved 0.073 on ZINC and
0.7997 on MolHIV. For larger molecular graphs, our model
sets new SOTA performance with the best scores of 0.6970
on Peptides-func and 0.2449 on Peptides-struct.

Besides, Graph ViT/MLP-Mixer offers better space-time
complexity and scalability. Theoretically, most Graph Trans-
former models and expressive GNNs, might be computation-
ally infeasible for large graphs, as they need to calculate the
full attention and need to run an inner GNN on every node
of the graph respectively. Experimentally, we observed
that, when training on datasets with hundreds of nodes,
SAN+LapPE (Chen et al., 2022a) and SUN (Frasca et al.,
2022) require 9.4× and 43.8× training time per epoch, and
12.4× and 18.8× memory respectively, compared to our
model (Table 3 and Table 17).

5.3. Graph ViT/MLP-Mixer can mitigate
over-squashing

0.00
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0.20
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0.40
0.50
0.60
0.70
0.80
0.90
1.00

2 3 4 5 6 7 8

A
cc
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GGCN GIN GAT GCN Graph MLPMixer Graph ViT

Figure 2. Test Accuracy across problem radius (tree depth) in the
TreeNeighbourMatch problem.

TreeNeighbourMatch is a synthetic dataset proposed
by Alon & Yahav (2020) to provide an intuition into over-
squashing. Each example is a binary tree of depth r. The
goal is to predict an alphabetical label for the target node,
where the correct answer is the label of the leaf node that
has the same degree as the target node. Figure 2 shows that
standard MP-GNNs (i.e., GCN, GGCN, GAT and GIN) fail
to generalize on the dataset from r = 4, whereas our model
mitigates over-squashing and generalizes well until r = 7.
As for why this happens, Alon & Yahav (2020) show that
GNNs fail to solve larger TreeNeighbourMatch cases as they
‘squash’ information about the graph into the target node’s
embedding, which can hold a limited amount of information.
In contrast, Graph ViT/MLP-Mixer avoids this problem as it
transmits long-range information directly without ‘squash-
ing.’ Concretely, Appendix I shows a simple construction
illustrating that our model can solve TreeNeighbourMatch
cases while avoiding the inherent limitations of MP-GNNs
discussed by Alon & Yahav (2020).

5.4. Graph ViT/MLP-Mixer can achieve empirical high
expressivity

Table 4. Empirical evaluation of the expressive power on simula-
tion datasets, averaging over 4 runs with 4 different seeds.

Model CSL (ACC) EXP (ACC) SR25 (ACC)

GCN 10.00 ± 0.00 51.90 ± 1.96 6.67 ± 0.00
GatedGCN 10.00 ± 0.00 51.73 ± 1.65 6.67 ± 0.00
GINE 10.00 ± 0.00 50.69 ± 1.39 6.67 ± 0.00
GraphTrans 10.00 ± 0.00 52.35 ± 2.32 6.67 ± 0.00

GCN-MLP-Mixer 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
GatedGCN-MLP-Mixer 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
GINE-MLP-Mixer 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
GraphTrans-MLP-Mixer 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

We experimentally evaluate the expressive power of Graph

1For SUN, we run the official code and obtain 0.7886 ± 0.0081
on MolHIV with our 4 seeds.

2For CIN, the reporting score is not obtained with the budget
of 500k parameters but with 1.7M parameters (3× more) when
running their official code.
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ViT/MLP-Mixer on three simulated datasets. CSL (Murphy
et al., 2019) contains 150 4-regular graphs that cannot be
distinguished with a 1-WL isomorphism test. EXP (Ab-
boud et al., 2020) contains 600 pairs of non-isomorphic
graphs: both 1-WL and 2-WL tests fail at differentiating
these graphs. Finally, SR25 (Balcilar et al., 2021) has 15
strongly regular graphs with 25 nodes each that cannot be
discerned with a 3-WL test. Numerical experiments show
that our model achieves perfect accuracy on all 3 datasets
while MP-GNNs fail, see Table 4. Our results are only
empirical. Due to the nonlocal way in which information
is passed from one layer to the other, a direct analytical
comparison between the proposed neural network and the
Weisfeiler-Lehman test is challenging.

5.5. Ablation Studies

In our ablation studies, we evaluated various choices made
during the implementation of each component of the ar-
chitecture. The details of these studies can be found in the
appendix. Appendix D focuses on the design of the patch ex-
traction process, including the effects of the graph partition
algorithm (Table 9), patch size (Figure 4), patch overlap-
ping (Figure 5), and other related aspects. Appendix E
presents the effects of two types of positional encoding, i.e.,
node PE and patch PE. Appendix G investigates the effect
of data augmentation and explores the trade-off between
performance and efficiency. In Appendix F, we delve into
different designs of the gMHA mechanism in the Graph
ViT. Additionally, we provide a complexity analysis in Ap-
pendix J and discuss the limitations in Appendix K.

6. Conclusion
In this work, we proposed a novel GNN architecture to
improve standard MP-GNN limitations, particularly their
low expressivity power and poor long-range dependency,
and presented promising results on several benchmark graph
datasets. Future work will focus on further exploring graph
network architectures with the inductive biases of graph
tokens and vision Transformer-like architectures in order
to solve fundamental node and link prediction tasks, and
possibly without the need of specialized GNN libraries like
PyG (Fey & Lenssen, 2019) or DGL (Zheng et al., 2020) by
replacing sparse linear algebra operations on graph tokens
with dense operations.
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A. Related Work

Table 5. Comparison of different hierarchical graph models.
GNN Transformer Graph Coarsening Local Info. Global Info.

Coarformer (Kuang et al., 2022) ✓ ✓ ✓(non-overlap, static) GNN on original graph MHA on coarsen graph
Exphormer (Shirzad et al., 2023) ✓ ✓ ✗ GNN on original graph MHA on expander graph
ANS-GT (Zhang et al., 2022) ✗ ✓ ✓(non-overlap, static) adaptive node sampling strategy sampled nodes from the coarsened graph
NAGphormer (Chen et al., 2022b) ✗ ✓ ✗ MHA on multi-hop neighbour –
Graph MLP-Mixer (Ours) ✓ ✓ ✓(overlap, dynamic) GNN on graph patches token mixer across patches

We briefly review the hierarchical graph models (Kuang et al., 2022; Shirzad et al., 2023; Zhang et al., 2022; Chen et al.,
2022b) and highlight the main differences among them.

Coarformer (Kuang et al., 2022) combines MPNNs and Transformers, using a GNN-based module for local information and
a Transformer-based module for global information. Exphormer (Shirzad et al., 2023) also employs MPNN+Transformer,
using GNN and Transformer modules on the original graph and expander graph, respectively. ANS-GT (Zhang et al., 2022)
introduces a node-sampling-based GT with hierarchical attention and graph coarsening. NAGphormer (Chen et al., 2022b)
treats each node as a token sequence and aggregates multi-hop information using attention-based readout.

Main differences: 1) GNN/Transformer module. Coarformer, Exphormer, SAT and ours use a hybrid MPNN+Transformer
architecture while ANS-GT and NAGphormer rely solely on Transformers. However, there are notable differences between
these approaches as we do not use any Transformer but rather MLP as our backbone. Besides, our MPNN operates on
small graph patches instead of the entire graph as Coarformer and Exphormer. Furthermore, SAT and our architecture are
sequential, while Coarformer and Exphormer combine MP-GNNs and GT in parallel.

2) Graph coarsening module. Coarformer, ANS-GT and SAT use a graph coarsening mechanism. These methods perform
graph coarsening as a pre-processing step and generate static and non-overlapping graph patches. In contrast, we perform
graph coarsening with a stochastic version of Metis on-the-fly, generating dynamic and overlapping graph patches.

3) Graph embedding module. The ways to capture local and global information are different as stated in the above reviews
and the above summary Table 5.

In summary, although these aforementioned hierarchical graph models share similarities with our model, the major difference
between these models and our work is that we do not use Graph Transformer (GT) as the backbone architecture but an
alternative architecture based on ViT/MLP-Mixer and graphs. We believe moving from GT to Graph ViT/MLP-Mixer as
a new backbone/high-level architecture has the potential to open a new line of work for GNN design (by enhancing the
building blocks of the proposed architecture such as graph clustering, graph embedding, mixer layer, positional encoding,
(pre-)training, etc).

B. Datasets Description
We evaluate our Graph MLP-Mixer on a wide range of graph benchmarks. See summary statistics of datasets in Table 6.

CSL (Murphy et al., 2019) is a synthetic dataset to test the expressivity of GNNs. CSL has 150 graphs divided into 10
isomorphism classes. Each CSL graph is a 4-regular graph with edges connected to form a cycle and containing skip-links
between nodes. The goal of the task is to classify them into corresponding isomorphism classes.

EXP (Abboud et al., 2020) contains 600 pairs of 1&2-WL failed graphs. The goal is to map these graphs into two classes.

SR25 (Balcilar et al., 2021) has 15 strongly regular graphs (3-WL failed) with 25 nodes each. SR25 is translated to a 15 way
classification problem with the goal of mapping each graph into a different class.

ZINC (Dwivedi et al., 2020) is a subset (12K) of molecular graphs (250K) from a free database of commercially-available
compounds (Irwin et al., 2012). These molecular graphs are between 9 and 37 nodes large. Each node represents a heavy
atom (28 possible atom types) and each edge represents a bond (3 possible types). The task is to regress a molecular property
known as the constrained solubility. The dataset comes with a predefined 10K/1K/1K train/validation/test split.

MNIST and CIFAR10 (Dwivedi et al., 2020) are derived from classical image classification datasets by constructing an
8 nearest-neighbor graph of SLIC superpixels for each image. The resultant graphs are of sizes 40-75 nodes for MNIST
and 85-150 nodes for CIFAR10. The 10-class classification tasks and standard dataset splits follow the original image
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Table 6. Summary statistics of datasets used in this study
Dataset #Graphs #Nodes Avg. #Nodes Avg. #Edges Task Metric

CSL 150 41 41 164 10-class classif. Accuracy
EXP 1,200 32-64 44.4 110.2 2-class classif. Accuracy
SR25 15 25 25 300 15-class classif. Accuracy

ZINC 12,000 9-37 23.2 24.9 regression MAE
MNIST 70,000 40-75 70.6 684.4 10-class classif. Accuracy
CIFAR10 60,000 85-150 117.6 1129.7 10-class classif. Accuracy

MolTOX21 7,831 1-132 18.57 38.6 12-task classif. ROCAUC
MolHIV 41,127 2-222 25.5 54.9 binary classif. ROCAUC

Peptides-func 15,535 8-444 150.9 307.3 10-class classif. Average Precision (AP)
Peptides-struct 15,535 8-444 150.9 307.3 regression MAE

TreeNeighbourMatch (r=2) 96 7 7 6 4-class classif. Accuracy
TreeNeighbourMatch (r=3) 32,000 15 15 14 8-class classif. Accuracy
TreeNeighbourMatch (r=4) 64,000 31 31 30 16-class classif. Accuracy
TreeNeighbourMatch (r=5) 128,000 63 63 62 32-class classif. Accuracy
TreeNeighbourMatch (r=6) 256,000 127 127 126 64-class classif. Accuracy
TreeNeighbourMatch (r=7) 512,000 255 255 254 128-class classif. Accuracy
TreeNeighbourMatch (r=8) 640,000 511 511 510 256-class classif. Accuracy

classification datasets, i.e., for MNIST 55K/5K/10K and for CIFAR10 45K/5K/10K train/validation/test graphs. These
datasets are sanity-checks, as we expect most GNNs to perform close to 100% for MNIST and well enough for CIFAR10.

MolTOX21 and MolHIV (Hu et al., 2020) are molecular property prediction datasets adopted from the MoleculeNet (Szk-
larczyk et al., 2019). All the molecules are pre-processed using RDKit (Landrum et al., 2006). Each graph represents a
molecule, where nodes are atoms, and edges are chemical bonds. Input node features are 9-dimensional, containing atomic
number and chirality, as well as other additional atom features such as formal charge and whether the atom is in the ring
or not. The datasets come with a predefined scaffold splits based on their two-dimensional structural frameworks, i.e. for
MolTOX21 6K/0.78K/0.78K and for MolHIV 32K/4K/4K train/validation/test.

Peptides-func and Peptides-struct (Dwivedi et al., 2022) are derived from 15,535 peptides with a total of 2.3 million
nodes retrieved from SAT-Pdb (Singh et al., 2016). Both datasets use the same set of graphs but differ in their prediction
tasks. These graphs are constructed in such a way that requires long-range interactions (LRI) reasoning to achieve strong
performance in a given task. In concrete terms, they are larger graphs: on average 150.94 nodes per graph, and on average
56.99 graph diameter. Thus, they are better suited to benchmarking of graph Transformers or other expressive GNNs that
are intended to capture LRI.

TreeNeighbourMatch is a synthetic dataset proposed by Alon & Yahav (2020) to highlight the inherent problem of
over-squashing in GNNs. It is designed to simulate the exponentially-growing receptive field while allowing us to control
the problem radius r, and thus control the intensity of over-squashing. Specifically, each graph is a binary tree of depth
depth (a.k.a. problem radius r). The goal is to predict a label for the target node, where the correct answer lies in one of the
leave nodes. Therefore, the TreeNeighbourMatch problem requires information to be propagated from all leave nodes to the
target node before predicting the label, causing the issue of over-squashing at the target node.

Distributions of the graph sizes. We plot of the distributions of the graph sizes (i.e., the number of nodes in each data
sample) of these datasets in Figure 3.

Patch size and diameter. We set the number of patches to 32 by default. Summary statistics of graph patches are presented
in Table 7.

C. Experiment Details
We implement out model using PyTorch (Paszke et al., 2019) and PyG (Fey & Lenssen, 2019). We ran our experiments on
NVIDIA RTX A5000 GPUs. We run each experiment with 4 different seeds, reporting the averaged results at the epoch
achieving the best validation metric. For optimization, we use Adam (Kingma & Ba, 2014) optimizer, with the default
settings of β1 = 0.9, β2 = 0.999, and ϵ = 1e−8. We observe large fluctuations in the validation metric with the common
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Figure 3. Distributions of the graph sizes.

Table 7. Summary statistics of graph patches.

Dataset # Patch # Node Diameter

Mean Min Max Mean Min Max

CSL 32 5.80 5 8 2.28 2 3
EXP 32 4.07 2 11 2.31 1 5
SR25 32 13.00 13 13 2.00 2 2

ZINC 32 3.15 2 7 1.82 1 3
MNIST 32 14.36 9 28 2.85 2 5
CIFAR10 32 17.20 10 35 3.07 2 7

MolTOX21 32 3.15 1 10 1.80 0 6
MolHIV 32 3.27 1 13 1.87 0 8

Peptides-func 32 7.08 1 20 4.15 0 14
Peptides-struct 32 7.08 1 20 4.15 0 14

TreeNeighbourMatch(r=2) 8 1.86 1 3 0.86 0 2
TreeNeighbourMatch(r=3) 32 1.93 1 3 0.93 0 2
TreeNeighbourMatch(r=4) 32 1.97 1 3 0.97 0 2
TreeNeighbourMatch(r=5) 32 3.28 1 5 2.25 0 3
TreeNeighbourMatch(r=6) 32 5.34 3 8 3.31 2 5
TreeNeighbourMatch(r=7) 32 9.19 7 14 4.33 4 5
TreeNeighbourMatch(r=8) 32 17.03 15 23 6.17 6 8

Adam optimizer on the OGB datasets (i.e., MolHIV and MolTOX21), as also observed in (Frasca et al., 2022; Zhang &
Li, 2021; Chen et al., 2019). We consider following the practice of SUN (Frasca et al., 2022) by employing the ASAM
optimizer (Kwon et al., 2021) to reduce such fluctuations. We use the same hyperparameter with batch size of 32 and
learning rate of 0.01 without further tuning.

Simulation Datasets. For CSL and EXP, we run the 5-fold cross validation with stratified sampling to ensure class
distribution remains the same across the splits (Dwivedi et al., 2020; Zhang & Li, 2021). For SR25 dataset, we follow the
evaluation process in (Zhao et al., 2021; Feng et al., 2022) that directly train and validate the model on the whole dataset and
report the best performance.
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Real-World Datasets. For benchmarking datasets from Dwivedi et al. (2020), we followed the most commonly used
parameter budgets: up to 500k parameters for ZINC; For MolTOX21 and MolHIV from OGB (Hu et al., 2020), there is
no upper limit on the number of parameters. For peptides-func and peptides-struct from LRGB (Dwivedi et al., 2022), we
followed the parameter budget ∼500k. All real world evaluated benchmarks define a standard train/validation/test dataset
split.

Baselines. We use GCN (Kipf & Welling, 2017), GatedGCN (Bresson & Laurent, 2017), GINE (Hu et al., 2019) and Graph
Transformer (Dwivedi & Bresson, 2021) as our baseline models, which also server as the base patch encoder of Graph
MLP-Mixer. The hidden size is set to 128 and the number of layers is set to 4 by default. For TreeNeighbourMatch datasets,
we follow the experimental protocol introduced in (Alon & Yahav, 2020), that is, for TreeNeighbourMatch dataset with
problem radias r = depth, we implemented a network with r + 1 graph layers to allow an additional nonlinearity after the
information from the leaves reaches the target node.

Graph MLP-Mixer. The hidden size is set to 128, and the number of GNN layers and Mixer layers is set to 4. Except that
for LRGB datasets, we reduce the number of Mixer layers to 2 to fulfill the parameter budget ∼500k.

SOTA models. In Table 3 and Table 17, results are referenced directly from literature if available, otherwise are reproduced
using authors’ official code. To enable a fair comparison of speed/memory complexity (Table 17), we set the batch size to
128 all the SOTA models and ours and reduce the batch size by half if OOM until the model and batch data can be fit into
the memory. Besides, all experiments are run on the same machine.

Positional Encodings. As the most appropriate choice of node positional encoding (NodePE) is dataset and task dependent,
we follow the practice of Rampášek et al. (2022); Dwivedi et al. (2022), see Table 8. We have already augmented all the
base models (GCN, GatedGCN, GINE and GraphTrans) in Table 2 with the same type of NodePE as Graph MLP-Mixer to
ensure a fair comparison.

Table 8. Summary statistics of positional encoding (PE).
CSL EXP SR25 ZINC MNIST CIFAR10 MolTOX21 MolHIV Peptides-fun Peptides-struct

NodePE RWSE-8 RWSE-8 LapPE-8 RWSE-20 LapPE-8 LapPE-8 – – RWSE-16 RWSE-16
PatchPE RWSE-8 RWSE-8 RWSE-8 RWSE-8 RWSE-8 RWSE-8 – – RWSE-8 RWSE-8

D. Studies on Patch Extraction Module
D.1. Effect of Patch Extraction

Table 9. Effect of patch extraction: ✗means no patch extraction and ✓means uses patch extraction.
Model Patch Extraction ZINC (MAE↓) Peptides-func (AP↑)

GCN-MLP-Mixer ✗ 0.2495 ± 0.0040 0.6341 ± 0.0139
✓ 0.1347 ± 0.0020 0.6832 ± 0.0061

GatedGCN-MLP-Mixer ✗ 0.2521 ± 0.0084 0.6230 ± 0.0110
✓ 0.1244 ± 0.0053 0.6932 ± 0.0017

GINE-MLP-Mixer ✗ 0.2558 ± 0.0059 0.6350 ± 0.0038
✓ 0.0733 ± 0.0014 0.6970 ± 0.0080

GraphTrans-MLP-Mixer ✗ 0.2538 ± 0.0067 0.6224 ± 0.0112
✓ 0.0773 ± 0.0030 0.6858 ± 0.0062

We conducted an experiment where we ran the Graph MLP-Mixer without the patch extraction process, treating each
individual node as a patch. The results of this experiment are presented in Table 9. The patch extraction process is critical.
We believe that the patch extraction process, which includes Metis partition and 1-hop extension, helps to capture important
local information about the graph structure.
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Table 10. Comparison of METIS and random graph partition algorithm.

Model ZINC (MAE ↓) Peptides-struct (MAE ↓)

METIS Random METIS Random

GCN-MLP-Mixer 0.1347 ± 0.0020 0.1435 ± 0.0122 0.2486 ± 0.0041 0.2565 ± 0.0031
GatedGCN-MLP-Mixer 0.1244 ± 0.0053 0.1284 ± 0.0074 0.2508 ± 0.0007 0.2539 ± 0.0012
GINE-MLP-Mixer 0.0733 ± 0.0014 0.0708 ± 0.0020 0.2494 ± 0.0007 0.2559 ± 0.0012
GraphTrans-MLP-Mixer 0.0773 ± 0.0030 0.0767 ± 0.0019 0.2480 ± 0.0013 0.2574 ± 0.0025

D.2. Effect of Graph Partition Algorithm

Graph partitioning algorithms have been studied for decades (Buluç et al., 2016) given their importance in identifying
meaningful clusters. Mathematically, graph partitioning is known to be NP-hard (Chung, 1997). Approximations are thus
required. A graph clustering algorithm with one of the best trade-off accuracy and speed is METIS (Karypis & Kumar,
1998), which partitions a graph into a pre-defined number of clusters/patches such that the number of within-cluster links is
much higher than between-cluster links in order to better capture good community structure. For these fine properties, we
select METIS as our graph patch extraction algorithm.

We provide the ablation study for how many benefits the METIS can provide against random graph partitioning. For random
graph partition, nodes are randomly assigned to a pre-defined number of patches. We apply data augmentation as described
in Section 4.6 to both algorithms. Table 10 shows that using METIS as the graph partition algorithm consistently gives
better performance than random node partition, especially on graphs with more nodes and edges (such as Peptides-func),
which corresponds to our intuition that nodes and edges composing a patch should share similar semantic or information.
Nevertheless, it is interesting to see that random graph partitioning is still able to achieve reasonable results, which shows
that the performance of the model is not solely supported by the quality of the patches.

D.3. Effect of Number of Patches
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Figure 4. Effect of the number of patches.

We observe in Figure 4 when increasing the number of graph patches (# Patch), performance increases first and then flattens
out (with small fluctuations) when #Patch=24. We set the number of patches to 32 by default.

D.4. Effect of Patch Overlapping

In Figure 5, we observe a clear performance increase when graph patches are overlapping with each other (0-hop vs 1-hop),
which is consistent with our intuition that extracting non-overlapping patches implies losing important edge information.
We further expand graph patches to their k-hop neighbourhood. Performance increases first and then flattens out or begins
to decrease when k = 2 for ZINC and k = 3 for Peptides-func. We set k = 1 by default.
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Figure 5. Effect of the patch overlapping with k-hop extension.

Table 11. Accuracy on EXP with different patch sizes P , averaging over 4 runs with 4 different seeds
Model P=2 P=4 P=8 P=16 P=32

GCN-MLP-Mixer 57.54 ± 3.87 99.44 ± 0.59 99.69 ± 0.98 100.00 ± 0.00 100.00 ± 0.00
GatedGCN-MLP-Mixer 67.65 ± 2.01 99.77 ± 0.37 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
GINE-MLP-Mixer 57.75 ± 3.80 99.58 ± 0.45 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
GraphTrans-MLP-Mixer 73.79 ± 1.52 96.77 ± 8.43 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

D.5. Patch Size and WL Expressivity

We evaluated the 2-WL and 3-WL expressivity on the benchmark datasets available to us, which indeed have small graphs.
As we do not have access to 2-WL/3-WL datasets with larger graph sizes, we studied the impact of performance with a
smaller number of patches in Table 11. As expected, expressivity increases when the number of patches increases as well.
Given these experiential results, we also suppose that for larger graphs, we would need to increase the number of patches to
maintain expressivity.

E. Studies on Positional Encoding
E.1. Effect of Positional Encoding

Table 12. Effect of positional encoding. We study the effects of node PE and patch PE by removing one of them in turn from our model
while keeping the other components unchanged.

Dataset Method GCN-MLP-Mixer Gated-MLP-Mixer GINE-MLP-Mixer GraphTrans-MLP-Mixer

ZINC

Full 0.1347 ± 0.0020 0.1244 ± 0.0053 0.0733 ± 0.0014 0.0773 ± 0.0030
- NodePE 0.1944 ± 0.0061 0.1775 ± 0.0031 0.1225 ± 0.0070 0.1393 ± 0.0122
- PatchPE 0.1414 ± 0.0058 0.1250 ± 0.0026 0.0746 ± 0.0010 0.0778 ± 0.0029
- Both 0.2207 ± 0.0072 0.1883 ± 0.0096 0.1160 ± 0.0023 0.1700 ± 0.0064

Peptides-func

Full 0.6832 ± 0.0061 0.6932 ± 0.0017 0.6970 ± 0.0080 0.6858 ± 0.0062
- NodePE 0.6688 ± 0.0039 0.6864 ± 0.0080 0.6868 ± 0.0034 0.6763 ± 0.0030
- PatchPE 0.6871 ± 0.0055 0.6934 ± 0.0055 0.6933 ± 0.0104 0.6882 ± 0.0076
- Both 0.6760 ± 0.0078 0.6847 ± 0.0034 0.6756 ± 0.0070 0.6783 ± 0.0088

It was proved in (Murphy et al., 2019; Loukas, 2020) that unique and permutation-invariant positional encoding (PE)
increases the representation power of any MP-GNN, i.e. PE leads to GNNs strictly more powerful than the 1-WL test. PE is
thus important from a theoretical point of view but, unfortunately, theory does not provide any guidance on the choice of
PE for a given graph dataset and task. Consequently, the choice of PE is so far arbitrary and is selected by trial-and-error
experiments such as (Rampášek et al., 2022; Lim et al., 2022) to cite the most recent PE-based GNNs.

Our experiments show that PE may or not be useful, see Table 12. Thus, PE increases the expressivity power of GNNs but
not necessarily their generalization performance. In other words, they improve over-fitting but not necessarily generalization.
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In conclusion, PE is certainly useful to improve the quality of GNN prediction given the theory and the increased number of
published works on this topic, but more mathematical progress is needed to identify more relevant choices and provides
consistent result improvement.

E.2. Positional Encoding and Patch Size

Table 13. Ablation with combining effects of PE and patch size on ZINC.
Patch Size 2 4 16 32

Full 0.0983 ± 0.0042 0.1011 ± 0.0103 0.0799 ± 0.0037 0.0743 ± 0.0049
- Node PE 0.1589 ± 0.0056 0.1414 ± 0.0061 0.1307 ± 0.0107 0.1154 ± 0.0032
- Patch PE 0.1081 ± 0.0007 0.1076 ± 0.0110 0.0840 ± 0.0035 0.0744 ± 0.0037
- Both 0.1677 ± 0.0045 0.1532 ± 0.0051 0.1284 ± 0.0018 0.1187 ± 0.0050

Table 14. Ablation with combining effects of PE and patch size on Peptide-func.
Patch Size 2 4 16 32 64

Full 0.6578 ± 0.0063 0.6675 ± 0.0037 0.6855 ± 0.0039 0.6939 ± 0.0034 0.6944 ± 0.0074
- Node PE 0.6613 ± 0.0063 0.6708 ± 0.0065 0.6864 ± 0.0069 0.6873 ± 0.0033 0.6789 ± 0.0047
- Patch PE 0.6594 ± 0.0059 0.6724 ± 0.0051 0.6937 ± 0.0068 0.6939 ± 0.0062 0.6865 ± 0.0061
- Both 0.6562 ± 0.0057 0.6739 ± 0.0038 0.6879 ± 0.0052 0.6825 ± 0.0074 0.6746 ± 0.0056

We run ablation experiments to study the combined effects of patch size vs. model with and without node and patch PE, see
Table 13 and Table 14.

Overall, increasing the number of patches improves the results independently of using or not the PEs for ZINC and
Peptide-func. Node PE clearly helps more than patch PE for both datasets and using both PEs is generally more helpful for
a larger number of patches.

F. Study on Different Designs of Graph-Based MHA

Table 15. Different designs of graph-based multi-head attention (gMHA) in transformer layer.
gMHA Equation ZINC (MAE↓) Peptides-func (AP↑)

Standard/Full attention (Vaswani et al., 2017) softmax
(
QKT
√
d

)
V 0.1784 ± 0.0238 0.6778 ± 0.0039

Graph Attention (Dwivedi & Bresson, 2021) softmax
(
AP ⊙ QKT

√
d

)
V 0.1527 ± 0.0067 0.6795 ± 0.0070

Kernel Attention (Mialon et al., 2021) softmax
(
RW(AP )⊙ QKT

√
d

)
V 0.1010 ± 0.0031 0.6844 ± 0.0102

Additive Attention (Ying et al., 2021) softmax
(
QKT
√
d

)
V + LL(AP ) 0.1632 ± 0.0063 0.6842 ± 0.0057

Hadamard Attention
(
AP ⊙ softmax(QKT

√
d

)
)
V 0.0849 ± 0.0047 0.6919 ± 0.0085

We conducted experiments on ZINC and Peptides-func datasets to explore five different versions of Graph ViT. The versions
primarily differ in the attention function used. The attention functions we considered are as follows: (1) Standard/Full
Attention: This attention function is based on the original attention mechanism introduced by Vaswani et al. (2017). (2)
Graph Attention: This attention function is derived from the Graph Transformer (GT) model proposed by Dwivedi & Bresson
(2021). (3) Kernel Attention: This attention function is based on the kernel attention mechanism proposed by Mialon
et al. (2021) in the GraphiT model. (4) Additive Attention: This attention function is derived from the Graphormer model
proposed by Ying et al. (2021). (5) Hadamard Attention: We employed Hadamard attention as the default attention function
in our Graph ViT model. Results are presented in the Table 15.

Experiments clearly demonstrate that the choice of the self-attention function is important. The Hadamard attention provides
the best performance for ZINC (0.0849) and for peptides-func (0.6919) among all attention functions.
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Table 16. Effect of data augmentation (DA): ✗ means no DA and ✓uses DA.

Model DA ZINC Peptides-struct

MAE ↓ Time (S/Epoch) MAE ↓ Time (S/Epoch)

GCN-MLP-Mixer ✗ 0.2537 ± 0.0139 5.3603 0.2761 ± 0.0041 6.8297
✓ 0.1347 ± 0.0020 5.6728 0.2486 ± 0.0041 9.2561

GatedGCN-MLP-Mixer ✗ 0.2121 ± 0.0172 5.3816 0.2776 ± 0.0020 7.8609
✓ 0.1244 ± 0.0053 5.7786 0.2508 ± 0.0007 9.5830

GINE-MLP-Mixer ✗ 0.1389 ± 0.0171 5.3905 0.2792 ± 0.0043 7.8849
✓ 0.0733 ± 0.0014 5.6704 0.2494 ± 0.0007 8.8136

GraphTrans-MLP-Mixer ✗ 0.1665 ± 0.0145 6.0039 0.2802 ± 0.0030 9.0999
✓ 0.0773 ± 0.0030 6.1616 0.2480 ± 0.0013 9.7730

G. Effect of Data Augmentation
Then proposed data augmentation (DA) corresponds to newly generated graph patches with METIS at each epoch, while no
DA means patches are only generated at the initial epoch and then reused during training. Table 16 presents different results.
First, it is clear that DA brings an increase in performance. Second, re-generating graph patches only add to a small amount
of training time.

It is worth noting that the drop edge technique we use here is different to the standard data augmentation techniques such as
DropEdge (Rong et al., 2019), and G-Mixup (Han et al., 2022b), which either add slightly modified copies of existing data
or generate synthetic based on existing data. Our approach is different and actually specific to the Graph MLP-Mixer model.

H. Long Range Graph Benchmark

Table 17. Comparison of our best results from Table 2 with the state-of-the-art Models on large real world datasets (Dwivedi et al., 2022).

Model # Params Peptide-func Peptide-struct

Avg. Precision ↑ Time (S/Epoch) Memory (MB) MAE ↓ Time (S/Epoch) Memory (MB)

GCN 508k 0.5930 ± 0.0023 4.59 696 0.3496 ± 0.0013 4.51 686
GINE 476k 0.5498 ± 0.0079 3.94 659 0.3547 ± 0.0045 3.84 658
GatedGCN 509k 0.5864 ± 0.0077 5.48 1,038 0.3420 ± 0.0013 5.31 1,029
GatedGCN + RWSE 506k 0.6069 ± 0.0035 5.75 1,035 0.3357± 0.0006 5.61 1,038

Transformer + LapPE 488k 0.6326 ± 0.0126 9.74 (1.1×) 6,661 (6.6×) 0.2529 ± 0.0016 9.61 (1.1×) 6,646 (8.0×)
SAN + LapPE (Chen et al., 2022a) 493k 0.6384 ± 0.0121 80.47 (9.4×) 12,493 (12.4×) 0.2683 ± 0.0043 79.41 (8.8×) 12,226 (14.7×)
SAN + RWSE (Chen et al., 2022a) 500k 0.6439 ± 0.0075 68.44 (8.0×) 19,691 (19.5×) 0.2545 ± 0.0012 70.39 (7.8×) 12,111 (14.5×)
GPS (Rampášek et al., 2022) 504k 0.6562 ± 0.0115 11.83 (1.4×) 6,904 (6.8×) 0.2515 ± 0.0012 11.74 (1.3×) 6,878 (8.3×)

GNN-AK+ (Zhao et al., 2021) 631k 0.6480 ± 0.0089 22.52 (2.6×) 7,855 (7.8×) 0.2736 ± 0.0007 22.11 (2.5×) 7,634 (9.2×)
SUN (Frasca et al., 2022) 508k 0.6730 ± 0.0078 376.66 (43.8×) 18,941 (18.8×) 0.2498 ± 0.0008 384.26 (42.7×) 17,215 (20.7×)

GCN-MLP-Mixer 329k 0.6832 ± 0.0061 8.48 716 0.2486 ± 0.0041 8.12 679
GatedGCN-MLP-Mixer 527k 0.6932 ± 0.0017 8.96 969 0.2508 ± 0.0007 8.44 887
GINE-MLP-Mixer 397k 0.6970 ± 0.0080 8.59 (1.0×) 1,010 (1.0×) 0.2494 ± 0.0007 8.51 974
GraphTrans-MLP-Mixer 593k 0.6858 ± 0.0062 9.94 975 0.2480 ± 0.0013 9.00 1,048

GCN-ViT 493k 0.6855 ± 0.0049 8.90 628 0.2468 ± 0.0015 8.55 609
GatedGCN-ViT 692k 0.6942 ± 0.0075 9.07 848 0.2465 ± 0.0015 9.00 (1.0×) 833 (1.0×)
GINE-ViT 561k 0.6919 ± 0.0085 8.98 920 0.2449 ± 0.0016 8.77 902
GraphTrans-ViT 757k 0.6876 ± 0.0059 9.94 975 0.2455 ± 0.0027 9.58 981

We have provided additional experiments with the recent Long Range Graph Benchmark (LRGB) (Dwivedi et al., 2022) to
demonstrate that Graph MLP-Mixer is able to capture long-range interactions. In LRGB, Peptides-func and Peptides-struct
are two graph-level prediction datasets, consisting of 15,535 graphs with a total of 2.3 million nodes. The graphs are one
order of magnitude larger than ZINC, MolTOX21 and MolHIV with 151 nodes per graph on average and a mean graph
diameter of 57. As such, they are better suited to evaluate models enabled with long-range dependencies, as they contain
larger graphs and more data points. The performance is reported in Table 2, Table 3 and in Table 17.

We summarize the main results as follows: 1) Graph MLP-Mixer sets new SOTA performance with the best scores of
0.6970 on Peptides-fun and 0.2449 on Peptides-struct (Table 3), demonstrating the ability of the model to better capture
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long-range relationships. 2) Compared with MP-GNNs (Table 2), Graph MLP-Mixer significantly outperforms the base
MP-GNNs; we can observe an average 0.056 Average Precision improvement on Peptides-func and an average 0.028 MAE
decrease on Peptides-struct, which verifies its superiority over MP-GNNs in capturing long-range interaction. 3) Graph
MLP-Mixer provides significantly better speed/memory complexity compared to Graph Transformer and expressive gnn
models, epspecially when training with large graphs, such as SAN+LSPE (Chen et al., 2022a) and SUN (Frasca et al., 2022).
For example, SUN gives similar performance to Graph MLP-Mixer, 0.6730 on Peptides-func and 0.2498 on Peptides-struct,
but requires 44x memory and 19x training time (Table 17).

I. Mitigating Oversquashing in TreeNeighbourMatch
As discussed in section 5.3, each example of TreeNeighbourMatch is a binary tree of depth r. The goal is to predict an
alphabetical label for the target node, where the correct answer is the label of the leaf node that has the same degree as the
target node. Figure 2 shows that standard MP-GNNs (i.e., GCN, GGCN, GAT and GIN) fail to generalize on the dataset
from r = 4, whereas our model mitigates over-squashing and generalizes well until r = 7.

To better understand these empirical observations, we first note that as shown by Alon & Yahav (2020), MP-GNNs are
fundamentally limited in their ability to solve larger TreeNeighbourMatch cases as they ‘squash’ information about the
graph into the target node’s embedding, which can hold a limited amount of information in their floating point representation.
Next, we consider Graph MLP-Mixer from an expressiveness point of view, and provide a simple construction to illustrate
that it avoids this problem by transmitting long-range information directly without oversquashing. Concretely, consider each
node as one patch. Then, Graph MLP-Mixer’s Patch Encoder extracts each node’s degree and alphabetical label, storing
them into the resulting Patch Embeddings. The next Token Mixer layer then compares each node’s degree to the target
node’s, and outputs an indicator variable for whether these degrees are equal, which is transmitted to the next layer. Finally,
by combining each node’s alphabetical label and this indicator variable, the Fully Connected layer can then output the
alphabetical label of the node with matching degree to the target node. In summary, we can observe that Graph MLP-Mixer
can solve TreeNeighbourMatch instances while only requiring that each node embedding to capture information about that
patch, not the entire graph, thus avoiding the inherent limitations of MP-GNNs as discussed in (Alon & Yahav, 2020).

J. Complexity Analysis
For each graph G = (V, E), with N = |V| being the number of nodes and E = |E| being the number of edges, the METIS
patch extraction takes O(E) runtime complexity, and outputs graph patches {G1, ..., GP }, with P being the pre-defined
number of patches. Accordingly, we denote each graph patch as Gp = (Vp, Ep), with Np = |Vp| being the number of
nodes and Ep = |Ep| being the number of edges in Gp. After our one-hop overlapping adjustment, the total number of
nodes and edges of all the patches are N ′ =

∑
p Np ≤ PN and E′ =

∑
p Ep ≤ PE, respectively. Assuming base GNN

has O(N + E) runtime and memory complexity, our patch embedding module has O(N ′ + E′) runtime and memory
complexity, introducing a constant overhead over the base GNN model. For the mixer layers, the complexity is O(P ) as
discussed in Section 4.5.

K. Limitations
The current limitations of the model are as follows.

1) Arbitrary choice of the number of clusters in Metis. The number of patches needs to be selected and the number is
different across different datasets. Besides, selecting the number of patches to be the same for graphs of variable sizes makes
the network operate at different levels of graph resolution and may affect the overall performance.

2) Empirical experiments on WL-expressivity. Our results on the expressivity of the Graph MLP-Mixer are empirical.
A theoretical analysis of the expressivity of the model on graphs with higher WL degrees would be valuable but such an
analysis is non-trivial.

3) Training and pre-training on large-scale datasets of small and large graphs. More experimental results on Mal-
Net (Freitas et al., 2020), PascalVOC-SP, COCO-SP (Dwivedi et al., 2022) and PCQM4Mv2 (Hu et al., 2020) to further test
the supervised ability of the model. Besides, the pre-training capability of Graph MLP-Mixer on large-scale datasets with
small graphs and large graphs was also not studied. We leave these tasks as future work.
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