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Abstract
Graph Contrastive Learning (GCL) has re-
cently enjoyed great success as an efficient
self-supervised representation learning approach.
However, the existing methods have focused on
designing of contrastive modes and used data aug-
mentation with a rigid and inefficient one-to-one
sampling strategy. We adopted node neighbor-
hoods to extend positive samplings and made
avoided resorting to data augmentation to cre-
ate different views. We also considered the
homophily problem in Graph Neural Networks
(GNNs) between the inter-class node pairs. The
key novelty of our method hinged upon analyz-
ing this GNNs problem and integrating the GCL
sampling strategy with homophily discrimination,
where we solved these two significant problems
using one approach. We introduced a new param-
eterized neighbor sampling component to replace
the conventional sub-optimal samplings. By keep-
ing and updating the neighbor sets, both the pos-
itive sampling of GCL and the message passing
of GNNs can be optimized. Moreover, we theo-
retically proved that the new method provided a
lower bound of mutual information for unsuper-
vised semantic learning, and it can also keep the
lower bound with downstream tasks. In essence,
our method is a new self-supervised approach,
which we refer to as group discrimination, and
it can make the downstream fine-tuning efficient.
Our extensive empirical results demonstrate that
the new method can significantly outperform the
existing GCL methods because the former can
solve the homophily problem in a self-supervised
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way with the new group discrimination method
used.

1. Introduction
Graph representation learning aims at learning characteristic
low-dimensional representations for network structured data
to facilitate diverse downstream tasks (Zhu et al., 2019; Cai
et al., 2018). It has many applications in various fields, such
as biology (Duvenaud et al., 2015), social networks (Fan
et al., 2019), finance (Wu et al., 2019), and many text-rich
graph scenarios (Yu et al., 2021b). The current methods of
deep learning on graphs take advantage of the expressive
power of neural networks to encode graph patterns (Wu
et al., 2021; Scarselli et al., 2009). However, these methods
require graph labels, which are challenging and require do-
main knowledge, making supervised end-to-end training dif-
ficult for GNNs. Inspired by the success of self-supervised
learning in other fields (Jing & Tian, 2021; Schmarje et al.,
2020), graph contrastive learning has made remarkable
progress that is comparable to supervised learning but re-
quires no labeled data (Liu et al., 2022; Zhu et al., 2021b).
The general objective of contrastive learning is to make pos-
itive pairs of instances closer in the embedding space and to
keep negative pairs farther apart, where every two instances
in a positive pair are supposed to have the same label in
downstream tasks. It achieves so mostly by maximizing the
similarity between two data augmentation views of the same
graphs/nodes (a.k.a. positive samplings) and minimizing the
similarity between different graphs/nodes (a.k.a. negative
samplings).

However, the one-to-one sampling strategy of the existing
GCL methods (Zhu et al., 2020b; Thakoor et al., 2021;
Bielak et al., 2021) follow the fixed paradigm limited to
the same index between augmented views. It builds upon
the label consistency assumption (Wang et al., 2022) that
data augmentations would not change the semantic informa-
tion. However, this is too strict for GCL compared to visual
contrastive learning. First, the semantic labels of graphs
are abstract compared to that of images, which largely de-
pend on domain knowledge and specific conditions. The
existing data augmentation methods based on prior knowl-
edge or random uniform distribution may potentially al-
ter node/graph semantics. Second, representation learning
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on graphs depends on graph topologies and attributes be-
cause of the unique message-passing encoding mechanism
of GNNs (Kipf & Welling, 2017). However, the existing
data augmentation methods all adopt some types of pertur-
bations to the structure and features of the graph, which will
affect the representation learning of graph data (Zhu et al.,
2020b; Thakoor et al., 2021). In short, traditional sampling
strategies inherited from visual learning extensively rely
on data augmentation. This could be problematic for GCL
since label consistency cannot be guaranteed. We were mo-
tivated to develop a new contrastive learning approach that
significantly deviated from the existing methods by using
no data augmentation.

In GCL, pairs of nodes belonging to the same class are
considered as positive samplings. Interestingly, the most
fundamental homophily problem of GNNs also faces the
same issue where finding other intra-class nodes for the
anchor node is required. GNNs work under the homophily
assumption (Zhu et al., 2020a), i.e., most connected nodes
are from the same class and have similar features. How-
ever, message passing on non-homophily edges leads to
fusing of information from different classes. It degrades
the downstream tasks’ performance (Zheng et al., 2022), re-
sult in different designs for heterophily situations (Jin et al.,
2021a). Therefore, if it is possible to identify edges linking
intra-class node pairs during message passing, which is the
same as the most important criterion for designing posi-
tive samplings in GCL, it will reduce the noise propagation
of non-homophily edges and improve the performance of
downstream tasks.

Therefore, two questions arise naturally, i.e., How to in-
tegrate the sampling problem of graph contrastive learn-
ing and the homophily problem of graph neural networks,
and how to solve them simultaneously? The previous GCL
works developed various data augmentation methods, e.g.,
based on parameterization (Suresh et al., 2021; Kefato et al.,
2021b; You et al., 2021), prior data distributions (Xia et al.,
2022), or additional domain knowledge (Hassani & Ahmadi,
2020; Jin et al., 2021b). However, they all created a sec-
ond view for the one-to-one sampling strategy, and various
prior-based augmentation schemes they used were typically
task-related, compromising the performance of model gen-
eralization. Methods for addressing the homophily problem
of GNNs usually seek alternative ways of message passing,
such as weighted neighbor and higher-order neighbor propa-
gation. But they all ignore to address the most fundamental
cause of performance degradation, i.e., the existence of non-
homophily edges. Thus, they were typically sub-optimal for
solving this homophily problem.

In this paper, we approached these questions by introduc-
ing a new graph contrastive learning method based on the
neighbor sampling and homophily discrimination, namely

Neighbor Contrastive Representation Learning on Graphs
(NeCo). We creatively propose to expand the scope of GCL
samplings to neighbor sets for anchor nodes. Therefore, we
can abandon the inherent two-view settings in GCL mod-
els, and as a result, graph data augmentation is no longer
required. Considering the homophily problem, that graph
structure with weak homophily may have a negative impact
on the proposed NeCo and GNNs encoders, we introduce a
GCL model with additional parameterized homophily dis-
crimination modules. It iteratively updates and maintains
the neighbor sets using neural networks and sampling tricks
at each epoch, which optimize the encoding of GNNs as well
as the positive samplings of GCL simultaneously. Moreover,
we theoretically prove that, with the homophily improve-
ment to the learned graph structure, our parametric neighbor
sampling strategy can guarantee a lower bound of mutual in-
formation on encoding semantic representation and learning
downstream task-specific representation. More importantly,
NeCo provides a new pretext task for self-supervised learn-
ing, which we call group discrimination. The new task can
reduce the difficulty of fine-tuning on the downstream task
networks.

Finally, we experimentally demonstrate the performance of
our NeCo method on node classification tasks using five
heterophily datasets and four commonly used homophily
datasets. The NeCo method significantly improves per-
formance compared to the state-of-the-art baselines. Fur-
thermore, the learned topologies with stronger homophily
significantly improve the classical GNNs. Therefore, NeCo
can also be regarded as a novel idea for solving the inherent
homophily problem of GNNs.

2. Problem Definition
We consider an undirected graph G = (V, E) with a set of
nodes V and a set of edges E , and use X to denote a feature
matrix. The dependency between two random variables B
and C can be measured by the mutual information, written
as I(B;C).

2.1. Graph Contrastive Learning

GCL methods learn encoders by maximizing the mutual in-
formation between the representations of graph G (or node
vi) and its positive samples, which can be expressed as
I(f(G); f(G+)). It is equivalent to I(G; f(G)) (as known
as the InfoMax principle), which aims at making the en-
coded features of graph G easily distinguished from others
in the representation space.

The positive samples of the existing GCL methods are typi-
cally generated by graph data augmentation (GDA). Based
on the assumption that GDAs would not change semantics
labels, multiple views of the same graph are regarded as
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Figure 1. An overview of our proposed method NeCo for graph representation learning and homophily discrimination. It contains
two main components: The GNN encoder extracts features and collects positive samplings from neighbors for GCL. The homophily
discrimination module keeps and updates the learned neighbor sets.

positive samples for each other, and correspondingly, differ-
ent graphs are regarded as negative samples. InfoNCE is a
commonly used mutual information estimator implemented
by making the cosine similarity between pairs of positive
samples greater than that of negative samples. The objective
of GCL methods is as follows:

ln = − 1

n

n∑
i=1

log
exp(sim(zi, zi′)/τ)∑2n−1

j=1,j ̸=i′ exp(sim(zi, zj)/τ)
(1)

2.2. Homophily

We focus on the node-level representation learning for mes-
sage passing of GNNs. For a node vi ∈ V in the graph
G, with the corresponding representation zi that initial-
ized as the input features in X , we define the N as the
set of nodes directly connected to the anchor vi, that is
N (i) = {vj |(vi, vj) ∈ E}. Then the unified message pass-
ing method that most GNNs use can be written as:

z
(k)
i = UPDATE(k)

(
z
(k−1)
i ,

AGGREGATE(k)
({

z
(k−1)
j | j ∈ N (i)

}))
(2)

where AGGREGATE(·) and UPDATE(·) are trainable func-
tions used for neighbor propagation and representation up-
date of node vi, respectively. We also consider both ho-
mophily and heterophily in class labels. To evaluate the
homophily level of graph structure, we define the homophily
ratio as:

Definition 1 (Homophily Rate h & β). For a graph G,
the label homophily rate h measures the fraction of edges
with intra-class node pairs. It can be interpreted as the

probability P (yj = yi, j ∈ N (i) | v = vi). The attribute
homophily rate β measures the proportion of consistency
attribute dimensions between neighboring nodes. They can
be implemented by

h =

∑
i |Y(N (i)) ∩ Y(i)|

2|E|
, β =

∑
i

∑
j∈N (i)(Xi ⊙Xj)

2|E|
(3)

Where N (i) means a set composed of the neighbors of node
i as mentioned earlier, ⊙ denotes dividing the number of
dimensions with the same value between two vectors by the
number of all dimensions. For simplicity, we will denote the
probability above as P (yN (i) = yi | vi) hereafter. Datasets
with higher h and β are referred to as homophily graphs.
Weaker homophily datasets with lower values are referred
to as heterophily graphs.

3. Methods
3.1. Motivation

We start with the question of How the homophily/heterophily
node pairs affect GNNs and GCL? We look for answers
from the motivation experiments to show that GNNs and
GCL may face the same homophily (or the intra-class posi-
tive sampling) problem, and both of them will benefit from
solving it. For GNNs, we randomly drop a certain rate t of
heterophily edges for message passing. Correspondingly,
we extend the samplings of GCL methods to the neighbor
sets N (i), and use the same t to control the number of inter-
class positive samplings. Figure 2 shows the results. As the
graph’s rate t for node pairs increases, both GNNs and GCL
methods significantly improve upon the traditional GCN
and GRACE with the original topology. This observation in-
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Figure 2. The homophily of node pairs affects GNNs and GCL to a
large extent. t is the ratio of removed heterophily edges. "mp" and
"ps" means that the optimized topology participates in message
passing and the positive samplings, respectively.

dicates that the neighbor set N (i) is a rich source of positive
samples that GCL has always overlooked. Besides, it indi-
cates that homophily discrimination is the key to improving
both GNNs and GCL models.

Two requirements that an effective sampling strategy for
contrastive learning needs to meet. The first is label con-
sistency (Wang et al., 2022), meaning that labels between
positive samples must be consistent for learning meaningful
representations. The second is the information gap (Xu et al.,
2021; Wei et al., 2021), meaning that based on the guarantee
of label consistency and information bottleneck theory, a
large attribute gap between positive samplings would im-
prove the performance of contrastive learning. The existing
GCL methods all attempt to satisfy these two requirements.
It is similar to the idea of solving the problem of homophily
that propagates robust information by detecting edges that
satisfy label consistency but in an unsupervised way. The
information defined by homophily rate h and β could be
regarded as a robust feature required by information bottle-
neck theory and message passing. Then any perturbation to
the graph structure or attributes that all GDAs adopt would
inevitably distort useful information. We provide more de-
tails in the Appendix.

Therefore, the neighbor set N (i) is a natural, easy-to-get
(compared to the GDAs) and efficient choice (as shown in
the motivation experiment) for sampling in GCL methods.
The selection of positive samplings in GCL can also be
facilitated to solve the homophily problem of GNNs since
contrastive learning is known for its strong ability to learn
semantics without labels.

3.2. The NeCo Framework

We now introduce our NeCo approach based on the effi-
cient parameterized neighboring sampling and homophily
discrimination, as shown in Figure 1. Our design hinges

upon using the powerful semantic learning ability of GCL
to empower the capacity of homophily discrimination for
message passing of GNNs, and the homophily structure can
guide the positive samplings for GCL.

Neighboring Sampling As shown in the motivation exper-
iments, positive samplings within the first-order neighbors
can effectively avoid the problem in one-to-one samplings
based on GDAs with superior performance. Then, we up-
date the single positive sampling in Equation 1 to be the
sum of the similarity between the anchor node vi and its
neighbors in N (i). Since there is no second view, we treat
other nodes {V −N (i)} in the intra-view as negative sam-
plings of the anchor vi. Moreover, considering that discrete
points in non-fully connected graphs may be problematic in
no neighbor pairs to contrast, we add the self-loops to the
positive sampling sets.

Parameterizing the Homophily Discrimination Note
that the probability P (yN (i) = yi|vi) shown in Section 2.2,
which can discriminate homophily nodes, is vital in improv-
ing GCL and GNNs. We treat the homophily probability P
to follow a Bernoulli distribution, and the random variable
of P is implemented by connecting the parametric GCL
sampling pairs directly after the encoder and projector. In-
spired by the weight design of (Velickovic et al., 2018), we
operate on the representations obtained by the final-layer of
GCL model:

P (yN (i) = yi|vi; θ) = CONCAT(hi, hN (i))Wθ (4)

where the NeCo updates the homophily neighbor sets
N (i; θ) for each node in every iteration. Moreover, we
employ the Gumbel-Max trick (Maddison et al., 2017) to
turn this continuous probability of node pairs into categori-
cal samplings, as argmax (log(P (yN (i) = yi|vi; θ) + Gi)),
where Gi = −log(−log(Ui)), Ui ∼ Uniform(0, 1). Note
that the learned stronger homophily structure is used in both
the message passing in GNNs and positive samplings in
GCL.

Overview As shown in Figure 1, in our NeCo model,
we first generate node embeddings zi by encoding with
GNNs, and map the embeddings into the contrastive space
H = {hi}. Then, we employ the parametric homophily
discrimination module to compute the sampling probability
P (yN (i) = yi|vi; θ). With the learned θ, we propose the
neighboring pairwise loss based on homophily discrimina-
tion. We add a regularization term to guarantee the boundary
of parametric neighbor samplings because the design of the
loss function may have to sample all neighbors, making
the model converge to a sub-optimal solution. After each
iteration, we update the topology of the input graph with the
result of homophily discrimination without backward pass
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of gradients. The final objective can be written as:

argmin
θ,f

− 1

n

n∑
i=1

log

∑
k∈N (i;θ) exp (sim(zi, zk)/τ)∑

j∈{V−N (i;θ)} exp (sim(zi, zj)/τ)

+ λ||
∑
i∈V

N (i; θ)||/|E| (5)

3.3. Theoretical Analysis

We propose the strategy for GCL positive samplings in the
node neighbor sets. To our best knowledge, this is the
first time to change the topology structure with no super-
vision for jointly considering graph contrastive learning.
Thus, our discussion focuses on the relationship between
the mutual information I and the neighbor sampling strategy
P (yN (i) = yi|vi; θ), which can also be interpreted as the
homophily rate of the learned structure hθ. Furthermore,
we analyze the capability that can bring to the GNNs for
discriminating the heterophily node pairs. The new neigh-
boring contrasting paradigm leads to new pretext tasks for
self-supervised learning, which we call the intra-class group
discrimination. It is superior to the instance discrimination
task that previous GCL models adopt. The details of the
proofs are provided in the Appendix.

First, based on the design of neighbor contrastive loss as
Equation 5, we have,

Theorem 1. Suppose that each node vi has a homophily
rate hi, which could be defined as hi = |Y(N (i)) ∩
Y(i)|/degreei. Our method maximizes the lower bound
of the mutual information between the representations of the
contrastive pairs in NeCo, and the gap is determined by the
learned homophily rate hi,θ of the graph G. Specifically,

− L ≤ I(f(vi), f(N (i; θ)))

+ EP (vi)(hi;θ −
1

|N (i; θ)|
)
∑

sim(zi, zN (i;θ))/τ (6)

This statement means that NeCo maximizes a lower bound
of the mutual information between the representations of
node vi and its learned neighbors N (i; θ). This bound indi-
cates that, as the homophily rate of the structure discovered
by NeCo increases (both for the whole graph with hθ and the
individual nodes with hi,θ), the mutual information lower
bound of the neighboring sampling contrastive strategy will
be improved.

Recently, some works (Suresh et al., 2021; Xu et al., 2021)
discuss the information bottleneck theory that considers
the mutual information between the input graphs G (or
the embeddings z) and downstream task labels Y when
designing models. To further explain that the information in
neighbor sets can also achieve the same effect that captures
certain overlapping information with the downstream task
label of the anchor node, we get,

Theorem 2. With the defined homophily rate hi for each
node, the mutual information between the representations
and the downstream task labels Y can be written as:

I(f(vi);Y ) ≥ I(N(vi; θ);Y ) =

I(vi;Y ) + (hi,θ − 1)(H(Y |vi)−
∑
y∈Y

log(|Y| − 1)

|Y| − 1
) (7)

The first inequality in the theorem can be obtained from the
data processing inequality as (Suresh et al., 2021) shows. It
guarantees a lower bound of the mutual information between
the learned representation and the data labels. Moreover,
considering the hi,θ, the mutual information between the
neighbor set and the label of anchor node vi has a lower
bound that is guaranteed by the mutual information between
the anchor node and labels. The gap is determined by the
homophily rate hi,θ of the learned graph structure, or in
other words, the learned probability P (yN (i) = yi|vi; θ).
As the hi,θ increases, the lower bound of I(f(vi);Y ) also
increases.

In summary, for our NeCo method, the homophily discrim-
ination module for learning and updating the neighbor set
N(vi; θ) plays a crucial role in improving the performance
of GCL and mining neighbor information. It also implies
the necessity of the regularization term in Equation 5, be-
cause the homophily rate h will not be improved without
discarding the heterophily edges.

Moreover, it has been proposed that the essence of GCL is
instance discrimination as a pretext task for self-supervised
learning (Wang et al., 2022; Liu et al., 2020). However,
learning semantics relies heavily on intra-class data distri-
bution, as shown in (Wang et al., 2022). It is limited by the
one-to-one positive sampling strategy, and the NeCo may
improve it to form a new task that we referred to as intra-
class group discrimination task, which has less reliance on
the data distribution. Here we explain why NeCo is equiv-
alent to the group discrimination task which surpasses the
existing instance discrimination tasks.

Theorem 3. Suppose a graph is divided into k groups
according to the learned structure connection. Intra-group
nodes will be encoded to similar embeddings, and the train-
ing objective is equivalent to k-group discrimination as
given:

−l ⇐⇒
∑

k∈c(i)

sim(zi, zk)−
∑

j /∈c(i)

sim(zi, zj) (8)

It can be observed that the groups c generated by P (yN (i) =
yi | vi ; θ) and the graph structure can be distinguishable.
Compared to the common instance discrimination task that
GCL usually adopts, group discrimination takes advantages
to node representation learning. First, the label consistency
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assumption is no longer required, and GCL methods do
not have to bear the possible semantic damage introduced
by GDAs. Second, we consider the impact of the self-
supervised GCL training on downstream fine-tuning. The
instance discrimination task learns |V| node embeddings
z, each of which is uniformly distributed, and the down-
stream classifier maps them to |Y| labels. But the group
discrimination task learns k groups to map to labels. It can
be inferred that the entropy H(zi|yi) is larger than H(zc|yc)
learned by group discrimination since |Y| ≤ k ≤ |N |, and
the downstream networks may encounter greater difficulties
in mapping them to the corresponding labels in traditional
GCLs.

Suppose that θ can distinguish all heterophily edges and that
nodes with the same label in the graph are all connected,
NeCo can classify nodes without a downstream task network
since groups {c} must be injective on Y . At the same time,
GNNs will achieve the same classification result as GCL
with message passing on the learned topology of NeCo.
Therefore, our neighboring sampling contrastive design is
superior to the existing GCL methods.

4. Experiments
In this section, we conduct a wide range of experiments to
demonstrate the superiority of our neighboring sampling
strategy and the proposed NeCo framework. First, we eval-
uate the performance under the task of node classification
and analyze the effect of hyperparameters. We then observe
how the homophily structure that NeCo optimized facilitates
GNNs.

4.1. Results of Node Classification

Settings and Datasets. GCN (Kipf & Welling, 2017) is
the base encoder to extract node representations for the
baselines and our proposed model. Models are trained in
a fully unsupervised way, and the learned embeddings are
used to train a simple L2-regularized logistic regression
classifier. The homophily datasets we used are citation net-
works, including Cora, Citeseer, Pubmed and DBLP, and
the heterophily datasets consist of web page networks (Cor-
nell, Texas and Wisconsin), Actor and Wikipedia network
Chameleon. For the homophily networks, we adopted the
commonly-used 10%/10%/80% nodes for training, valida-
tion and testing. We changed the data split for heterophily
datasets to 60%/20%/20%, which follows the existing GNN
works on heterophily problems since strong homophily
datasets contain rich label information so that during mes-
sage passing. In contrast, the heterophily dataset needs more
labels to fine-tune the downstream classifier. A summary
of datasets with details is provided in the Appendix. Note
that for the baseline AD-GCL, instead of directly using the
dual-view model design in (Suresh et al., 2021), we migrate

its min-max idea to our neighbor contrastive framework and
name it as AD-NeCo, which updates the neighbor sets by
maximizing the loss in Equation 5.

Observation. Table 1 shows the results for node classi-
fication on homophily networks. Although the homophily
rate h of these datasets is relatively high, meaning that the
message passing and positive samplings in the dual-branch
baselines (GRACE, GCA and BGRL) will not be signifi-
cantly affected, our proposed NeCo still outperforms the
baselines in most cases. The dynamic training process of
NeCo is shown in Figure 3(c). The homophily discrimi-
nation module tends to sample all edges at first to reduce
loss. As the semantic learning of GCL progresses, NeCo
identifies edges that are not useful to GNNs, and the loss
objective will decrease as more edges are dropped.

For the results on heterophily networks, as shown in Table 2,
we observed a vast performance degeneration of GCL meth-
ods on these tasks. Compared to the homophily datasets,
the performance gap between the untrained GCN and the
GCL methods is considerably narrowed. We make the fol-
lowing analysis. First, as shown in (Wang et al., 2022), the
intra-class semantic alignment of embeddings learned by
the one-to-one sampling GCL model largely depends on the
data distribution. However, data’s topology and attribute dis-
tribution cannot be guaranteed for heterophily networks so
traditional frameworks will fail and even be worse than the
randomly initialized encoder. Second, the heterophily struc-
ture of the graph will harm the message passing of encoders
in the GCL model, which leads to performance degradation.
Third, all baselines adopt GDAs to create views. But ac-
cording to our analysis above, the task-relevant information
in the heterophily graph is less than that in the strong ho-
mophily graphs. Hence GDAs are more likely to damage
the semantic information and lead to lower performance.

For AD-NeCo, the proposed min-max principle is to operate
aggressive samplings to make the larger difference between
contrasting pairs as possible. Compared to the graph-level
task in (Suresh et al., 2021), this idea does not perform well
on node-level classification tasks. We make the following
analysis. First, min-max principle and our NeCo affect the
network’s structure. While for homophily graphs, most of
the edges and attributes are task-related, so the aggressive
learning method brings large semantic distortion and leads
to insufficient encoding. Second, the homophily discrim-
ination of NeCo aims to keep edges with node pairs that
have the same semantic labels, which is not in the oppo-
site direction of the optimization goal of GCL as AD-GCL
does. Using a single minimization objective to update the
parameters is more reasonable than the min-max principle.
Furthermore, unlike ADGCL, our NeCo uses the results of
parametric samplings to update the graph’s structure. Com-
pared to individually making the structures parameterized, it
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Dataset Cora Citeseer Pubmed DBLP
untrained GCN 66.34±2.65 60.78±1.60 84.37±00.64 70.63±0.48

DGI 82.60±0.40 68.80±0.70 86.00±0.10 83.20±0.10
GRACE 83.30±0.40 72.10±0.50 86.70±0.10 84.20±0.10

GCA 82.90±0.41 72.14±0.06 86.01±0.05 84.06±0.02
BGRL 82.77±0.75 68.45±0.15 84.34±0.17 80.63±0.46

AD-NeCo 79.56±0.19 68.71±0.38 82.05±0.65 80.73±0.21
NeCo 83.84±0.54 73.06±0.93 86.29±0.21 84.45±0.19

supervised GCN 82.80 72.00 84.90 82.70

Table 1. Node classification results on homophily datasets.

Cornell Texas Wisconsin Actor chameleon
untrained GCN 49.55±7.75 49.55±5.10 46.41±1.85 28.93±1.36 42.03±0.92

DGI 52.25±7.09 54.56±6.74 54.90±2.77 27.87±0.89 42.91±2.47
GRACE 53.15±7.75 55.86±3.37 49.02±6.98 29.78±0.51 40.94±3.67
BGRL 51.25±0.85 54.20±1.60 48.44±1.43 25.35±0.27 40.07±1.37

AD-NeCo 56.14±4.95 55.83±1.14 53.72±2.96 29.97±0.93 41.42±1.61
NeCo 59.36±4.59 59.45±2.55 57.20±4.23 30.78±1.02 44.23±1.13

supervised GCN 55.14 55.68 53.73 30.64 28.18

Table 2. Node classification results on heterophily datasets.

is more appropriate for node-level tasks to strengthen struc-
tures with the help of the semantic learning capabilities of
GCL methods.

4.2. Solving the GNN Problem

Here we experimentally demonstrate that the learned struc-
ture benefits the learning of GNNs. We select the Sigmoid(·)
instead of the Gumbel-Max trick following the homophily
discrimination module to get the existence probability of
edges. Then, we set the threshold to get the learned structure.
We chose GraphSAGE (Hamilton et al., 2017) (a classic
method that achieves strong performance on heterophily
datasets) as the baseline. We compared the result trained
with the input graph and the structure NeCo learned. We
believe that the neighbor sampling of GraphSAGE is the
key to solving the homophily problem, and the graph struc-
ture we learned improves the homophily rate h of the graph.
Therefore, GraphSAGE can sample more nodes with the
same label when P (yN (i) = yi|vi; θ) is stronger, leading to
performance increase.

4.3. Analysis of Hyperparameters

Here we study how the different temperature hyperparam-
eter τ and edge drop ratio p affect the training of our pro-
posed NeCo. We vary the hyperparameter τ within the
scope of {0.1,0.3,0.5,1,2,5} to observe the accuracy vari-
ation of NeCo and GRACE on the test set. For the drop
ratio p, we modify the regularization term in Equation 5
to λ(||

∑
i∈V N (i; θ)||/|E| − p) to control the proportion

of edges that NeCo drops. As shown in Figure 3, GRACE
shows significant fluctuation when facing the changing tem-
perature τ (about 5% on Cora). On the contrary, NeCo
offers good stability to the change of temperature parame-
ters and outperforms GRACE in all settings. This indicates
that the neighbor-based sampling strategy is less sensitive
to the τ than the one-to-one sampling strategy. For the edge
drop ratio p, GRACE will be problematic with message
passing when edges are dropped a lot, causing the intra-
class data distribution to be corrupted and the performance
degradation. But NeCo could keep learning good semantics
of nodes through sampling between the selected neighbor
sets because of the dynamic edge adjustment process, as
shown in Figure 3.

5. Related Work
Self-supervised learning has become a powerful method for
representation learning on unlabeled data, and contrastive
learning is the most representative and successful paradigm.
It was first proposed in the representation learning of com-
puter vision, following the mutual information maximiza-
tion principle (Belghazi et al., 2018) and achieving com-
petitive performance to the supervised models. Many in-
spirations of them, such as mutual information estimation
(Hjelm et al., 2019), dense InfoNCE contrasting (Chen et al.,
2020), asymmetric design (Grill et al., 2020) and feature
de-correlation (Zbontar et al., 2021), have also been veri-
fied to be applicable with a strong performance in graph
learning on node level tasks (Zhu et al., 2020b; Thakoor
et al., 2021; Bielak et al., 2021; Velickovic et al., 2019) and
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(a) (b) (c)

Figure 3. (a)(b) The effect of temperature parameter τ and drop ratio p on the one-to-one sampling model GRACE and the neighbor
sampling model NeCo. (c) The dynamic training process of NeCo.

Datasets Cornell Texas Wisconsin Actor chameleon
GraphSAGE 70.84±5.27 80.41±5.16 78.49±3.53 34.08±1.52 42.45±1.97

NeCo+GraphSAGE 75.38±4.02 82.29±4.14 82.72±2.10 34.99±0.79 45.16±2.21

Table 3. Semi-supervised node classification results of GraphSAGE and the model augmented with NeCo.

graph level tasks (Sun et al., 2020; You et al., 2020; Zhang
et al., 2020). Most existing GCL methods that build on
these ideas aims at exploring new view designs dominated
by prior domain knowledge or implemented with additional
parameters. MVGRL (Hassani & Ahmadi, 2020) and GCA
(Zhu et al., 2021c) use graph diffusion and node centrality as
the principle for performing GDAs. JOAO (You et al., 2021)
and AD-GCL (Suresh et al., 2021) use additional parametric
components to control the type and distribution of GDAs for
better downstream performance. (Xia et al., 2022; Yu et al.,
2021a) add noises based on the prior distribution to the em-
beddings or the parameters of the encoder to create multiple
views, which is an implicit way to perform GDAs. Note
that they all follow the fixed paradigm of visual contrastive
learning, where the one-to-one samplings are imprisoned in
the same index between augmented views.

In contrast, our proposed NeCo with sufficient theoretical
proof optimizes the positive samplings strategy for GCL.
While many state-of-the-art GCL models (Kefato et al.,
2021a; Suresh et al., 2021) use parameters to control data
augmentation, there are many fundamental differences: 1)
They still follow a rigid inter-view one-to-one contrasting
with the parametric GDAs or views. However, NeCo does
not require additional views or GDAs, and the parametric
neighbor sampling could benefit the GCL more than the
traditional strategy. 2) AD-GCL (Suresh et al., 2021) is
based on the information bottleneck theory, and it maxi-
mizes the loss between the original view and GDAs to learn
the augmenter. Our proposed NeCo is not a min-max issue,
and it learns the homophily discriminator from the posi-
tive samplings of GCL instead of updating parameters by
augmenting graphs like AD-GCL.

Some efforts have also been dedicated to solving the prob-
lem of generalizing GNNs to graphs with low homophily

in specific downstream tasks (Jin et al., 2023). They can
be divided into two mainstream types of methods depend-
ing on the aggregation mechanism: (1) (Yan et al., 2021;
Zhu et al., 2021a; Yang et al., 2021; Wang et al., 2021; He
et al., 2021) all adopt the traditional first-order neighbor
aggregation mechanism but use heterophily information to
learn weights for neighbors with different labels, which is
similar to our proposed NeCo solution. (2) (Pei et al., 2020;
Zhu et al., 2020a; Chien et al., 2021; Lim et al., 2021) be-
lieve that for weak homophily networks, intra-class nodes
are more likely to appear in higher-order neighbors, where
more useful information could be propagated in GNNs com-
pared to the traditional first-order aggregation mechanism.
They all follow supervised learning styles, and to the best
of our knowledge, NeCo is the first to explore homophily
problems with changing structure in a self-supervised way

6. Conclusion
In this paper, we integrated the positive sampling strategy
of GCL and the homophily discrimination of GNNs in the
same framework and developed a new idea of solving them
simultaneously. We have proposed to extend the range of
positive samplings to node neighbor sets. It allows us to
develop a new paradigm of contrastive learning to avoid
creating extra views in the traditional contrastive models
and to eliminate data augmentation completely. To address
the inter-class node pairs in neighbor sets, we proposed
a parametric homophily discrimination module. It learns
and updates the intra-class neighbor sets by affecting the
objective of neighbor sampling for GCL and graph encod-
ing of GNNs, that is, to improve the homophily rate of the
structure. We theoretically prove that NeCo can guarantee a
lower bound of mutual information and the homophily rate
h increased with training improves this lower bound. Com-
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bined with the learned neighbor sets, our sampling strategy
can ensure that the representation of N(vi; θ) captures cer-
tain information with the downstream tasks. Moreover, the
group discrimination task that NeCo achieves facilities fine-
tuning for downstream tasks. We believe this is the first to
propose an unsupervised method for solving the homophily
problem with the help of the solid semantic learning capa-
bility introduced by GCL.
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A. Limitations and Broader Impact
We focused on two fundamentally important problems of graph deep learning, the extreme imbalance between graph
data and labels and the extensive heterophily noise problem that affects message passing in graph neural networks. The
proposed method can reduce the influence of heterophily information under the premise of unsupervised learning. It also
accommodates well the downstream self-supervised learning tasks. The experiments and theoretical analysis carried out that
this research are expected to inspire future development in graph/node learning.

B. Theoretical Proofs
B.1. Proof of Theorem 1

Theorem 1. Suppose that each node vi has a homophily rate hi, which could be defined as hi = |N (i) ∩ Y(i)|/degreei.
Our method maximizes the lower bound of the mutual information between the representations of the contrastive pairs in
NeCo, and the gap is determined by the learned homophily rate hi,θ of the graph G. Specifically,

−L ≤ I(f(vi), f(N (i; θ))) + EP (vi)(hi;θ −
1

|N (i; θ)|
)
∑

sim(zi, zN (i;θ))/τ (9)

Proof. First, we review the loss of our proposed NeCo method and rewrite the loss for every node vi as:

−li = log
∑

k∈N (i;θ)

exp (sim(zi, zk)/τ)− log
∑

j∈{V−N (i;θ)}

exp (sim(zi, zj)/τ) (10)

where N (i; θ) indicates the sampling result by the Gumbel-Max trick with the probability P (yN (i) = yi|vi; θ). We
further define the N+(i) = {N (i) ∩ Y (i)} to indicate the neighbor sets with the same label and the complementary set as
N−(i) = {N (i)−N+(i)}. For the first term in Equation 10, we can get:

item = log
∑

k∈N (i;θ)

exp (sim(zi, zk)/τ)

= log
( ∑
k∈N+(i;θ)

exp (sim(zi, zk)/τ) +
∑

m∈N−(i;θ)

exp (sim(zi, zm)/τ)
)

≤ log
( ∑
k∈N (i;θ)

1k∈N+(i;θ)

|N (i; θ)|
exp (sim(zi, zk)/τ)

)
+ log|N (i; θ)|

≤ hi;θ

∑
k∈N (i;θ)

log
(
exp (sim(zi, zk)/τ)

)
= hi;θ

∑
k∈N (i;θ)

(sim(zi, zk)/τ)

(11)

where the second inequality holds because of Jensen’s inequality and the expectation
∑ 1k∈N+(i)

|N (i)| is exactly the same as the
definition of homophily rate hi. Then we can get the loss in the form:

−li ≤ hi;θ

∑
k∈N (i;θ)

(sim(zi, zk)/τ)− log
∑

j∈{V−N (i;θ)}

exp (sim(zi, zj)/τ) (12)

Then the loss for the entire graph can be expressed as:

−L ≤ 1

|V|

|V|∑
i=1

hi;θ

∑
k∈N (i;θ)

(sim(zi, zk)/τ)−
1

|V|

|V|∑
i=1

log
∑

j∈{V−N (i;θ)}

exp (sim(zi, zj)/τ) (13)
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We rewrite it in the expectation form and replace the sim(zi, zj)/τ to g(vi, vj) as:

−L ≤ EP (vi)(|N (i; θ)|hi;θ)EP (N (i;θ)|vi)g(vi, v+)− EP (vi)log(EP (v−)exp(g(vi, v−))

= EP (vi)(hi;θ −
1

|N (i; θ)|
)

∑
k∈N (i;θ)

g(vi, v+) + EP (vi,N (i;θ))g(vi, v+)− EP (vi)log(EP (v−)exp(g(vi, v−))

= I(vi,N (i; θ)) + EP (vi)(hi;θ −
1

|N (i; θ)|
)

∑
k∈N (i;θ)

g(vi, v+)

(14)

which is the lower bound.

B.2. Proof of Theorem 2

Theorem 2. With the defined homophily rate hi for each node, the mutual information between the representations and the
downstream task labels Y can be written as:

I(f(vi);Y ) ≥ I(N(vi; θ);Y ) = I(vi;Y ) + (1− hi;θ)
(
H(Y |vi)−

∑
y∈Y

log(|Y| − 1)

|Y| − 1

)
(15)

Proof. According to the conclusion in AD-GCL and the data processing inequality, we have:

I(f(vi);Y ) ≥ I(f(N(vi; θ));Y ) = I(N(vi; θ);Y ) (16)

because the parametric sampling N(vi; θ) in NeCo can be regarded as the natural optimal data augmentation based on the
data itself. Then based on the definition of mutual information we have:

I(N(vi; θ);Y )− I(vi;Y ) = H(Y |vi)−H(Y |N(vi; θ)) (17)

We next expand the second term with the definition of information entropy and get:

H(Y |N(vi; θ)) = −
∑
y∈Y

P (y|N(vi; θ))logP (y|N(vi; θ))

= −hi;θ

∑
y∈Y

P (y|vi))logP (y|vi)− (1− hi;θ)
∑
y∈Y

P (y|N−(vi; θ))logP (y|N−(vi; θ))

= hi;θH(Y |vi)− (1− hi;θ)
∑
y∈Y

1

|Y| − 1
log

1

|Y| − 1

= hi;θH(Y |vi) + (1− hi;θ)
∑
y∈Y

log(|Y| − 1)

|Y| − 1

(18)

Here we treat the homophily rate hi;θ as a probability rather than an observed statistics in the Bayesian analysis. The second
equation holds because for a node vi, the probability of its neighbor having the same label with node vi is hi;θ. For the
remaining |Y| − 1 labels, we assume that it follows a uniform distribution and the probability for each label is 1

|Y|−1 .

Combining the above formulas, we have:

I(N(vi; θ);Y ) = I(vi;Y ) +H(Y |vi)−H(Y |N(vi; θ))

= I(vi;Y ) + (1− hi;θ)H(Y |vi)− (1− hi;θ)
∑
y∈Y

log|Y| − 1

|Y| − 1

= I(vi;Y ) + (1− hi;θ)
(
H(Y |vi)−

∑
y∈Y

log(|Y| − 1)

|Y| − 1

) (19)

Q.E.D.
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B.3. Proof of Theorem 3

Theorem 3. Suppose that a graph is divided into k groups according to the learned structure connection. Intra-group
nodes will be encoded to similar embeddings, and the training objective is equivalent to a k-group discrimination as given:

−l ⇐⇒
∑

k∈c(i)

sim(zi, zk)−
∑

j /∈c(i)

sim(zi, zj) (20)

Proof. We rewrite the loss function of node vi with Taylor expansion of the first order as:

li = log

∑
j∈{V−N (i;θ)} exp (sim(zi, zj)/τ)∑

k∈N (i;θ) exp (sim(zi, zk)/τ)

= log(1 +

∑
j∈{V−N (i;θ)} exp (sim(zi, zj)/τ)−

∑
k∈N (i;θ) exp (sim(zi, zk)/τ)∑

k∈N (i;θ) exp (sim(zi, zk)/τ)
)

≈
∑

j∈{V} exp (sim(zi, zj)/τ)∑
k∈N (i;θ) exp (sim(zi, zk)/τ)

− 2

∝
∑

j∈{V−N (i;θ)}

exp (sim(zi, zj)/τ)−
∑

k∈N (i;θ)

exp (sim(zi, zk)/τ)

(21)

We extend the loss function of vi to the form of the entire graph G and remove the temperature hyperparamter τ :

−L = − 1

|V|
∑
i∈V

li

∝
∑
i∈V

∑
k∈N (i;θ)

exp (sim(zi, zk))−
∑
i∈V

∑
j∈{V−N (i;θ)}

exp (sim(zi, zj))
(22)

The connection of graphs is defined as that there exists paths between node pairs. Nodes in G are connected by edges and G
can be divided into groups based on connectivity. We can integrate the summation of all nodes vi with the summation of the
learned neighbors N (i; θ) in the first item. We make the conclusion that the connected nodes form a group c, and the loss
objective is to make the node embeddings within the same group tend to be consistent.

(a) (b)

Figure 4. (a) Fine-tuning on the instance discrimination
task. (b) Fine-tuning on the proposed group discrimina-
tion task.

Then the graph contrastive learning method is no longer an instance
discrimination task where nodes from different views are learned to
be encoded with the consistent representation and the representation
of each node are learned to be distinguishable from other nodes. NeCo
improves it with respect to the group discrimination task. It divides
nodes into k groups according to the learned topology and keeps learn-
ing consistent representations among nodes within a group. Similarly,
representations that from different groups need to be distinct. Then
we can rewrite the loss objective for every node vi as:

−li ⇐⇒
∑

k∈c(i)

sim(zi, zk)−
∑

j /∈c(i)

sim(zi, zj) (23)

The promotion from node-level tasks to group-level tasks is the key
to making downstream classifier more efficient as shown in Figure 4.

C. Experimental Setup
All our experiments were performed on the Google Colab platform
with a Tesla NVIDIA Tesla P100 (16GB) GPU. All datasets are avail-
able in PyTorch Geometric library.
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D. Discussion on Information Bottleneck and
Homophily
The information bottleneck theory and the homophily problem in GNNs are two important and related aspects of graph
representation learning. In this research, we aimed to solve the problem of homophily while guaranteeing the information
bottleneck constraints. The objective of graph information bottleneck can be written as:

max
f

I(f(G);Y )− αI(G; f(G)) (24)

The core idea of our method is to capture the minimal sufficient graph information in GNNs for the downstream tasks.
Specifically, we conjectured that the training process of GNNs has two separate phases: 1) an initial fitting phase that
increases I(f(G);Y ), and 2) a subsequent compression phase that decreases I(G; f(G)).

For the message passing of GNNs, the homophily information is defined by the label information of nodes. First, because of
the aggregation mechanism of GNNs, propagation between intra-class nodes makes the learned node distribution closer to
the robust distribution of labels and the redundant label-independent distributions from intra-class nodes will be smoothed.
Therefore, the information bottleneck can be measured by the label homophily rate h. Second, the dimensions of attribute
vectors which are consistent in values with their neighbors would not be affected in message passing, for example, GCN
adds and averages features. The dimensions with different values in the vector form can be regarded as the label-independent
noise information, which can be measured by the attribute homophily rate β. It can be concluded that the homophily problem
rests on the graph information bottleneck theory, and defines graph information that contributes to learning label-relevant
distribution.

Therefore, the homophily rate h and β defined in Section 2.2 actually represent a measure of the information bottleneck
theory. The improvement of h and β introduced in our proposed NeCo method can also meet the requirement of graph
information bottleneck theory.
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