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Abstract
It is desirable for statistical models to detect sig-
nals of interest independently of their position. If
the data is generated by some smooth process, this
additional structure should be taken into account.
We introduce a new class of neural networks that
are shift invariant and preserve smoothness of
the data: functional neural networks (FNNs). For
this, we use methods from functional data analysis
(FDA) to extend multi-layer perceptrons and con-
volutional neural networks to functional data. We
propose different model architectures, show that
the models outperform a benchmark model from
FDA in terms of accuracy and successfully use
FNNs to classify electroencephalography (EEG)
data.

1. Introduction
When autonomous machines act in their environment or
humans interact with computers, the necessary input data
is often streamed continuously. In some settings, the in-
put streams can be easily transformed into control signals
based on simple physical models. However, in more ad-
vanced scenarios, it is necessary to develop a more complex,
data-driven model and use its predictions to control the
machine. An important example of the latter scenario are
brain-computer interfaces (BCIs), which record the user’s
brain activity and decode control signals based on the mea-
sured data.

Most statistical models require an input of fixed dimension
and a common approach is to extract windows of a fixed size
with a fixed step size from the continuous data stream. These
sliding windows are then used to predict the desired control
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signal with one classification per window. The advantage
of this approach is that only the most recent data is used for
predictions, but it comes at cost: the signal of interest might
occur at any time point in the extracted window. Thus, any
classifier of the sliding windows needs to be “shift invariant”
in the sense that it detects the desired signal independently
of its position in the window.

In the context of BCIs, more specifically for the analysis
of data measured via electroencephalography (EEG), tradi-
tional methods are based on carefully selected features that
are calculated from the data. Commonly applied techniques
include the principal component analysis of EEG data in
the time domain, or features based on the power spectrum
in the frequency domain (Azlan & Low, 2014; Boubchir
et al., 2017; Boonyakitanont et al., 2020). Due to recent
advances in the field of deep learning, different architec-
tures of neural networks were proposed that avoid a manual
feature extraction and seem to outperform more traditional
methods. For example the neural network EEGNet was
proposed to support multiple BCI paradigms and is often
referred to as benchmark model in the field (Lawhern et al.,
2018). In a clinical setting, some variant of the VGG16
neural network was used to detect signals associated with
epilepsy (da Silva Lourenço et al., 2021). In general, deep
learning has been applied successfully to a variety of tasks
related to EEG data (Craik et al., 2019; Roy et al., 2019).

Inspired by their successes in computer vision and natu-
ral language processing, common neural networks used for
the classification of EEG data are based on convolutions.
Convolutional neural networks (CNNs) using some form of
pooling can be shift-invariant and therefore a good choice
in the given context. However, they do not take the spe-
cific structure of EEG data into account. Similar to most
physical processes, the electrical activity, that is recorded on
the user’s scalp by the EEG, can be considered as smooth
(Ramsay & Silverman, 2005). This additional structure is
not taken into account by traditional multivariate methods,
including deep neural networks, and it might be more ap-
propriate to model the data as a (discretized) sample of
an underlying smooth function. With this approach new
information becomes available. For example, the use of
derivatives could uncover hidden patterns, while smoothing
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techniques can increase the signal-to-noise ratio. Further, it
is generally easier to interpret smooth functions compared
to high dimensional vectors.

The latter paradigm is the basis of functional data analysis
(FDA), a branch of statistics that received more and more
attention throughout the last decades and remains an active
area of research. Most concepts from multivariate statistics
have been extended to functional data (Ramsay & Silver-
man, 2005; Kokoszka & Reimherr, 2017). For example,
many functional versions of principal component analysis
have been proposed in literature (Shang, 2014). Different
generalizations of the linear model to functional covariates
and/or functional responses have been introduced (Cardot
et al., 1999; Cuevas et al., 2002). Finally, Portmanteau-type
tests for detecting serial correlation have been proposed for
functional time series (Gabrys & Kokoszka, 2007; Bücher
et al., 2023). This functional approach allows it to extract
previously unavailable information from the data in form of
derivatives of the continuous signal.

As methods from FDA take the functional structure of physi-
cal processes into account, they would be suitable classifiers.
However, classic methods from FDA are in general not shift
invariant and require the signal of interest to be at a fixed
point in time. In some applications it is possible to regis-
ter the functions through a suitable transformation of time
(Sakoe & Chiba, 1978; Kneip & Gasser, 1992; Gasser &
Kneip, 1995; Ramsay & Li, 1998). However, in the context
of sliding windows, curve registration is often not feasible
and methodology that requires previous registration cannot
be applied reliably.

In the present work, we propose a framework that combines
the advantages of neural networks (particularly CNNs) and
FDA: functional neural networks (FNNs). On one side,
these networks are shift invariant, and on the other side,
they are able to model the functional structure of their input.
FNNs have several advantages over scalar-valued neural
networks. They are independent of the sample frequency
of the input data, as long as the input can be rescaled to
a certain interval. Further, they allow to predict smooth
outputs. And finally, they are more transparent to some
extent due to smoothness constraints.

We summarize our contribution as follows:

• We propose extensions of fully-connected and convo-
lutional layers to functional data.

• We present architectures of functional neural networks
based on these extensions.

• We show that the proposed methodology works through
a simulation study and real data experiments.

Whereas multi-layer perceptrons (MLPs) are not shift in-

variant, the introduced functional convolutional layers allow
the construction of shift invariant functional CNNs. This
makes FNNs helpful in any scenario where sliding windows
based on a (possibly multivariate) continuous data stream
are classified, and they can be employed in a variety of
applications.

2. Related Work
To the best of our knowledge, the combination of functional
data and (convolutional) neural networks is only discussed
in a handful of papers and the proposed methodology ex-
tends previous results. In early works MLPs with functional
inputs and neurons, that transform the functional data to
scalar values in the first layer, were introduced (Rossi et al.,
2002; Rossi & Conan-Guez, 2005; Rossi et al., 2005). Zhao
proposed an algorithm to train similar MLPs with inputs
from a real Hilbert space (2012). Subsequently, Wang et al.
proposed to use functional principal components for the
transformation of the functional inputs to scalar values in
the first layer (2019). Wang et al. added another layer based
on functional principal components to transform the scalar-
valued output of the MLP back to functional data in the last
layer (2020). More recently, fully functional neurons were
proposed (Rao & Reimherr, 2023; 2021).

Besides these methods based on neural networks, a variety
of approaches to classify functional data was proposed in
the FDA literature. Most of these methods are extensions
of their non-functional counterparts, including functional
generalized linear models (Marx & Eilers, 1999; Cuevas
et al., 2002; James, 2002; Müller & Stadtmüller, 2005)
and functional logistic regression (Wang et al., 2007; Araki
et al., 2009; Rincón & Ruiz-Medina, 2012; Berrendero et al.,
2023). Another approach to functional classification is to re-
duce the dimension of the data first, and subsequently use a
classification method for multivariate data. Examples of this
include FPCA, a variant of PCA for functional data (Hall
et al., 2001; Delaigle & Hall, 2012) and variable selection
(Berrendero et al., 2016).

Often the argument of the functional observations represents
time. In this case, the data might be considered as time
series instead of functions and a time series classifier might
be used. Different architectures, including MLPs, CNNs
and residual networks were proposed (Le Guennec et al.,
2016; Wang et al., 2017; Serrà et al., 2018). Ismail Fawaz
et al. compared a variety of neural networks for time series
classification (2019).

3. Mathematical Preliminaries
Let us assume, we observe d quantities at T time instants
for N ∈ N individuals, providing us with matrices of obser-
vations
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X(n) =


X

(n)
1,1 · · · X

(n)
1,T

...
. . .

...
X

(n)
d,1 · · · X

(n)
d,T

 ,

for n = 1, . . . , N , and jointly with X(n) their corresponding
labels Y(n) which might be vectors in Rc or matrices

Y(n) =


Y

(n)
1,1 · · · Y

(n)
1,T

...
. . .

...
Y

(n)
c,1 · · · Y

(n)
c,T ,


where c denotes the number of quantities that we observe for
Y(n). Further assume the observed quantities to be noisy
versions of an underlying smooth signal, i. e.,

X
(n)
i,t = f

(n)
i

(
t
T

)
+ ε

(n)
i,t , (1)

for smooth functions f
(n)
i and centered errors ε

(n)
i,t , for

i = 1, . . . , d, t = 1, . . . , T and n = 1, . . . , N . Note that
the degree of smoothness might vary for different applica-
tions, which leads to slight modifications in the model. This
representation suggests the use of methods from functional
data analysis, which consider the intrinsic structure of the
data.

Throughout this work, we only require the functions f (n)
i

to be square-integrable, i. e., f (n)
i ∈ L2([0, 1]) = {f :

[0, 1] → R|
∫ 1

0
f2(x) dx < ∞}. Similarly, in case of

matrix-valued labels Y(n), we assume their entries to be
discretized versions of some underlying functions g

(n)
i ∈

L2([0, 1]), more specifically Y
(n)
i,t = g

(n)
i (t/T ).

Our aim is to approximate the functional F :(
L2([0, 1])

)d → Y , which maps an observation X to its
corresponding label Y, where Y = Rc for vector-valued
labels Y(n) and Y =

(
L2([0, 1])

)c
for matrix-valued labels.

Formally, the functional F corresponds to the conditional
expectation E[Y|X].

In case of classification problems, each coordinate Fi(X)
of the functional F can be interpreted as the probability of
X belonging to class i ∈ {1, . . . , c}.

3.1. Preprocessing

Before putting observations into a neural network, it is of-
ten helpful to preprocess them by applying certain filters
or normalization. In our case, we work with noisy func-
tional data, observed at discrete time points. In functional
data analysis, a common first step for this kind of data is
smoothing, which helps to reduce the errors and extends
the observations from discrete time points to a continuous
interval. Another preprocessing step frequently used for

neural networks, is some form of normalization to ensure
that the data is of a similar magnitude. We employ local lin-
ear estimation for smoothing the data and standardization
for its normalization as described below.

3.1.1. SMOOTHING

In the literature, there exists a variety of smoothing proce-
dures from Fourier series to expansions based on B-splines
or wavelets (Ramsay & Silverman, 2005). We use local
polynomial regression to estimate the functions f

(n)
i and

their first derivative(s) (Fan & Gijbels, 1996).

For the sake of clarity, we omit some indices and rewrite (1)
as Xt = f

(
t
T

)
+ εt for a moment. Then, if f is p+1 times

differentiable with bounded derivatives, we can define the
local polynomial estimator as

(f̂(x), f̂ ′(x), . . . , f̂ (p)(x)) (2)

= argmin
β0,...,βp

T∑
t=1

(
Xt −

p∑
j=0

βj

(
t
T − x

)j)2

Kh

(
t
T − x

)
to estimate f and its first p derivatives. Here K denotes
a kernel function, h the bandwidth of the estimator and
Kh(·) = K( ·

h ). In the following, we assume K : R → R
to be a symmetric, twice differentiable function, supported
on the interval [−1, 1] and satisfying 1 =

∫ 1

−1
K(x) dx >∫ 1

−1
x2K(x) dx .

From the above definition, explicit formulas can be derived
for the estimators by setting the derivatives of the right-
hand side with respect to βj (j = 1, . . . , p) to zero and
solving the resulting system of linear equations. Exemplary
calculations for the local linear case, where p = 1, are
provided in Appendix A.

To simplify the notation, we will refer to the estimators
of the functions f

(n)
i and their derivatives as h

(n)
i,1 , thus,

we obtain estimators (h(n)
i,1 , (h

(n)
i,1 )

′, . . . , (h
(n)
i,1 )

(p)) for each

f
(n)
i , i = 1, . . . , d, n = 1, . . . , N .

The choice of the bandwidth is crucial in order to obtain
a good estimate of the underlying functions. If the band-
width is chosen too small, the estimator will overfit the data,
whereas a large bandwidth leads to over-smoothing (Sil-
verman, 2018). Oftentimes it is a good idea to use cross
validation to select a bandwidth that minimizes a certain er-
ror measure, such as the mean squared error. Generally, the
estimation of higher derivatives requires larger bandwidths
than the estimation of the function itself.

3.1.2. NORMALIZATION

When neural networks are trained via some form of gradi-
ent descent, it is crucial to ensure that the input data is of
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a similar size, which is done through prior normalization.
There are many different normalization methods and the
most useful choice depends on the specific application. In
the following, we will standardize the data by subtracting
the mean and dividing by the standard deviation across a
suitable range of the data. As we did not make any as-
sumptions about the relation between the signals f (n)

i and
f
(n)
j , we standardize each smoothed signal h(n)

i,1 (and its
derivatives) separately, i. e., we calculate

h
(n)
i,2 =

h
(n)
i,1 −

∫ 1

0
h
(n)
i,1 (x) dx( ∫ 1

0

(
h
(n)
i,1 (x)−

∫ 1

0
h
(n)
i,1 (y) dy

)2
dx

)1/2
.

After this transformation, the signals are of a similar magni-
tude, for each observation X(n).

4. Functional Layers
4.1. Functional Multilayer Perceptrons

Once the data is smoothed and prepared to be analyzed as
functional data, it is not clear how to design neural net-
works that take this additional structure into account. The
simplest form of an artificial neural network with scalar
input (h1, . . . , hd) is the multilayer perceptron (MLP), that
consists of L layers with J1, J2, . . . , JL neurons each. The
value at neuron k in the ℓ-th layer is then calculated as

Hℓ
k = σ

(
bℓk +

Jℓ−1∑
j=1

wℓ
j,kH

ℓ−1
j

)
,

where H0
k = hk denotes the network’s input, HL

k its output,
bℓk the kth neuron’s bias and wℓ

j,k the weight between the
jth neuron in layer ℓ− 1 and the kth neuron in layer ℓ. The
function σ : R → R is referred to as activation function and
enables the network to reflect non-linear dependencies.

When the input data is not scalar, but functional, Rao and
Reimherr (2021) propose to replace the scalar biases by
functional biases and the weights between neurons by inte-
gral kernels, finally defining the neurons’ values as

Hℓ
k(s) = σ

(
bℓk(s) +

Jℓ−1∑
j=1

∫
wℓ

j,k(s, t)H
ℓ−1
j (t) dt

)
. (3)

While the use of integral kernels wℓ
j,k ∈ L2([0, 1]2) allows

to model rather general relations between the model’s input
and its desired output, this flexibility makes the network’s
training difficult because we need to find optimal weight
functions for any connection between two neurons.

Starting from the fully-connected MLP, many advances in
deep learning are due to more specific architectures, which
reduce the number of model parameters to mitigate the curse

of dimensionality. For instance, CNNs can be interpreted
as MLPs, where most weights vanish and the remaining
connections between neurons share a smaller set of weights.

In a similar fashion, we propose to simplify the neuron
model in (3) by using weight functions wℓ

j,k : [0, 1] → R
rather than integral kernels in L2([0, 1]2). This adaptation
leads to neurons defined via

Hℓ
k(t) = σ

(
bℓk(t) +

Jℓ−1∑
j=1

wℓ
j,k(t)H

ℓ−1
j (t)

)
. (4)

The above defined neurons are fully functional in the sense
that both their input and output are functions. If we try to
predict scalar-valued labels in Rc, we need to summarize
the information contained in the functions. We propose to
calculate the scalar product of the weights and their corre-
sponding inputs, leading to

Hℓ
k = σ

(
bℓk +

Jℓ−1∑
j=1

∫
wℓ

j,k(t)H
ℓ−1
j (t) dt

)
. (5)

The scalar product of functions f, g ∈ L2([0, 1]) is simply
the integral

∫ 1

0
f(x)g(x) dx and plays the same role as av-

erage pooling in the case of conventional neural networks.
With this definition of a functional multilayer perceptron (F-
MLP), we simplified the training and need to optimize func-
tional weights of a single variable. The theoretical frame-
work to train the model through backpropagation based on
Fréchet derivatives is provided by (Rossi et al., 2002; Olver,
2016; Rao & Reimherr, 2021).

The computation of Fréchet derivatives becomes tedious
and computationally expensive. An efficient approach to
simplify computations and simultaneously reduce the di-
mension of the weights’ space, is to replace the weights
wℓ

j,k(t) by linear combinations of a finite set of base func-
tions. Therefore, let {φi}qi=0 be a set of suitable functions,
such as Legendre polynomials, wavelets or the first q/2
sine-cosine pairs of the Fourier basis, and consider the lin-
ear combination

wℓ
j,k(t) =

q∑
i=0

wℓ,i
j,kφi(t), (6)

for some scalar weights wℓ,i
j,k. With this representation, the

fully functional neural network can be described through
scalar weights and we are able to use the standard scalar
backpropagation.

4.2. Functional Convolutional Neural Networks

The F-MLP is particularly useful if the input functions are
aligned (or can be aligned via a suitable transformation of
time) and the signals of interest happen at the same time
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instants. However, under the sliding window paradigm, for
high-noise data such as speech or EEG signals, it is not
possible (or at least not useful) to previously register the
curves, as the signal of interest may occur at any arbitrary
time. In this case, MLPs are impractical as they would
require many parameters to model complex patterns.

For scalar input, alternative architectures have been devel-
oped that are shift invariant and therefore capable to detect
certain signals independently of their position. One type of
neural network that is considered as “translation invariant”
are CNNs, which we can extend to functional data as well.

Similarly to (3), we can define a functional convolutional
layer by setting wℓ

j,k(s, t) = uℓ
j,k(s− t) for some filter (or

kernel) function uℓ
j,k : R → R with support on [−b, b] and

bandwidth b ∈ (0, 1), ultimately leading to

Hℓ
k(s) = σ

(
bℓk(s) +

Jℓ−1∑
j=1

∫
uℓ
j,k(s− t)Hℓ−1

j (t) dt

)
,

where the functions Hℓ
k are extended to [−b, 1+ b] by defin-

ing them as zero outside of the interval [0, 1].

These functional convolutional layers are shift invariant in
the sense that a filter, which is capable of detecting a certain
signal, would detect it independently of its position in the
interval [0, 1]. Once again, we reduce the dimension of the
optimization problem by representing the filters as linear
combinations of a set of base functions as in (6).

4.3. Architecture

With functional versions of fully connected and convolu-
tional layers at hand, we can define arbitrary architectures of
functional neural networks (FNNs). Figure 1 displays FNNs
with scalar and functional outputs, respectively. In both
cases, the first layer uses local linear estimation to smooth
the input and estimate derivatives of the smoothed signals,
while the second layer standardizes the input across each
signal. Following are two functional convolutional layers.
For the FNN with scalar output, the last layer is a functional
fully connected layer, while for the FNN with functional
output, the last layer is a third functional convolutional layer.

5. Empirical Results
We now show that the proposed methodology works with
simulated and real data and compare it to benchmark mod-
els.

5.1. Simulation Study

SETUP

Inspired by brain activity measured through electroen-
cephalography (EEG), we generate two data sets for the sim-

LLE Layer

Standardization

FuncConv

FuncConv

FuncDense

Functional Input

Scalar Output

LLE Layer

Standardization

FuncConv

FuncConv

FuncConv

Functional Input

Functional Output

Figure 1. Left: Neural network architecture with functional input
and scalar output. Right: Neural network architecture with func-
tional input and output.

ulation study. In both cases, we simulate two-dimensional
samples that belong to one of three classes.

For dataset I, we draw independently frequencies αn ∼
U[8,12], βn ∼ U[13,30], time shifts t

(n)
1 , t

(n)
2 ∼ U[0,1], class

labels cn ∼ U{1,2,3} and errors ε(n)i,t ∼ N (0, 1). Based on
these random quantities, we construct the continuous signals

f
(n)
i (x) =(1− γi(cn)) · sin(2παn(x+ t

(n)
i ))

+ γi(cn) · sin(2πβn(x+ t
(n)
i ))

with class dependent coefficients γ(1) = (0, 0), γ(2) =
(0.8, 0.4) and γ(3) = (0.4, 0.8) and finally define the dis-
cretized, noisy samples X

(n)
i,t = f

(n)
i (t/T ) + ε

(n)
i,t , for

t = 1, . . . , T . Examples of each class are displayed in
Figure 4 of Appendix B.

For dataset II, we draw independently scaling factors
wn ∼ U[0.05,0.1], time points tn ∼ U[0,1], class labels
cn ∼ U{1,2,3} and standard normally distributed errors
ε
(n)
i,t ∼ N (0, 1). Based on the scaling factors wn and time

points tn, we construct continuous signals

f (n)(x) = max
{
− 4

w2
n
(x− tn)

2 + 3, 0
}
,

which resemble spikes, as displayed in Figure 5 of Ap-
pendix B. Again, we define discretized, noisy samples
X

(n)
i,t = γi(c) · f (n)(t/T ) + ε

(n)
i,t , where the class depen-

dent coefficients are γ(1) = (0, 0), γ(2) = (1, 0) and
γ(3) = (0, 1).

For both datasets, we vary the sample size N ∈
{1000, 2000, 3000, 4000, 5000}, while keeping T = 250
fixed. As benchmark models, we use (i) k-nearest neigh-
bors (kNN) with a varying number of neighbors k ∈

5



FNNs: Shift Invariant Models for Functional Data

{1, 2, ..., 19}, (ii) an MLP with 3 hidden layers of 10, 20 and
40 neurons and ReLU activation, and (iii) a CNN with 3 con-
volutional layers of 10, 20 and 20 filters and filter length 15,
max pooling layers after the first two convolutional layers
and pooling size 3, and finally two dense layers of 40 and 3
neurons with ReLU and softmax activation. Before feeding
the data into the kNN model, we smooth it by applying a
local linear estimator as described in Section 3.1.1.

To show that functional neural networks work, and indeed
surpass the performance of the benchmark models, we use
an FNN as described in Section 4.3 with two functional
convolutional and one functional dense layer. For the local
linear estimation, we use the quartic kernel K(x) = 15

16 (1−
x2)2 with support [−1, 1] and the bandwidth h = 5 for
the estimation of the smooth function and h = 10 for the
estimation of its derivative. For each functional layer, we
used the first 5 Legendre polynomials as base functions,
i.e. φ0(x) = 1, φ1(x) = x, φ2(x) =

1
2 (3x

2 − 1), φ3(x) =
1
2 (5x

3−3x) and φ4(x) =
1
8 (35x

4−30x2+3). Further, we
used 20 and 10 filters of size 25 for the two convolutional
layers. As activation function we chose the exponential
linear unit (ELU), which is defined as σ(x) = x · 1(x ≥
0) + (exp(x) − 1) · 1(x < 0). As loss function, we used
the categorical crossentropy.

We trained each model 100 times, while generating a new
dataset for each trial. The neural networks were trained
with 5 epochs. We used the Adam optimizer with its de-
fault hyperparameters in TensorFlow, i. e., a learning rate
of 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−7. Further, we
used a standard normal distribution to initialize the weights.
However, preliminary experiments with other distributions
(uniform on [−0.05, 0.05], He normal and Glorot uniform)
suggested that the training is robust with respect to different
choices of the initialization.

RESULTS

The results of the kNN model for both datasets with a vary-
ing number of samples N and neighbors are displayed in
Figure 6 of Appendix C. In Table 1, the results of the kNN
model with the best choice of neighbors k is compared to
the results of the neural networks. In all cases, the clas-
sifications of the FNN are more reliable than those of the
benchmark models. The FNN achieved an accuracy above
99.6% in all cases, whereas the kNN classifier achieved
between 93.0% and 99.3% for dataset I and between 76.9%
and 86.4% for dataset II. The CNN performed only slightly
worse than the FNN with accuracies ranging from 93.5%
to 98.8% and from 91.3% to 99.2% for datasets I and II
respectively. The MLP did not yield competitive results for
dataset I (37.9%-57.9%) and still lagged behind for dataset
II (79.0%-90.7%). As expected, the shift invariance of the
FNN makes it particularly helpful for dataset II, where the

Table 1. Mean accuracy of the classifiers for the simulated datasets.

N KNN CNN MLP FNN

Dataset I
1000 93.0% 93.5% 37.9% 99.6%
2000 97.3% 96.6% 42.9% 99.8%
3000 98.5% 98.1% 47.8% 99.8%
4000 99.1% 98.1% 52.3% 99.7%
5000 99.3% 98.8% 57.9% 99.8%

Dataset II
1000 76.9% 91.3% 79.0% 99.6%
2000 81.4% 97.0% 86.8% 99.8%
3000 83.6% 98.4% 88.9% 99.8%
4000 85.5% 99.0% 90.1% 99.9%
5000 86.4% 99.2% 90.7% 99.9%

signal of interest may occur at any point in the observed
interval.

5.2. Real Data Experiments (Functional Data)

The first two datasets with real data are classically used
to benchmark new methods in the field of FDA. The
phoneme dataset contains 2000 pairs of (discretized log-) pe-
riodograms and class membership to one of five phonemes
and is extracted from the TIMIT database (Hastie et al.,
1995). The tecator dataset contains 215 spectrometric
curves of meat samples based on near infrared absorbance
with the aim of predicting its fat content (Thodberg, 2015).
In principle, the tecator dataset defines a regression problem
and we predicted the fat content (see MSE results in Table
3). In the literature, however, the data is often split into two
categories: those meat samples with fat content <20% and
≥ 20%, and we used these categories to define a classifi-
cation problem. We used 80% of each dataset for training
and the remaining data for validation. The results of the
validation data for the phoneme and the tecator dataset are
displayed in Tables 2 and 3, respectively.

For the phoneme dataset, the two best models achieve an
accuracy of 91.53% and outperform the CNN and MLP
benchmarks. With 87.83%, the EEGNet, a CNN designed
for the analysis of EEG data, performs reasonably well on
the dataset although it clearly was not designed for this
type of data. Recently Berrendero et al. combined vari-
ous variable selection methods with different classifiers in
an extensive simulation study and reported best classifica-
tion accuracies of 99.53% and 81.14% for the tecator and
phoneme dataset respectively (2016). For both datasets,
FNNs outperform the compared FDA methods.

5.3. Real Data Experiments (EEG Data)

EEG is a non-invasive method for measuring electrical ac-
tivity of the brain via electrodes placed on the scalp. One of
the major challenges of analyzing EEG data is the presence
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Table 2. Mean accuracy of the classifiers for the phoneme dataset.

Model Accuracy Recall Precision

EEGNet 87.83 88.01 88.22
CNN 83.73 83.83 85.01
MLP 79.95 80.55 80.05

FNN(40, 20) 90.26 89.95 89.90
FNN(5, 10) 89.12 89.45 89.52
FNN(3, 12) 91.03 90.45 90.72

FNN(10) 91.53 91.42 91.56
FNN(20) 91.53 91.52 91.72

Table 3. Mean accuracy of the classification / regression models
for the tecator dataset.

Model Accuracy Recall Precision MSE

CNN 73.56 71.77 81.32 132.72
MLP 85.30 83.80 82.31 147.07
FNN(40, 20) 98.96 98.39 99.24 1.86
FNN(5, 10) 97.91 96.52 98.55 2.17
FNN(3, 12) 97.65 97.02 98.13 2.93
FNN(10) 100.00 100.00 100.00 3.48
FNN(20) 100.00 100.00 100.00 2.47

of artifacts, such as eye movements and muscle activity.
Further, EEG signals are typically noisy and complex, mak-
ing it difficult to identify meaningful patterns and signals.
Moreover, when brain-computer interfaces based on EEG
signals are developed, that use self-paced actions rather than
externally triggered signals, curve registration becomes in-
feasible, thus adding to the challenge. In the following, we
show that the proposed methodology is able to handle these
challenges.

SETUP

The BCI Competition IV Dataset 2A (Tangermann et al.,
2012) is a common benchmark for evaluating the perfor-
mance of a new method for the analysis of EEG data. The
dataset consists of the recorded brain activity of 9 partici-
pants. More specifically, for each participant two sessions of
approximately 45 minutes each were recorded on different
days. As usual in the literature, we used the first recording
per participant as training and the second as validation data.

According to the documentation, participants were asked to
imagine movements of their left hand (class 1), right hand
(class 2), both feet (class 3) and tongue (class 4). During
each session, every imaginary movement was repeated 72
times, yielding a total of 288 trials. Each trial took approxi-
mately 8 seconds. At the beginning of each trial (t = 0 s), a
short acoustic signal and a fixation cross on a black screen
appeared. Two seconds later (t = 2 s), a visual cue appeared
to indicate the movement, which should be imagined. The
imaginary movement can be assumed to start approximately

half a second after the cue (t = 2.5 s) and end when the fixa-
tion cross disappeared (t = 6 s). Each trial was followed by
a short break to separate it from subsequent trials. The par-
ticipants’ brain activity was measured through a 22-channel
EEG with 3 additional EOG (Electrooculography) channels
at a sampling rate of 250 Hz.

For this dataset, the classic approach to benchmark a new
method is to cut windows from each trial, e. g., between
2.5 s and 4.5 s after trial onset, which is feasible since the
trial and cue onsets are known. However, if we move be-
yond externally triggered actions, we need another approach.
This is particularly important in the case of brain-computer
interfaces where devices should be controlled continuously.
In this case, a common approach is to use sliding windows,
i. e., to use overlapping windows of a fixed length with a
fixed step size.

We tested the proposed functional neural network, as de-
scribed in Section 4.3 with the same specifications as in the
simulation study, and compared it to the EEGNet with its
default choice of hyperparameters as suggested by Lawh-
ern et al. (2018). However, to account for the different
degrees of complexity of the EEG data, we chose to use
different numbers of filters in the convolutional layers. For
the classic approach with 4 classes (corresponding to the 4
different imaginary movements), we tested models with 40
+ 20, 5 + 10, 3 + 12 and 20 filters, respectively, and denote
these models by FNN(40, 20), FNN(5, 10), FNN(3, 12) and
FNN(20). Further, we used an F-MLP with a single hidden
layer of 20 functional neurons. The numbers of parameters
are displayed in Table 4. For the sliding window approach
with 7 classes, we similarly used the models FNN(40, 20),
FNN(5, 10), FNN(20) and FNN(40), with their according
number of parameters displayed in Table 5.

For the classic approach, we used windows between the cue
onset (t = 2 s) and the disappearance of the fixation cross
(t = 6 s). We trained the proposed FNN and the EEGNet
with 2,250 batches of size 32 to distinguish between the
four classes (left hand, right hand, feet, tongue). In total
72,000 samples were used, which means that each of the
288 training windows was used 250 times.

For the sliding windows approach, we used windows of
1 s and a step size of 0.004 s which led to approximately
675,000 sliding windows. These windows might coincide
with a break between trials (class 1), the time between trial
and cue onset (class 3), the time between cue onset and
imagined movement (class 2) or one of the four imagined
movements (classes 4 - 7). The windows at the transition
between two classes were labeled with the most frequent
class. This problem is substantially more complex than
the classic approach and we have more varied data. We
trained both models with 16,000 batches of size 32, thus
512,000 windows, which is close to the total number of

7



FNNs: Shift Invariant Models for Functional Data

sliding windows. We trained each model 10 times for each
of the 9 recordings.

RESULTS

The results for both approaches are displayed in Tables 4
and 5. As before, the accuracy represents the ratio of cor-
rectly classified windows to all windows. To account for
the class imbalance, the mean recall and precision over all
categories were added: the recall of a binary classifier is
defined as the ratio of correctly classified positive to all true
positive samples, whereas the precision of a binary classi-
fier is defined as the ratio of correctly classified positive
to all positively classified samples. These quantities for
binary classifiers were extended to the multiclass problem
by first calculating the respective quantity per class and then
averaging the calculated quantities over all classes.

For the classic approach, the benchmark model outper-
formed the FNNs in terms of all metrics. It is however
notably, that the smaller FNNs with 2,344 and 1,564 pa-
rameters, compared to the EEGNet’s 6,980 parameters, still
achieve competitive results. The respective confusion matri-
ces are displayed in Figure 7 of Appendix D.

For the sliding window approach, the FNN(40) achieves the
best performance, and specifically outperforms the bench-
mark model with a 4.48% higher accuracy. It is also worth
to mention that the smallest model, the FNN(5, 10) with ap-
proximately 10% less parameters still achieves better results
in terms of accuracy and recall compared to the benchmark
model. Note that classes 4 - 7 are generally more difficult
to detect. Yet, it can be seen from the confusion matrices
in Figure 8 of Appendix D, that the classifications of the
FNNs with a single convolutional layer are particularly bet-
ter for those classes, which is also reflected in the recall and
precision of the classifiers.

Note that the functional layers were specifically designed
for the sliding window approach, where curve registration is
not feasible. In the classic case, it might be sufficient to use
functional dense layers rather than convolutions. This is sup-
ported by the competitive performance of the F-MLP(20),
which consists of a single hidden layer with 20 functional
neurons as defined in (4).

Further, the results seem to be rather stable. From Table 6
of Appendix D it can be seen that the differences between
the results are generally of a similar order as the variability
between different training runs. In particular, the differences
between the EEGNet and the FNNs with a single convo-
lutional layer are larger than the variability of the results,
indicating that FNNs are generally preferably compared to
the benchmark model.

The computational complexity of all models is similar, as
can be seen from Table 7 of Appendix D. For example,

Table 4. Comparison of the models’ qualities and number of pa-
rameters under the classic approach.

Model Accuracy Recall Precision Parameters

EEGNet 72.13 72.14 72.27 6,980
FNN(40, 20) 69.08 69.06 69.04 19,464
FNN(5, 10) 65.51 65.49 65.58 2,344
FNN(3, 12) 64.32 64.32 64.35 1,564
FNN(20) 67.23 67.25 67.21 7,924
F-MLP(20) 66.31 66.31 66.33 7,924

Table 5. Comparison of the models’ qualities and number of pa-
rameters under the sliding windows approach.

Model Accuracy Recall Precision Parameters

EEGNet 51.81 40.21 44.75 2,783
FNN(40, 20) 51.70 40.64 43.39 19,767
FNN(5, 10) 52.12 40.54 44.32 2,497
FNN(20) 55.43 44.98 48.31 8,227
FNN(40) 56.29 45.95 49.46 16,447
Func2Func(2) 51.52 36.97 48.14 8,227
Func2Func(3) 47.33 30.48 39.70 8,887

training the EEGNet under the classic approach with 2,500
batches took 25.8s (±0.9) compared to 27.9s (±0.3) for the
FNN(5, 10). The time complexity is based on an implemen-
tation in TensorFlow and training on an NVIDIA GeForce
GTX 1650 GPU and an Intel(R) Core(TM) i5-9300H @
2.40GHz CPU.

Both the FNNs and the (default) EEGNet are relatively
simple models. It can be expected that the accuracies im-
prove for both types of models if the hyperparameters are
tuned carefully. Further improvements might be possible
by changing the FNN’s architecture or simply using more
layers.

FULLY FUNCTIONAL PREDICTIONS

With the proposed methodology it is not only possible to
predict scalar-valued labels and use the model for classi-
fication, but it is also possible to predict functional labels.
With the sliding windows as before, we can try to predict the
class label for each time point rather than one label for the
whole window. This is particularly useful at the transition
from one state to another because these transitions cannot
be represented by a simple classification. Note that such
per-time predictions are also possible with specialized neu-
ral networks with conventional layers, but these generally
do not preserve the smoothness of the data.

We trained two FNNs with two and three functional convolu-
tional layers, referred to as Func2Func(2) and Func2Func(3)
respectively, to predict labels for each time instant of the
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sliding windows. Model Func2Func(3) is depicted on the
right of Figure 1. Aggregated results are displayed in Table
5 (and more detailed in Figure 9 of Appendix D). Here, a sin-
gle classification is obtained from a window by selecting the
class with the highest summed confidence. The aggregated
results are slightly worse compared to the scalar classifiers
above. In Figures 2 and 3 are the true and predicted labels
of two windows at the transition from an inter-trial break
(class 1) to the interval after a trial onset (class 3) and from
the interval after a trial onset (class 3) to the interval after a
cue onset (class 2). It can be seen from both figures that the
predictions do not match the true labels perfectly and that
the confidences at the border region are generally lower, but
overall the predictions match the true labels.

Thus, even though the aggregated results are slightly worse,
fully functional predictions give more detailed insights into
the windows and avoid the aggregation of labels per time
step to a single label, which is particularly useful at the
transition between two classes.
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Figure 2. True and predicted class labels for a window of one
second at the transition from class 1 (inter-trial break) to class 3
(time after trial onset).
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Figure 3. True and predicted class labels for a window of one
second at the transition from class 3 (time after trial onset) to class
2 (time after cue onset).

6. Conclusions
In this work, we presented a new framework to analyze
functional data with scalar- or functional-valued targets. We
combined advantages of convolutional neural networks with
those of functional data analysis. More specifically, we
proposed a neural network that can be considered as shift
invariant while taking the intrinsic functional structure of
the data into account.

We showed that even shallow models with only two con-
volutional and one dense layer are more powerful than the
functional k-nearest neighbors algorithm for the simulated
data. Further, the results of our case study suggest that FNNs
with a similar amount of trainable weights outperform EEG-
Net, the de facto standard model for the classification of
EEG data.

The results of this paper suggest that functional neural net-
works are a relevant area for future research. First, it could
be tested if FNNs work well with other types of time series
and functional data, such as stock prices or temperature
curves. It might be interesting to investigate if the method-
ology can be expanded to other types of data like images
(considered as functions of the two variables height and
width) or videos (considered as functions of the three vari-
ables time, height and width). Further, the choice of base
is crucial for the performance of the network. Prior simu-
lation studies showed that the Fourier base and Legendre
polynomials lead to good results, but other bases might fur-
ther improve the predictions. In FDA it is common to find
roughness penalties as regularizers. Although a prelimi-
nary simulation study suggested that a base representation
of the weight functions leads to better results, it would be
interesting to study if the weight functions in the neural net-
work can be learned directly while their smoothness would
be ensured via corresponding roughness penalties. Finally,
the proposed framework could be extended to other types
of neural networks, such as recurrent neural networks or
transformers.
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A. Local Linear Estimation - Calculations
Explicit formulas can be derived via straightforward calculations from the definition of the local polynomial estimator. In
the following, we derive an explicit formula of the local linear estimator, where p = 1. In this case, the definition in (2)
simplifies to (f̂(x), f̂ ′(x)) = argminβ0,β1

F (β0, β1), where

F (β0, β1) =

T∑
t=1

(
Xt − β0 − β1

( t

T
− x

))2

Kh

( t

T
− x

)
.

Now, define

Rk(x) =

T∑
t=1

Xt

( t

T
− x

)k

Kh

( t

T
− x

)
and Sk(x) =

T∑
t=1

( t

T
− x

)k

Kh

( t

T
− x

)
,

for k = 0, 1, 2. Then, we can calculate the partial derivatives of F as

∂F

∂βj
= −2

(
Rj(x)− β0Sj(x)− β1Sj+1(x)

)
and

∂2F

∂βj∂βk
= 2Sj+k(x)

for j, k ∈ {0, 1}. Note that (hT )−1Sk(x)
hT→∞−−−−−→

∫ 1

−1
xkK(x) dx, thus S0(x), S2(x) > 0 and by symmetry of K,

(hT )−1S1(x) ≈ 0, for hT sufficiently large. By assumption
∫ 1

−1
K(x) dx >

∫ 1

−1
x2K(x) dx, thus it follows that S0(x) >

S2(x) and therefore that the Hessian matrix

HF = 2

[
S0(x) S1(x)
S1(x) S2(x)

]

is positive definite (and in particular invertible) for sufficiently large values of hT .

Setting the gradient
(
∂F
∂β0

, ∂F
∂β1

)
equal to zero, we obtain the equation

[
S0(x) S1(x)
S1(x) S2(x)

]
·
[
β0

β1

]
=

[
R0(x)
R1(x)

]
.

Solving this equation for (β0, β1), we finally obtain the local linear estimator

βk =
(−1)kS2−k(x)R0(x)− (−1)kS1−k(x)R1(x)

S2(x)S0(x)− S2
1(x)

,

for k = 0, 1. This formula can be further simplified and efficiently implemented.
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B. Simulated Data - Samples

−2

0

2

C
ha

nn
el

1

0.0 0.2 0.4 0.6 0.8 1.0

Time

−2

0

2

C
ha

nn
el

2

−2

0

2

C
ha

nn
el

1

0.0 0.2 0.4 0.6 0.8 1.0

Time

−4

−2

0

2

C
ha

nn
el

2

−4

−2

0

2

C
ha

nn
el

1

0.0 0.2 0.4 0.6 0.8 1.0

Time

−2

0

2

C
ha

nn
el

2

Figure 4. Samples from the simulated dataset I. Top left: Example of class 1 (α frequencies only). Top right: Example of class 2 (β
frequencies added in both channels, stronger in Channel 1). Bottom: Example of class 3 (β frequencies added in both channels, stronger
in Channel 2).
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Figure 5. Samples from the simulated dataset II. Top left: “Spike” at t = 0.25 with width w = 0.05. Top right: Example of class 1 (white
noise in both channels). Bottom left: Example of class 2 (“spike” added to white noise in Channel 1). Bottom right: Example of class 3
(“spike” added to white noise in Channel 2).
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C. Simulated Data - Results
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Figure 6. Mean accuracy in percent (y-axis) of the k-nearest neighbors classifiers for a varying number of neighbors (x-axis). Left: Dataset
I. Right: Dataset II.

D. Real Data Experiments (EEG Data) - Results
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Figure 7. Confusion matrices for different models under the classic approach. Top left: EEGNet. Top center: FNN(40, 20). Top right:
FNN(5, 10). Bottom left: FNN(3, 12). Bottom center: FNN(20). Bottom right: F-MLP(20).
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Figure 8. Confusion matrices for different models under the sliding window approach. Top left: EEGNet. Top center: FNN(40, 20). Top
right: FNN(5, 10). Bottom left: FNN(20). Bottom right FNN(40).
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Figure 9. Confusion matrices for different fully functional models under the sliding window approach. The functional predictions were
aggregated to a single scalar prediction by using the class with the highest average confidence. Left: Func2Func(2). Right: Func2Func(3).
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Table 6. Comparison of the models’ variability across different training runs and recordings. Every model was trained 10 times and the
average accuracy is displayed in the table (standard deviation in parentheses).

Participant EEGNet FNN(40, 20) FNN(5, 10) FNN(20) FNN(40)

1 49.16 (± 1.50) 49.16 (± 1.39) 49.41 (± 1.99) 52.19 (± 1.14) 54.73 (± 1.70)
2 38.24 (± 1.98) 40.14 (± 1.16) 40.14 (± 0.91) 42.73 (± 1.26) 43.18 (± 0.99)
3 55.25 (± 1.13) 56.56 (± 0.91) 54.38 (± 1.53) 59.00 (± 1.96) 59.82 (± 0.85)
4 52.52 (± 1.68) 55.02 (± 0.99) 55.21 (± 1.11) 58.73 (± 1.02) 60.33 (± 1.12)
5 49.49 (± 3.74) 49.55 (± 1.28) 51.68 (± 1.21) 54.55 (± 0.74) 53.46 (± 1.87)
6 48.42 (± 1.96) 47.83 (± 1.23) 50.21 (± 1.42) 52.52 (± 1.08) 52.50 (± 1.33)
7 61.46 (± 0.92) 61.39 (± 1.21) 58.65 (± 1.86) 64.20 (± 1.45) 65.18 (± 2.82)
8 55.16 (± 1.34) 54.04 (± 2.04) 52.15 (± 2.75) 56.62 (± 0.55) 59.12 (± 1.98)
9 50.82 (± 1.19) 44.96 (± 1.77) 50.66 (± 2.34) 50.62 (± 0.83) 51.07 (± 1.54)

Table 7. Comparison of the models’ computational complexity. Time for 2500 and 4000 steps of training for the classic and sliding
window approach, respectively. Mean time calculated over 10 repetitions (standard deviation in parentheses).

Model ’classic’ approach (2500 steps) ’sliding window’ approach (4000 steps)

EEGNet 25.8s (± 0.9) 40.2s (± 0.6)
FNN(5, 10) 27.9s (± 0.3) 47.3s (± 2.6)
FNN(3, 12) 28.0s (± 0.6) 48.24 (± 1.5)
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