
PromptBoosting: Black-Box Text Classification with Ten Forward Passes

Bairu Hou 1 Joe O’Connor 2 Jacob Andreas 3 Shiyu Chang 1 Yang Zhang 4

Abstract
We describe PROMPTBOOSTING, a query-
efficient procedure for building a text classifier
from a neural language model (LM) without ac-
cess to the LM’s parameters, gradients, or hidden
representations. This form of “black-box” classi-
fier training has become increasingly important
as the cost of training and inference in large-scale
LMs has grown. But existing black-box LM clas-
sifier learning approaches are themselves compu-
tationally inefficient, typically specializing LMs
to the target task by searching in a large space
of (discrete or continuous) prompts using zeroth-
order optimization methods. Instead of directly
optimizing in prompt space, PROMPTBOOSTING
obtains a small pool of prompts via a gradient-
free approach, and then constructs a large pool
of weak learners by pairing these prompts with
different elements of the LM’s output distribution.
These weak learners are then ensembled using
the ADABOOST algorithm. The entire learning
process requires only a small number of forward
passes per batch and no backward pass. Exper-
iments show that PROMPTBOOSTING achieves
state-of-the-art performance in multiple black-
box few-shot classification tasks, and matches
or outperforms full fine-tuning in both few-shot
and standard learning paradigms, while training
10x faster than existing black-box methods.Codes
are available at https://github.com/
UCSB-NLP-Chang/PromptBoosting.

1. Introduction
Prompt-based learning has emerged as an effective method
to adapt pre-trained language models (LMs) for downstream
natural language processing (NLP) tasks. A typical prompt-
learning paradigm involves appending a specially-designed

1UC Santa Barbara 2UC Los Angeles 3MIT CSAIL 4MIT-
IBM Watson AI Lab. Correspondence to: Bairu Hou
<bairu@ucsb.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

sequence, called a prompt, to the input to a pre-trained LM,
which will thereby be repurposed for a given downstream
task. Compared to standard fine-tuning, prompt-based learn-
ing is much more parameter-efficient.

Most prompt-based learning methods require searching for
the optimal prompt for the downstream task. When gra-
dient information of the pre-trained LM is available, such
optimization can easily be performed by standard gradient-
based methods (Liu et al., 2021; Li & Liang, 2021; Lester
et al., 2021; Zhang et al., 2021; Liu et al., 2022). However,
in many real-world scenarios, the parameters, gradient, or
hidden representations of the LMs are not accessible, a.k.a.
the black-box tuning setting, which makes gradient-based
prompt learning very challenging (Sun et al., 2022b).

To tackle the challenges, the most common existing black-
box solution is to resort to gradient-free optimization tech-
niques to search for the optimal prompt, such as the zeroth-
order gradient approximation (Sun et al., 2022b; Diao
et al., 2022) and reinforcement learning-guided optimiza-
tion (Deng et al., 2022). However, these methods would
require a large number of queries to the LMs, which, con-
sidering the ever-growing size and computation cost of the
pre-trained LMs, is highly inefficient and could lead to large
approximation errors.

In this paper, we propose PROMPTBOOSTING, a novel
black-box prompt learning approach which does not rely on
searching an optimal prompt and can thus drastically im-
prove the computational efficiency over the existing meth-
ods. Figure 1 illustrates the pipeline of PROMPTBOOST-
ING. Specifically, rather than optimizing over the prompts,
PROMPTBOOSTING constructs a small pool of prompts via
a gradient-free approach. These prompts are sub-optimal
because they are not optimized for any downstream tasks.
Then, PROMPTBOOSTING creates a large pool of weak
learners by pairing each prompt with different elements of
the LM’s output distribution, which is commonly known as
the verbalizer. Finally, these weak learners are ensembled
using the ADABOOST algorithm, where the optimization in
each iteration is performed only over the verbalizer, not the
prompt. The entire process only needs to evaluate the LM’s
output with each of the prompts, so it only involves a small
number of forward passes per batch and no backward pass.

We evaluated our method on a number of downstream

1

https://github.com/UCSB-NLP-Chang/PromptBoosting
https://github.com/UCSB-NLP-Chang/PromptBoosting

PromptBoosting: Black-Box Text Classification with Ten Forward Passes

Step 1: Weak Learner ConstructionStep 0: Prompt Generation

[Input] It’s [Mask].

[Input] A [Mask] film.

[Input] A truly [Mask]
movie.

Prompt Set , Weak Learner *

LM "∗ ⋅

PromptInput

Random Draw

Verbalizer .

Tuned
Frozen

Weighted
Loss ℒ'

Step 2: Ensemble

Final
Black-Box
Classifier

⋮

⋮
ADABOOST
Ensemble

min

Figure 1. Overview of PROMPTBOOSTING.

tasks. The results show that PROMPTBOOSTING achieves
state-of-the-art performance and matches or even outper-
forms full fine-tuning in both few-shot and standard learning
paradigms. Furthermore, PROMPTBOOSTING can run 10x
faster than existing black-box prompt-learning approaches,
with only ten forward passes per batch.

2. Related Work
Prompt-based learning Prompt-based learning has
emerged as a new approach for adapting pre-trained LMs for
downstream tasks fueled by the success of GPT-3 (Brown
et al., 2020). Since the prompts directly influence the per-
formance of prompt-based learning, recent studies have
focused on how to find the best prompts given a specific
task. AutoPrompt (Shin et al., 2020) designs a gradient-
based discrete optimization method to search for the opti-
mal prompt. LM-BFF (Gao et al., 2021) leverages the pre-
trained T5 model (Raffel et al., 2020) to automatically gener-
ate prompts and select the best one based on the performance
on the validation set. Since verifying the automatically-
generated prompts is time-consuming, the PTR (Han et al.,
2021) method incorporates logic rules to construct prompts
and to encode prior knowledge into prompt-based learning.

Another line of work replaces the discrete prompt tokens
with continuous embeddings that have their own parame-
ters. P-tuning (Liu et al., 2021) trains a BiLSTM network to
output continuous prompt embeddings. Prefix-tuning (Li &
Liang, 2021) inserts prompt embeddings to each transformer
layer in LMs and optimizes only the prompt embeddings dur-
ing training. Prompt Tuning (Lester et al., 2021) also keeps
the LMs frozen but adds prompt embeddings only in the
input. P-tuning V2 (Liu et al., 2022) replaces the language
model head in LMs with a linear layer for classification
and shows that soft prompt tuning scales to medium-sized
LMs and hard sequence tagging tasks. Our work adopts the
discrete prompts for prompt-based learning.

Black-box Tuning Extremely large LMs such as GPT-3 are

only provided as a service in the cloud, resulting inacces-
sible parameters and gradients of LMs. Furthermore, from
the model provider’s perspective, sharing hidden representa-
tions or gradients of LMs may reveal the vulnerability of the
model and lead to security problems (Tramèr et al., 2016).
How to find the optimal prompts in such a black-box tuning
setting has attracted various explorations. BBT (Sun et al.,
2022b) and BBTv2 (Sun et al., 2022a) employ the CMA
evolution strategy, a derivative-free optimization method, to
optimize continuous prompt embeddings. However, both of
the two algorithms require querying the LM tens of thou-
sands of times even in few-shot settings. Furthermore, both
methods use soft prompts whereas the black-box setting typi-
cally only permits querying with textual input. Also, BBTv2
assumes that prompt embeddings can be added to each layer
of the original language model, which is not accommo-
dated in the standard black-box setting. Clip-Tuning (Chai
et al., 2022) proposes to optimize the prompt embeddings
on multiple subnetworks extracted from the original lan-
guage model. While it outperforms BBT (Sun et al., 2022b),
this method requires full access to the parameters of the
language model. RLPrompt (Deng et al., 2022) is a more
realistic black-box tuning method where discrete prompt
tokens are optimized through reinforcement learning and
the performance on downstream tasks serves as the reward.
BDPL (Diao et al., 2022) also utilizes the reinforcement
learning method to optimize the discrete prompts but uses
a lighter-weight policy network. It also narrows down the
search space of prompt tokens by utilizing pointwise mutual
information. TEMPERA (Zhang et al., 2022) uses reinforce-
ment learning to optimize discrete prompts and incorporates
more components in optimization (e.g., exemplars for in-
context learning). GrIPS (Prasad et al., 2022) performs
phrase-level editing to generate discrete prompts. Exist-
ing black-box tuning methods suffer from poor efficiency
and sub-optimal performance. Our method achieves high
efficiency by first generating only a small set of prompts
and achieves superior performance by then creating a set
of weak learners from these prompts and ensembling them

2

PromptBoosting: Black-Box Text Classification with Ten Forward Passes

together via ADABOOST (Freund & Schapire, 1997).

Model ensemble Model ensembling is a commonly used
technique in machine learning. Prior to deep learning,
Bagging (Breiman, 1996; 2001) and Boosting (Freund &
Schapire, 1997; Friedman, 2001) showed the power of
model ensembling. One of these methods, ADABOOST (Fre-
und & Schapire, 1997), sequentially learns a series of weak
learners and ensembles them for better generalization. Dur-
ing training, each weak learner is tweaked by leveraging
examples that were misclassified by previous classifiers.
Since the performance of each individual prompt can be
weak, our method adopts ADABOOST as the framework for
learning and ensembling multiple prompts.

Prompt ensemble As has been pointed out by prior
work (Lester et al., 2021), ensembling prompts is more
efficient than ensembling entire fine-tuned models. Vari-
ous ensemble strategies have been explored in past work.
Uniformly averaging the predictions from different prompts
has been used for factual probing (Jiang et al., 2020), text
generation (Yuan et al., 2021; Schick & Schütze, 2020), and
classification tasks (Schick & Schütze, 2021a; Lester et al.,
2021). Furthermore, some methods adopt a weighted aver-
aging strategy for better performance—the weight of each
different prompt can be learned during training (Jiang et al.,
2020; Qin & Eisner, 2021) or defined using some heuris-
tics (Schick & Schütze, 2021a;b). Our method also falls into
the prompt ensemble category. The main difference is each
prompt-based model is sequentially learned conditioned on
the classification errors of prior models.

3. Methodology
In this section, we will describe the PROMPTBOOSTING
algorithm. For notation, we use |A| to denote the size of a
finite set A; [A] to denote an index set {1, 2, · · · , A}.

3.1. Problem Formulation

Consider a text classification downstream task. Denote
Dtr =

⋃
i{(xi, yi)} as the training set, where xi denotes

the input text sequence and yi denotes the output label.
We are given a pre-trained language model, denoted as
pi = F ∗(xi), which, given the input xi, produces a prob-
ability distribution over the vocabulary set, V , at a given
location. In this paper, the output distribution is relevant
only where the input is [mask], so pi ∈ R|V|×1 is just
a |V|-dimensional vector specifying the output probability
at the [mask] location, where |V| denotes the vocabulary
size. Our goal is to adapt the LM F ∗(·) to the downstream
task using the downstream training set Dtr.

We adopt the common prompt-learning framework, where
the parameters of F ∗(·) are frozen (we add a superscript
∗ to emphasize this). The following two mechanisms are

added to convert F ∗(·) into a text classifier for the given
downstream tasks.

1. Prompt A prompt is a sequence of tokens that is con-
catenated to the input. Formally, denote the prompt
sequence as q and the concatenated input sequence as
xi∥q. Then the LM is modified as F ∗(xi∥q).

2. Verbalizer To convert the output probability over the
vocabulary into that over the classes, a verbalizer is in-
troduced to assign each token into different classes. For-
mally, denote the number of classes of the downstream
task as |Y|, then the verbalizer is a |Y|-by-|V| matrix,
denoted as M , where the element in row c, column v
represents the assignment weight of the v-token in the
vocabulary into class c. Each row of M would sum up
to one. The predicted probability of all the classes can
then be expressed as Mpi.

To sum up, after the prompt and verbalizer are applied, the
adapted LM becomes MF ∗(xi∥q). Therefore, the prompt-
tuning process boils down to learning an appropriate verbal-
izer M and prompt q for the downstream task.

3.2. Algorithm Overview

Conventional black-box prompt learning methods com-
monly use a pre-set M while performing black-box op-
timization over q, which results in a large computation cost.
In contrast, PROMPTBOOSTING randomly chooses from a
small number of pre-generated prompts and performs op-
timization over M instead. Due to the sub-optimality of
pre-generated prompts and the limited representation power
of M , the resulting classifiers are weak. However, this pro-
cess is able to quickly generate a large pool of such weak
learners, which can then be ensembled into a strong learner
using the ADABOOST approach. As the optimization over
M is computationally cheap, the ensemble process is much
more efficient than the conventional black-box methods.

More specifically, PROMPTBOOSTING iteratively generates
T weak learners, and each weak learner t is optimized under
its respective loss function, denoted as Lt(q,M), which
is essentially a weighted loss over the training set with
larger weights on those that are misclassified by the previous
weak learners (More details of the ADABOOST algorithm
will be provided in Section 3.5). As shown in Figure 1,
PROMPTBOOSTING consists of the following key steps.

Step 0: Generate a pool of prompts, Q =
⋃

j{qj}, using a
gradient-free method.

Step 1: Construct T weak learners. For weak learner t,
its prompt qt is uniformly randomly drawn from Q; its

3

PromptBoosting: Black-Box Text Classification with Ten Forward Passes

verbalizer M is determined by solving

min
M

Lt(qt,M), s.t. Mcv ≥ 0, ∀c ∈ [|Y|], v ∈ [|V|],∑
c∈[|Y|]

Mcv = 1, ∀v ∈ [|V|] (1)

Step 2: Ensemble the weak learners using ADABOOST.

Section 3.3 will describe how to solve equation 1. Sec-
tion 3.4 will describe how the pool of prompts, Q, is gener-
ated.

3.3. Learning the Verbalizer

As discussed, the loss function Lt as in equation 1 is essen-
tially a weighted sum of the individual loss over the training
dataset Dtr, i.e.

Lt(qt,M) =
∑

(xi,yi)∈Dtr

wtiℓ(xi, yi; qt,M), (2)

where wti denotes the weight on training data point i for
learning weak learner t as determined by ADABOOST;
ℓ(xi, yi; qt,M) denotes the loss on data point (xi, yi) with
the parameters set to qt and M . Since we focus on clas-
sification tasks, ℓ(·) should ideally be the cross-entropy
loss. However, the optimization problem in equation 1 is
essentially a partition problem, which can easily lead to
combinatorial complexity. To derive the tractable solution,
we adopt the following strategy. First, solve equation 1 with
ℓ(·) set to the ℓ1 loss, which, though not optimal for the clas-
sification task, bears a closed-form solution. Second, further
screen the token assignment by maximizing the training set
performance. The detailed method is described below.

Minimizing the ℓ1 loss By replacing the ℓ(·) in equation 2
with the ℓ1 loss, a closed-form solution can be derived,
which can establish a basis for the subsequent steps for
deriving a good verbalizer. Formally, let hi be the one-hot
representation of the class label yi, and let πi = F ∗(xi∥qt)
represent the LM output probability with the prompt qt
concatenated. Then, with the ℓ1 loss, equation 2 becomes

Lt(qt,M) =
∑

(xi,yi)∈Dtr

wti∥hi −Mπi∥1

=
∑

(xi,yi)∈Dtr

wti1
T |hi −Mπi|

=
∑

(xi,yi)∈Dtr

wti

[
(−1)hi

]T
(Mπi − hi).

(3)

Here, 1 represents a all-one column vector of dimension |Y|,
and (−1)hi represents the element-wise power operation.
The last equality is because each element of Mπi is within
[0, 1] and each element of hi is either 0 or 1, so we can
easily remove the absolute sign depending on the actual
values of hi.

As shown in equation 3, the loss function is linear with
respect to M , so the optimization in equation 1 becomes a
linear optimization problem with linear constraints, which
has closed-form corner solutions. For notational brevity,
define a score matrix, S, as

S =
∑

(xi,yi)∈Dtr

wtiπi

[
(−1)hi

]T
, (4)

which is the same size as M and is essentially the coef-
ficients multiplied with M in equation 3. Then, we state
without detailed derivations that the solution to equation 1
is such that each token is assigned to the class for which it
gets the highest score among all the classes, i.e.,

Mcv = 1, if c = argmax
c′∈[|Y|]

Sc′v, and 0 otherwise. (5)

Since the ℓ1 loss does not generally work well for classifica-
tion tasks, we empirically find that the verbalizer derived in
equation 5 is of limited performance. However, this inspires
us that the score matrix, S, is a good measure of how well
each token should be selected for a class. In the following
step, we will further screen the tokens with the help of the
score matrix.

Screening the tokens One issue with the verbalizer in
equation 5 is that each token has to be assigned to one class,
even those tokens that are not good indicators of any par-
ticular class. Therefore, by removing the non-informative
tokens and only retaining the best tokens for each class,
we can improve the verbalizer performance. To reduce the
computational complexity, we will retain only one token for
each class. Specifically, we first identify a candidate set of
tokens for each class by choosing the tokens with top-m
scores for that class, i.e., the top-m elements in Sc: for class
c, where subscript c : denotes the c-th row. Then, we eval-
uate all the possible combinations that include one token
from the candidate set for each class (hence m|Y | combina-
tions in total) and choose the combination that achieves the
best training accuracy (weighted by {wti}).

3.4. Constructing the Prompt Set

To generate the pool of prompts, Q (step 0 in section 3.2),
we adopt the optimization-free method proposed by Gao
et al. (2021), which employs the T5 (Raffel et al., 2020)
model. Specifically, we first construct a small subset of
the training set, denoted as Dgen, to induce the prompt gen-
eration (Dgen is exactly Dtr in few-shot setting). Then,
for each data point (xi, yi) ∈ Dgen, we construct an in-
put to the T5 model as <input><A><label token>

(for sentence-pair classification tasks, the input to T5
becomes <input1><A><label token><input2>).
Here, <A> and are mask tokens in T5 representing spans
to be filled in. <input>, <input1> and <input2> repre-
sent the input text xi. <label token> is a pre-defined

4

PromptBoosting: Black-Box Text Classification with Ten Forward Passes

mapping to convert class labels to tokens in V . For example,
positive label (yi = 1) in SST-2 (Socher et al., 2013) dataset
is mapped to token great while negative label (yi = 0) is
mapped to terrible. Given this input, the T5 model fills
in the spans for <A> and . The decoding process aims to
maximize output probability conditioned on the input over
Dgen. Then the T5 generated outputs, denoted as <output
A> and <output B> will be converted into prompts and
concatenated to the training input text, i.e., xi∥q, in the
form of <input><output A>[mask]<output B> (for
sentence-pair tasks, the form becomes <input1><output
A>[mask]<output B><input2>). As an example, on
SST-2 dataset, one of the generated outputs by T5 is
<output A> = A truly, <output B> = movie. Then
the input sentence “I love it.” will be converted to
“I love it. A truly [MASK] movie”. With a wide
beam search width (by default we use 100), we select the
top-10 generated prompts according to the log-likelihood to
form the prompt pool, Q. All the generated prompts used
in our experiments can be found in Table 10 in Appendix C.
Readers can refer to Gao et al. (2021) for further details.
The entire generation process does not involve any optimiza-
tion over the prompts, and thus is computationally efficient.
It is worth noting that the aforementioned approach can be
replaced with any other optimization-free prompt generation
methods, such as manually creating the prompts, making
PROMPTBOOSTING flexible for realistic use. Our experi-
ment results in Table 3 in Section 4.2 show that our method
works well with different prompt generation methods.

3.5. Ensembling the Weak Learners

We follow the ADABOOST algorithm to ensemble the weak
learners. As discussed, each weak learner minimizes a
weighted loss over the training set (equation 2). The fi-
nal prediction is produced by taking a weighted average
over the weak classifiers’ output. Further details, including
how the weights are computed, are shown in Algorithm 1.

Algorithm 1 Model Ensemble in PROMPTBOOSTING

1: Input: prompt set Q =
⋃

j{qj}, LM F ∗(·), Dtr,
2: Output: weak learners

⋃
t{ft(·)} and their weights

⋃
t{αt}.

3: Set initial data weight to w1i = 1/|Dtr|, ∀i ∈ [|Dtr|]
4: for Iteration t = 1, . . . , T do
5: Randomly draw a prompt qt from Q
6: Learn the verbalizer Mt with weight {wti}
7: Set weak learner t to ft(·) = MtF

∗(·∥qt)
8: Compute weighted error as

err(t) =
∑|Dtr|

i=1 wti1yi ̸=ft(xi)/
∑|Dtr|

i=1 wti

9: Compute the weight on ft as
αt = log 1−err(t)

err(t)
+ log(|Y| − 1)

10: Adjust dataset weight
w(t+1)i = wti · exp(αt · 1yi ̸=ft(xi)), ∀i ∈ [|Dtr|]

11: Re-normalize {w(t+1)i}.
12: end for

It is worth mentioning that we can generate many weak
learners at a very low computational cost because we only
need to evaluate the LM’s output distribution with each of
the pre-generated prompts in Q, beyond which no extra for-
ward pass is needed when learning each weak learner. Since
the number of pre-generated prompts is small, typically ten
in our implementation, the entire learning process involves
no more than ten forward passes per batch in the training
set, no matter how many weak learners are generated.

4. Experiments
4.1. Experiment Setup

Datasets Previous approaches for black-box prompt-based
learning (Sun et al., 2022b;a; Deng et al., 2022; Zhang
et al., 2022) are often evaluated on the following tasks: sin-
gle sentence classification (including SST-2 (Socher et al.,
2013), MR (Pang & Lee, 2005), TREC (Voorhees & Tice,
2000) and AG’s News (Zhang et al., 2015)) and sentence-
pair classification (including SNLI (Bowman et al., 2015),
MNLI-m (Williams et al., 2018), QNLI (Rajpurkar et al.,
2016), and RTE (Dagan et al., 2005)). We follow the same
setting and report results on the datasets above. The dataset
statistics can be found in Table 4 in Appendix A. For a
more comprehensive understanding of our method, we in-
corporate additional datasets including SST-5 (Socher et al.,
2013), CR (Hu & Liu, 2004), Subj (Pang & Lee, 2004),
MPQA (Wiebe et al., 2005), MRPC (Dolan & Brockett,
2005) in Table 9 in Appendix B—the conclusion is the same.

Evaluation setting We mainly evaluate the performance
of PROMPTBOOSTING in few-shot settings. This is rea-
sonable especially for black-box model tuning scenarios,
where the maximum allowed query times may be limited.
We randomly sample k examples per class from the original
training set to construct a k-shot training set Dtr for model
training. Following previous work (Gao et al., 2021; Zhang
et al., 2021; Sun et al., 2022b), we also construct the vali-
dation set Dval by randomly sampling another k examples
per class from the original training set (i.e., |Dtr| = |Dval|).
By default we set k = 16 for our main experiments. Also,
while previous work splits the training and validation sets
in this way and we do so for direct comparison, we also ex-
plore integrating the validation set into the training set—in
a truly few-shot setting, we should make full use of as many
examples as we can, and we show this leads to an improve-
ment in performance. As for evaluation, we use the whole
testing set. For SNLI (Bowman et al., 2015) and the datasets
from the GLUE benchmark (Wang et al., 2018), we use the
original validation set for evaluation.

Backbone models In the main experiments, we adopt the
widely-used RoBERTa-large model (Liu et al., 2019) for
evaluation to allow for direct comparison with baselines.

5

PromptBoosting: Black-Box Text Classification with Ten Forward Passes

Baselines We compare PROMPTBOOSTING with fine-
tuning and state-of-the-art black-box tuning methods de-
scribed below. For reference, we also include white-box
prompt-based learning methods that are designed for a few-
shot setting. Implementation details can be found in Ap-
pendix A. (1) Fine-tuning is just standard model fine-tuning
in a few-shot setting. (2) LM-BFF (Gao et al., 2021) is a
prompt-based fine-tuning method. In LM-BFF, all input
will be transformed using automatically generated prompts.
Then the whole model is fine-tuned based on the trans-
formed data. (3) DART (Zhang et al., 2021) replaces the
discrete prompts in LM-BFF with trainable prompt em-
beddings, which can reduce the prompt generation cost.
(4) BBT (Sun et al., 2022b) employ zeroth-order gradi-
ents to optimize the continuous prompts. (5) BBTv2 (Sun
et al., 2022a) improves the performance of BBT by inserting
prompt embeddings into each layer of the language model
(6) RLPrompt (Deng et al., 2022) models the black-box
optimization of discrete prompts as a reinforcement learn-
ing problem and adopts Q-learning to find the best prompt.
Some black-box baselines (Zhang et al., 2022; Chai et al.,
2022) are not included because the official implementation
is not available.

Implementation details We use the official implemen-
tations and hyper-parameters for all baselines. For more
details, please refer to Appendix A. For our method, we
sequentially train 200 weak classifiers on each task and
add them to our ensemble—we stop when validation perfor-
mance plateaus or when we reach the maximum number of
weak classifiers.

4.2. Evaluation Results

Overall comparison We first evaluate the effectiveness of
PROMPTBOOSTING in a few-shot setting with experiment
results in Table 1. Although there is some variance across
datasets, PROMPTBOOSTING achieves state-of-the-art per-
formance compared to existing black-box tuning methods.

We emphasize the effectiveness of model ensembling in
PROMPTBOOSTING. Firstly, on the SST-2 and MR datasets,
which are sentiment analysis tasks, even individual weak
learners in PROMPTBOOSTING can achieve 100% accuracy
on the training set, making the model ensemble inapplicable
(note that AdaBoost cannot ensemble classifiers that achieve
100% accuracy). Therefore, we directly train 10 weak learn-
ers using 10 prompts on the unweighted training set and
then select the weak learner that performs best on the vali-
dation set as the final model. Since the advantage of model
ensemble is limited on SST-2 and MR datasets, it is not
surprising that PROMPTBOOSTING performs slightly worse
than BBT and RLPrompt. However, PROMPTBOOSTING
is still better than fine-tuning an MLP, demonstrating the
effectiveness of our proposed verbalizer learning method.

Secondly, on the other 6 datasets, PROMPTBOOSTING con-
sistently outperforms all the baselines, with only one ex-
ception in the QNLI dataset, where BBTv2 has a slight
advantage. However, notice that BBTv2 has an unfair ad-
vantage over all the other black-box methods, including
ours, in allowing soft prompts to be added to each interme-
diate layer of the language model. PROMPTBOOSTING also
outperforms standard fine-tuning on the 4 NLI tasks. It is
worth noting that on the TREC dataset, all of the black-box
baselines performs very badly except for PROMPTBOOST-
ING, which even achieves a level of accuracy close to that of
white-box methods. One potential reason is that the TREC
dataset is harder for prompt-based learning. For example,
the manual prompt on the TREC dataset achieves only 32%
accuracy (Gao et al., 2021). According to our experiments,
individual weak learners trained on the unweighted training
set using our verbalizer learning method can only achieve
30%-50% accuracy. However, after model ensembling, the
performance is largely improved, demonstrating the effec-
tiveness of PROMPTBOOSTING.

Finally, we incorporate a variant of PROMPTBOOSTING,
namely PROMPTBOOSTING-32, which skips the hyper-
parameter tuning and directly integrates the validation set
into training. The hyper-parameter, i.e., the number of weak
classifiers, is determined manually according to its value
when the validation set is available. Expanding the train-
ing set gives a slight improvement in the performance and
decreases the variance.

Deployment efficiency Another concern with black-box
model tuning is the deployment efficiency. As we have
discussed above, directly adopting zeroth-order gradient op-
timization techniques suffers from the need to query many
times, making it less applicable in realistic scenarios. We
visualize the deployment efficiency of different methods
in Table 2. AG’s News and RTE datasets are adopted due
to the average input length (see Table 4). The metrics in-
clude parameter efficiency (number of trainable parameters
and total parameters), wall time of training, and number of
forward/backward passes per batch. In terms of trainable
parameters, PROMPTBOOSTING optimizes only less than
1k parameters (|Y| ∗ 200) and does not introduce any extra
parameters. In contrast, RLPrompt uses another network,
DistilGPT2 (Sanh et al., 2019), in addition to the backbone
RoBERTa model and consequently increases the training
cost. In terms of wall time, PROMPTBOOSTING improves
the efficiency over existing black-box tuning baselines (BBT,
BBTv2, and RLPrompt) by more than 10 times. The query
time is also significantly lower. Only 10 forward passes
per batch of training data are required during the training
of PROMPTBOOSTING. By contrast, our baselines require
thousands of forward passes, which makes them hard to use
in realistic scenarios. In addition, we can further signifi-
cantly improve the efficiency of PROMPTBOOSTING with

6

PromptBoosting: Black-Box Text Classification with Ten Forward Passes

Table 1. Performance of proposed PROMPTBOOSTING and baseline methods in few-shot setting (k = 16) measured by classification
accuracy (%). All methods use RoBERTa-large (Liu et al., 2019) as the backbone LM for a fair comparison. Two white-box methods are
included for reference including LM-BFF and DART. BBT, BBTv2, and RLPrompt are the main black-box baselines. PROMPTBOOSTING-
32 combines both training and validation sets for training. Mean accuracy (and standard deviation) is reported over 5 different splits. The
best results are highlighted in bold and the second best are underlined.

Method SST-2 MR AG’s News TREC SNLI MNLI QNLI RTE Avg.

Fine-tuning 81.4 (3.8) 82.7 (3.6) 86.2 (1.4) 88.8 (2.1) 48.4 (4.8) 45.8 (6.4) 56.3 (1.5) 54.4 (3.9) 68.0
LM-BFF (Gao et al., 2021) 92.3 (1.5) 87.4 (0.6) 87.1 (1.2) 83.4 (2.7) 76.5 (2.6) 68.7 (2.0) 64.4 (4.6) 66.6 (6.4) 78.3
DART (Zhang et al., 2021) 93.5 (0.5) 88.2 (1.0) 86.8 (0.5) 87.1 (3.8) 75.8 (1.6) 67.5 (2.6) 66.7 (3.7) 59.0 (2.5) 78.1

BBT (Sun et al., 2022b) 88.2 (1.7) 82.8 (2.6) 81.2 (2.7) 39.3 (5.2) 44.7 (4.0) 42.3 (2.8) 56.8 (2.0) 49.1 (3.3) 60.6
BBTv2 (Sun et al., 2022a) 88.5 (2.1) 83.7 (1.8) 83.6 (2.0) 63.8 (9.9) 57.4 (2.7) 51.4 (3.3) 58.1 (2.5) 53.2 (7.0) 67.5
RLPrompt (Deng et al., 2022) 90.5 (1.5) 86.2 (2.5) 76.2 (2.7) 37.3 (3.5) 42.9 (1.8) 40.7 (4.7) 52.1 (2.9) 52.2 (2.2) 59.8
PROMPTBOOSTING 87.6 (3.0) 84.6 (2.5) 85.2 (0.9) 81.6 (4.0) 61.3 (3.5) 52.5 (1.5) 58.0 (3.3) 60.0 (5.5) 71.4
PROMPTBOOSTING-32 87.6 (3.3) 84.7 (2.1) 84.2 (1.1) 84.5 (1.4) 62.0 (2.7) 53.8 (1.2) 58.3 (2.8) 60.3 (2.4) 71.9

Table 2. Deployment efficiency of proposed PROMPTBOOSTING and baseline methods in few-shot setting (k = 16). With all methods
using RoBERTa-large (335M parameters) as the backbone LM, some baselines introduce additional parameters, leading to a slight
variation in total parameters. Wall time is reported to measure the training time efficiency. Query efficiency is evaluated by #Forward and
#Backward, which refer to the number of forward/backward passes per batch during training respectively.

Method Trainable
param

Total
param

AG’s News RTE
Acc Wall Time #Forward #Backward Acc Wall Time #Forward #Backward

Fine-tuning 335M 335M 86.2 13 min 100 100 54.4 19 min 100 100
LM-BFF (Gao et al., 2021) 335M 335M 87.1 5 min 32 32 66.6 9 min 60 60
DART (Zhang et al., 2021) 335M 335M 86.8 15 min 30 30 59.0 5 min 120 120

BBT (Sun et al., 2022b) 25k 335M 81.2 88 min 8,000 0 49.1 52 min 8,000 0
BBTv2 (Sun et al., 2022a) 25k 335M 83.6 90 min 8,000 0 53.2 70 min 8,000 0
RLPrompt (Deng et al., 2022) 3M 420M 77.2 117 min 1,000 0 52.2 90 min 1,000 0
PROMPTBOOSTING <1k 335M 85.2 8 min 10 0 60.0 4 min 10 0

some slight simplifications without hurting the performance.
Please refer to Table 7 in Appendix B for more details.

Effect of training data size We also study the performance
of PROMPTBOOSTING as the size of the training set in-
creases (see Figure 2). Note that we still fix k = 16 for
the validation set regardless of the training set size. Re-
sults on AG’s News, TREC, QNLI, and RTE dataset are
shown in Figure 3 in Appendix B. The conclusions are in
three dimensions. Firstly, on the SST-2 and MR datasets,
PROMPTBOOSTING consistently outperforms fine-tuning
with lower variance, demonstrating the effectiveness of our
method. Secondly, on the AG News and TREC datasets,
PROMPTBOOSTING performs worse than fine-tuning. A
similar phenomenon also exists in past work (Gao et al.,
2021), where even a white-box prompt-based few-shot learn-
ing method can achieve performance that is at most only
comparable with fine-tuning. However, we remark that our
method still maintains large advantages compared to all
black-box baseline methods and achieves highly usable per-
formance. Finally, as the amount of training data increases,
the performance of fine-tuning improves and gradually out-
performs our method on the four NLI datasets. This finding
is possibly due to the fact that pre-trained LMs before fine-
tuning are not good at tasks involving sentence pairs.

Refinement of prompts The performance of the weak

learner in PROMPTBOOSTING directly depends on the
prompt. As has been shown in previous work, different
prompts have a significant influence on the performance of
prompt-based methods (Shin et al., 2020; Gao et al., 2021).
However, in PROMPTBOOSTING, the prompts are fixed
and will not be optimized during training. Therefore, we
consider a simple yet effective way to improve the perfor-
mance through prompt refinement. Specifically, because
we automatically generate 100 prompts for each dataset but
only use 10 of them, we may select the top 10 prompts
following some heuristics to improve the quality of the
prompts. Before training, we first evaluate the performance
on the validation set by training a weak classifier using the
method in Section 3.3 on the unweighted few-shot training
set. Then we construct the prompt pool by selecting the
top 10 prompts according to the accuracy of the correspond-
ing weak learner on the validation set. Please note that the
few-shot setting makes the refinement process very efficient.
Later on, PROMPTBOOSTING is trained using the refined
prompts. We mainly evaluate the effectiveness of the prompt
refinement on SNLI, MNLI, and QNLI datasets where the
gap between PROMPTBOOSTING and standard fine-tuning
is relatively large with the increase of training data. Experi-
ment results can be found in Figure 2. There are consistent
improvements in few-shot performance across three NLI
tasks, especially on the QNLI dataset where the performance

7

PromptBoosting: Black-Box Text Classification with Ten Forward Passes

16 32 64 128 256

Instance Per Class
70

75

80

85

90

95

A
cc

ur
ac

y
(%

)

PromptBoosting
Fine-tuning

(a) Performance on SST-2

16 32 64 128 256

Instance Per Class
72

74

76

78

80

82

84

86

88

90

A
cc

ur
ac

y
(%

)

PromptBoosting
Fine-tuning

(b) Performance on MR

16 32 64 128 256

Instance Per Class

50

60

70

80

A
cc

ur
ac

y
(%

)

PromptBoosting-refine
PromptBoosting
Fine-tuning

(c) Performance on SNLI

16 32 64 128 256

Instance Per Class

40

45

50

55

60

65

70

75

80

A
cc

ur
ac

y
(%

)

PromptBoosting-refine
PromptBoosting
Fine-tuning

(d) Performance on MNLI

Figure 2. Model performance as a function of training set size on different datasets. For NLI tasks (SNLI and MNLI), we also include
prompt refinement for better performance.

of PROMPTBOOSTING was far from satisfactory without
prompt refinement. Overall, the prompt refinement leads to
a trade-off between training cost and model performance.

Effect of the number of prompts In our main experiments,
we use 10 prompts by default. Intuitively, a large prompt
pool increases the diversity of weak classifiers which could
improve the performance. However, the training/inference
cost will also increase if more prompts are included for
model training. We empirically study the relationship be-
tween the number of prompts and the model performance in
Table 5 in Appendix B. In general, more prompts benefit the
performance in most datasets (except QNLI). We highlight
the effectiveness of multiple prompts on AG’s News and
TREC dataset, on which the performance becomes better
and more stable. As we have discussed in the few-shot exper-
iments in Table 1, individual prompt performs very badly on
TREC dataset. This is also proved by PROMPTBOOSTING-
1 that only achieves 41.3% accuracy. However, by using
our prompt ensemble framework, the performance can be
boosted to 84.6% when 10 prompts are provided. Finally,
the performance improvement is relatively small when the
number of prompts increases from 10 to 20, implying that
10 prompts should be good enough for PROMPTBOOSTING.

Effect of the prompt generation method We also study
the performance of PROMPTBOOSTING when combined
with other prompt generation methods. Specifically, the
following three alternative methods are compared with: (a)
PROMPTBOOSTING + LM-BFF with different prompt sets,
where we select a different 10-prompt subset from the large
number of prompts generated by LM-BFF; (b) PROMPT-
BOOSTING + prompts from PET (Schick & Schütze, 2021a);
and (c) PROMPTBOOSTING + manually written prompts,
where we asked several computer science students to write
the prompts for each task. All the prompts are listed in the
supplemental materials. The results are shown in Table 3.

PROMPTBOOSTING maintains a consistently competitive
performance regardless of the prompt generation method
used. This further verifies that what truly differentiates our

Table 3. Performance of PROMPTBOOSTING with different prompt
sets. We test the performance with another two different prompt
sets generated by LM-BFF (Gao et al., 2021), one prompt set from
PET (Schick & Schütze, 2021a), and one prompt set written by
humans (denoted as ‘LM-BFF set 1’, ‘LM-BFF set 2’, ‘PET’ and
‘Manual’ respectively).

AG’s News RTE

PROMPTBOOSTING (original) 85.2 (0.9) 60.0 (5.5)
PROMPTBOOSTING (LM-BFF set 1) 85.4 (1.6) 59.1 (5.4)
PROMPTBOOSTING (LM-BFF set 2) 84.7 (1.3) 60.3 (6.1)
PROMPTBOOSTING (PET) 85.0 (1.2) 58.2 (3.7)
PROMPTBOOSTING (Manual) 85.2 (0.8) 60.6 (2.0)

work is the new way to get an efficient and strong black-
box classifier which removes the need to optimize over the
prompts. By shifting the optimization target to the verbalizer
compensated by ensembling in an effort, we show that a
strong black-box classifier can be obtained without strict
requirements on the quality of the prompts.

Ablation studies and Full data training We conduct abla-
tion studies on the verbalizer determination method and the
prompt ensemble method in Table 6 in Appendix B, show-
ing that both the two modules contribute to the final per-
formance. Also, PROMPTBOOSTING can generalize to full
data training instead of just the few-shot setting due to the ef-
ficiency. We compare PROMPTBOOSTING with fine-tuning
on the entire training dataset in Table 8 in Appendix B.

5. Conclusion
In this paper, we propose PROMPTBOOSTING, an effec-
tive black-box model tuning framework. Without access to
the parameters and gradients of pre-trained LMs, PROMPT-
BOOSTING can adapt LMs for various downstream tasks.
The efficient weak learner construction method, together
with the ADABOOST ensemble algorithm, makes PROMPT-
BOOSTING achieve state-of-the-art performance in black-
box tuning setting with at least 10x run-time efficiency.

For future directions, we will explore how to generalize
PROMPTBOOSTING to more applications, e.g., chain-of-

8

PromptBoosting: Black-Box Text Classification with Ten Forward Passes

thought prompting (Wei et al., 2022). Also, we will study
how to combine the prompt ensemble idea in PROMPT-
BOOSTING with gradient-based optimization and improve
the performance of existing prompt-based learning methods.

6. Acknowledgement
The work of Bairu Hou and Shiyu Chang was partially
supported by National Science Foundation (NSF) Grant IIS-
2207052. The computing resources used in this work were
partially supported by the MIT-IBM Watson AI Lab.

References
Bowman, S., Angeli, G., Potts, C., and Manning, C. D.

A large annotated corpus for learning natural language
inference. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pp.
632–642, 2015.

Breiman, L. Bagging predictors. Machine learning, 24(2):
123–140, 1996.

Breiman, L. Random forests. Machine learning, 45(1):
5–32, 2001.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chai, Y., Wang, S., Sun, Y., Tian, H., Wu, H., and
Wang, H. Clip-tuning: Towards derivative-free prompt
learning with a mixture of rewards. arXiv preprint
arXiv:2210.12050, 2022.

Dagan, I., Glickman, O., and Magnini, B. The pascal recog-
nising textual entailment challenge. In Machine learning
challenges workshop, pp. 177–190, 2005.

Deng, M., Wang, J., Hsieh, C.-P., Wang, Y., Guo, H., Shu, T.,
Song, M., Xing, E. P., and Hu, Z. Rlprompt: Optimizing
discrete text prompts with reinforcement learning. arXiv
preprint arXiv:2205.12548, 2022.

Diao, S., Li, X., Lin, Y., Huang, Z., and Zhang, T. Black-box
prompt learning for pre-trained language models. arXiv
preprint arXiv:2201.08531, 2022.

Dolan, B. and Brockett, C. Automatically constructing a
corpus of sentential paraphrases. In Third International
Workshop on Paraphrasing (IWP2005), 2005.

Freund, Y. and Schapire, R. E. A decision-theoretic general-
ization of on-line learning and an application to boosting.
Journal of computer and system sciences, 55:119–139,
1997.

Friedman, J. H. Greedy function approximation: a gradient
boosting machine. Annals of statistics, pp. 1189–1232,
2001.

Gao, T., Fisch, A., and Chen, D. Making pre-trained lan-
guage models better few-shot learners. In Proceedings
of the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1:
Long Papers), pp. 3816–3830, 2021.

Han, X., Zhao, W., Ding, N., Liu, Z., and Sun, M. Ptr:
Prompt tuning with rules for text classification. arXiv
preprint arXiv:2105.11259, 2021.

Hu, M. and Liu, B. Mining and summarizing customer
reviews. In Proceedings of the tenth ACM SIGKDD in-
ternational conference on Knowledge discovery and data
mining, pp. 168–177, 2004.

Jiang, Z., Xu, F. F., Araki, J., and Neubig, G. How can we
know what language models know? Transactions of the
Association for Computational Linguistics, 8:423–438,
2020.

Lester, B., Al-Rfou, R., and Constant, N. The power of scale
for parameter-efficient prompt tuning. In Proceedings of
the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 3045–3059, 2021.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continu-
ous prompts for generation. In Proceedings of the 59th
Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, 2021.

Liu, X., Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang, Z., and
Tang, J. Gpt understands, too. arXiv:2103.10385, 2021.

Liu, X., Ji, K., Fu, Y., Tam, W., Du, Z., Yang, Z., and Tang,
J. P-tuning: Prompt tuning can be comparable to fine-
tuning across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), 2022.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

Pang, B. and Lee, L. A sentimental education: Sentiment
analysis using subjectivity summarization based on mini-
mum cuts. arXiv preprint cs/0409058, 2004.

Pang, B. and Lee, L. Seeing stars: Exploiting class relation-
ships for sentiment categorization with respect to rating
scales. In Proceedings of the 43rd Annual Meeting of the

9

PromptBoosting: Black-Box Text Classification with Ten Forward Passes

Association for Computational Linguistics (ACL’05), pp.
115–124, 2005.

Prasad, A., Hase, P., Zhou, X., and Bansal, M. Grips:
Gradient-free, edit-based instruction search for prompting
large language models. arXiv preprint arXiv:2203.07281,
2022.

Qin, G. and Eisner, J. Learning how to ask: Querying
lms with mixtures of soft prompts. In Proceedings of
the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, pp. 5203–5212, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., Liu, P. J., et al. Exploring
the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1–67, 2020.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. Squad:
100,000+ questions for machine comprehension of text.
In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pp. 2383–
2392, 2016.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter. In NeurIPS EMC2 Workshop, 2019.

Schick, T. and Schütze, H. Few-shot text genera-
tion with pattern-exploiting training. arXiv preprint
arXiv:2012.11926, 2020.

Schick, T. and Schütze, H. Exploiting cloze-questions for
few-shot text classification and natural language infer-
ence. In Proceedings of the 16th Conference of the Eu-
ropean Chapter of the Association for Computational
Linguistics: Main Volume, pp. 255–269, 2021a.

Schick, T. and Schütze, H. It’s not just size that matters:
Small language models are also few-shot learners. In Pro-
ceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 2339–2352, 2021b.

Shin, T., Razeghi, Y., Logan IV, R. L., Wallace, E., and
Singh, S. Autoprompt: Eliciting knowledge from lan-
guage models with automatically generated prompts. In
Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pp. 4222–
4235, 2020.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A. Y., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods
in natural language processing, pp. 1631–1642, 2013.

Sun, T., He, Z., Qian, H., Zhou, Y., Huang, X., and Qiu,
X. Bbtv2: Towards a gradient-free future with large
language models. In Proceedings of EMNLP, 2022a.

Sun, T., Shao, Y., Qian, H., Huang, X., and Qiu, X. Black-
box tuning for language-model-as-a-service. In Proceed-
ings of ICML, 2022b.

Tramèr, F., Zhang, F., Juels, A., Reiter, M. K., and Risten-
part, T. Stealing machine learning models via prediction
{APIs}. In 25th USENIX security symposium (USENIX
Security 16), pp. 601–618, 2016.

Voorhees, E. M. and Tice, D. M. Building a question an-
swering test collection. In Proceedings of the 23rd annual
international ACM SIGIR conference on Research and
development in information retrieval, pp. 200–207, 2000.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. Glue: A multi-task benchmark and analysis
platform for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
2018.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E.,
Le, Q., and Zhou, D. Chain of thought prompting elic-
its reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

Wiebe, J., Wilson, T., and Cardie, C. Annotating expres-
sions of opinions and emotions in language. Language
resources and evaluation, 2005.

Williams, A., Nangia, N., and Bowman, S. A broad-
coverage challenge corpus for sentence understanding
through inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pp. 1112–1122, 2018.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
et al. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771,
2019.

Yuan, W., Neubig, G., and Liu, P. Bartscore: Evaluating
generated text as text generation. Advances in Neural
Information Processing Systems, 34:27263–27277, 2021.

Zhang, N., Li, L., Chen, X., Deng, S., Bi, Z., Tan, C.,
Huang, F., and Chen, H. Differentiable prompt makes
pre-trained language models better few-shot learners. In
International Conference on Learning Representations,
2021.

10

PromptBoosting: Black-Box Text Classification with Ten Forward Passes

Zhang, T., Wang, X., Zhou, D., Schuurmans, D., and Gonza-
lez, J. E. Tempera: Test-time prompting via reinforcement
learning. arXiv preprint arXiv:2211.11890, 2022.

Zhang, X., Zhao, J. J., and LeCun, Y. Character-level convo-
lutional networks for text classification. In NIPS, 2015.

11

PromptBoosting: Black-Box Text Classification with Ten Forward Passes

A. Implementation Details
Dataset Statistics The dataset statistics can be found in Table 4. For a fair comparison, the few-shot training/valida-
tion/testing split generation is strictly following the implementation of Gao et al. (2021).

Table 4. The dataset statistics. |Y| is the number of classes,
Avg.#W is the average number of words in the input, and
#Train/#Test refers to the number of examples in the training/test-
ing dataset.

Category Dataset |Y| Avg. #W #Train #Test

single sentence

SST-2 2 17 6920 872
SST-5 5 18 8544 2210
MR 2 20 8662 2000
CR 2 19 1775 2000

AG’s News 4 47 120000 7600
TREC 6 10 5452 500
MPQA 2 3 8606 2000

Subj 2 23 8000 2000

sentence pair

SNLI 3 22 549367 9842
MNLI 3 33 392702 9815
QNLI 3 41 104743 5463
RTE 3 59 2490 277

MRPC 2 43 3668 408

Training of baselines For standard fine-tuning, we adopt
the Huggingface transformers library (Wolf et al.,
2019) to load RoBERTa-large backbone model and use its
Trainer for fine-tuning. The learning rate is set to 1e-5.
We use AdamW optimizer as the optimizer and the learning
rate linearly decays to 0. The training batch size is set to 16
and the total training epochs is 100. For the Feature-MLP
method, we use a three-layer MLP with a hidden dimension
of 100. The learning rate is set to 1e-3 without learning
rate decay. We also train the MLP for 100 epochs. For
other baselines, we use their official implementation with
default hyper-parameters including LM-BFF (Gao et al.,
2021), DART (Zhang et al., 2021), BBT (Sun et al., 2022b),
BBTv2 (Sun et al., 2022a) and RLPrompt (Deng et al., 2022).
For RLPrompt, because of its low efficiency, we set its train-
ing epochs to 1000 instead of the 12000 used in their paper.
This is reasonable since it takes nearly 2 hours for RLPrompt
to finish 1000 epochs of optimization.

B. Additional Experiments
Effect of the number of prompts We visualize the relationship between the number of prompts and the model performance
in Table 5. As we discussed in the main paper, more prompts benefit the performance in most datasets (except QNLI). Also,
the performance improvement is relatively small when the number of prompts increases from 10 to 20, implying that 10
prompts should be good enough for PROMPTBOOSTING.

Table 5. Performance of PROMPTBOOSTING with different numbers of prompts in few-shot setting (k = 16). PROMPTBOOSTING-d
means top-d prompts (sorted according to the beam search score) are used for model training. Mean accuracy (and standard deviation) is
reported over 5 different splits.

SST-2 MR AG’s News TREC SNLI MNLI QNLI RTE Avg.

PROMPTBOOSTING-1 86.1 (1.0) 85.1 (5.0) 73.3 (3.7) 41.3 (4.3) 53.4 (4.0) 49.5 (3.5) 58.0 (2.4) 56.5 (5.7) 62.9
PROMPTBOOSTING-5 88.8 (1.9) 87.9 (1.6) 83.5 (4.2) 78.0 (2.5) 59.1 (3.5) 50.9 (4.8) 56.5 (2.1) 57.0 (4.5) 70.2
PROMPTBOOSTING-10 87.6 (3.0) 84.6 (2.5) 85.2 (0.9) 81.6 (4.0) 61.3 (3.5) 52.5 (1.5) 58.0 (3.3) 60.0 (5.5) 71.4
PROMPTBOOSTING-20 88.1 (2.6) 84.0 (2.3) 86.4 (1.3) 81.9 (2.7) 60.8 (3.9) 55.2 (1.2) 57.0 (4.4) 57.1 (3.2) 71.3

Effect of the verbalizer construction and the prompt ensemble method We conduct an ablation study to demonstrate
the effectiveness of the proposed verbalizer construction method. Furthermore, since PROMPTBOOSTING use ADABOOST
algorithm to ensemble the weak learners, we also study the performance of our method when using other prompt ensemble
methods. Specifically, we design the following baselines. (a) Ensemble (rand). We pair each prompt with a randomly
generated verbalizer (randomly select a token from the vocabulary for each class). Then the 10 weak learners are ensembled
using majority vote (b) Ensemble (manual). Instead of using random verbalizers, we take the manually designed verbalizers
from LM-BFF (Gao et al., 2021). Then the 10 prompts will be paired with the manual verbalizer to form 10 weak learners
that are ensembled using majority vote (c) PROMPTVOTING. We use our verbalizer construction method to find the
verbalizer for each prompt (on the unweighted 16-shot training dataset). Then we ensemble the 10 weak classifiers using the
majority vote. The experiment results are shown in Table 6.

From the experiment results above, we highlight the following conclusions. (a) The effectiveness of our verbalizer
construction method. Given the same ensemble scheme (majority voting with 10 prompts), PROMPTVOTING consistently
outperforms Ensemble (rand) and Ensemble (manual), indicating the effectiveness of our verbalizer construction method.
It is worth noting that even on sentiment classification datasets (SST-2 and MR) which are very intuitive to construct

12

PromptBoosting: Black-Box Text Classification with Ten Forward Passes

Table 6. Ablation study of the verbalizer construction and the prompt ensemble method in PROMPTBOOSTING in a few-shot setting
(k = 16) measured by classification accuracy (%). All methods use RoBERTa-large (Liu et al., 2019) as the backbone LM for a fair
comparison. The best results from black-box methods are highlighted in bold.

Method SST-2 MR AG’s News TREC SNLI MNLI QNLI RTE

Fine-tuning 81.4 (3.8) 82.7 (3.6) 86.2 (1.4) 88.8 (2.1) 48.4 (4.8) 45.8 (6.4) 56.3 (1.5) 54.4 (3.9)
Best baseline 90.5 (1.5) 86.2 (2.5) 83.6 (2.0) 63.8 (9.9) 57.4 (2.7) 51.4 (3.3) 58.1 (2.5) 53.2 (7.0)
Ensemble (rand) 50.9 50.0 25.2 17.4 36.5 36.0 49.7 47.3
Ensemble (manual) 85.8 83.9 67.1 31.6 41.3 47.4 55.1 50.2
PROMPTVOTING 91.2 (1.2) 87.2 (0.9) 83.5 (1.3) 67.2 (6.7) 55.6 (3.0) 48.9 (2.9) 56.2 (3.0) 54.6 (1.4)
PROMPTBOOSTING 87.6 (3.0) 84.6 (2.5) 85.2 (0.9) 81.6 (4.0) 61.3 (3.5) 52.5 (1.5) 58.0 (3.3) 60.0 (5.5)

verbalizers, PROMPTVOTING is still largely better than manually defined verbalizers. PROMPTVOTING even outperforms
state-of-the-art methods on some datasets. (b) The More advanced ensemble improves the performance. One can
clearly observe improvement when we change the majority vote to the Adaboost ensemble. It is also worth mentioning that
PromptVoting offers an alternative solution to ensemble weak learners on SST-2 and MR datasets where ADABOOST cannot
be used1. In a summary, each module in our method contributes to the final performance.

Improve the efficiency of PROMPTBOOSTING In Table 2 in the main paper, we visualize the time cost of different
algorithms and demonstrate that PROMPTBOOSTING improves the efficiency over existing black-box baselines by more than
10 times. In fact, the training efficiency of PROMPTBOOSTING can be further improved by adjusting the hyper-parameters.

Specifically, recall that when we screen the verbalizer, we will take the top-m tokens for each class and use brute force to
find the best one. For AG’s News, m is set to 10 and for RTE,m is set to 50. That is, for each weak learner, there are 104

verbalizers and 502 for AG’s News and RTE respectively. The main reasons that we use such a large m are two-fold. Firstly,
we hope we can trade off more time for better weak classifier performance. Secondly, the efficiency of our baselines is very
low. Even though we use a large k and spend much time on constructing individual classifiers, our method is still 10x faster
than existing black-box baselines. Therefore, we did not use a smaller k for better efficiency in the main experiments.

Ideally, we can use a smaller k (i.e., m = 5 for AG’s News and m = 10 for RTE) which can largely improve the efficiency
without hurting the performance. The comparison between our original settings and the new settings with a smaller m is
shown in Table 7. One can clearly observe that the PROMPTBOOSTING can achieve the best efficiency (2 minutes and 0.7
minutes for training on AG’s News and RTE datasets respectively).

Table 7. Deployment efficiency of proposed PROMPTBOOSTING and baseline methods in few-shot setting (k = 16). Wall time is
reported to measure the training time efficiency. Query efficiency is evaluated by #Forward and #Backward, which refer to the number of
forward/backward passes per batch during training respectively. We include another variant of PROMPTBOOSTING with a smaller m (m
= 5 for AG’s News and m = 10 for RTE) when screening the verbalizer.

Method Trainable
param

Total
param

AG’s News RTE
Acc Wall Time #Forward #Backward Acc Wall Time #Forward #Backward

Fine-tuning 335M 335M 86.2 13 min 100 100 54.4 19 min 100 100
LM-BFF (Gao et al., 2021) 335M 335M 87.1 5min 32 32 66.6 9 min 60 60
DART (Zhang et al., 2021) 335M 335M 86.8 15 min 30 30 59.0 5 min 120 120

BBT (Sun et al., 2022b) 25k 335M 81.2 88 min 8K 0 49.1 52 min 8K 0
BBTv2 (Sun et al., 2022a) 25k 335M 83.6 90 min 8K 0 53.2 70 min 8K 0
RLPrompt (Deng et al., 2022) 3M 420M 77.2 117 min 1K 0 52.2 90 min 1K 0
PROMPTBOOSTING <1k 335M 85.2 8 min 10 0 60.0 4 min 10 0
PROMPTBOOSTING (small k) <1k 335M 84.4 2 min 10 0 59.1 0.7 min 10 0

Performance on full dataset The high efficiency of PROMPTBOOSTING makes it possible to generalize to
medium-sized datasets. We evaluate the performance of PROMPTBOOSTING on SST-2, MR, TREC, and RTE
datasets. We sample 10% of the original training set to construct the validation set and use the original val-
idation set for testing if the labeled test set is unavailable. The experiment results can be found in Table 8.

1We discussed why ADABOOST cannot be used on SST-2 and MR datasets in Section 4.2. Individual weak learners can achieve 100%
accuracy on the training dataset and ADABOOST cannot be used to ensemble models that achieve 100% accuracy.

13

PromptBoosting: Black-Box Text Classification with Ten Forward Passes

Table 8. Performance of full data training

SST-2 MR TREC RTE

Fine-tuning 95.5 (0.4) 91.5 (0.6) 97.2 (0.2) 81.9 (1.1)
PROMPTBOOSTING 94.1 (0.3) 89.7 (0.4) 90.5 (1.2) 71.7 (2.0)

PROMPTBOOSTING achieves comparable performance with
standard fine-tuning on SST-2 and MR datasets, which is
impressive given the fact that PROMPTBOOSTING has no
access to the parameters and gradients of the LM. For the
TREC dataset, standard fine-tuning outperforms PROMPT-
BOOSTING, but we still remark that the performance is still
highly usable in the black-box setting. Finally, the gap between PROMPTBOOSTING and fine-tuning is relatively large on
the RTE dataset, which is consistent with our previous discovery that it seems pre-trained LMs are not good at sentence pair
classification tasks before fine-tuning.

Experiments on more datasets In Table 9 we display the experiments on all datasets. Similar to SST-2 and MR, we do
not ensemble weak learners on the CR dataset since even individual weak learners in PROMPTBOOSTING can achieve 100%
accuracy on the training set. Instead, we directly report the performance of the individual weak learner that performs best on
the validation set. According to the experiments, our conclusion still holds that PROMPTBOOSTING achieves state-of-the-art
performance on a wide range of datasets.

Table 9. Performance of proposed PROMPTBOOSTING and baseline methods in few-shot setting (k = 16) measured by classification
accuracy (%) and F1 score (for the MRPC dataset only). All methods use RoBERTa-large (Liu et al., 2019) as the backbone LM for a fair
comparison. Two white-box methods are included for reference including LM-BFF (Gao et al., 2021) and DART (Zhang et al., 2021).
Feature-MLP, BBT (Sun et al., 2022b), BBTv2 (Sun et al., 2022a) and RLPrompt (Deng et al., 2022) are the main black-box baselines.
PROMPTBOOSTING-32 combines both training and validation sets for training. Mean accuracy (and standard deviation) is reported over 5
different splits. The best results are highlighted in bold and the second best are underlined.

Method SST-2 MR AG’s News TREC SNLI MNLI QNLI

Fine-tuning 81.4 (3.8) 82.7 (3.6) 86.2 (1.4) 88.8 (2.1) 48.4 (4.8) 45.8 (6.4) 56.3 (1.5)
LM-BFF 92.3 (1.5) 87.4 (0.6) 87.1 (1.2) 83.4 (2.7) 76.5 (2.6) 68.7 (2.0) 64.4 (4.6)
DART 93.5 (0.5) 88.2 (1.0) 86.8 (0.5) 87.1 (3.8) 75.8 (1.6) 67.5 (2.6) 66.7 (3.7)

BBT 88.2 (1.7) 82.8 (2.6) 81.2 (2.7) 39.3 (5.2) 44.7 (4.0) 42.3 (2.8) 56.8 (2.0)
BBTv2 88.5 (2.1) 83.7 (1.8) 83.6 (2.0) 63.8 (9.9) 57.4 (2.7) 51.4 (3.3) 58.1 (2.5)
RLPrompt 90.5 (1.5) 86.2 (2.5) 76.2 (2.7) 37.3 (3.5) 42.9 (1.8) 40.7 (4.7) 52.1 (2.9)
PROMPTBOOSTING 87.6 (3.0) 84.6 (2.5) 85.2 (0.9) 81.6 (4.0) 61.3 (3.5) 52.5 (1.5) 58.0 (3.3)
PROMPTBOOSTING-32 87.6 (3.3) 84.7 (2.1) 84.2 (1.1) 84.5 (1.4) 62.0 (2.7) 53.8 (1.2) 58.3 (2.8)

Method RTE SST-5 CR MPQA Subj MRPC Avg.

Fine-tuning 54.4 (3.9) 43.9 (2.0) 75.8 (3.2) 72.0 (3.8) 90.8 (1.8) 76.6 (2.5) 69.5
LM-BFF 66.6 (6.4) 48.5 (1.5) 89.2 (3.8) 83.7 (2.4) 90.7 (1.9) 76.0 (3.4) 78.0
DART 59.0 (2.5) 48.6 (1.5) 91.8 (0.5) 68.1 (8.9) 90.7 (1.4) 78.3 (4.5) 77.1

BBT 49.1 (3.3) 36.3 (3.6) 86.2 (1.3) 78.4 (2.2) 75.6 (3.2) 73.7 (6.0) 64.2
BBTv2 53.2 (7.0) 38.7 (2.2) 88.5 (1.0) 80.6 (2.7) 78.2 (2.9) 73.6 (7.6) 69.2
RLPrompt 52.2 (2.2) 40.1 (1.9) 87.4 (1.7) 69.4 (3.7) 81.9 (1.2) 61.9 (5.1) 63.0
PROMPTBOOSTING 60.0 (5.5) 42.3 (1.8) 86.8 (0.8) 72.7 (3.4) 86.1 (4.8) 70.5 (2.9) 71.5
PROMPTBOOSTING-32 60.3 (2.4) 44.0 (1.5) 88.1 (1.1) 75.4 (2.3) 90.4 (1.1) 69.2 (5.8) 72.5

Effect of training data size For AGNews, TREC, QNLI, and RTE datasets, we show the performance of PROMPTBOOST-
ING as the size of the training set increases in Figure 3.

C. Generated Prompts
In this section, we visualize the prompts we used in our experiments for each dataset in Table 10. Regardless of different
few-shot training/validation splits, we use the same 10 prompts for model training.

14

PromptBoosting: Black-Box Text Classification with Ten Forward Passes

16 32 64 128 256

Instance Per Class
84

85

86

87

88

89

90

A
cc

ur
ac

y
(%

)

PromptBoosting
Fine-tuning

(a) Performance on AG

16 32 64 128 256

Instance Per Class

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

A
cc

ur
ac

y
(%

)

PromptBoosting
Fine-tuning

(b) Performance on TREC

16 32 64 128 256

Instance Per Class

55

60

65

70

75

80

85

A
cc

ur
ac

y
(%

)

PromptBoosting-refine
PromptBoosting
Fine-tuning

(c) Performance on QNLI

16 32 64 128 256

Instance Per Class

50

55

60

65

70

75

A
cc

ur
ac

y
(%

)

PromptBoosting
Fine-tuning

(d) Performance on RTE

Figure 3. Model performance as a function of training set size on different datasets. For the QNLI dataset, we also include prompt
refinement for better performance.

15

PromptBoosting: Black-Box Text Classification with Ten Forward Passes

Table 10. Prompts used by PROMPTBOOSTING on different datasets.

SST-2 MR

1 [Input] It’s [MASK]. [Input] It’s [MASK].
2 [Input] A [MASK] movie. [Input] It’s [MASK]!
3 [Input] A [MASK] film. [Input] A [MASK] piece of work.
4 [Input] A [MASK] piece of work. [Input] It’s [MASK].
5 [Input] A truly [MASK] film. [Input] A [MASK] waste of time.
6 [Input] This is [MASK]. [Input] A truly [MASK] film.
7 [Input] It was [MASK]. [Input] I thought it was [MASK].
8 [Input] A [MASK] waste of time. [Input] It’s just [MASK].
9 [Input] It’s [MASK]! [Input] A truly [MASK] movie.

10 [Input] A truly [MASK] movie. [Input] The film is [MASK].

AG’s News TREC

1 [Input] This entry was posted in [MASK]. [Input] What is [MASK]?
2 [Input] U.S. [MASK] News. [Input] What is the [MASK]?
3 [Input] U.S. [MASK]. [Input] What [MASK]?
4 [Input] This entry was posted in [MASK] News. [Input] The [MASK].
5 [Input] The [MASK] Journal reports. [Input] See [MASK].
6 [Input] The [MASK] Journal has more. [Input] Which [MASK]?
7 [Input] Read more at [MASK] News Now. [Input] The [MASK]?
8 [Input] The New York Times [MASK]. [Input] Full [MASK].
9 [Input] The New York Times [MASK] Report. [Input] How many [MASK]?

10 [Input] Read more at[MASK] Insider. [Input] 1.[MASK].

SNLI MNLI

1 [Input1]. [MASK], [Input2] [Input1]. [MASK], [Input2]
2 [Input1]. [MASK]. [Input2] [Input1]. [MASK], but [Input2]
3 [Input1]. [MASK] and [Input2] [Input1]. [MASK]. [Input2]
4 [Input1]. [MASK], but [Input2] [Input1]! [MASK], [Input2]
5 [Input1]. [MASK]: [Input2] [Input1]. [MASK]. But [Input2]
6 [Input1]. [MASK] one of [Input2] [Input1]? [MASK], [Input2]
7 [Input1]. [MASK]... [Input2] [Input1]. [MASK] and [Input2]
8 [Input1]. [MASK], just [Input2] [Input1]. [MASK], and [Input2]
9 [Input1]. [MASK] it is [Input2] [Input1]. [MASK] but [Input2]

10 [Input1]. [MASK]; [Input2] [Input1]. [MASK]... [Input2]

QNLI RTE

1 [Input1]? [MASK], [Input2] [Input1]. [MASK], [Input2]
2 [Input1]? [MASK], but [Input2] [Input1]. [MASK]. [Input2]
3 [Input1]? [MASK]. [Input2] [Input1]. [MASK], but [Input2]
4 [Input1]? [MASK]. But [Input2] [Input1]. [MASK] and [Input2]
5 [Input1]? [MASK]. In fact, [Input2] [Input1]. [MASK]: [Input2]
6 [Input1]? [MASK]; [Input2] [Input1]. [MASK], the [Input2]
7 [Input1]? [MASK]. However, [Input2] [Input1]. [MASK]; [Input2]
8 [Input1]? [MASK], and [Input2] [Input1]. [MASK]-[Input2]
9 [Input1]? [MASK]: [Input2] [Input1]. [MASK], and [Input2]

10 [Input1]. [MASK], [Input2] [Input1]. [MASK] but [Input2]

16

