
Surface Snapping Optimization Layer

for Single Image Object Shape Reconstruction

Yuan-Ting Hu 1 Alexander G. Schwing 1 Raymond A. Yeh 2

Abstract

Reconstructing the 3D shape of objects observed

in a single image is a challenging task. Recent

approaches rely on visual cues extracted from

a given image learned from a deep net. In this

work, we leverage recent advances in monocu-

lar scene understanding to incorporate an addi-

tional geometric cue of surface normals. For this,

we proposed a novel optimization layer that en-

courages the face normals of the reconstructed

shape to be aligned with estimated surface nor-

mals. We develop a computationally efficient

conjugate-gradient-based method that avoids the

computation of high-dimensional sparse matrices.

We show this framework to achieve compelling

shape reconstruction results on the challenging

Pix3D and ShapeNet datasets.

1. Introduction

Humans can reason about the 3D geometry of objects even

from a monocular image. This capability enables us to

efficiently and effortlessly interact with our environment.

Developing a system that has this capability is hence an

important problem for applications across many fields, e.g.,

robotics, the entertainment industry, and augmented and

virtual reality.

Classical works (Horn, 1975; Nayar et al., 1991; Wolff

et al., 1993; Pentland, 1987) on shape reconstruction rely

on visual cues such as texture, shading, or camera focus.

More recent methods aim to learn the visual cues from data

via deep nets. These works study different shape represen-

tations and propose corresponding deep net architectures,

e.g., meshes (Wang et al., 2018), occupancy grids (Wu

et al., 2015), octrees (Tatarchenko et al., 2017), implicit

1Department of Electrical and Computer Engineering, Univer-
sity of Illinois at Urbana-Champaign 2Department of Computer
Science, Purdue University. Correspondence to: Yuan-Ting Hu
<ythu2@illinois.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

fields (Chen & Zhang, 2019; Mescheder et al., 2019; Park

et al., 2019) or point clouds (Groueix et al., 2018). The main

visual cue of these works is a deep feature extracted from

an image via a convolutional network. Notably, these works

often do not leverage explicit 2.5D sketches, such as depth

maps or surface normals. Use of these sketches has been

advocated by Marr (1982), and has previously been found

to be useful by Bansal et al. (2016) and Wu et al. (2017).

In this work, we study how shape reconstruction methods

can efficiently benefit from an explicit geometric cue of

surface normals. We choose surface normals as its estima-

tion has made tremendous progress in recent years (Ladický

et al., 2014; Eigen & Fergus, 2015; Wang et al., 2015; 2016;

Liao et al., 2019; Zhang et al., 2019; Hickson et al., 2019;

Qi et al., 2020; Wang et al., 2020; Do et al., 2020; Zamir

et al., 2020; Bae et al., 2021; Yu et al., 2022).

To incorporate surface normal estimates, we propose a novel

optimization layer: an optimization problem viewed as a

differentiable function that maps from its input to its so-

lution (Amos & Kolter, 2017; Gould et al., 2022). The

proposed optimization layer minimizes a cost function that

explicitly encourages the normals of the reconstructed shape

to match the surface normals predicted from the image.

We minimize each optimization layer objective to optimal-

ity during a forward pass through the deep net, which re-

positions the vertices of the reconstructed shape. Conse-

quently, the reconstructed shape vertices “snap” to the ob-

served geometry, hence the name surface snapping. The

effect of surface snapping is illustrated in Fig. 1, where we

observe a more accurately recovered shape.

To compute the exact solution of the optimization layer, we

develop an efficient conjugate-gradient-based method that

considers the sparsity structure of the problem to improve

both the memory and computational efficiency. Using stan-

dard solvers without considering the sparsity structure is

intractable with present-day hardware. The layer is inter-

pretable and exposes a trainable parameter that controls the

strength of the snapping. Finally, the developed surface

snapping layer can be inserted into any deep net operating

on meshes. This layer can be trained via gradient-based

methods along with the standard layers.

1

Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction

Estimated
Surface Normal

No snapping
α = 0.0

α = 0.5 α = 1.0 α = 2.0

Figure 1. Effect of surface snapping. Larger values of α result in stronger snapping.

In experiments, we evaluate the proposed surface snapping

technique on the challenging Pix3D (Sun et al., 2018) and

ShapeNet (Chang et al., 2015) datasets. On both datasets,

we observe that surface snapping, when incorporated into

recent baselines, improves the reconstruction; especially in

terms of the normal consistency metric. Qualitatively, we

observe that the reconstructed geometry is less noisy, i.e.,

the surface is smoother. This demonstrates the effectiveness

of the proposed surface snapping layer at adjusting face

normals for monocular shape reconstruction.

Our contributions:

• We propose a novel optimization layer for object shape

reconstruction and a specialized solver to efficiently

compute its solution.

• We demonstrate that the proposed layer leverages sur-

face normal estimation to improve object shape recon-

struction.

2. Related Work

Optimization as a layer. An optimization problem can be

considered as a single “layer” in a deep net architecture

because it can be viewed as a function mapping from its

input to its exact solution. For such a layer, the derivative is

computed through implicit differentiation. Amos & Kolter

(2017) study deep net architectures that integrate optimiza-

tion problems in the form of a quadratic program (OptNet).

This formulation is further extended to disciplined convex

programs by Agrawal et al. (2019). Recently, applications

of optimization layers have emerged in reinforcement learn-

ing (Amos et al., 2018), logical reasoning (Wang et al.,

2019), and image classification, segmentation and various

computer vision tasks (Bai et al., 2019; 2020; Huang et al.,

2021; Bai et al., 2022; Yeh et al., 2022; Pokle et al., 2022).

Our surface snapping formulation is also a quadratic pro-

gram. However, the generic solver implementations, e.g.,

OptNet, are not scalable to our problem size due to the large

number of vertices involved in a shape. We hence develop a

solver which benefits from the structure of the task.

Monocular 3D shape reconstruction. Shape reconstruc-

tion from a single image has received a considerable amount

of attention (Dai et al., 2017; Izadinia et al., 2017; Wu et al.,

2017; Zou et al., 2017; Wang et al., 2018; Tulsiani et al.,

2018; Groueix et al., 2018; Kundu et al., 2018; Mahmud

et al., 2020; Mescheder et al., 2019; Mo et al., 2019; Deng

et al., 2020; Chen et al., 2020; Peng et al., 2020; Nash et al.,

2020; Park et al., 2019; Paschalidou et al., 2020; Wu et al.,

2020; Duggal & Pathak, 2022). These methods’ shape repre-

sentations, which are often the focus of the work, generally

differ. Among the most popular shape representations are

meshes (Wang et al., 2018; Gao et al., 2022), occupancy

grids (Wu et al., 2015), octrees (Tatarchenko et al., 2017),

implicit fields (Chen & Zhang, 2019; Mescheder et al., 2019;

Park et al., 2019) or point clouds (Groueix et al., 2018).

Many of these methods assume that the image only depicts

a single object, i.e., only a single shape needs to be recon-

structed per image. Consequently, these methods usually

focus on datasets like ShapeNet (Chang et al., 2015), where

a single object is illustrated per image.

3D shape reconstruction methods (Izadinia et al., 2017;

Tulsiani et al., 2018; Kundu et al., 2018; Gkioxari et al.,

2019; Nie et al., 2020; Zhang et al., 2021) which reconstruct

multiple objects in a given image usually either leverage a

detection network (Izadinia et al., 2017; Kundu et al., 2018;

Gkioxari et al., 2019) like Faster/Mask-RCNN (Ren et al.,

2015; He et al., 2017) or assume instance-level bounding

boxes are readily available (Tulsiani et al., 2018). Using

given or detected bounding boxes, the 3D shape of each

instance is inferred separately for each bounding box. For

this, appearance information in the form of a spatial high-

dimensional feature vector is obtained for each bounding

box from the object detector or a feature pyramid network.

Different from these works, we study the use of surface nor-

mals as an additional geometric cue. While there are prior

deep learning approaches for 3D reconstruction that utilize

surface normals, they are either not directly applicable to

meshes (Qi et al., 2020) or simply introduce a normal loss

for end-to-end training (Wu et al., 2017; Wang et al., 2018).

In contrast, the proposed surface snapping layer operates di-

2

Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction

…

Surface

Snapping

(Sec 3.1)

Initial Mesh Refined Mesh Snapped Mesh

Normal

Features

Input Image

Refinement

Module

Deep Nets

…

Figure 2. Object shape reconstruction with surface snapping and an explicit model. With surface snapping, the snapped mesh exhibits
sharper edges and a much smoother surface. E.g., the crisp edges near the bed frame or the outline of the pillows.

rectly on a mesh representation, finds the exact solution, and

incorporates the surfaces normal directly into the inference

procedure (forward-pass).

Monocular normal estimation. Fouhey et al. (2013) intro-

duce a data-driven approach that leverages 3D geometric

primitives and high-level constraints. Ladický et al. (2014)

additionally incorporate pixel-based and segment-based

cues. The first deep net for this task was proposed by Wang

et al. (2015), and multi-scale network architectures have

been studied by Eigen & Fergus (2015). These were later

refined to incorporate skip connections (Bansal et al., 2016)

as well as a dense conditional random field to refine the deep

net output (Wang et al., 2016). Increasingly accurate results

have been reported and methods have also been scaled to

efficiently run on edge devices (Hickson et al., 2019).

To incorporate surface normals into shape reconstruction we

formulate a novel optimization layer that optimizes a cost

function to ensure that the reconstructed surface “snaps” to

the estimated normals.

3. Approach

Our goal is to leverage surface normal estimates for the task

of 3D shape reconstruction. For this, we propose surface

snapping, an optimization layer that explicitly aligns the

predicted shape to be consistent with the predicted surface

normal. In §3.1, we introduce the surface snapping layer

by defining its forward and backward operation. We in-

corporate surface snapping layers into shape reconstruction

methods, including both explicit and implicit models (§3.2).

We discuss how to train these models in §3.3.

3.1. Surface snapping Optimization Layer

An object’s shape can be characterized by a triangular mesh

M = (V ,F), which is specified by a tuple V ∈ R
NV ×3 of

NV 3-dimensional vertices, and a tuple F ∈ Z
NF×3
+ of NF

faces. Here, each face is represented by three vertex indices.

Given a predicted shape M̂
l
= (V̂ l, F̂) at the lth layer and

a face normal estimate N̂ obtained from the image, the

proposed surface snapping aims to refine the vertices into a

shape M̂
l+1

= (V̂ l+1, F̂) that is more consistent with the

surface normal N̂ . I.e., we view surface snapping as a layer

M̂
l+1

= SurfaceSnapping(M̂
l
, N̂), (1)

which takes as input a shape M̂
l

and a normal map N̂ , and

yields another shape M̂
l+1

as its output.

Forward operation definition. To update the vertices

V̂ l, we formulate SurfaceSnapping as an optimiza-

tion layer. The goal of this optimization problem is to align

(“snap”) the predicted vertices to face normal estimates N̂ .

Specifically, SurfaceSnappingminimizes the weighted

sum of two cost functions, a vertex cost CV and a normal

cost CN, i.e.,

V̂ l+1 ≜ X⋆ = argmin
X

(

CV(X, V̂ l) + αCN(X, N̂)
)

, (2)

where α ∈ R+ is a positive trainable parameter and X ∈
R

NV ×3 denotes the optimization variable in Eq. (2).

The vertex cost CV encourages similarity between optimiza-

tion variable X and the current vertices V̂ l by penalizing

distances via an ℓ2-norm:

CV(X, V̂ l) = ∥X − V̂ l∥22. (3)

The normal cost CN controls the consistency of the mesh

prediction and the estimated normals via

CN(X, N̂) =

NF∑

i=1

∑

j,k∈F̂i

⟨N̂i,Xj −Xk⟩
2
, (4)

where NF denotes the number of faces. This cost accumu-

lates the inner products between adjacent edges Xj−Xk of

face i (defined by its vertex indices F̂i) and the face normal

N̂i. Intuitively, the estimated face normal and the edges

should be orthogonal to each other. Hence we penalize the

3

Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction

squared norm of the inner product. As face normals are only

estimated for visible faces, we set the normal of non-visible

faces to a zero vector.

Note, we use the term cost function C to refer to the opti-

mization problem that defines the forward operation of the

surface snapping layer. A cost function C is not the loss

function for training the model. We will discuss training

losses in §3.3.

We illustrate the behavior of this layer in Fig. 1. When

α increases, we observe the edge of the bed more clearly

as a larger α more strongly encourages snapping the face

normals of the predicted shape to the estimated normals.

In summary, the program in Eq. (2) considers vertex and

normal cost functions which balance between the normal

predictions and the current vertex location estimates. We

will next discuss the layers’ forward pass and backward pass

computation.

Forward operation computation. A forward pass requires

solving the weighted objective in Eq. (2). Observe that it

can be formulated as a linear least-squares problem of the

form minx ∥Ax− b∥22, as

min
x

(∥
∥x− v̂l

∥
∥
2

2
+ α ∥N ⊙ Dx∥22

)

(5)

= min
x

∥
∥
∥
∥
∥
∥
∥
∥

[
I√

αN ⊙ D

]

︸ ︷︷ ︸

A

x−
[

v̂l
√
α0

]

︸ ︷︷ ︸

b

∥
∥
∥
∥
∥
∥
∥
∥

2

2

. (6)

Here, x = vec(X) and v̂l = vec(V̂ l) ∈ R
3·NV refer to

the flattened vertex coordinates in column-major order, i.e.,

vec(V̂ l) = [V̂ l
col(1); V̂

l
col(2); V̂

l
col(3)]. Moreover, (N⊙D)x

computes the inner product between a face normal and the

edges of each face in the mesh. For this we construct the

edges by using matrix D ∈ R
9NF×3NV which is defined as

D =

D 0 0

0 D 0

0 0 D

 , Di,j = 1 and Di,k = −1 (7)

∀j < k ∈ F̂⌊i/3⌋, and 0 otherwise. I.e., each row of D

forms an edge Xj − Xk between vertex j and k. Next,

the face normals are stored in matrix N ∈ R
9NF×9NF as

follows:

N =

N
1

0 0

0 N
2

0

0 0 N
3

 , N
h
i,i =

{

N̂i,h, i ∈ {1, . . . , NF }
0, otherwise,

(8)

where N̂i,h is the normal of face i for dimension h.

In theory, a forward pass through the surface snapping layer

can be solved analytically via (A⊺A)−1A⊺b as formulated

in Eq. (6). However, this is inefficient and memory inten-

sive due to matrix inversion of a large matrix (A⊺A)−1.

Hence, we develop a conjugate gradient method leveraging

the system’s sparsity structure, which we discuss next.

Efficient conjugate gradient solver. The least-squares

solution is equivalent to solving a linear system of the form

Qx = t, where

Q = A⊺A and t = A⊺b. (9)

As Q is positive-definite, the conjugate gradient method

is applicable. We refer to a conjugate gradient solver via

CGSolve(Q, t).

Importantly, a standard conjugate gradient solver does not

work out of the box, due to memory and computation con-

straints. Instead, we develop a custom conjugate gradient

solver with GPU support which leverages the structure of

A. We exploit the sparsity patterns in the system of equa-

tions, observed in Eq. (7) and Eq. (8), to avoid redundancies.

Please see the Appendix for more details. Here, we spotlight

some aspects which led to significant speedups:

① Sparse element-wise multiplication: When computing

N ⊙ D in Eq. (6), use of dense matrices is inefficient. In-

stead, we use sparse element-wise multiplications on D and

N
1
, N

2
, N

3
to avoid constructing the full matrices D and N.

This removes many unnecessary multiplications with zeros.

② Advanced indexing to create edges: When computing

Dx in Eq. (6), we avoid this large matrix multiplication, by

using advanced indexing to select the vertices and taking

their differences with element-wise vector operations.

Backward operation. To enable end-to-end training, we

need to back-propagate through the solution x⋆ obtained

by solving the program given in Eq. (6). Concretely, for a

given loss function L which depends on the solution x⋆, we

need to compute

∂L(x⋆)

∂v̂l
=

∂L
∂x⋆

· ∂x
⋆

∂t
· ∂t

∂v̂l
. (10)

We can view the solution x⋆ as a functional mapping of

v̂l, i.e., x⋆(v̂l), in which case the gradient can be traced

through the optimization procedure. To see this, recall, t is

a linear combination of v̂l, as defined in Eq. (5) and Eq. (9).

Automatic differentiation can handle ∂t
∂v̂l . Hence, we only

need to compute,
∂L(x⋆)

∂t , the gradient of a loss function

w.r.t. t.

Recall, x⋆ is the solution of the linear system Qx = t, i.e.,

x⋆ = Q−1t. From the chain rule, we obtain

∂L
∂x⋆

= Q⊺
∂L
∂t

. (11)

This is again a linear system where we can use the developed

CGSolver which exploits sparsity. Hence, we compute the

4

Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction

Table 1. Quantitative comparison explicit methods on Pix3D dataset split S1 using the Setup ❶ by Gkioxari et al. (2019). Green indicates
that adding the surface snapping layer improves the performance.

Method / % chair sofa table bed desk bkcs wrdrb tool misc APbox APmask APmesh Normal NormalVis

Pixel2Mesh+ (Wang et al., 2018) 30.9 59.1 40.2 40.5 30.2 50.8 62.4 18.2 26.7 93.5 88.4 39.9 18.0 39.8
Sphere-Init 40.9 75.2 44.2 50.3 28.4 48.6 42.5 26.9 7.0 94.1 87.5 40.5 15.3 39.0
Mesh R-CNN (Gkioxari et al., 2019) 48.2 71.7 60.9 53.7 42.9 70.2 63.4 21.6 27.8 94.0 88.4 51.2 21.6 46.5
GCN Transformer 49.9 74.3 67.3 50.5 42.8 75.4 68.9 37.4 33.3 94.1 88.3 55.5 23.3 49.6

Snap+ Pixel2Mesh+ 32.3 61.8 43.9 42.8 33.5 46.0 74.3 4.5 26.7 93.5 88.4 40.7 19.4 43.3
Snap+ Sphere-Init 35.1 61.7 44.1 40.0 31.3 55.7 46.1 23.6 13.5 94.1 87.6 39.0 17.1 39.0
Snap+ Mesh R-CNN 49.0 74.8 65.3 55.7 46.1 73.8 70.9 21.6 27.8 94.1 88.3 54.1 23.0 48.8
Snap+ GCN Transformer 49.5 76.5 64.3 56.0 44.3 73.8 70.9 31.8 33.4 94.1 88.3 55.6 23.8 50.4

Table 2. Quantitative comparison of explicit methods on Pix3D dataset split S2 using the Setup ❶ by Gkioxari et al. (2019). Green
indicates that adding the surface snapping layer improves the performance.

Method / % chair sofa table bed desk bkcs wrdrb tool misc APbox APmask APmesh Normal NormalVis

Pixel2Mesh+ (Wang et al., 2018) 26.7 58.5 10.9 38.5 7.8 34.1 3.4 10.0 0.0 71.1 63.4 21.1 19.5 42.2

Sphere-Init 32.9 75.3 15.8 40.1 10.1 45.0 1.5 0.8 0.0 72.6 64.5 24.6 15.7 40.0

Mesh R-CNN (Gkioxari et al., 2019) 42.7 70.8 27.2 40.9 18.2 51.1 2.9 5.2 0.0 72.2 63.9 28.8 21.4 46.5

GCN Transformer 42.9 68.8 26.5 40.7 22.9 44.6 1.2 0.5 0.0 72.4 64.0 27.5 22.1 48.8

Snap+ Pixel2Mesh+ 26.9 60.9 10.0 38.7 10.0 25.3 4.2 10.1 0.0 71.1 63.4 20.7 20.5 44.7

Snap+ Sphere-Init 31.2 72.7 11.7 42.1 7.8 38.2 1.0 1.2 0.0 72.6 64.5 22.9 16.0 40.2

Snap+ Mesh R-CNN 41.4 74.7 28.1 42.6 20.1 50.4 2.9 3.7 0.0 72.4 64.0 29.9 23.0 49.7

Snap+ GCN Transformer 42.2 75.3 28.6 41.3 21.1 50.0 2.8 6.1 0.0 72.4 64.0 29.7 23.3 49.7

gradient efficiently via

∂L
∂t

= CGSolve

(

Q⊺,
∂L
∂x⋆

)

. (12)

We will next explain how to incorporate our surface snap-

ping layer into deep nets for shape reconstruction.

3.2. Surface Snapping for Shape Reconstruction

To apply our surface snapping layer, we consider two main

shape reconstruction paradigms. We also discuss how to

obtain the surface normal estimation from an image.

Surface snapping with explicit models. Surface snapping

can be applied to models which use an explicit mesh repre-

sentation (Wang et al., 2018; Gkioxari et al., 2019). These

models start with an initial estimate of the object mesh

M̂
0
= (V̂ 0, F̂), e.g., a sphere (Wang et al., 2018) or a cubi-

fied mesh obtained from voxel prediction (Gkioxari et al.,

2019). Next, these models iteratively update the initial mesh

with L refinement modules to update the vertices (Gkioxari

et al., 2019; Lin et al., 2021), i.e., refinement modules di-

rectly operate on meshes.

As the surface snapping layer also takes meshes as input, it

naturally fits the design of explicit models with refinement

modules. Specifically, we insert our surface snapping layer

after each refinement module. See Fig. 2 for a high-level il-

lustration. We back-propagate through the surface snapping

layer and train the weighting term α jointly with the other

differentiable layers. See §3.3 for details.

Surface Snapping with implicit models. The surface snap-

ping layer can also be incorporated into models which use

an implicit representation. Given an image, implicit models

reconstruct objects via an implicit function, e.g., a function

predicting the sign distance of a point to the surface (Park

et al., 2019) or predicting whether a point lies inside or

outside the mesh (Mescheder et al., 2019). Subsequently, a

marching cube algorithm is used to extract object meshes.

Hence, we incorporate the surface snapping layer after the

marching cube algorithm to snap the mesh vertices to the

estimated surface normals. As the classic marching cubes

algorithm is not differentiable, we do not train the surface

snapping layer jointly with the implicit function. This could

potentially be addressed by levering differentiable marching

cubes techniques (Liao et al., 2018).

Normal estimation model. For a fair comparison we train

a transformer-based dense prediction network (Ranftl et al.,

2021) to predict surface normals on the same training data

that is used for shape reconstruction. Note, the surface

normals are extracted from ground truth meshes. I.e., we do

not use any additional data beyond what is already provided

in datasets for this task. Further note, the obtained surface

normals only capture the visible portion of the object. To

obtain the face normals N̂ , we align the surface normal at

each pixel to a face F̂i. To do so, we rasterize the predicted

mesh M̂
l−1

for each l ∈ {1, . . . , L} to obtain the region

that each face F̂i projects to in the image plane, as well as

5

Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction

Table 3. Quantitative comparison on Pix3D dataset using the setup
in (Zhang et al., 2021). We report per-category Chamfer distance
and the averaged Chamfer distance (↓) scaled by 103. Green
indicates better results with surface snapping.

Method bed bkcs chair desk sofa table tool wrdrb misc Avg

AtlasNet (Groueix et al., 2018) 9.03 6.91 8.37 8.59 6.24 19.46 6.95 4.78 40.05 12.26

TMN (Pan et al., 2019) 7.78 5.93 6.86 7.08 4.25 17.42 4.13 4.09 23.68 9.03

MGN (Nie et al., 2020) 5.99 6.56 5.32 5.93 3.36 14.19 3.12 3.83 26.93 8.36

IM3D (Zhang et al., 2021) 4.11 3.96 5.45 7.85 5.61 11.73 2.39 4.31 24.65 7.78

Snap+ IM3D 3.98 3.91 5.05 7.90 5.32 11.61 2.47 4.06 24.99 7.70

information about its visibility. Finally, to compute the face

normal N̂i, we average the surface normals within each face

region. Importantly, we set the normal of the non-visible

faces to 0 to ensure that non-visible faces do not influence

the output of the surface snapping layer.

3.3. Training Details

Following Gkioxari et al. (2019), we train both the model pa-

rameters of the refinement modules and the surface snapping

strength α in Eq. (2) by minimizing the sum of a Chamfer

loss Lcham, the normal distance Lnorm, and an edge regular-

izer Ledge, i.e., L = Lcham + λ1Lnorm + λ2Ledge.

Given a predicted mesh M̂
L

and a ground-truth mesh M,

we first sample faces from each of the meshes. The prob-

ability of sampling a face is proportional to the area of

the face. We then uniformly sample points from the sur-

face of the face using differentiable sampling (Smith et al.,

2019). Let the two sets of sampled point clouds be P̂
and P where P̂ is sampled from the predicted mesh M̂

L

and P is sampled from the ground-truth mesh M. Let

Γ(P, P̂) = {(p, argminp̂∈P̂ ∥p− p̂∥), ∀p ∈ P} be the set

of pairs of every point in P and its nearest neighbor in P̂ .

The bi-directional Chamfer and normal losses between P
and P̂ are defined as

Lcham(P̂,P) = |P̂|−1
∑

(p̂,p)∈Γ(P̂,P)

∥p̂− p∥2+|P|−1
∑

(p,p̂)∈Γ(P,P̂)

∥p− p̂∥2 ,

Lnorm(P̂,P) = −|P̂|−1
∑

(p̂,p)∈Γ(P̂,P)

|n⊺

pnp̂|− |P|−1
∑

(p,p̂)∈Γ(P,P̂)

|n⊺

p̂np|,

where |P| is the cardinality of P and np denotes the unit

normal vector of the face that point p ∈ R
3 is sampled

from. Note that the normal loss is not the normal cost for

surface snapping. The normal loss uses ground-truth normal

from the ground-truth mesh, which is unavailable at test

time. Contrarily, the normal cost uses the estimated surface

normal which can be used to solve the objective in Eq. (2)

to optimality at test time. Finally, the edge regularizer of a

mesh penalizing long edges is given by

Ledge(V̂
L, F̂) =

1

NF

NF∑

i=1

∑

j,k∈F̂i

∥
∥
∥V̂

L
j − V̂ L

k

∥
∥
∥

2

. (13)

4. Experiments

We quantitatively evaluate the proposed surface snapping

layer on two widely used datasets, Pix3D (Sun et al., 2018)

and ShapeNet (Chang et al., 2015). We show that the pro-

posed surface snapping layer enhances existing explicit

methods (Mesh R-CNN (Gkioxari et al., 2019) and GCN

Transformer inspired by Lin et al. (2021)) and implicit meth-

ods (Im3D (Zhang et al., 2021)). We also show qualitative

comparisons illustrating the improved meshes, e.g., sharper

edges and smooth surfaces, when using surface snapping

layers. Finally, we conclude with an ablation study and

discussion.

4.1. Pix3D Setup & Results

Pix3D (Sun et al., 2018) is a challenging dataset for sin-

gle image reconstruction. It consists of 10,069 real-world

photos of nine object categories with potentially cluttered

backgrounds and different lighting conditions. Evaluation

for the proposed surface snapping with the explicit meth-

ods follows Gkioxari et al. (2019), where object bounding

boxes are unknown, which we refer to as Setup ❶. Evalua-

tion for the proposed surface snapping with implicit meth-

ods follows Zhang et al. (2021), where ground truth object

bounding boxes are given, which we refer to as Setup ❷.

Evaluation metrics. As explicit and implicit methods use

different evaluation setups, we strictly follow the corre-

sponding setup for a fair comparison. Setup ❶: Gkioxari

et al. (2019) report average precision of the bounding box

AP box and average precision of the mask APmask, as well

as average precision of the shape APmesh, which is defined

as the average area under the precision-recall curve, per-

category, with F1@0.3 and a threshold of 0.5. In addition,

we also report the normal consistency metric which is one

minus the normal distance described in §3.3. We report the

normal consistency computed on the whole shape (Normal)

and on the visible part only (NormalVis). Setup ❷: Zhang

et al. (2021) report per-category Chamfer distance and the

averaged Chamfer distance. The predicted mesh is aligned

with the ground-truth mesh via ICP (Arun et al., 1987) and

10K points are sampled to compute the Chamfer distance.

Baselines. For Setup ❶, we compare our approach to five

methods: Voxel-Only, Sphere-Init, Pixel2Mesh+, Mesh R-

CNN (Gkioxari et al., 2019) and GCN Transformer.

Mesh R-CNN extends Mask R-CNN for multi-object shape

reconstruction. This is done by first predicting an inter-

mediate voxel representation and refining it to a mesh

output for each of the objects. Pixel2Mesh+ augments

Pixel2Mesh (Wang et al., 2018) by attaching an ROI head to

6

Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction

Input Ground-truth Mesh R-CNN Snap+ Mesh R-CNN GCN Transformer Snap+ GCN Transformer

Figure 3. Qualitative comparisions to baselines Mesh R-CNN (Gkioxari et al., 2019) and GCN Transformer on Pix3D.

Mask R-CNN to support multi-object shape reconstruction.

The Voxel-Only method refers to the intermediate voxel rep-

resentation of Mesh R-CNN. The Sphere-Init refers to the

baseline of initializing from a sphere mesh and performing

vertex refinements, similar to Pixel2Mesh+ but without sub-

division. Finally, GCN Transformer is a baseline inspired

by Lin et al. (2021), where we apply the self-attention mech-

anism before graph convolutions in a refinement stage.

For Setup ❷, we compare to baselines AtlasNet (Groueix

et al., 2018), TMN (Pan et al., 2019), MGN (Nie et al.,

2020), and IM3D (Zhang et al., 2021).

Quantitative results (Setup ❶). We evaluate using the

proposed surface snapping with the Mesh R-CNN frame-

work and provide quantitative results for the Pix3D split S1

in Tab. 1 and for the Pix3D split S2 in Tab. 2. Note that split

S2 is more challenging than split S1 as split S2 guarantees

that 3D models which appear in training do not appear in

the test set, while split S1 does not guarantee this.

On both splits, we find that incorporating surface snapping

generally improves (shown in green) the quality of the re-

constructed shape in terms of APmesh when compared to the

corresponding baselines. As expected, the face normals of

the mesh predicted with the proposed surface snapping are

more consistent with the ground truth. We observe that sur-

face snapping improves nearly all baselines on the normal

consistency metric computed on both the whole shape (Nor-

mal) and the visible part only (NormalVis). These results

indicate that surface snapping effectively utilizes the esti-

mated normals and optimizes the vertices of the predicted

mesh to snap to the observed geometry.

Quantitative results (Setup ❷). We evaluate using the

proposed surface snapping following the setup in (Zhang

et al., 2021) and compare it to the baselines in Tab. 3. We

observe that incorporating surface snapping with existing

methods further improves the reconstruction quality.

Qualitative results. We illustrate the effectiveness of the

7

Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction

Input Ground-truth Mesh R-CNN Snap+ Mesh R-CNN

Figure 4. Qualitative results of our method compared to the baseline Mesh R-CNN (Gkioxari et al., 2019) on ShapeNet.

Table 4. Quantitative comparison on ShapeNet (Best). Green
indicates better results with surface snapping.

Method F1@0.1(↑) F1@0.3(↑) F1@0.5(↑) Chamfer(↓) Normal(↑)

Sphere-Init 38.3 86.5 95.1 0.132 0.711

Pixel2Mesh+ (Wang et al., 2018) 38.3 86.6 95.1 0.132 0.707

Mesh R-CNN (Gkioxari et al., 2019) 39.2 86.8 95.1 0.133 0.725

Snap+ Sphere-Init 37.6 85.6 94.5 0.133 0.716

Snap+ Pixel2Mesh+ 37.0 85.3 94.6 0.134 0.717

Snap+ Mesh R-CNN 38.0 86.0 94.7 0.134 0.727

Table 5. Quantitative comparison on ShapeNet (Pretty). Green
indicates better results with surface snapping.

Method F1@0.1(↑) F1@0.3(↑) F1@0.5(↑) Chamfer(↓) Normal(↑)

Sphere-Init 34.5 82.2 92.9 0.175 0.718

Pixel2Mesh+ (Wang et al., 2018) 34.9 82.3 92.9 0.175 0.727

Mesh R-CNN (Gkioxari et al., 2019) 34.8 82.4 93.1 0.176 0.699

Snap+ Sphere-Init 34.6 82.2 92.9 0.174 0.722

Snap+ Pixel2Mesh+ 34.9 82.3 93.0 0.175 0.731

Snap+ Mesh R-CNN 34.9 82.4 93.1 0.171 0.707

proposed method for mesh reconstruction on Pix3D images

in Fig. 3. We train a dense prediction transformer (Ranftl

et al., 2021) using the Pix3D data to predict surface nor-

mals. We observe that the results with surface snapping are

generally less noisy and more visually appealing.

4.2. ShapeNet Setup & Results

ShapeNet (Chang et al., 2015) is a commonly used synthetic

dataset for training and evaluating single image object re-

construction. We use the rendered images provided by Choy

et al. (2016) and use the training and test splits provided

by Wang et al. (2018). The rendered images have a black

background. The training split consists of 840,189 images

and the test split contains 210,051 images. All images are

of size 137×137.

Evaluation Metrics. For evaluation, we report the Cham-

fer distance and normal consistency (one minus normal

distance) as described in §3.3 as well as the F-score with

various distance thresholds following Gkioxari et al. (2019).

Baselines. We use the same set of explicit baselines as

we did for Pix3D data, except for GCN Transformer as it

utilizes too much GPU memory for the given batch size.

Quantitative results. We provide the quantitative results

for ShapeNet in Tab. 4 and Tab. 5. Following Gkioxari et al.

(2019), we evaluate baselines using two settings: Pretty

and Best. The two settings differ in the shape regularizer.

Specifically, the Pretty setting enables the edge regularizer,

while the Best does not use one. While the images are of low

resolution, which makes it challenging to estimate accurate

normals, we still find our method to improve the normal

consistency metric in the Best setting and to improve the

Chamfer distance in the Pretty setting.

Qualitative results. In Fig. 4, we visualize the recon-

structed shapes on ShapeNet. Incorporating surface snap-

ping leads to less noisy reconstruction that better matches

the observed geometry.

4.3. Additional analysis

Ablation study on α. We study the effect of the weight α

on the normal cost in the surface snapping objective given

8

Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction

Table 6. Ablation on α in Eq. (2) for Snap+ Mesh R-CNN.

Pix3D S1 Pix3D S2

APmesh Normal NormalVis APmesh Normal NormalVis

α = 0.0 53.4 21.5 45.4 29.1 21.4 46.5
α = 1.0 53.4 22.2 47.1 28.7 20.8 44.7
α = 2.0 52.7 21.4 44.8 28.5 21.6 44.6
α learned 54.1 23.0 48.8 29.9 23.0 49.7

Input Surface Normal Failure Case

Figure 5. Failure mode of our approach. If the surface normal
estimation is not accurate the proposed reconstruction degrades.

in Eq. (2) using Mesh R-CNN. We report quantitative results

of models trained with different values of α in Tab. 6. We

find the learning of α to improve the overall performance.

Surface snapping implementation comparison. We ablate

different aspects of our implementation and report inference

time and memory usage on meshes with 5,280 faces with a

batch size of two. We compare the following settings (on

an Nvidia Tesla V100 GPU): (a) Without considering any

structure in the system of equations, the solver reports an

out-of-memory error; (b) Leveraging the sparsity structure

and solving with torch.solve takes 1.71s and consumes

4437MiB in GPU memory; (c) Leveraging the sparsity struc-

ture and using the developed CGSolver takes 0.46s and

consumes 1203MiB in GPU memory.

Limitations. In Fig. 5, we show that surface snapping

struggles when the estimated surface normal is not accurate.

On the flip side, we expect the proposed technique to further

improve if normal estimation accuracy increases.

5. Conclusion

We develop surface snapping, an optimization layer, for

3D shape reconstruction. This layer ensures that the re-

constructed shape ‘snaps’ to predicted normal estimates

by solving an optimization problem that encourages the

edges in the predicted mesh to be orthogonal to the pre-

dicted normals. To run this layer efficiently, we develop a

conjugate-gradient-based method that leverages the sparsity

of the problem. During training, we back-propagate through

this layer via implicit differentiation. On the challenging

Pix3D and ShapeNet datasets, we show that incorporating

surface snapping into existing methods leads to competitive

shape reconstruction performance and yields results with

improved normal consistency. More generally, we believe

advances in scene understanding can aid recently developed

monocular object reconstruction techniques. The developed

surface snapping is a step in this direction that explicitly

utilizes estimated surface normal geometry.

Acknowledgments: Work supported in part by NSF Grants

2008387, 2045586, 2106825, MRI 1725729, and NIFA award

2020-67021-32799. We thank NVIDIA for providing a GPU.

References

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond,

S., and Kolter, J. Z. Differentiable convex optimization

layers. In Proc. NeurIPS, 2019. 2

Amos, B. and Kolter, J. Z. OptNet: Differentiable optimiza-

tion as a layer in neural networks. In Proc. ICML, 2017.

1, 2

Amos, B., Jimenez, I., Sacks, J., Boots, B., and Kolter, J. Z.

Differentiable MPC for end-to-end planning and control.

In Proc. NeurIPS, 2018. 2

Arun, K. S., Huang, T. S., and Blostein, S. D. Least-squares

fitting of two 3-D point sets. 1987. 6

Bae, G., Budvytis, I., and Cipolla, R. Estimating and exploit-

ing the aleatoric uncertainty in surface normal estimation.

In Proc. ICCV, 2021. 1

Bai, S., Kolter, J. Z., and Koltun, V. Deep equilibrium

models. In Proc. NeurIPS, 2019. 2

Bai, S., Koltun, V., and Kolter, J. Z. Multiscale deep equi-

librium models. In Proc. NeurIPS, 2020. 2

Bai, S., Geng, Z., Savani, Y., and Kolter, J. Z. Deep equilib-

rium optical flow estimation. In IEEE Conf. Comput. Vis.

Pattern Recog., 2022. 2

Bansal, A., Russell, B., and Gupta, A. Marr revisited: 2D-

3D alignment via surface normal prediction. In Proc.

CVPR, 2016. 1, 3

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P.,

Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S.,

Su, H., Xiao, J., Yi, L., and Yu, F. ShapeNet: An

information-rich 3D model repository. arXiv preprint

arXiv:1512.03012, 2015. 2, 6, 8

Chen, Z. and Zhang, H. Learning implicit fields for genera-

tive shape modeling. In Proc. CVPR, 2019. 1, 2

Chen, Z., Tagliasacchi, A., and Zhang, H. BSP-Net: Gener-

ating compact meshes via binary space partitioning. In

Proc. CVPR, 2020. 2

Choy, C. B., Xu, D., Gwak, J., Chen, K., and Savarese, S.

3D-R2N2: A unified approach for single and multi-view

3D object reconstruction. In Proc. ECCV, 2016. 8

9

Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction

Dai, A., Ruizhongtai Qi, C., and Nießner, M. Shape comple-

tion using 3D-encoder-predictor cnns and shape synthesis.

In Proc. CVPR, 2017. 2

Deng, B., Genova, K., Yazdani, S., Bouaziz, S., Hinton,

G., and Tagliasacchi, A. CvxNet: Learnable convex

decomposition. In Proc. CVPR, 2020. 2

Do, T., Vuong, K., Roumeliotis, S. I., and Park, H. S. Sur-

face normal estimation of tilted images via spatial rectifier.

In Proc. ECCV, 2020. 1

Duggal, S. and Pathak, D. Topologically-aware deformation

fields for single-view 3d reconstruction. In Proc. CVPR,

June 2022. 2

Eigen, D. and Fergus, R. Predicting depth, surface normals

and semantic labels with a common multi-scale convolu-

tional architecture. In Proc. ICCV, 2015. 1, 3

Fouhey, D., Gupta, A., and Hebert, M. Data-driven 3D

primitives for single image understanding. In Proc. ICCV,

2013. 3

Gao, W., Wang, A., Metzer, G., Yeh, R. A., and Hanocka, R.

Tetgan: A convolutional neural network for tetrahedral

mesh generation. 2022. 2

Gkioxari, G., Malik, J., and Johnson, J. Mesh R-CNN. In

Proc. ICCV, 2019. 2, 5, 6, 7, 8

Gould, S., Hartley, R., and Campbell, D. Deep declarative

networks. IEEE TPAMI, Aug 2022. 1

Groueix, T., Fisher, M., Kim, V. G., Russell, B. C., and

Aubry, M. A papier-mâché approach to learning 3D

surface generation. In Proc. CVPR, 2018. 1, 2, 6, 7

He, K., Gkioxari, G., Dollár, P., and Girshick, R. Mask

R-CNN. In Proc. ICCV, 2017. 2

Hickson, S., Raveendran, K., Fathi, A., Murphy, K., and

Essa, I. Floors are Flat: Leveraging Semantics for Real-

Time Surface Normal Prediction. In ICCV Workshop,

2019. 1, 3

Horn, B. K. Obtaining shape from shading information. The

psychology of computer vision, 1975. 1

Huang, Z., Bai, S., and Kolter, J. Z. (Implicit)2: Implicit

layers for implicit representations. Adv. Neural Inform.

Process. Syst., 2021. 2

Izadinia, H., Shan, Q., and Seitz, S. M. IM2CAD. In Proc.

CVPR, 2017. 2

Kundu, A., Li, Y., and Rehg, J. M. 3D-RCNN: Instance-

level 3D object reconstruction via render-and-compare.

In Proc. CVPR, 2018. 2

Ladický, L., Zeisl, B., and Pollefeys, M. Discriminatively

trained dense surface normal estimation. In Proc. ECCV,

2014. 1, 3

Liao, S., Gavves, E., and Snoek, C. G. M. Spherical re-

gression: Learning viewpoints, surface normals and 3D

rotations on n-spheres. In Proc. CVPR, 2019. 1

Liao, Y., Donne, S., and Geiger, A. Deep marching cubes:

Learning explicit surface representations. In Proc. CVPR,

2018. 5

Lin, K., Wang, L., and Liu, Z. Mesh graphormer. In Proc.

ICCV, 2021. 5, 6, 7

Mahmud, J., Price, T., Bapat, A., and Frahm, J.-M.

Boundary-aware 3D building reconstruction from a single

overhead image. In Proc. CVPR, 2020. 2

Marr, D. Vision: A Computational Investigation into the

Human Representation and Processing of Visual Informa-

tion. MIT Press, 1982. 1

Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S.,

and Geiger, A. Occupancy networks: Learning 3D recon-

struction in function space. In Proc. CVPR, 2019. 1, 2,

5

Mo, K., Zhu, S., Chang, A. X., Yi, L., Tripathi, S., Guibas,

L. J., and Su, H. PartNet: A large-scale benchmark for

fine-grained and hierarchical part-level 3D object under-

standing. In Proc. CVPR, 2019. 2

Nash, C., Ganin, Y., Eslami, S. A., and Battaglia, P. Poly-

Gen: An autoregressive generative model of 3D meshes.

In Proc. ICML, 2020. 2

Nayar, S. K., Ikeuchi, K., and Kanade, T. Shape from

interreflections. IJCV, 1991. 1

Nie, Y., Han, X., Guo, S., Zheng, Y., Chang, J., and Zhang,

J. J. Total3DUnderstanding: Joint layout, object pose

and mesh reconstruction for indoor scenes from a single

image. In Proc. CVPR, 2020. 2, 6, 7

Pan, J., Han, X., Chen, W., Tang, J., and Jia, K. Deep

mesh reconstruction from single rgb images via topology

modification networks. In Proc. ICCV, 2019. 6, 7

Park, J. J., Florence, P., Straub, J., Newcombe, R., and Love-

grove, S. DeepSDF: Learning continuous signed distance

functions for shape representation. In Proc. CVPR, 2019.

1, 2, 5

Paschalidou, D., Gool, L. V., and Geiger, A. Learning unsu-

pervised hierarchical part decomposition of 3D objects

from a single RGB image. In Proc. CVPR, 2020. 2

10

Surface Snapping Optimization Layer for Single Image Object Shape Reconstruction

Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., and

Geiger, A. Convolutional occupancy networks. In Proc.

ECCV, 2020. 2

Pentland, A. P. A new sense for depth of field. IEEE TPAMI,

1987. 1

Pokle, A., Geng, Z., and Kolter, Z. Deep equilibrium ap-

proaches to diffusion models. In Proc. NeurIPS, 2022.

2

Qi, X., Liu, Z., Liao, R., Torr, P. H., Urtasun, R., and Jia,

J. GeoNet++: Iterative geometric neural network with

edge-aware refinement for joint depth and surface normal

estimation. IEEE TPAMI, 2020. 1, 2

Ranftl, R., Bochkovskiy, A., and Koltun, V. Vision trans-

formers for dense prediction. Proc. ICCV, 2021. 5, 8

Ren, S., He, K., Girshick, R., and Sun, J. Faster R-CNN:

Towards real-time object detection with region proposal

networks. In Proc. NeurIPS, 2015. 2

Smith, E., Fujimoto, S., Romero, A., and Meger, D. Geomet-

rics: Exploiting geometric structure for graph-encoded

objects. In Proc. ICML, 2019. 6

Sun, X., Wu, J., Zhang, X., Zhang, Z., Zhang, C., Xue, T.,

Tenenbaum, J. B., and Freeman, W. T. Pix3D: Dataset

and methods for single-image 3D shape modeling. In

Proc. CVPR, 2018. 2, 6

Tatarchenko, M., Dosovitskiy, A., and Brox, T. Octree gen-

erating networks: Efficient convolutional architectures

for high-resolution 3D outputs. In Proc. ICCV, 2017. 1,

2

Tulsiani, S., Gupta, S., Fouhey, D. F., Efros, A. A., and

Malik, J. Factoring shape, pose, and layout from the 2D

image of a 3D scene. In Proc. CVPR, 2018. 2

Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., and Jiang, Y.-G.

Pixel2Mesh: Generating 3D mesh models from single

RGB images. In Proc. ECCV, 2018. 1, 2, 5, 6, 8

Wang, P., Shen, X., Russell, B., Cohen, S., Price, B., and

Yuille, A. L. Surge: Surface regularized geometry esti-

mation from a single image. In Proc. NeurIPS, 2016. 1,

3

Wang, P.-W., Donti, P., Wilder, B., and Kolter, Z. SATNet:

Bridging deep learning and logical reasoning using a

differentiable satisfiability solver. In Proc. ICML, 2019.

2

Wang, R., Geraghty, D., Matzen, K., Szeliski, R., and Frahm,

J.-M. VPLNet: Deep single view normal estimation with

vanishing points and lines. In Proc. CVPR, 2020. 1

Wang, X., Fouhey, D., and Gupta, A. Designing deep net-

works for surface normal estimation. In Proc. CVPR,

2015. 1, 3

Wolff, L. B., Shafer, S. A., and Healey, G. E. Physics-Based

Vision: Principles and Practice: Radiometry. 1993. 1

Wu, J., Wang, Y., Xue, T., Sun, X., Freeman, B., and Tenen-

baum, J. MarrNet: 3D shape reconstruction via 2.5D

sketches. Proc. NeurIPS, 30, 2017. 1, 2

Wu, R., Zhuang, Y., Xu, K., Zhang, H., and Chen, B. PQ-

NET: A generative part seq2seq network for 3D shapes.

In Proc. CVPR, 2020. 2

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X.,

and Xiao, J. 3D shapenets: A deep representation for

volumetric shapes. In Proc. CVPR, 2015. 1, 2

Yeh, R. A., Hu, Y.-T., Ren, Z., and Schwing, A. G. Total

variation optimization layers for computer vision. In Proc.

CVPR, 2022. 2

Yu, Z., Peng, S., Niemeyer, M., Sattler, T., and Geiger, A.

Monosdf: Exploring monocular geometric cues for neural

implicit surface reconstruction. Proc. NeurIPS, 2022. 1

Zamir, A. R., Sax, A., Cheerla, N., Suri, R., Cao, Z., Malik,

J., and Guibas, L. J. Robust learning through cross-task

consistency. In Proc. CVPR, 2020. 1

Zhang, C., Cui, Z., Zhang, Y., Zeng, B., Pollefeys, M., and

Liu, S. Holistic 3D scene understanding from a single

image with implicit representation. In Proc. CVPR, 2021.

2, 6, 7

Zhang, Z., Cui, Z., Xu, C., Yan, Y., Sebe, N., and Yang,

J. Pattern-affinitive propagation across depth, surface

normal and semantic segmentation. In Proc. CVPR, 2019.

1

Zou, C., Yumer, E., Yang, J., Ceylan, D., and Hoiem, D.

3D-PRNN: Generating shape primitives with recurrent

neural networks. In Proc. ICCV, 2017. 2

11

