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Abstract

While it has long been empirically observed that
adversarial robustness may be at odds with stan-
dard accuracy and may have further disparate im-
pacts on different classes, it remains an open ques-
tion to what extent such observations hold and
how the class imbalance plays a role within. In
this paper, we attempt to understand this question
of accuracy disparity by taking a closer look at
linear classifiers under a Gaussian mixture model.
We decompose the impact of adversarial robust-
ness into two parts: an inherent effect that will
degrade the standard accuracy on all classes due
to the robustness constraint, and the other caused
by the class imbalance ratio, which will increase
the accuracy disparity compared to standard train-
ing. Furthermore, we also show that such effects
extend beyond the Gaussian mixture model, by
generalizing our data model to the general fam-
ily of stable distributions. More specifically, we
demonstrate that while the constraint of adversar-
ial robustness consistently degrades the standard
accuracy in the balanced class setting, the class
imbalance ratio plays a fundamentally different
role in accuracy disparity compared to the Gaus-
sian case, due to the heavy tail of the stable distri-
bution. We additionally perform experiments on
both synthetic and real-world datasets to corrobo-
rate our theoretical findings. Our empirical results
also suggest that the implications may extend to
nonlinear models over real-world datasets. Our
code is publicly available on GitHub1.
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1. Introduction
The existence and prevalence of adversarial examples (Dalvi
et al., 2004; Szegedy et al., 2013; Goodfellow et al., 2015) in
the state-of-the-art deep learning models have made adver-
sarial robustness an active field of research, where human-
imperceptible perturbations to the original data can arbi-
trarily disrupt the model prediction. However, it has been
empirically observed that the improvement in robustness
usually comes with costs in accuracy. In particular, there
might exist a trade-off between robust accuracy and standard
accuracy (Tsipras et al., 2019; Kolter & Madry, 2018), and it
may also lead to the so-called accuracy disparity (Chi et al.,
2021), a notion of unfairness in the literature of algorithmic
fairness. In particular, it is shown that when compared to
standard training, the constraint of adversarial robustness
might further exacerbate the discrepancy of standard ac-
curacy among difference classes (Croce et al., 2021; Benz
et al., 2021a;b).

Despite fruitful and intriguing empirical observations, rig-
orous understanding of how adversarial robustness affects
standard accuracy or accuracy disparity has not been ex-
tensively explored from a theoretical perspective. In fact,
it is not clear whether such a trade-off is inherent, even in
the linear setting under a Gaussian mixture model. If it is,
then what are the fundamental factors that contribute to this
potential drop of accuracy and the increase of accuracy dis-
parity? To the best of our knowledge, there are only a few
works (Tsipras et al., 2019; Xu et al., 2021; Ma et al., 2022)
that partially attempt to approach these problems. However,
the existing analyses are restricted to examples with specific
choices of parameters, which oversimplifies the problem and
makes it unclear whether the conclusions continue to hold
in more general settings. We provide further discussions on
the related work in Section 6.

Our Contributions. Towards answering the above ques-
tions, we provide a theoretical study of the impact of ad-
versarial robustness on accuracy disparity in the presence
of class imbalance (Johnson & Khoshgoftaar, 2019). We
consider the classification problem under a common Gaus-
sian mixture model with linear classifiers. We then further
generalize our analysis to a broader family of stable dis-
tributions. For each data distribution, we decompose the
impact of adversarial robustness into two parts, an intrinsic
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part that leads to the drop of standard accuracy and the class
imbalance part which will affect the accuracy disparity. Our
main contributions are summarized as follows:

• Under a common Gaussian mixture model and linear
classifiers, we reveal two effects of enforcing adver-
sarial robustness in binary classification. The first part
is inherent to the constraint of adversarial robustness
itself, which will degrade the standard accuracy due
to a change of direction of the optimal linear classifier.
The second part is caused by the class imbalance ratio
between the two classes under consideration, which
will increase the accuracy disparity compared to stan-
dard training due to a reduction of norm of the optimal
linear classifier.

• Inspired by our analysis, we further point out the equiv-
alence between robust training in classification and
regularized linear regression. Our observation helps
to explain the norm-shrinkage effect that happens in
robust learning, which could be of independent theo-
retical interest.

• Going beyond the Gaussian mixture model, we show
that when the data follow a mixture of heavy-tailed sta-
ble distributions, the intrinsic effect of robustness per-
sists and the standard accuracy consistently decreases
even when the data is balanced among the two classes.
On the other hand, the class imbalance ratio plays a
fundamentally different role compared to that in the
Gaussian case, suggesting that the tail property of the
distribution also serves as a crucial factor in the accu-
racy disparity problem.

• We conduct experiments on both synthetic and real-
world datasets. The empirical results not only cor-
roborate our theoretical findings, but also suggest that
the implications may extend to nonlinear models over
real-world datasets.

2. Preliminaries
We first give an overview of the problem studied in this pa-
per. We then proceed to introduce the necessary background
and notation used throughout the paper.

Problem setup. For the ease of presentation, we focus
on a binary classification task in this paper. To start with,
we assume that the data are generated through a mixture
of distribution P+ and P−: conditioning on y = ±1, we
have X ∼ P±, respectively. As we shall see shortly, one
crucial ingredient in understanding the impact of adversar-
ial robustness on accuracy disparity is the imbalance fac-
tor R > 1 between the marginal probabilities of different
classes: R := Pr(y = −1)/Pr(y = +1), meaning that
there is a larger portion of negative-class examples in the

population. Following prior works (Tsipras et al., 2019; Xu
et al., 2021), for the model, we consider a linear classifier
and couple it with a sign function sgn to obtain the output
f(x;w, b) := sgn(w⊤x+ b). Finally, since we are mainly
interested in understanding the inherent impact caused by
adversarial robustness, throughout the paper we shall focus
on the infinite data regime to remove the noise introduced
by finite samples, meaning that we will study the population
losses instead of their empirical counterparts.

Objective functions. The standard 0-1 population loss
(standard loss) is defined as follows:

ℓstd(w, b) := Pr(f(x;w, b) ̸= y)

=
R

R+ 1
P(w⊤x+ b ≥ 0 | y = −1)︸ ︷︷ ︸

Part I: ℓ−std

+
1

R+ 1
P(w⊤x+ b ≤ 0 | y = +1)︸ ︷︷ ︸

Part II: ℓ+std

.

Similarly, the 0-1 adversarial loss (Kurakin et al., 2016;
Madry et al., 2018) under ℓp-perturbation (p ≥ 1) and
radius ε (robust ℓp loss), is defined as:

ℓrob,p,ε(w, b) := Pr(∃∥δ∥p ≤ ε, s.t. f(x+ δ;w, b) ̸= y)

=
R

R+ 1
P(w⊤x+ b ≥ −ε∥w∥q | y = −1)

+
1

R+ 1
P(w⊤x+ b ≤ ε∥w∥q | y = +1),

where 1/p+1/q = 1 and the second equation follows from
the Hölder’s inequality. When the context is clear, we will
omit the use of ε in ℓrob,p,ε. It is straightforward to see that
minimizing ℓrob,p will lead to adversarial robustness.

Accuracy disparity. Note that Part II and I in the defi-
nition of the standard loss are exactly the population loss
for the minority and majority classes, which we denote as
ℓ+std and ℓ−std, respectively. The standard accuracy for both
classes then writes as acc± := 1 − ℓ±std. The key quantity
that we will focus on in this paper is the accuracy dispar-
ity (Chi et al., 2021) between the two classes, defined as

AD(w, b) := acc−(w, b)− acc+(w, b) = ℓ+std(w, b)− ℓ−std(w, b).

The notion of accuracy disparity in our context focuses on
the performance gap of a model on different sub-groups of
the overall population, where each group is indexed by the
corresponding class label (Santurkar et al., 2021; Xu et al.,
2021). Accuracy disparity has recently gained more atten-
tion in the literature of algorithmic fairness (Buolamwini
& Gebru, 2018; Chi et al., 2021; Nanda et al., 2021), and
we are interested in understanding the role of robustness
in accuracy disparity. To proceed, we first characterize the
optimal solutions of the standard loss and the robust ℓp loss

wstd, bstd = argmin
w,b

ℓstd(w, b), wrob,p, brob,p = argmin
w,b

ℓrob,p(w, b).

We then analyze the changes of ℓ+std and ℓ−std as well as the
accuracy disparity when we switch the measurements from
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the optimal standard classifier to the optimal robust classifier.
Specifically, we are most interested in how these changes
depend on the class imbalance ratio R. In other words, we
will try to understand the price (i.e., the decrease of the
standard loss) paid by a robust classifier in the presence of
class imbalance. We emphasize that accuracy disparity is
defined over the standard loss for both the standard classifier
and robust classifier. There is another concept, known as
robustness disparity (Nanda et al., 2021), which is defined
over the robust loss; it is orthogonal to accuracy disparity
and will not be covered in this paper.

Notation. We use Φ to denote the cumulative distribution
function of the standard normal distribution. For a vector
u, |u| means taking the absolute value per coordinate, ui

denotes the i-th coordinate of u, and ∥u∥p represents the
ℓp-norm of u. For two vectors v and v′, we use the notation
v ∥ v′ to indicate they are parallel and v ∦ v′ when they
are not. We denote 1d as the all-one vector with dimension
d. For 1 ≤ p ≤ ∞, we use q to denote its dual index,
which is defined through 1/p + 1/q = 1. Finally, for a
multivariate function f , the subdifferential set at x is defined
as ∂f(x) := {g : ∀y, f(y) ≥ f(x)+ g⊤(y− x)}, and each
element within is called a subgradient.

3. Gaussian Mixture: Robustness Implies
Accuracy Disparity

In this section, we will closely examine the accuracy dispar-
ity of robust classifiers when the data are drawn according to
a Gaussian mixture (Reynolds, 2009). Specifically, we are
interested in how enforcing the model to be robust affects the
accuracy disparity compared to standard training. While it
has been shown in a previous work (Xu et al., 2021) that ad-
versarial robustness does introduce severe accuracy disparity
when different classes exhibit different “difficulty levels” of
learning (i.e., different magnitude of variance) in a toy ex-
ample (as indicated by specific choices of mean, variance, as
well as p = ∞), in this section we consider a more general
setting where class imbalance is present, and we shall pro-
vide a comprehensive analysis by considering the following
objectives and data distributions: 1) adversarial robustness
with general ℓp-constraint (1 ≤ p ≤ ∞); 2) a Gaussian mix-
ture distribution with arbitrary mean and covariance matrix,
specifically, P+ = N (θ+,Σ) and P− = N (θ−,Σ).

In a nutshell, the overall effects of adversarial robustness are
separated into two parts: an inherent one that will decrease
the standard accuracy on all classes, and the other caused
additionally by the class imbalance ratio that will increase
the accuracy disparity compared to standard training.

Before introducing the main results, we highlight that lin-
ear models are sufficiently powerful for the classification
of Gaussian mixtures in both the standard and adversarial

sense. In fact, it is well known that the Bayes-optimal clas-
sifier of the standard loss is linear due to the Fisher’s linear
discriminant (Johnson et al., 2014); and it is further shown
in (Dobriban et al., 2020) that the Bayes-optimal robust
classifier is also linear.

3.1. Main Results

In what follows we will present a general result (Theorem
3.1) which characterizes the class-wise standard loss for
the optimal standard and robust classifiers. We will then
discuss several implications. Specifically, Theorem 3.3
(a direct corollary of Proposition 3.2) demonstrates the
effect of “decreased standard accuracy”, while Theorem
3.6 (derived form Proposition 3.5) demonstrates the effect
of “increased accuracy disparity”. The proofs are deferred
to Appendix A.1.

Theorem 3.1. Given the means θ+, θ−, covariance matrix
Σ and ℓp-constraint, let u, v ∈ Rd satisfy

Σu = θ+ − θ−, Σv = θ+ − θ− − 2ε∂∥v∥q, (1)

and q satisfy 1/p + 1/q = 1. We further set r2 := u⊤Σu,
and s2 = v⊤Σv. Then the class-wise standard loss ℓ±std of
the optimal standard classifier (wstd := u/r, bstd) satisfy

ℓ+std(wstd, bstd) = Φ

(
−⟨u, θ+ − θ−⟩+ 2 logR

2r

)
,

ℓ−std(wstd, bstd) = Φ

(
−⟨u, θ+ − θ−⟩ − 2 logR

2r

)
,

and the class-wise standard loss ℓ±std of the optimal robust
ℓp classifier (wrob,p := v/s, brob,p) satisfy

ℓ+std(wrob,p, brob,p) = Φ

(
−⟨v, θ+ − θ−⟩+ 2 logR

2s

)
,

ℓ−std(wrob,p, brob,p) = Φ

(
−⟨v, θ+ − θ−⟩ − 2 logR

2s

)
.

It is straightforward to see that the overall effects consist
of two parts: one intrinsic due to adversarial robustness
( ⟨u,θ

+−θ−⟩
2r v.s. ⟨v,θ+−θ−⟩

2s ), and the other caused by the
class imbalance ratio ( logR

r v.s. logR
s ). To compare the

optimal robust classifier and the optimal standard classifier,
we will show in the following analysis that 1) the intrinsic
part corresponds to a change in direction, and will degrade
the standard performance on both classes — exactly the
price paid by a classifier to be robust; 2) the class imbalance
part corresponds to a change in norm, and will increase the
error on the minority class while decreasing the error on the
majority class — hence exacerbating the accuracy disparity.

The intrinsic part—decreasing the standard accuracy.
The intrinsic part corresponds to a change in direction —
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in fact, we will show that the optimal solution moves to
a direction that incurs larger error due to the constraint of
robustness. This helps to explain the long-observed empir-
ical phenomenon that adversarial training (Kurakin et al.,
2016; Madry et al., 2018), which is an effective algorithm
for empirical robustness, often leads to degraded standard
accuracy (Tsipras et al., 2019; Kolter & Madry, 2018).

Proposition 3.2. For the intrinsic part, we have

⟨u, θ+ − θ−⟩
2r

≥ ⟨v, θ+ − θ−⟩
2s

.

Furthermore, so long as Σ
1
2wstd ∦ Σ

1
2wrob,p, the inequality

holds strictly.

When the covariance matrix is invertible, we are comparing
the directions of the two optimal classifiers in the standard
sense. For general covariance matrix, it is therefore natu-
ral for us to interpret Σ

1
2w as a general “direction” of w.

Proposition 3.2 now directly leads to the following result.

Theorem 3.3. When there is no class imbalance, i.e., R = 1,
enforcing adversarial robustness with ℓp-constraint will
degrade the standard accuracy on both classes, so long
as the “direction” of the optimal robust classifier is not
parallel to its counterpart, i.e., Σ

1
2wstd ∦ Σ

1
2wrob,p.

Remark 3.4. Intuitively, we expect that the direction of
the optimal classifier to be different for the standard and
robust loss. We will provide more discussions about this
observation in Section 4.2, where we demonstrate that this
is indeed the situation for diagonal matrices; but we also
identify a few cases where we can actually get a win-win
from both worlds.

The class imbalance part—increasing the accuracy dis-
parity. The class imbalance part corresponds to a change
in norm, which appears as the square root of quadratic form.
We will show: due to a shrinkage of norm, the standard loss
of the minority class increases while the opposite happens
for the majority class.

Proposition 3.5. For the class imbalance part, we have
u⊤Σu > v⊤Σv, which implies r > s.

In the special case Σ = Id, the square root of the quadratic
form becomes the standard Euclidean norm. It is therefore
natural for us to interpret the quantities r and s as realiza-
tions of a general “norm” (in fact, it is a seminorm defined
by Σ) . With Proposition 3.5 at hand, we are now ready to
state the following result, which says that class imbalance
will increase the accuracy disparity due to the constraint of
robustness, and such growth is monotonic with respect to
R in a reasonable range. This demonstrates an inherent
trade-off of adversarial robustness and accuracy parity.

Theorem 3.6. Define g(R) := AD(wrob,p, brob,p) −
AD(wstd, bstd) as the accuracy disparity gap. Then

• When R > 1, we have g(R) > 0, meaning that the
accuracy disparity of the optimal robust classifier is larger
than that of the optimal standard classifier;

• When R satisfies ℓ+std(wrob,p, brob,p) ≤ 0.5, i.e., the four
class-wise losses defined in Theorem 3.1 are upper-
bounded by 0.5, g(R) is an increasing function w.r.t. R.

Note that the direction and norm of the normal vector of a
linear classifier determines its decision boundary. Hence,
Theorem 3.1 and the above discussions completely charac-
terize and provide a fine-grained analysis of the impact of
adversarial robustness on the accuracy disparity of linear
classifiers over mixture of Gaussian distributions.

3.2. An Illustrating Example

We will now use an example that has been proposed and
studied in (Tsipras et al., 2019) to illustrate our main results
and demonstrate that Theorem 3.1 can be used to recover
and refine existing claims on this example. Specifically, let

θ+ = (η, · · · , η︸ ︷︷ ︸
dim=m

, γ, · · · , γ︸ ︷︷ ︸
dim=n

)⊤, θ− = −θ+,

where γ < ε < η and m + n = d. This corresponds to
two sets of features in the input space: the robust features
(coordinates with value η) and the non-robust features (co-
ordinates with value γ). Compared to Tsipras et al. (2019),
here we slightly modify the setting by making all coordi-
nates Gaussian and allowing the number of robust feature m
to be larger than one, though in general we would still expect
m ≪ n. For the other assumptions, we follow Tsipras et al.
(2019) to set Σ = Id and consider the standard perturbation
scheme, i.e., p = ∞.

The optimal standard and robust classifier. We can
assume without loss of generality that ∥w∥2 = 1, and the
optimal slope and intercept for the standard and robust clas-
sifier are given by (details deferred to Appendix A.2):

bstd = − logR

2
√

mη2 + nγ2
,

wstd,1 = · · · = wstd,m =
η√

mη2 + nγ2
,

wstd,m+1 = · · · = wstd,m+n =
γ√

mη2 + nγ2
,

brob,∞ = − logR

2(η − ε)
√
m
,

wrob,∞,1 = · · · = wrob,∞,m =
1√
m
,

wrob,∞,m+1 = · · · = wrob,∞,m+n = 0.

Therefore, the standard loss for both classes are
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ℓ+std(wstd, bstd) = Φ

(
logR

2
√

mη2 + nγ2
−
√
mη2 + nγ2

)
,

ℓ−std(wstd, bstd) = Φ

(
− logR

2
√
mη2 + nγ2

−
√

mη2 + nγ2

)
,

ℓ+std(wrob,∞, brob,∞) = Φ

(
logR

2
√
m(η − ε)2

−
√

mη2

)
,

ℓ−std(wrob,∞, brob,∞) = Φ

(
− logR

2
√

m(η − ε)2
−
√

mη2

)
.

By comparing ℓ+std and ℓ−std of the optimal standard classifier
as well as the optimal robust classifier, we shall see that
the effects of adversarial robustness indeed match the main
results. Specifically,

• When R = 1, enforcing adversarial robustness will
decrease the standard accuracy on both classes due to
a shrinkage on the non-robust features (

√
mη2 + nγ2

v.s.
√
mη2), which reflects “a change in direction”;

• When R > 1, class imbalance will increase the accu-
racy disparity due to a shrinkage on both the robust
features and the non-robust features (

√
mη2 + nγ2

v.s.
√

m(η − ε)2 in the denominator), which reflects
“a reduction of norm”.

Furthermore, when the number of robust features is small
and the number of non-robust features is relatively large
(corresponding to the case m ≪ n (Tsipras et al., 2019;
Ilyas et al., 2019)), the overall effect tends to be a significant
growth in accuracy disparity. As a concrete example, if we
set m = 4, n = 48, η = 1, ε = 0.75, γ = 0.5, R = e2, we
have ℓ+std(wstd, bstd), ℓ

−
std(wstd, bstd), ℓ

−
std(wrob,∞, brob,∞) <

0.001 whereas ℓ+std(wrob,∞, brob,∞) = 0.5, which means that
0.5 ≈ AD(wrob,∞, brob,∞) ≫ AD(wstd, bstd) ≈ 0.

3.3. Connection to (Regularized) Linear Regression

Here we delve deeper into the fundamental cause of the
norm shrinkage effect as demonstrated in the previous
section. Our main findings can be summarized into one
sentence: Eq. (1), which is used to solve for the op-
timal slopes wstd and wrob,p, enjoys the same form as
the optimal conditions of (regularized) linear regression.
Specifically, consider the following optimization problems

argmin
β

1

2N
∥Y −Xβ∥22, and argmin

β

1

2N
∥Y −Xβ∥22 + λ∥β∥q,

(2)

where X ∈ RN×d is the design matrix, Y ∈ RN is the
label vector, and β ∈ Rd is the estimator. The first-order
conditions of Eq. (2) give us

X⊤Xβ = X⊤Y and X⊤Xβ = X⊤Y −Nλ∂∥β∥q.

Therefore, Eq. (1) has the same form as Eq. (2) by setting

Σ = X⊤X, θ+ − θ− = X⊤Y, ε = Nλ/2.

As a consequence, solving for the optimal robust ℓp clas-
sifier is essentially performing linear regression with ℓq-
regularization, and this explains the norm shrinkage effect
in Proposition 3.5.

The connection between robust training and regularized
linear regression has been noted in a prior work (Xu et al.,
2008) for regression. As a comparison, here we demonstrate
that such equivalence also holds true for classification prob-
lems under Gaussian mixture distributions, which requires
a delicate analysis of the KKT conditions in addition to
directly exploiting the duality between the data and param-
eters as in the regression problem. Furthermore, explicitly
formalizing this connection allows us to interpret the trade-
off of adversarial robustness and accuracy parity from the
following perspective—A larger ε implies better robustness,
but also results in a strong regularization (i.e., norm shrink-
age) effect as ε ∝ λ, hence leading to an increased accuracy
disparity.

4. Beyond Gaussian Mixture — Stable
Distributions, and Polynomial Tail

In this section, we will go beyond the Gaussian mixture
distribution, and examine whether the conclusions we have
drawn so far hold true for a broader class of data distribu-
tions. In particular, we explore a family of distributions
that includes the Gaussian distribution as a special case: the
symmetric α-stable (SαS) distribution (Lévy, 1954; Fama
& Roll, 1968; 1971). The motivation for us to study the
SαS distribution is twofold. First of all, it is a natural gen-
eralization of the Gaussian distribution and preserves an
important property of Gaussian: closed under linear trans-
formation since the characteristic function is closed under
multiplication. This property then allows us to obtain a
precise characterization of the standard/robust loss in terms
of the cumulative function. Second, by varying the choice
of α, we can better understand whether the findings that we
have obtained thus far are specific to Gaussian distribution,
or hold true in the presence of heavy-tail.

The results in this section are mixed: while the conclusion
of “decreased standard accuracy” generalizes to the
SαS distribution, the “increased accuracy disparity”
phenomenon disappears, and we shall see that the class
imbalance ratio will play a fundamentally different role in
affecting accuracy disparity when heavy tail is present. To
start with, we assume ε ≤ κ

2 ∥θ
+ − θ−∥∞ for some κ < 1

throughout this section, meaning there exists at least one
dimension such that the two balls do not intersect.
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4.1. A Brief Review of the SαS distribution

The probability distribution function of a univariate SαS
distribution with location, scale and stability parameters
µ, c, α, is defined through

f(x;α, c, µ) =
1

2π

∫
R
φ(t;µ, c, α)e−ixtdt,

with φ(t;µ, c, α) = exp (itµ− |ct|α) being its characteris-
tic function. The most important quantity here is the tail-
index α ∈ (0, 2] which measures the concentration of the
corresponding stable distribution, and we recover the Gaus-
sian and Cauchy distribution by setting α = 2 and α = 1,
respectively. We will mainly focus on multivariate SαS
distribution with independent components throughout this
section, meaning that each coordinate is independent from
the others and follows f(x;α, ci, µi) with ci > 0, and we
denote it as SαSIC(µ,C) where C = diag{ci}. We re-
fer interested readers to Appendix B.3 for discussions of a
different multivariate SαS distribution.

4.2. Adversarial Robustness (Still) Hurts the Standard
Accuracy for Balanced Dataset

We start with the balanced case, i.e., R = 1, and exam-
ine whether enforcing adversarial robustness provably hurts
the standard accuracy. We assume that the data are gener-
ated through a mixture of multivariate SαS distributions
with independent components and scale parameters ci = 1:
P+ = SαSIC(θ

+, Id) and P− = SαSIC(θ
−, Id). For

general choices of ci, we can scale the coordinates of θ+ and
θ− inverse-proportionally to obtain the same conclusion.

We first identify two corner cases in Theorem 4.1, where
the optimal robust classifier achieves the same standard
accuracy as the optimal standard classifier. The detailed
analyses are deferred to Appendix B.1.

Theorem 4.1. Under one of the following conditions: 1)
q = α, meaning that the dual index equals the tail index;
2) θ̄ := θ+ − θ− is isotropic, i.e., |θ̄| ∥ 1d and α ≥ 1, the
optimal robust classifier enjoys the same standard accuracy
as the optimal standard classifier when there is no class
imbalance.

Remark 4.2. It is pointed out in (Dobriban et al., 2020)
that enforcing adversarial robustness with ℓ2-constraint will
not sacrifice the standard accuracy for balanced Gaussian
mixture; this corresponds to q = α = 2 in the first corner
case. Similarly, we can also get a win-win for Cauchy
mixture with ℓ∞-perturbation, i.e., q = α = 1.

Except for the two corner cases above, we show that for gen-
eral α and q, enforcing adversarial robustness will degrade
the standard accuracy as stated in the following theorem.

Theorem 4.3. Suppose α > 1, 1 < q < ∞, q ̸= α and
|θ̄| ∦ 1d. Then we have w⊤

rob,p(θ
+ − θ−) < w⊤

std(θ
+ − θ−).

In other words, adversarial robustness hurts the accuracy
on both classes when there is no class imbalance.

Remark 4.4. We do not discuss other choices of α and q (e.g.
q = 1,∞ or α ≤ 1) in details as they involve a number of
pathological corner cases, mainly due to the non-uniqueness
of subgradients. However, we can still expect the conclusion
to hold true in general, as the two optimization problems
differ by exactly one term, which significantly reduces the
possibility of overlapped optimal solution.

4.3. Polynomial Tail Perplexes the Effect of Class
Imbalance on Accuracy Disparity

Finally, we will study the effect of class imbalance on ac-
curacy disparity using the multivariate Cauchy distribution
(i.e., α = 1) with independent components and scale param-
eters ci = 1. Specifically, the data are generated through
P+ = S1SIC(θ

+, Id) and P− = S1SIC(θ
−, Id), and we

focus on the conventional perturbation scheme p = ∞. The
proofs are deferred to Appendix B.2.

Our first result shows that: when heavy-tail is present, the
imbalance ratio will result in a fundamentally different be-
havior in terms of the accuracy disparity compared to the
Gaussian case, in the sense that both the optimal standard
and robust classifier achieve the same accuracy disparity for
large R.

Theorem 4.5. Suppose the class imbalance ratio R ≥ 2 +
4∥θ+ − θ−∥2∞, then both the optimal standard classifier
as well as the optimal robust ℓ∞ classifier will assign a
negative label to all data. As a result, both classifiers will
incur zero loss on the majority class and zero accuracy on
the minority class. In terms of accuracy disparity, there
is no difference between the optimal standard and robust
classifier.

Remark 4.6. We highlight that the reason for observing such
a phenomenon is due to the fact that the Cauchy distribution
has a polynomial tail. In contrast, this phenomenon does not
exist in distributions with exponentially-decayed tail such
as the Gaussian distribution.

Our second result shows that: when the distance between
the two means ∥θ+ − θ−∥∞ is relatively large, adversarial
robustness will decrease the accuracy on the majority
class while increasing the accuracy on the minority class
compared to standard training, hence reducing the accuracy
disparity.

Theorem 4.7. Assume the optimal intercepts bstd and brob,∞
are finite and ∥θ+ − θ−∥2∞ > (R + 1)2/R(1 − κ)2, then
adversarial robustness will increase the error on the major-
ity class and decrease the error on the minority class, which
further reduces the accuracy disparity.

Remark 4.8. According to Theorem 4.1 (setting α = q = 1
in the first corner case), both the optimal standard and ro-

6



Understanding the Impact of Adversarial Robustness on Accuracy Disparity

bust classifier achieve the same loss on both classes when
R = 1. Therefore, the changes of accuracy disparity as
shown in Theorem 4.5 and Theorem 4.7 are mainly due
to the class imbalance part. Contrary to the Gaussian mix-
ture distribution where this factor consistently enlarges the
accuracy disparity, here we obtain different observations
where it stays the same or even decreases, suggesting that
the accuracy disparity not only concerns the class imbalance
ratio, but is also heavily influenced by the tail property of
the corresponding distribution.

5. Experiments
We corroborate and strengthen our theoretical results regard-
ing accuracy disparity and standard accuracy via experi-
ments on one synthetic dataset and two real-world datasets.
In what follows, we first introduce the experiment setup and
then lay out the research questions we shall investigate.

Adversarial Training. Our theoretical findings are algo-
rithm agnostic and only concern the definition of adversarial
robustness. In the experiments, we choose a popular al-
gorithm, adversarial training (Kurakin et al., 2016; Madry
et al., 2018), to perform the robust training.

Metrics. We use accR,+
std , accR,−

std , accR,·
std to denote the

standard accuracy of the standard classifier trained on the
dataset with imbalance ratio R, measured on the minority
class, and the majority class, and both classes, respectively.
Likewise, we use accR,+

rob,p,ε, acc
R,−
rob,p,ε, acc

R,·
rob,p,ε to denote

the standard accuracy of the robust classifier trained with
ℓp perturbations of scale ε, calculated on the three types of
populations. We then use ADR

std, ADR
rob,p,ε to denote the

accuracy disparity of the standard classifiers and robust
classifiers, formally defined as ADR

std = accR,−
std − accR,+

std

and ADR
rob,p,ε = accR,−

rob,p,ε − accR,+
rob,p,ε.

Research Questions. We lay out the research questions
(RQs) based on Section 3 and 4.

RQ1. Will adversarial training exacerbate accu-
racy disparity compared with standard training,
i.e., ADR

rob,p,ε > ADR
std, and when?

RQ2. Will a more severe class imbalance (i.e.,
a larger imbalance ratio R) lead to a more sig-
nificant accuracy disparity gap (i.e., a larger
(ADR

rob,p,ε −ADR
std)), and when?

RQ3. Will adversarial training worsen the stan-
dard accuracy, accR,·

rob,p,ε < accR,·
std , and when?

The basis of RQ1 and RQ2 from the theoretical side are The-
orems 3.6 and 4.5; the basis of RQ3 are Theorems 3.3
and 4.3. We next investigate these questions from the em-
pirical side to gain insights into how well and how far the
theoretical results can be supported and extended.

Experimental Setup. We evaluate the above three ques-
tions using three datasets: a synthetic dataset of a mixture of
Gaussians, as well as two real-world datasets MNIST (Le-
Cun et al., 1998) and CIFAR-10 (Krizhevsky et al., 2009).
Results on additional datasets, including two synthetic
datasets featuring stable distributions (Cauchy and Holts-
mark), as well as two more real-world datasets, Fashion-
MNIST (Xiao et al., 2017) and ImageNet (Deng et al.,
2009), are provided in Appendices C.2 and C.3. For each
dataset, we investigate both the balanced case (R = 1) and
the imbalanced cases R ∈ {2, 5, 10}. For the synthetic
dataset and MNIST, we use a linear classifier; for CIFAR,
we use a neural network with two linear layers. When
performing adversarial training, we use the fast gradient
method (FGM) (Goodfellow et al., 2014) and projected
gradient descent (PGD) (Madry et al., 2018) to craft the
adversarial examples. We experiment with both p = 2,∞,
each with multiple perturbation scales ε. For each set of
experiments, we report results averaged over 5 runs with dif-
ferent random seeds to account for variability. More details
are deferred to Appendix C.1.

5.1. Analysis of the Increased Accuracy Disparity (RQ1
and RQ2)

By comparing the accuracy disparity of standard classifier
and a variety of adversarial classifiers, we offer the following
answers to RQ1 and RQ2.

A1: Yes, when R > 1.

A2: The increase of the accuracy disparity gap
with the imbalance ratio consistently happens for
the synthetic dataset and MNIST, but not for CI-
FAR.

We now present the concrete experimental results along with
detailed discussions. We plot the accuracy disparity gap in
the 1st row of Figure 1; the raw numbers can be referred to
in Appendix C.5 We draw the following conclusions.

Regarding RQ1, the accuracy disparity gap is invariably
larger than 0 in the class imbalance setting (i.e., R > 1)
on all three datasets. This provides an affirmative answer
for RQ1 and matches our theoretical result in Theorem 3.6.
Actually, in the balanced case, the gap is also close to 0 in
most of the cases, apart from an intriguingly low number for
CIFAR. We figure that this is associated with the relative dif-
ficulty of learning the two classes—in the synthetic dataset
and MNIST, the difficulty levels of learning the two classes
are alike; for CIFAR, the class ‘cat’ is much harder to learn
than the class ‘dog’, as already demonstrated in previous
work (Croce et al., 2021).

Regarding RQ2, the accuracy disparity gap grows with the
class imbalance ratio on both the synthetic dataset and
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Figure 1. The gap of accuracy disparity ADR
rob,p,ε − ADR

std (1st row, RQ2) and standard accuracy accR,·
std − accR,·

rob,p,ε (2nd row, RQ3)
between robust and standard classifiers, w.r.t. the imbalance ratio R. Different columns correspond to different datasets or ℓp norms of
adversarial training. For each ℓp norm, we experiment with multiple perturbation scales ε. The shaded area in each subfigure represents
the standard error of 5 runs.

MNIST. However, the same phenomenon does not occur for
CIFAR, where the gap drops to almost 0 for larger R (i.e.,
R = 5, 10). We note that the result on the synthetic dataset
and MNIST aligns well with Theorem 3.6; this serves as
a verification for the theoretical result on exact Gaussian
mixtures and an implication on the potential of extending
the result to real-world datasets that can be roughly modeled
as Gaussian mixtures. In comparison, what we observe on
CIFAR resembles the theoretical analysis on the heavy-tail
distribution (Theorem 4.5), where the standard classifier
can only achieve accuracy close to 0 on the minority class,
accounting for the accuracy disparity gap of nearly 0. We
conjecture that the distributional difference between MNIST
and CIFAR contributes to the distinction in the experimental
results. To strengthen our hypothesis, we first perform two
additional experiments in Appendix C.4, ruling out alterna-
tive explanation regarding the insufficiency of training on
CIFAR (caused either by the small dataset size or the limited
model capacity, in a relative sense compared to MNIST).
We additionally provide an empirical comparison of the sta-
tistical properties between MNIST and CIFAR in Appendix
C.4, demonstrating that the empirical distribution of CIFAR
is indeed more scattered than MNIST.

5.2. Analysis of the Decreased Standard Accuracy (RQ3)

In this part, we shift our focus from the accuracy disparity
(defined as the gap of the per class standard accuracy) to
the overall standard accuracy (measured on both classes).
In a nutshell:

A3: Yes, adversarial training almost always hurts
the standard accuracy in the scenarios we experi-
ment with.

We plot the gap of the standard accuracy between the
standard classifier and the robust classifier in the 2nd row
of Figure 1 (raw numbers in Appendix C.5). First, we
see that in the class imbalance setting (i.e., R = 1), the
gap is almost always larger than 0, consistent with the

theoretical results in Theorems 3.3 and 4.3. Furthermore,
in the class imbalance setting which is beyond the scope of
our theoretical results, we observe an interesting decrease
of the accuracy gap with the increase of the imbalance ratio
R. We offer the following explanation. The impact of class
imbalance gradually takes the dominance (in the sense of
encouraging the prediction to favor the majority); in this
case, whether performing standard or adversarial training
will not have much influence on the outcome.

6. Related Work
We will mainly review related work focusing on the relation-
ship between fairness, adversarial robustness, and accuracy.

Robustness and Fairness. What initially motivates this
work is the observation of a trade-off between adversarial
robustness and fairness (Liu et al., 2021). Here, fairness
refers to the class-wise performance of the robust classifier
(a broader definition would be the performance across
subgroups defined by sensitive attributes (Hardt et al., 2016;
Zafar et al., 2017)), and is measured by either the robust
accuracy or the standard accuracy. The former corresponds
to a phenomenon known as “robustness disparity” (Nanda
et al., 2021), and is verified on a wide range of datasets,
model architectures, as well as attacks and defenses (Nanda
et al., 2021; Tian et al., 2021). The latter concerns
the “accuracy disparity” (Chi et al., 2021) of the robust
classifier, and it is empirically shown that not only does
such accuracy disparity exists (Croce et al., 2021; Benz
et al., 2021a), but is further exacerbated compared to the
standard classifier (Benz et al., 2021b). As a complement
to these empirical observations, we aim to provide an
in-depth theoretic study towards understanding the impact
of adversarial robustness on accuracy disparity.

Detailed comparisons with two closest works. Xu et al.
(2021); Ma et al. (2022) identify and analyze the signif-
icant disparity of standard accuracy and robust accuracy
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among different classes or subgroups of data for adversari-
ally trained models. Our work differs from theirs in several
key aspects. First, their theoretical analysis is restricted to
specific choices of parameters, resulting in an oversimplified
problem and less convincing conclusions. In contrast, our
approach accommodates arbitrary means, covariance matri-
ces, and perturbation types. Additionally, differences exist
in the settings and targets of study. Xu et al. (2021) focus
on a balanced class setting but with varying “difficulty lev-
els” as measured by the magnitude of variance, whereas we
address class imbalance. Ma et al. (2022) measure fairness
through the variance of robust risk, while we measure fair-
ness by class-wise accuracy disparity (corresponding to the
standard risk). Importantly, we have identified critical flaws
in the proof of Theorem 5.7 in Ma et al. (2022). On page 18
of their publication2, a non-trivial gap exists between their
Equations (51) and (52) even given their unnatural assump-
tions on ϵtrain and ϵtest, which the authors made no attempt
to address. Furthermore, the last inequality in Equation (52)
is not correct, as the term is plainly smaller than 1 for small
ϵtrain and ϵtest. These critical issues undermine the validity
of their findings.

Robustness and (Standard) Accuracy. Ever since the
seminal work (Tsipras et al., 2019), there has been a line
of research studying the fundamental trade-off between
adversarial robustness and standard accuracy. This in-
cludes some empirical evaluations (Raghunathan et al.,
2019; Su et al., 2018), theoretical results regarding the sta-
tistical/information limit or sample complexity for robust
classification (Bhagoji et al., 2019; Chen et al., 2020; Dan
et al., 2020), as well as algorithms that explicitly exploit
such trade-off based on theoretical insights (Zhang et al.,
2019; Raghunathan et al., 2020; Zhang et al., 2020; Yang
et al., 2020). Despite the fruitful results that have been
achieved in this field thus far, a rigorous understanding to-
wards how enforcing adversarial robustness decreases the
standard accuracy is still lacking. Our work does not target
this problem directly, but as a by-product, we show that for
balanced dataset and stable distributions, robustness in gen-
eral comes at a cost of degraded performance for standard
accuracy due to a change of “direction” (see Subsection
3.1), thus offering a new perspective towards interpreting
this intriguing phenomenon.

7. Conclusion, Limitation and Future
Directions

In this work, we provide an in-depth and fine-grained study
towards understanding the impact of adversarial robustness
on accuracy disparity when class imbalance is present. To
this end, we offer a complete characterization regarding the

2https://openreview.net/attachment?id=
LqGA2JMLwBw&name=supplementary_material

classification of a Gaussian mixture with linear models, and
decompose the overall effect of enforcing adversarial robust-
ness into two disjoint parts: an inherent one that will degrade
the standard accuracy due to a change of “direction”, and
the other caused additionally by the class imbalance ratio
that will increase the accuracy disparity due to a change of
“norm”. We proceed to analyze the general stable distribu-
tion. While the intrinsic effect of robustness can generalize
and consistently decrease the standard accuracy even for
the balanced class setting, we uncover that the imbalance
ratio plays a fundamentally different role in the accuracy
disparity due to the heavy tail of the stable distribution. Fi-
nally, we support and strengthen our theoretical results with
experiments on both synthetic and real-world datasets.

Limitation. An obvious limitation of the paper is that
the analyses are restricted to binary classification. Gener-
alization to multi-class classification requires modifying
the decision rule; for instance, using argmax of the logits.
However, this will lead to a Voronoi diagram partition of
the space for the k > 2 classes, which is challenging to
precisely and analytically characterize (e.g., it is no longer
easy to compute the probability mass on each convex body
within the diagram and in general this partition does not
have analytical characterization).

Future directions. As real-world datasets contain both
class imbalance and discrepancy of class-wise distributions,
a more complete theory should consider the usage of dif-
ferent covariance matrices and analyze its interaction with
the class imbalance ratio. Some additional future directions
include 1) introduce the protected attribute A under each
label Y , which will make the results more appealing to the
fairness community; 2) allow for different test and training
distributions, and check whether robustness provably helps
in the presence of distribution/subpopulation shifts. On the
empirical side, our theoretical insights could lead to the de-
sign of future robust training algorithms that aim to achieve
a certain notion of accuracy parity among classes. Further-
more, the distributions of real-world datasets in the feature
space might be closer to a GMM, and hence one could en-
force the robustness constraint on the feature distributions.
Last but not least, MNIST and CIFAR exhibit significantly
different conclusions on RQ2; the nice correspondences
between them and the findings in Gaussian and stable distri-
butions could motivate a deeper understanding towards the
distributional characteristics of real-world datasets.
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Gauthier-Villars, 1954.

Liu, H., Wang, Y., Fan, W., Liu, X., Li, Y., Jain, S., Liu, Y.,
Jain, A. K., and Tang, J. Trustworthy ai: A computational
perspective. arXiv preprint arXiv:2107.06641, 2021.

Ma, X., Wang, Z., and Liu, W. On the tradeoff between
robustness and fairness. In Oh, A. H., Agarwal, A.,
Belgrave, D., and Cho, K. (eds.), Advances in Neural
Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=LqGA2JMLwBw.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Explaining and harnessing adversarial exam-
ples. In International Conference on Learning Represen-
tations, 2018. URL https://openreview.net/
forum?id=rJzIBfZAb.

Nanda, V., Dooley, S., Singla, S., Feizi, S., and Dickerson,
J. P. Fairness through robustness: Investigating robust-
ness disparity in deep learning. In Proceedings of the
2021 ACM Conference on Fairness, Accountability, and
Transparency, pp. 466–477, 2021.

Prechelt, L. Early stopping-but when? In Neural Networks:
Tricks of the trade, pp. 55–69. Springer, 1998.

Raghunathan, A., Xie, S. M., Yang, F., Duchi, J. C., and
Liang, P. Adversarial training can hurt generalization.
arXiv preprint arXiv:1906.06032, 2019.

Raghunathan, A., Xie, S. M., Yang, F., Duchi, J., and Liang,
P. Understanding and mitigating the tradeoff between
robustness and accuracy. In Proceedings of the 37th
International Conference on Machine Learning, pp. 7909–
7919. PMLR, 2020.

Reynolds, D. A. Gaussian mixture models. Encyclopedia
of biometrics, 741(659-663), 2009.

Samorodnitsky, G., Taqqu, M. S., and Linde, R. Stable
non-gaussian random processes: stochastic models with
infinite variance. Bulletin of the London Mathematical
Society, 28(134):554–555, 1996.

Santurkar, S., Tsipras, D., and Madry, A. Breeds: Bench-
marks for subpopulation shift. In International Confer-
ence on Learning Representations, 2021.

Simonyan, K. and Zisserman, A. Very deep con-
volutional networks for large-scale image recogni-
tion. In Bengio, Y. and LeCun, Y. (eds.), ICLR,
2015. URL http://dblp.uni-trier.de/db/
conf/iclr/iclr2015.html#SimonyanZ14a.

Su, D., Zhang, H., Chen, H., Yi, J., Chen, P.-Y., and Gao,
Y. Is robustness the cost of accuracy?–a comprehensive
study on the robustness of 18 deep image classification
models. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 631–648, 2018.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

Tian, Q., Kuang, K., Jiang, K., Wu, F., and Wang, Y. Analy-
sis and applications of class-wise robustness in adversar-
ial training. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pp.
1561–1570, 2021.

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and
Madry, A. Robustness may be at odds with accuracy. In
International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=SyxAb30cY7.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms, 2017.

Xu, H., Caramanis, C., and Mannor, S. Robust regression
and lasso. Advances in neural information processing
systems, 21, 2008.

Xu, H., Liu, X., Li, Y., Jain, A., and Tang, J. To be robust
or to be fair: Towards fairness in adversarial training.
In International Conference on Machine Learning, pp.
11492–11501. PMLR, 2021.

Yang, Y.-Y., Rashtchian, C., Zhang, H., Salakhutdinov,
R. R., and Chaudhuri, K. A closer look at accuracy vs.
robustness. Advances in neural information processing
systems, 33:8588–8601, 2020.

11

https://adversarial-ml-tutorial.org/
https://adversarial-ml-tutorial.org/
https://openreview.net/forum?id=LqGA2JMLwBw
https://openreview.net/forum?id=LqGA2JMLwBw
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
http://dblp.uni-trier.de/db/conf/iclr/iclr2015.html#SimonyanZ14a
http://dblp.uni-trier.de/db/conf/iclr/iclr2015.html#SimonyanZ14a
https://openreview.net/forum?id=SyxAb30cY7
https://openreview.net/forum?id=SyxAb30cY7


Understanding the Impact of Adversarial Robustness on Accuracy Disparity

Zafar, M. B., Valera, I., Rogriguez, M. G., and Gummadi,
K. P. Fairness constraints: Mechanisms for fair classifica-
tion. In Artificial Intelligence and Statistics, pp. 962–970.
PMLR, 2017.

Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., and
Jordan, M. Theoretically principled trade-off between
robustness and accuracy. In International conference on
machine learning, pp. 7472–7482. PMLR, 2019.

Zhang, J., Xu, X., Han, B., Niu, G., Cui, L., Sugiyama, M.,
and Kankanhalli, M. Attacks which do not kill training
make adversarial learning stronger. In International con-
ference on machine learning, pp. 11278–11287. PMLR,
2020.

12



Understanding the Impact of Adversarial Robustness on Accuracy Disparity

A. Omitted Proofs from Section 3
A.1. Proof of the Main Results

Proof of Theorem 3.1. For the standard loss, we have

ℓstd(w, b) =
R

R+ 1
Φ

(
b+ w⊤θ−√

w⊤Σw

)
+

1

R+ 1
Φ

(
−b− w⊤θ+√

w⊤Σw

)
.

Since ℓstd is scale-invariant, we can assume w.l.o.g. that w⊤Σw = 1. We then obtain an equivalent constrained optimization
problem

min
w,b

RΦ(b+ w⊤θ−) + Φ(−b− w⊤θ+)

s.t. w⊤Σw = 1.

The Lagrangian can be written as

Lstd(w, b, ν) = RΦ(b+ w⊤θ−) + Φ(−b− w⊤θ+) + ν(w⊤Σw − 1),

and the KKT conditions give us

R√
2π

exp

(
− (b+ w⊤θ−)2

2

)
θ− − 1√

2π
exp

(
− (b+ w⊤θ+)2

2

)
θ+ + 2νΣw = 0 (3)

and

R√
2π

exp

(
− (b+ w⊤θ−)2

2

)
− 1√

2π
exp

(
− (b+ w⊤θ+)2

2

)
= 0. (4)

Plugging Eq. (4) into Eq. (3), we can conclude that

Σwstd = (θ+ − θ−) · Cstd

for some positive constant Cstd, and wstd additionally satisfies

w⊤
stdΣwstd = 1

Therefore, following the statement of Theorem 3.1, suppose Σu = θ+ − θ−, then we can pick

wstd =
u

r
,

where u⊤Σu = r2. After determining wstd, bstd can be solved directly from Eq. (4), which gives

bstd = −2 logR+ (w⊤
stdθ

+)2 − (w⊤
stdθ

−)2

2(w⊤
stdθ

+ − w⊤
stdθ

−)
.

Note

w⊤
stdθ

+ − w⊤
stdθ

− =

〈
u

r
,Σu

〉
= r.

Therefore,

ℓ+std(wstd, bstd) = Φ
(
−bstd − w⊤

stdθ
+
)

= Φ

(
−r2 + 2 logR

2r

)
= Φ

(
−⟨u, θ+ − θ−⟩+ 2 logR

2r

)
,
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whereas

ℓ−std(wstd, bstd) = Φ
(
bstd + w⊤

stdθ
−)

= Φ

(
−r2 − 2 logR

2r

)
= Φ

(
−⟨u, θ+ − θ−⟩ − 2 logR

2r

)
.

Similarly, for the robust ℓp loss

ℓrob(w, b) =
R

R+ 1
Φ

(
b+ w⊤θ− + ε∥w∥q√

w⊤Σw

)
+

1

R+ 1
Φ

(
−b− w⊤θ+ + ε∥w∥q√

w⊤Σw

)
,

we can assume w.l.o.g. that w⊤Σw = 1 and write down the Lagrangian

Lrob(w, b, λ) = RΦ(b+ w⊤θ− + ε∥w∥q) + Φ(−b− w⊤θ+ + ε∥w∥q) + µ(w⊤Σw − 1),

and the KKT conditions give us

Σwrob,p = (θ+ − θ− − 2ε∂∥wrob,p∥q) · Crob,p.

for some positive constant Crob,p. A crucial observation here is that the subdifferential set ∂∥wrob,p∥q is invariant when
scaled by a positive constant (guaranteed by Danskin’s theorem), so if we follow the statement of Theorem 3.1 and suppose
Σv = θ+ − θ− − 2ε∂∥v∥q , then to satisfy the constraint w⊤

rob,pΣwrob,p = 1, we can pick

wrob,p =
v

s
,

where v⊤Σv = s2. Similarly, brob,p can be derived from the KKT conditions as

brob,p = −
2 logR+ (w⊤

rob,pθ
+)2 − (w⊤

rob,pθ
−)2 − 2ϵ∥wrob,p∥q(w⊤

rob,pθ
+ + w⊤

rob,pθ
−)

2(w⊤
rob,pθ

+ − w⊤
rob,pθ

− − 2ϵ∥wrob,p∥q)
.

Note

⟨wrob,p, θ
+ − θ−⟩ =

〈
v

s
,Σv + 2ϵ∂∥v∥q

〉
= s+ 2ϵ

⟨v, ∂∥v∥q⟩
s

= s+ 2ϵ
∥v∥q
s

= s+ 2ϵ∥wrob,p∥q,

where we use Danskin’s theorem again in the second-to-last inequality. Therefore,

ℓ+std(wrob,p, brob,p) = Φ
(
−brob,p − w⊤

rob,pθ
+
)
= Φ

(
−⟨v, θ+ − θ−⟩+ 2 logR

2s

)
,

whereas

ℓ−std(wrob,p, brob,p) = Φ
(
brob,p + w⊤

rob,pθ
−) = Φ

(
−⟨v, θ+ − θ−⟩ − 2 logR

2s

)
.

This finishes the proof as desired. ■

Proof of Proposition 3.2. Plugging in the equation Σu = θ+ − θ− as well as the definitions of r and s, it suffices to show
√
u⊤Σu

√
v⊤Σv ≥ v⊤Σu.

14
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Since Σ is positive semi-definite, Σ
1
2 is well-defined. Now denote u′ = Σ

1
2u and v′ = Σ

1
2 v, then the above inequality is

equivalent to

∥u′∥2∥v′∥2 ≥ v′⊤u′,

which holds due to the Cauchy-Schwarz inequality. Furthermore, the inequality holds strictly as long as u′ and v′ are not
parallel. Combining the fact that u is parallel to wstd, and v is parallel to wrob,p finishes the proof as desired.

■

Proof of Theorem 3.3. It follows directly from Proposition 3.2 since Φ is monotonic. ■

Proof of Proposition 3.5. We have

u⊤Σu− v⊤Σv = (u− v)⊤Σ(u− v) + 2(u− v)⊤Σv

≥ 2v⊤Σ(u− v)

= 2⟨v, 2ε∂∥v∥q⟩
= 4ε∥v∥q > 0,

where we take the difference between

Σu = θ+ − θ− and Σv = θ+ − θ− − 2ε∂∥v∥q

in the second-to-last equality, and use Danskin’s theorem (Bertsekas, 1997) in the last equality. ■

Proof of Theorem 3.6. Denote

p =
−⟨u, θ+ − θ−⟩

2r
, q =

−⟨v, θ+ − θ−⟩
2s

.

Note ⟨u, θ+ − θ−⟩ = u⊤Σu ≥ 0, ⟨v, θ+ − θ−⟩ = v⊤Σv + 2ε∥v∥q > 0, so Proposition 3.2 implies p ≤ q < 0. Further
denote

m =
logR

r
> 0, k =

r

s
> 1,

then logR
s = km. We first show the “increased accuracy disparity” part in the theorem, which is equivalent to

Φ(q + km)− Φ(q − km) > Φ(p+m)− Φ(p−m).

In fact, we have

Φ(q + km)− Φ(q − km) > Φ(q +m)− Φ(q −m),

so it suffices to show

Φ(q +m)− Φ(q −m) ≥ Φ(p+m)− Φ(p−m).

Define F (x) = Φ(x+m)− Φ(x−m), and we will show F (x) is increasing on (−∞, 0]. In fact, we have

F ′(x) =
1√
2π

(
exp

(
− (x+m)2

2

)
− exp

(
− (x−m)2

2

))
=

1√
2π

exp

(
− (x−m)2

2

)(
e−2xm − 1

)
≥ 0

since m ≥ 0 and x < 0.
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To show that the gap between the two accuracy disparities is monotonic, it suffices to prove

g(R) = G(m) := Φ(q + km)− Φ(q − km)− Φ(p+m) + Φ(p−m)

is increasing w.r.t. m when q + km < 0. In fact, we have

√
2πG′(m) = k

(
exp

(
− (q + km)2

2

)
+ exp

(
− (q − km)2

2

))
−
(
exp

(
− (p+m)2

2

)
+ exp

(
− (p−m)2

2

))
.

Define

L(k) := k

(
exp

(
− (q + km)2

2

)
+ exp

(
− (q − km)2

2

))
,

then it suffices to show that L′(k) > 0 when q + km < 0. In fact, we have

L′(k) = exp

(
− (q + km)2

2

)
+ exp

(
− (q − km)2

2

)
− km(q + km) exp

(
− (q + km)2

2

)
− km(km− q) exp

(
− (q − km)2

2

)
= exp

(
− (q − km)2

2

)[
e−2qkm(1− km(q + km)) + (1− km(km− q))

]
.

Let km = a and −q = b, it suffices to show

e2ab >
ab+ (a2 − 1)

ab− (a2 − 1)

when b > a > 0. In fact, we have

ab+ (a2 − 1)

ab− (a2 − 1)
≤ ab+ (ab− 1)

ab− (ab− 1)
= 2ab− 1 < 2ab+ 1 ≤ e2ab.

■

A.2. Derivation of the Optimal Classifiers for the Toy Example

Given X ∼ N (θ,Σ) and some w ∈ Rd, we have w⊤X ∼ N (w⊤θ, w⊤Σw) due to the fact that Gaussian distribution is
closed under linear transformation.

The optimal standard classifier. Using the property above, we have

ℓstd(w, b) =
R

R+ 1
Φ

b− η
∑m

i=1 wi − γ
∑m+n

j=m+1 wj√∑m+n
k=1 w2

k


+

1

R+ 1
Φ

−b− η
∑m

i=1 wi − γ
∑m+n

j=m+1 wj√∑m+n
k=1 w2

k

 ,

We can assume w.l.o.g. that
∑m+n

k=1 w2
k = 1 as ℓstd is scale-invariant. Hence, by Cauchy-Schwarz,

η

m∑
i=1

wi + γ

m+n∑
j=m+1

wj ≤

√√√√m+n∑
k=1

w2
k

√
mη2 + nγ2 =

√
mη2 + nγ2.

Further calculating the derivative w.r.t. b, we have

bstd = − logR

2
√

mη2 + nγ2
.
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The optimal robust classifier. Similarly, for the robust loss, we have

ℓrob,∞(w, b) =
R

R+ 1
Φ

b− (η
∑m

i=1 wi − ε
∑m

i=1 |wi|)− (γ
∑m+n

j=m+1 wj − ε
∑m+n

j=m+1 |wj |)√∑m+n
k=1 w2

k


+

1

R+ 1
Φ

−b− (η
∑m

i=1 wi − ε
∑m

i=1 |wi|)− (γ
∑m+n

j=m+1 wj − ε
∑m+n

j=m+1 |wj |)√∑m+n
k=1 w2

k

 .

We assume w.l.o.g. that
∑m+n

k=1 w2
k = 1. Using γ < ε < η and Cauchy-Schwarz, we have(

η

m∑
i=1

wi − ε

m∑
i=1

|wi|

)
+

γ

m+n∑
j=m+1

wj − ε

m+n∑
j=m+1

|wj |

 ≤ (η − ε)

m∑
i=1

|wi| ≤ (η − ε)
√
m,

and the inequalities are achieved when w1 = · · · = wm = 1√
m

, and wm+1 = · · · = wm+n = 0. Further calculating the
derivative w.r.t. b, we have

brob,∞ = − logR

2(η − ε)
√
m
.

B. Omitted Proofs from Section 4
Throughout this section, we will use Φα to denote the cumulative distribution function of the standard SαS distribution
f(x;α, 1, 0).

B.1. Detailed Analysis of Subsection 4.2 — Multivariate SαS Distribution with Independent Components

Using the “closed under linear transformation” property, we have

ℓstd(w, b) =
1

2
Φα

(
b+ w⊤θ−

∥w∥α

)
+

1

2
Φα

(
−b− w⊤θ+

∥w∥α

)
for the standard loss and

ℓrob,p(w, b) =
1

2
Φα

(
b+ w⊤θ− + ε∥w∥q

∥w∥α

)
+

1

2
Φα

(
−b− w⊤θ+ + ε∥w∥q

∥w∥α

)
for the robust ℓp loss. Following the same procedure as in Section 3, we assume w.l.o.g. that ∥wstd∥α = ∥wrob,∞∥α = 1.
We use v1 ∝ v2 to describe two vectors v1 and v2 differing by some positive constant coordinate-wisely.

Analysis of w. Introducing the Lagrangians and the KKT conditions give us

∂∥wstd∥α ∝ θ+ − θ−. (5)

Similarly, for the robust ℓp loss, we have

∂∥wrob,p∥α ∝ θ+ − θ− − 2ε∂∥wrob∥q. (6)

Analysis of b. Fixing some optimal w with ∥w∥α = 1, we can take partial derivatives w.r.t. b, and obtain

∂ℓstd(w, b)

∂b
=

1

2
φα(b+ w⊤θ−)− 1

2
φα(−b− w⊤θ−),

where we use φα to denote the probability density function of f(x;α, 1, 0). Since φα is symmetric and monotonically
decreasing on (0,∞) (see Theorem 1 in (Gawronski, 1984)), we have either

bstd + w⊤
stdθ

− = −bstd − w⊤
stdθ

+ or bstd + w⊤
stdθ

− = bstd + w⊤
stdθ

+,

and the latter is impossible due to Eq. (5) and Danskin’s theorem. As a consequence, we have bstd = −w⊤
std(θ

++θ−)
2 , and

similarly brob,p = −w⊤
rob,p(θ

++θ−)

2 .
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Putting together. Combining the analysis for w and b, we have

ℓ+std(wstd, bstd) = ℓ−std(wstd, bstd) = Φα

(
−w⊤

std(θ
+ − θ−)

2

)
and

ℓ+nat(wrob,p, brob,p) = ℓ−nat(wrob,p, brob,p) = Φα

(
−
w⊤

rob,p(θ
+ − θ−)

2

)
.

To understand whether enforcing adversarial robustness provably hurt standard accuracy, it suffices to check whether the
inequality

w⊤
rob,p(θ

+ − θ−) < w⊤
std(θ

+ − θ−)

holds. Note under the constraint ∥w∥α = 1, wstd and wrob,p solve the following optimization problems respectively:

wstd = argmax
w

w⊤(θ+ − θ−), wrob,p = argmax
w

w⊤(θ+ − θ−)− 2ε∥w∥q.

We can then prove Theorem 4.1 and 4.3 based on such formulation.

Proof of Theorem 4.1. We will discuss the two corner cases separately.

Case 1. When q = α, wrob,p has the same optimization formulation as wstd since ∥w∥q = ∥w∥α = 1 is a constant, so they
have the same optimal values.

Case 2. Suppose θ̄ := θ+ − θ− is isotropic, i.e., |θ̄| ∥ 1d and α ≥ 1. By Hölder’s inequality, we have wstd ∥ θ̄. For wrob,p,
denote C = |θ̄1|, then

w⊤(θ+ − θ−)− 2ε∥w∥q ≤ (C − 2εC1)∥w∥1
≤ C2(C − 2εC1)∥w∥α
= C2(C − 2εC1)

by Hölder’s inequality, where C1 = d
1
q−1, C2 = d

1
α−1 and

C − 2εC1 ≥ C − 2ε > 0

by our assumption on the perturbation radius. The two inequalities hold simultaneously when wrob,p ∥ θ̄. As a consequence,
both the optimal standard and robust classifier achieve the same value. ■

Proof of Theorem 4.3. Denote the dual index of α as α′, then by Hölder’s inequality,

w⊤(θ+ − θ−) ≤ ∥w∥α∥θ+ − θ−∥α′ = ∥θ+ − θ−∥α′ ,

and there is exactly one w with ∥w∥α = 1 that makes the equality hold. As a consequence, to show

w⊤
rob,p(θ

+ − θ−) < w⊤
std(θ

+ − θ−)

it suffices to show wstd ∦ wrob,p, under the conditions listed in the theorem statement. In fact, if wstd ∥ wrob,p (we use w to
represent the corresponding direction), then by the KKT conditions, we have

∂∥w∥q ∥ ∂∥w∥α,

implying that |w1| = · · · = |wd| (since α > 1, 1 < q < ∞ and q ̸= α). By the KKT condition of the standard classifier, we
have

∂∥w∥α ∝ θ̄

which further implies that |θ̄| ∥ 1d, and this is already precluded by the assumption in the theorem statement. As a
consequence, we must have wstd ∦ wrob,p, and

w⊤
rob,p(θ

+ − θ−) < w⊤
std(θ

+ − θ−).

■
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B.2. Detailed analysis of Subsection 4.3

We will now analyze the intercept b and the slope w respectively.

Analysis of b. Following the same procedure as in Section 3 and the previous subsection, we assume w.l.o.g. that
∥wstd∥1 = ∥wrob,∞∥1 = 1, then the standard loss and the robust ℓ∞ loss write as

ℓstd(w, b) =
R

R+ 1
Φ1

(
b+ w⊤θ−

)
+

1

R+ 1
Φ1

(
−b− w⊤θ+

)
and

ℓrob,∞(w, b) =
R

R+ 1
Φ1

(
b+ w⊤θ− + ε

)
+

1

R+ 1
Φ1

(
−b− w⊤θ+ + ε

)
.

Fixing w with ∥w∥1 = 1, we are interested in finding the optimal b that minimizes ℓstd and ℓrob,∞. Taking partial derivatives
w.r.t. b and simplifying the expressions, we have

sgn
(
∂ℓstd(w, b)

∂b

)
= sgn (q1(b)) , sgn

(
∂ℓrob,∞(w, b)

∂b

)
= sgn (q2(b)) ,

where q1(b) and q2(b) are two quadratic functions defined through

q1(b) := (R− 1)b2 +
(
2Rw⊤θ+ − 2Rw⊤θ−

)
b+

(
R(w⊤θ+)2 − (w⊤θ−)2 +R− 1

)
and

q2(b) := (R− 1)b2 +
(
2Rw⊤θ+ − 2Rw⊤θ− − (2R+ 2)ε

)
b

+
(
R(w⊤θ+)2 − (w⊤θ−)2 +R− 1 + (R− 1)ε2 − 2Rw⊤θ+ε− 2w⊤θ−ε

)
,

whose discriminants are given by
∆1 := R

(
w⊤θ+ − w⊤θ−

)2 − (R− 1)2

and
∆2 = R

(
w⊤θ+ − w⊤θ− − 2ε

)2 − (R− 1)2

respectively. The expressions immediately lead us to the following proposition.

Proposition B.1. When the class imbalance ratio satisfies

R ≥ 2 + 4∥θ+ − θ−∥2∞,

we have ∆1,∆2 < 0, implying that the quadratic functions q1(b) and q2(b) are always positive.

Proof. By Hölder’s inequality, we have

|w⊤θ+ − w⊤θ−| ≤ ∥w∥1∥θ+ − θ−∥∞ = ∥θ+ − θ−∥∞.

The result then follows from the assumption on ε, as well as the fact that

(R− 1)2

R
≥ R+ 2.

■

Without further digging into the analysis of w, Proposition B.1 itself is sufficient to characterize the behavior of the optimal
standard classifier as well as the robust ℓ∞ classifier — since the quadratic functions are always positive and have the same
signs as the partial derivatives, the optimal value is attained at b = −∞ for both losses. Theorem 4.5 is a direct consequence
of such observation.
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Analysis of w. We now switch to analyzing w. Following similar procedures as in Section 3 and the previous subsection,
we can introduce the Lagrangians, and the KKT conditions reveal that both wstd and wrob,∞ satisfy the relation

∂∥w∥1 ∝ θ+ − θ−.

This further implies

⟨wstd, θ
+ − θ−⟩ = ⟨wrob,∞, θ+ − θ−⟩ = ∥θ+ − θ−∥∞. (7)

Now

∆1 = R∥θ+ − θ−∥2∞ − (R− 1)2 ∆2 = R
(
∥θ+ − θ−∥∞ − 2ε

)2 − (R− 1)2,

and we assume they are both non-negative. Plugging the optimal bstd and brob,∞ (the larger root of the quadratic functions)
back to the standard loss, we have

ℓ+std(wstd, bstd) = Φ1

(
−∥θ+ − θ−∥∞ −

√
∆1

R− 1

)
, ℓ−std(wstd, bstd) = Φ1

(
−R∥θ+ − θ−∥∞ +

√
∆1

R− 1

)
, (8)

whereas

ℓ+std(wrob,∞, brob,∞) = Φ1

(
−∥θ+ − θ−∥∞ − (R+ 1)ε−

√
∆2

R− 1

)
ℓ−std(wrob,∞, brob,∞) = Φ1

(
−R∥θ+ − θ−∥∞ + (R+ 1)ε+

√
∆2

R− 1

)
. (9)

Define
d(ε) := (R+ 1)ε+

√
∆2,

then it is straightforward to see that d(0) =
√
∆1. By comparing Eq. (8) and (9), we know that it is essentially the relation

between d(ε) and d(0) that determines the change of accuracy disparity; specifically, to prove Theorem 4.7 it suffices to
show d(ε) < d(0).

Proof of Theorem 4.7. Calculating the derivative, we have

d′(s) = R+ 1− 2R√
R−

(
R−1

∥θ+−θ−∥∞−2s

)2 .
When s ≤ κ

2 ∥θ
+ − θ−∥∞, it is straightforward to see that d′(s) < 0, hence d(ε) < d(0) by our assumption on the

perturbation radius.

■

B.3. Elliptically-Contoured Multivariate SαS Distribution

Here we will introduce another multivariate SαS distribution whose joint characteristic function has closed form.

Elliptically-Contoured. We say a multivariate distribution X is elliptically-contoured (Samorodnitsky et al., 1996), if it
has joint characteristic function

E exp
(
is⊤X

)
= exp{−(s⊤Σs)α/2 + is⊤µ},

where Σ is a positive semi-definite shape matrix and µ is the location parameter. We use SαSEC(µ,Σ) to denote such
elliptically-contoured multivariate SαS distribution.

Suppose the data are generated through a mixture of elliptically-contoured multivariate SαS distributions: P+ =
SαSEC(θ

+,Σ) and P− = SαSEC(θ
−,Σ). We will now show in the following theorem that, since the shape matrix

is an analogy to the covariance matrix as in the Gaussian case, we can obtain a similar conclusion of Corollary 3.3 when the
data are drawn from a mixture of elliptically-contoured SαS distribution.
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Theorem B.2. Suppose the data are generated through a mixture of elliptically-contoured multivariate SαS distributions.
When there is no class imbalance, i.e., R = 1, enforcing adversarial robustness with ℓp-constraint will increase the
error on both classes, so long as the “direction” of the optimal robust classifier is not parallel to its counterpart, i.e.,
Σ

1
2wstd ∦ Σ

1
2wrob,p. Furthermore, if the shape matrix Σ is positive definite, then the requirement Σ

1
2wstd ∦ Σ

1
2wrob,p is

equivalent to wstd ∦ wrob,p, i.e., a shift in direction in the standard sense.

Proof of Theorem B.2. Note for X ∼ SαSEC(µ,Σ), w ∈ Rd and arbitrary t ∈ R, we can set s = tw, and the definition
of elliptically-contoured multivariate SαS distribution gives us E exp

(
itw⊤X

)
= exp{−|t

√
w⊤Σw|α + itw⊤µ}, so

according to the definition of univariate SαS distribution,

w⊤X ∼ f(x;α,
√
w⊤Σw,w⊤µ).

Therefore, the “closed under linear transformation” property yields

ℓstd(w, b) =
1

2
Φα

(
b+ w⊤θ−√

w⊤Σw

)
+

1

2
Φα

(
−b− w⊤θ+√

w⊤Σw

)
,

and similarly

ℓrob,p(w, b) =
1

2
Φα

(
b+ w⊤θ− + ε∥w∥q√

w⊤Σw

)
+

1

2
Φα

(
−b− w⊤θ+ + ε∥w∥q√

w⊤Σw

)
.

The only difference compared to the Gaussian case discussed in Section 3 is that the cumulative function is replaced by Φα;
moreover, a closer examination of the proof of Theorem 3.1 (see Appendix A) shows that we only resort to the symmetry and
monotonicity of Φ, and these properties are still preserved in Φα. As a consequence, we obtain Theorem B.2 as desired. ■

C. Additional Experimental Details, Results, and Analyses
C.1. Omitted Details of Experimental Setup

In this part, we provide a concrete description of our experimental setups. Additionally, we release our code at https:
//github.com/Accuracy-Disparity/AT-on-AD, where we include the datasets, the code, and the instructions
for reproducing the experiments.

Datasets. We altogether experiment with seven groups of datasets, including three groups of synthetic datasets and four
groups of real-world datasets. Here, for ease of reference, we refer to the balanced and imbalanced datasets (R = 1, 2, 5, 10)
constructed from the original balanced dataset as a group of dataset, which consists of four datasets corresponding to four
choices of R.

We will first describe the dataset properties of the original balanced dataset, and then explain how we construct the
imbalanced datasets in the dataset group. In the end, we introduce the training, validation, and test split for performing
training and evaluation.

Dataset Properties. The three balanced synthetic datasets are constructed to be a mixture of two Gaussian, Cauchy, or other
stable distributions with 1 < α < 2. We set the sample size of both classes as N = 10, 000 and the sample dimension size as
d = 100. For the Gaussian case, the two means are sampled from U [0, 1]d and U [−1, 0]d, and their (same) variances are set
as AA⊤ where A ∼ N (0, Id). For the Cauchy case and the SαS stable distribution, we construct the data with independent
components. In both cases, for each dimension, we sample the location parameter from U [0, 0.5] (or U [−0.5, 0]) and set
the scale parameter as 1. We set the parameter α = 1 to construct the Cauchy dataset and α = 1.5 for the other one. We
release our synthetic datasets at https://github.com/Accuracy-Disparity/AT-on-AD. The four balanced
real-world datasets are built upon the handwritten digits dataset MNIST (LeCun et al., 1998) under the Creative Commons
Attribution-Share Alike 3.0 license, the fashion products dataset Fashion-MNIST (Xiao et al., 2017) under the MIT license,
CIFAR-10 (Krizhevsky et al., 2009) under the MIT license, and ImageNet. MNIST and Fashion-MNIST consist of grey-scale
images of dimensionality 28× 28; CIFAR-10 consists of colored images of dimensionality 32× 32× 3. Originally, the
three datasets are used for 10-class classification. To adapt for the binary classification task we consider here, we choose two
classes from all ten — digit 1 and digit 7 for MNIST, T-shirt and trouser for Fashion-MNSIT, and cat and dog for CIFAR-10.
ImageNet consists of colored images of various dimensionality. We use the downsampled dataset with image dimensionality
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64× 64× 3 (Chrabaszcz et al., 2017). The dataset contains 1, 000 classes following a semantic hierarchy3. For our binary
classification task, we choose two “macro” classes in the hierarchy, “car” and “edible fruit”, each consisting of 10 classes.
We do not choose two lowest level of classes (among all 1, 000 classes) from ImageNet, since the number of samples per
class (around 1, 000) is insufficient for training the deep neural network. By their original construction, these real-world
datasets are class balanced.

Construction of the Imbalanced Dataset. We next explain how we obtain the dataset group consisting of datasets of various
class imbalance ratios (R = 2, 5, 10) from the balanced one (R = 1) we initially construct. Concretely, we obtain datasets
with increasing class imbalance ratio sequentially. For each dataset, we hold the majority class samples as fixed (i.e., same
as the R = 1 case), and subsample the minority class samples from the previously constructed set of minority class samples.
(For example, we sample from the minority set in the R = 2 dataset to obtain the minority set for the R = 5 dataset.)

Dataset Partition. For each dataset in each dataset group, we split the dataset into three disjoint partitions: training,
validation, and testing. For the synthetic dataset, we set the ratio of the three partitions to be 8:1:1, which gives us a total
number of 8000 training samples, 1000 validation samples, and 1000 testing samples for the majority class in each dataset.
(The sizes of the three partitions for the minority class are the sizes for the majority class divided by the imbalance ratio R).
For the real-world datasets MNIST, Fashion-MNIST and CIFAR, since the datasets are originally split into training and
testing, we further split the training set into training and validation with a ratio of 8:1. For MNIST and Fashion-MNIST,
the numbers of training, validation, and testing samples for the majority class are 5333, 533, and 1000 respectively. For
CIFAR-10, the numbers are 4444, 556, and 1000 respectively. For ImageNet, there are in all 13000 images for each “macro”
class in the training set. For the majority class, the numbers of training, validation, and testing samples are 10000, 2000, and
1000 respectively. We release all our datasets at https://github.com/Accuracy-Disparity/AT-on-AD.

Models. For most experiments, we mainly adopt simple models on these datasets — linear classifiers on the three synthetic
datasets, MNIST, and Fashion-MNIST, as well as networks with two linear layers on CIFAR-10.

The reason we mainly experiment with simple models is that they are sufficiently powerful for the binary classification task,
as we can see from the accuracy results in Table 5 and 6 in Appendix C.5. Actually, on CIFAR-10, we also experiment with
a more complicated convolutional neural network VGG-11 (Simonyan & Zisserman, 2015); we derive similar conclusions
on this complicated network as we did on simple networks. The details can be found in Appendix C.4.

Out of interest for deep neural networks on complicated datasets, we also experiment with ImageNet and apply a deep
neural network ResNet18 (He et al., 2016).

Training protocols. We perform standard training and adversarial training on the binary classification task. We first
describe the common training protocols for both training schemes, and then go into details on the specificity of adversarial
training.

We adopt stochastic gradient descent (SGD) optimizer (Kiefer & Wolfowitz, 1952) or Adam optimizer (Kingma & Ba, 2015)
for network training. We take the cross entropy loss as the training objective. We perform model selection on a held-out
validation set (as introduced in the data part). We perform a grid search for the hyper-parameters including learning rate,
batch size, and hidden layer size (when applicable) based on the model’s performance on the validation set. The search space
for learning rate is {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0002, 0.0001}, for batch size is {32, 64, 128}, and for hidden
layer size is {100, 200, 500, 1000, 2000}. For each model, we perform training for a maximum of 500 training epochs;
we keep track of the best model throughout the training based on the validation loss and apply early stopping (Prechelt,
1998) when the lowest validation loss does not decrease for the past 50 epochs. For ImageNet specifically, we perform
early stopping when the loss does not decrease for the past 10 epochs.

For adversarial training, we follow Goodfellow et al. (Goodfellow et al., 2014) and Madry et al. (Madry et al., 2018) to craft
the adversarial examples via the fast gradient method (FGM) or the projected gradient descent (PGD). We adopt the former
for linear classifiers and the latter for two layer neural networks and deep neural networks (VGG-11 and ResNet18). For all
datasets and all ℓp norms (p ∈ {2,∞}), we experiment with three perturbation scales ε. The perturbation scales are selected
based on the ℓp distances between the empirical means of the two classes. For most of the datasets, we choose the three
values as 1/4, 3/8, 1/2 of the distance. For CIFAR-10 and ℓ2 only, we select slightly larger perturbation scales, following
the practice in Tsipras et al. (Tsipras et al., 2019). For PGD attack specifically, we set the step number to be 50 and the limit
on the per step size to be 2.5 · ε/50 following Madry et al. (Madry et al., 2018). On ImageNet, we limit the step number to

3A diagram of the hierarchy can be found at https://observablehq.com/@mbostock/imagenet-hierarchy
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Figure 2. The gap of accuracy disparity ADR
rob,p,ε −ADR

std (1st row, RQ2) and the gap of standard accuracy accR,·
std − accR,·

rob,p,ε (2nd row,
RQ3) w.r.t. the imbalance ratio R. For the robust classifiers, we consider p ∈ {2,∞} and multiple perturbation scales. We present the
results on the two synthetic datasets of SαS distribution where α = 1 or 1.5. The shaded area represents the standard error of 5 runs.

10 considering the high computation cost.

C.2. Additional Experiments on Synthetic Datasets of Stable Distributions

As a complement to the Gaussian case evaluated in Section 5 in the main paper, here, we evaluate general symmetric
α-stable distributions corresponding to the theoretical results in Section 4. We consider two values of α — the special
case α = 1 which is commonly known as the Cauchy distribution, as well as the case α = 1.5 which is known as the
Holtsmark distribution (Holtsmark, 1919) and can be viewed as an “intermediate” between Gaussian (α = 2) and Cauchy.
The construction details of the dataset are described in Appendix C.1.

We present the results on these two datasets in Figure 2.

In the Cauchy case, the two classes in our constructed dataset are barely separable, so in the balanced case R = 1, the
classification accuracy for both classes are close to random guess with value around 0.5. (Detailed numbers can be found in
Table 3.) In the class imbalance settings (R = 2, 5, 10), the predictions of both the standard and the robust classifiers favor
the majority class, and so the accuracy disparity is close to 1 in both cases, leading to the accuracy disparity gap of nearly 0.
This result provides the answers to RQ1 and RQ2 and aligns well with the theoretical result in Theorem 4.5. Regarding
RQ3 which asks whether and when adversarial training will worsen the standard accuracy, we comment that on this Cauchy
dataset we investigate, the classification outcomes are similar for the standard and robust classifiers. In the balanced class
setting, the hardness of the dataset dominates and leads to random guesses in both training scenarios; in the class imbalance
setting, the class imbalance dominates and leads to unanimous preference towards the majority class. Thus, it is difficult to
draw conclusions regarding the factor of adversarial training.

For the Holtsmark distribution, unsurprisingly, we find that the phenomenon is in the between of the Guassian and Cauchy
in terms of accuracy disparity. Concretely, we do see that adversarial training will exacerbate the accuracy disparity in the
class imbalance setting, but the gap does not increase with the imbalance ratio R. This observation aligns partially with
Theorem 3.6 and partially with Theorem 4.5, but not both. In terms of the standard accuracy, we see that adversarial training
leads to a decrease of standard accuracy, which is consistent with Theorem 4.3.

In all, from these experiments on synthetic datasets of stable distributions, we see that 1) class imbalance will be a dominating
factor which surpasses the influence of adversarial training for the Cauchy case; 2) α value between 1 and 2 will lead to
intermediate behavior of Gaussian (Theorem 3.6) and Cauchy (Theorem 4.5) regarding the accuracy disparity; 3) adversarial
training will invariably decrease the standard accuracy empirically.

C.3. Additional Experiments on Real-World Datasets Fashion-MNIST and ImageNet

We evaluate two additional real-world datasets Fashion-MNIST (Xiao et al., 2017) and ImageNet (Deng et al., 2009).
Fashion-MNIST is often used as a drop-in replacement for MNIST (LeCun et al., 1998). ImageNet is a large-scale dataset

23



Understanding the Impact of Adversarial Robustness on Accuracy Disparity

Fashion-MNIST, p = ∞ Fashion-MNIST, p = 2 ImageNet, p = ∞ ImageNet, p = 2
A
D

R ro
b,
p
,ε

−
A
D

R st
d

1 2 5 10
0.04
0.02
0.00
0.02
0.04
0.06
0.08

= 0.289
= 0.217
= 0.144

1 2 5 10
0.04
0.02
0.00
0.02
0.04
0.06
0.08

= 3.23
= 2.42
= 1.62

1 2 5 10
0.0
0.1
0.2
0.3
0.4
0.5 = 0.090

= 0.068
= 0.045

1 2 5 10
0.0
0.1
0.2
0.3
0.4
0.5 = 4.80

= 3.60
= 2.40

a
c
c
R

,·
st

d
−

a
c
c
R

,·
ro

b,
p
,ε

1 2 5 100.00
0.01
0.02
0.03
0.04
0.05 = 0.289

= 0.217
= 0.144

1 2 5 100.00
0.01
0.02
0.03
0.04
0.05 = 3.23

= 2.42
= 1.62

1 2 5 10
0.02

0.04

0.06

0.08
= 0.090
= 0.068
= 0.045

1 2 5 10
0.02

0.04

0.06

0.08
= 4.80
= 3.60
= 2.40

R R R R

Figure 3. The gap of accuracy disparity ADR
rob,p,ε −ADR

std (1st row, RQ2) and the gap of standard accuracy accR,·
std − accR,·

rob,p,ε (2nd row,
RQ3) w.r.t. the imbalance ratio R. For the robust classifiers, we consider p ∈ {2,∞} and multiple perturbation scales. We present the
results on two real-world datasets Fashion-MNIST and ImageNet. The shaded area represents the standard error of 5 runs.

consisting of 1, 000 classes of high-dimensional images. The dataset description and the details on the construction of
the dataset are provided in Appendix C.1.

We present the results in Figure 3. Comparing the results with that in Figure 1 in Section 5 of the main paper, we obtain
highly similar observations and conclusions w.r.t. all our three research questions. Concretely, both Fashion-MNIST and
ImageNet display similar behavior with the Gaussian mixture case — adversarial training exacerbates accuracy disparity
compared with standard training which is more severe with increased imbalance (1st row), and adversarial training worsens
the standard accuracy when R = 1 (2nd row).

In order to understand how “close” these two real-world datasets are to the Gaussian mixture, we follow the approach
described in Appendix C.4 to compute the outlier ratio (i.e., the ratio to samples that are 1 sigma away from the empirical
mean after performing preconditioning). The outlier ratios are 0.30 and 0.26 for the two classes of Fashion-MNIST, and 0.00
and 0.00 for ImageNet. Compared with the outlier ratios 0.52 and 0.52 for CIFAR (see Appendix C.4), Fashion-MNIST
and ImageNet are indeed less heavy-tailed.

Thus, we show that Fashion-MNIST and ImageNet are additional evidences for the potential of extending the theoretical
results to real-world datasets that can be roughly modeled as Gaussian mixtures.

C.4. Additional Analysis on the Statistical Properties of Real-World Datasets

From Section 5.1 in the main paper, we see that the results on MNIST resemble the theoretical analysis on the Gaussian
distribution, while the results on CIFAR resemble the analysis on the Cauchy distribution. In order to understand whether
CIFAR is indeed more heavy-tailed than MNIST, we look into the statistical properties of the two datasets and make a
comparison.

We compute the ratio of the outlier of the dataset as a proxy of how “heavy” the tail is. Concretely, we first perform a
preconditioning on the dataset such that the covariance of the preconditioned dataset becomes an identity matrix. We
leverage the PCA whitening approach (Friedman, 1987) to achieve the goal. Then, we compute an empirical mean of the
dataset and check for how many instances are 1 sigma away from the empirical mean (i.e., the distance between the instance
and the empirical mean is larger than

√
d, where d is the dataset dimensionality).

We follow the above approach to compute the outlier ratio for two classes separately in both datasets. The outlier ratios are
as high as 0.52 and 0.52 for the two classes of CIFAR, while only 0.13 and 0.16 for MNIST. This means that CIFAR is
indeed much more heavy-tailed than MNIST, supporting the experimental results in Section 5.1.

Ruling out Other Possible Influencing Factors. As we can observe from Table 4, the reason why there is only small
accuracy disparity gap for CIFAR in the class imbalance case is that the accuracy of the standard classifier on the minority
class is close to 0. The heavy tailed property is one possible explanation (Theorem 4.5); the other straightforward hypothesis
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is that the standard classifier is not well trained on CIFAR, either because the dataset size is relatively small, or because
the model capacity is limited. We then separately study the influence of the two factors:

• Dataset Size. Since we cannot enlarge the dataset size for CIFAR, we instead shrink the dataset size for MNIST.
We use 53 majority class samples and 5 minority class samples (i.e., R = 10) to train the model, which is 1/100 of
the size of the original training data. Compared with the original result, the majority class accuracy remains 1.00,
and the minority class accuracy drops from 0.97 to 0.88.

• Model Capacity. Instead of the original two linear layer network, we adopt a deep convolutional network
VGG-11 (Simonyan & Zisserman, 2015) to train the standard classifier on the R = 10 case for CIFAR. As a result,
the minority class accuracy increases from 0.00 to 0.23.

From the above results, we see that neither shrinking the dataset size nor increasing the model capacity can significantly
impact the accuracy disparity gap. Thus, we can confidently rule out these alternative explanations. We conclude that the
main contributor that leads to the distinction is the distributional characteristic (specifically, the tail property) of the dataset.

C.5. Full Experimental Results

In this part, we present the full experimental results on seven dataset groups—accuracy disparity gap in Table 1, standard
accuracy gap in Table 2, per class accuracy in Table 3 and 4, and overall accuracy in Table 5 and 6. In each table, we present
results for the standard and robust classifiers (with various p and ε) on datasets with different imbalance ratios R.

C.6. Computational Resources and Runtime

We perform experiments on a machine with AMD EPYC 7352 24-Core Processor CPU and 8 NVIDIA RTX A6000 GPUs.
The computational costs for training both the standard and the robust classifiers for both the synthetic datasets and the real
world datasets are low. For adversarial training on CIFAR (the most expensive case), each run of training would take less
than 20 minutes. We parallel the training tasks on all 8 GPU cards.
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Table 1. Accuracy disparity gap ADrob,p,ε
R −ADstd

R for various choices of p and ε on seven dataset groups. Results are averaged over 5
runs with different random seeds. (Corresponding to 1st rows of Figures 1, 2 and 3.)

Synthetic
Gaussian

p = ∞ p = 2

ε = 1.00 ε = 0.75 ε = 0.50 ε = 5.00 ε = 3.50 ε = 2.50

R = 1 0.00 ± 0.01 -0.02 ± 0.00 -0.01 ± 0.00 0.01 ± 0.02 -0.01 ± 0.02 -0.02 ± 0.00

R = 2 0.16 ± 0.06 0.20 ± 0.02 0.08 ± 0.00 0.28 ± 0.12 0.33 ± 0.10 0.21 ± 0.02

R = 5 0.85 ± 0.02 0.56 ± 0.02 0.22 ± 0.01 0.98 ± 0.00 0.91 ± 0.01 0.59 ± 0.02

R = 10 0.95 ± 0.00 0.73 ± 0.02 0.27 ± 0.01 1.00 ± 0.00 0.97 ± 0.00 0.67 ± 0.01

Synthetic
Cauchy

p = ∞ p = 2

ε = 53.00 ε = 39.75 ε = 26.50 ε = 70.0 ε = 52.5 ε = 35.0

R = 1 -0.03 ± 0.02 0.13 ± 0.10 0.00 ± 0.01 -0.00 ± 0.07 0.16 ± 0.15 0.03 ± 0.17

R = 2 0.05 ± 0.01 0.05 ± 0.00 0.04 ± 0.01 0.08 ± 0.00 0.08 ± 0.00 0.07 ± 0.00

R = 5 0.03 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.03 ± 0.00

R = 10 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.00

Synthetic
Holtsmark

p = ∞ p = 2

ε = 0.56 ε = 0.42 ε = 0.28 ε = 2.94 ε = 2.21 ε = 1.47

R = 1 -0.01 ± 0.01 -0.01 ± 0.00 -0.00 ± 0.00 -0.05 ± 0.01 -0.02 ± 0.00 -0.01 ± 0.00

R = 2 0.31 ± 0.08 0.28 ± 0.01 0.14 ± 0.01 0.52 ± 0.03 0.50 ± 0.02 0.28 ± 0.01

R = 5 0.27 ± 0.02 0.24 ± 0.02 0.19 ± 0.02 0.28 ± 0.02 0.26 ± 0.02 0.23 ± 0.02

R = 10 0.10 ± 0.01 0.08 ± 0.01 0.06 ± 0.01 0.10 ± 0.01 0.10 ± 0.01 0.08 ± 0.01

MNIST p = ∞ p = 2

ε = 0.43 ε = 0.33 ε = 0.22 ε = 2.70 ε = 2.02 ε = 1.35

R = 1 0.03 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.03 ± 0.00 0.02 ± 0.00

R = 2 0.03 ± 0.00 0.03 ± 0.00 0.01 ± 0.00 0.05 ± 0.00 0.04 ± 0.01 0.02 ± 0.00

R = 5 0.07 ± 0.00 0.04 ± 0.00 0.02 ± 0.00 0.07 ± 0.01 0.06 ± 0.00 0.05 ± 0.00

R = 10 0.09 ± 0.00 0.04 ± 0.00 0.02 ± 0.00 0.09 ± 0.00 0.08 ± 0.01 0.05 ± 0.00

Fashion-
MNIST

p = ∞ p = 2

ε = 0.29 ε = 0.22 ε = 0.14 ε = 3.23 ε = 2.42 ε = 1.62

R = 1 0.01 ± 0.01 0.00 ± 0.01 0.01 ± 0.00 -0.03 ± 0.01 -0.01 ± 0.01 0.01 ± 0.00

R = 2 0.04 ± 0.00 0.04 ± 0.00 0.02 ± 0.00 0.01 ± 0.01 0.03 ± 0.00 0.02 ± 0.00

R = 5 0.06 ± 0.01 0.04 ± 0.01 0.04 ± 0.00 0.05 ± 0.00 0.05 ± 0.00 0.03 ± 0.00

R = 10 0.07 ± 0.00 0.05 ± 0.00 0.03 ± 0.00 0.06 ± 0.01 0.05 ± 0.01 0.02 ± 0.00

CIFAR p = ∞ p = 2

ε = 0.030 ε = 0.023 ε = 0.015 ε = 0.98 ε = 0.88 ε = 0.78

R = 1 -0.63 ± 0.19 0.01 ± 0.25 -0.31 ± 0.09 -0.30 ± 0.18 -0.11 ± 0.03 -0.07 ± 0.05

R = 2 0.43 ± 0.03 0.43 ± 0.03 0.23 ± 0.09 0.43 ± 0.03 0.19 ± 0.04 -0.01 ± 0.04

R = 5 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 -0.02 ± 0.01

R = 10 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 -0.01 ± 0.01

ImageNet p = ∞ p = 2

ε = 0.090 ε = 0.068 ε = 0.045 ε = 4.80 ε = 3.60 ε = 2.40

R = 1 -0.01 ± 0.01 0.02 ± 0.01 0.00 ± 0.01 0.00 ± 0.02 0.02 ± 0.01 0.00 ± 0.01

R = 2 0.04 ± 0.03 0.07 ± 0.01 0.04 ± 0.01 0.08 ± 0.02 0.05 ± 0.02 0.02 ± 0.01

R = 5 0.31 ± 0.03 0.15 ± 0.01 0.07 ± 0.02 0.22 ± 0.02 0.15 ± 0.01 0.05 ± 0.01

R = 10 0.45 ± 0.04 0.30 ± 0.02 0.14 ± 0.01 0.50 ± 0.02 0.30 ± 0.03 0.15 ± 0.02
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Table 2. Standard accuracy gap accstd
R − accrob,p,ε

R for various choices of p and ε on seven dataset groups. Results are averaged over 5
runs with different random seeds. (Corresponding to 2nd rows of Figures 1, 2 and 3.)

Synthetic
Gaussian

p = ∞ p = 2

ε = 1.00 ε = 0.75 ε = 0.50 ε = 5.00 ε = 3.50 ε = 2.50

R = 1 0.16 ± 0.00 0.12 ± 0.00 0.05 ± 0.00 0.26 ± 0.00 0.20 ± 0.00 0.13 ± 0.00

R = 2 0.15 ± 0.01 0.11 ± 0.00 0.05 ± 0.00 0.25 ± 0.01 0.20 ± 0.00 0.12 ± 0.00

R = 5 0.14 ± 0.00 0.10 ± 0.00 0.04 ± 0.00 0.16 ± 0.00 0.15 ± 0.00 0.10 ± 0.00

R = 10 0.09 ± 0.00 0.07 ± 0.00 0.03 ± 0.00 0.09 ± 0.00 0.09 ± 0.00 0.06 ± 0.00

Synthetic
Cauchy

p = ∞ p = 2

ε = 53.00 ε = 39.75 ε = 26.50 ε = 70.0 ε = 52.5 ε = 35.0

R = 1 -0.00 ± 0.01 -0.00 ± 0.01 -0.02 ± 0.00 0.00 ± 0.02 -0.01 ± 0.01 0.00 ± 0.01

R = 2 -0.01 ± 0.00 -0.01 ± 0.00 -0.01 ± 0.00 -0.01 ± 0.00 -0.01 ± 0.00 -0.01 ± 0.00

R = 5 -0.01 ± 0.00 -0.01 ± 0.00 -0.00 ± 0.00 -0.01 ± 0.00 -0.01 ± 0.00 -0.01 ± 0.00

R = 10 -0.01 ± 0.00 -0.01 ± 0.00 -0.01 ± 0.00 -0.02 ± 0.00 -0.02 ± 0.00 -0.02 ± 0.00

Synthetic
Holtsmark

p = ∞ p = 2

ε = 0.56 ε = 0.42 ε = 0.28 ε = 2.94 ε = 2.21 ε = 1.47

R = 1 0.01 ± 0.00 -0.00 ± 0.00 -0.01 ± 0.00 0.05 ± 0.01 0.03 ± 0.00 -0.00 ± 0.00

R = 2 0.07 ± 0.02 0.06 ± 0.00 0.03 ± 0.00 0.13 ± 0.01 0.11 ± 0.00 0.06 ± 0.00

R = 5 0.02 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00

R = 10 -0.00 ± 0.00 -0.00 ± 0.00 -0.00 ± 0.00 -0.00 ± 0.00 -0.00 ± 0.00 -0.00 ± 0.00

MNIST p = ∞ p = 2

ε = 0.43 ε = 0.33 ε = 0.22 ε = 2.70 ε = 2.02 ε = 1.35

R = 1 0.02 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.03 ± 0.00 0.02 ± 0.00 0.01 ± 0.00

R = 2 0.02 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.03 ± 0.00 0.02 ± 0.00 0.01 ± 0.00

R = 5 0.01 ± 0.00 0.00 ± 0.00 -0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

R = 10 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Fashion-
MNIST

p = ∞ p = 2

ε = 0.29 ε = 0.22 ε = 0.14 ε = 3.23 ε = 2.42 ε = 1.62

R = 1 0.04 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.05 ± 0.00 0.04 ± 0.00 0.02 ± 0.00

R = 2 0.02 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.03 ± 0.00 0.02 ± 0.00 0.01 ± 0.00

R = 5 0.02 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.01 ± 0.00

R = 10 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

CIFAR p = ∞ p = 2

ε = 0.030 ε = 0.023 ε = 0.015 ε = 0.98 ε = 0.88 ε = 0.78

R = 1 0.21 ± 0.01 0.18 ± 0.01 0.12 ± 0.05 0.19 ± 0.01 0.14 ± 0.01 -0.02 ± 0.01

R = 2 0.04 ± 0.00 0.04 ± 0.00 -0.00 ± 0.02 0.04 ± 0.00 0.02 ± 0.00 -0.01 ± 0.01

R = 5 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 -0.00 ± 0.00

R = 10 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 -0.00 ± 0.00

ImageNet p = ∞ p = 2

ε = 0.090 ε = 0.068 ε = 0.045 ε = 4.80 ε = 3.60 ε = 2.40

R = 1 0.05 ± 0.00 0.04 ± 0.00 0.02 ± 0.00 0.06 ± 0.00 0.03 ± 0.00 0.02 ± 0.00

R = 2 0.07 ± 0.00 0.05 ± 0.00 0.03 ± 0.00 0.06 ± 0.00 0.04 ± 0.00 0.03 ± 0.00

R = 5 0.06 ± 0.00 0.04 ± 0.00 0.02 ± 0.00 0.05 ± 0.00 0.04 ± 0.00 0.03 ± 0.00

R = 10 0.05 ± 0.00 0.04 ± 0.00 0.03 ± 0.00 0.05 ± 0.00 0.04 ± 0.00 0.03 ± 0.00
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Table 3. Per class accuracy for the standard and robust classifiers on synthetic datasets. We denote the majority class as “class −” and
the minority class as “class +” following Section 2. “std” refers to the standard classifier and “rob” refers to the robust classifier with the
specified p and ε. The presented results are averaged over 5 runs.

Synthetic Gaussian R = 1 R = 2 R = 5 R = 10

class − class + class − class + class − class + class − class +

std 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

rob (p = 2, ε = 5.00) 0.85 ± 0.01 0.84 ± 0.01 0.89 ± 0.02 0.73 ± 0.05 0.99 ± 0.00 0.15 ± 0.02 1.00 ± 0.00 0.05 ± 0.00

rob (p = 2, ε = 3.75) 0.87 ± 0.00 0.89 ± 0.00 0.95 ± 0.00 0.75 ± 0.01 0.99 ± 0.00 0.43 ± 0.02 1.00 ± 0.00 0.26 ± 0.01

rob (p = 2, ε = 2.50) 0.94 ± 0.00 0.95 ± 0.00 0.98 ± 0.00 0.89 ± 0.00 0.99 ± 0.00 0.77 ± 0.01 0.99 ± 0.00 0.72 ± 0.01

rob (p = ∞, ε = 1.00) 0.74 ± 0.01 0.73 ± 0.01 0.84 ± 0.03 0.56 ± 0.09 1.00 ± 0.00 0.02 ± 0.00 1.00 ± 0.00 0.00 ± 0.00

rob (p = ∞, ε = 0.75) 0.80 ± 0.01 0.80 ± 0.01 0.90 ± 0.03 0.58 ± 0.07 1.00 ± 0.00 0.09 ± 0.01 1.00 ± 0.00 0.02 ± 0.00

rob (p = ∞, ε = 0.50) 0.86 ± 0.00 0.88 ± 0.00 0.95 ± 0.01 0.74 ± 0.01 0.99 ± 0.00 0.40 ± 0.02 0.99 ± 0.00 0.32 ± 0.01

Synthetic Cauchy R = 1 R = 2 R = 5 R = 10

class − class + class − class + class − class + class − class +

std 0.50 ± 0.00 0.52 ± 0.01 0.95 ± 0.00 0.04 ± 0.00 0.98 ± 0.00 0.02 ± 0.00 0.98 ± 0.00 0.01 ± 0.00

rob (p = 2, ε = 70.00) 0.48 ± 0.01 0.54 ± 0.01 0.98 ± 0.00 0.02 ± 0.00 0.99 ± 0.00 0.00 ± 0.00 0.99 ± 0.00 0.00 ± 0.00

rob (p = 2, ε = 52.50) 0.57 ± 0.05 0.46 ± 0.06 0.98 ± 0.00 0.02 ± 0.00 0.99 ± 0.00 0.01 ± 0.00 0.99 ± 0.00 0.01 ± 0.00

rob (p = 2, ε = 35.00) 0.51 ± 0.00 0.54 ± 0.01 0.98 ± 0.00 0.02 ± 0.00 0.99 ± 0.00 0.01 ± 0.00 0.99 ± 0.00 0.01 ± 0.00

rob (p = ∞, ε = 53.00) 0.49 ± 0.03 0.52 ± 0.04 1.00 ± 0.00 0.01 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00

rob (p = ∞, ε = 39.75) 0.58 ± 0.08 0.45 ± 0.09 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00

rob (p = ∞, ε = 26.50) 0.51 ± 0.09 0.50 ± 0.09 0.99 ± 0.00 0.01 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00

Synthetic Holtsmark R = 1 R = 2 R = 5 R = 10

class − class + class − class + class − class + class − class +

std 0.81 ± 0.00 0.82 ± 0.00 0.94 ± 0.00 0.60 ± 0.00 0.97 ± 0.00 0.27 ± 0.02 0.99 ± 0.00 0.10 ± 0.01

rob (p = 2, ε = 2.94) 0.80 ± 0.01 0.82 ± 0.00 0.97 ± 0.01 0.32 ± 0.07 1.00 ± 0.00 0.02 ± 0.00 1.00 ± 0.00 0.01 ± 0.00

rob (p = 2, ε = 2.21) 0.81 ± 0.00 0.83 ± 0.00 0.97 ± 0.00 0.35 ± 0.01 0.99 ± 0.00 0.05 ± 0.01 1.00 ± 0.00 0.03 ± 0.00

rob (p = 2, ε = 1.47) 0.81 ± 0.00 0.83 ± 0.00 0.95 ± 0.00 0.48 ± 0.01 0.99 ± 0.00 0.10 ± 0.01 0.99 ± 0.00 0.04 ± 0.00

rob (p = ∞, ε = 0.56) 0.74 ± 0.01 0.79 ± 0.00 0.98 ± 0.00 0.13 ± 0.03 1.00 ± 0.00 0.02 ± 0.00 1.00 ± 0.00 0.01 ± 0.00

rob (p = ∞, ε = 0.42) 0.77 ± 0.01 0.80 ± 0.00 0.98 ± 0.00 0.14 ± 0.01 0.99 ± 0.00 0.03 ± 0.01 1.00 ± 0.00 0.01 ± 0.00

rob (p = ∞, ε = 0.28) 0.81 ± 0.00 0.82 ± 0.00 0.97 ± 0.00 0.35 ± 0.00 0.99 ± 0.00 0.05 ± 0.01 0.99 ± 0.00 0.02 ± 0.00
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Table 4. Per class accuracy for the standard and robust classifiers on real-world datasets. We denote the majority class as “class −” and
the minority class as “class +” following Section 2. “std” refers to the standard classifier and “rob” refers to the robust classifier with the
specified p and ε. The presented results are averaged over 5 runs.

MNIST R = 1 R = 2 R = 5 R = 10

class − class + class − class + class − class + class − class +

std 1.00 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 0.98 ± 0.00 1.00 ± 0.00 0.97 ± 0.00

rob (p = 2, ε = 2.70) 0.99 ± 0.00 0.96 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00 0.91 ± 0.00 1.00 ± 0.00 0.88 ± 0.00

rob (p = 2, ε = 2.02) 1.00 ± 0.00 0.97 ± 0.00 1.00 ± 0.00 0.96 ± 0.00 1.00 ± 0.00 0.94 ± 0.00 1.00 ± 0.00 0.93 ± 0.00

rob (p = 2, ε = 1.35) 1.00 ± 0.00 0.98 ± 0.00 1.00 ± 0.00 0.97 ± 0.00 1.00 ± 0.00 0.96 ± 0.00 1.00 ± 0.00 0.95 ± 0.00

rob (p = ∞, ε = 0.43) 0.98 ± 0.00 0.96 ± 0.00 0.99 ± 0.00 0.93 ± 0.00 0.99 ± 0.00 0.91 ± 0.01 1.00 ± 0.00 0.87 ± 0.00

rob (p = ∞, ε = 0.33) 0.99 ± 0.00 0.96 ± 0.00 1.00 ± 0.00 0.94 ± 0.01 1.00 ± 0.00 0.92 ± 0.00 1.00 ± 0.00 0.88 ± 0.01

rob (p = ∞, ε = 0.22) 0.99 ± 0.00 0.97 ± 0.00 0.99 ± 0.00 0.96 ± 0.00 1.00 ± 0.00 0.93 ± 0.00 1.00 ± 0.00 0.92 ± 0.00

Fashion-MNIST R = 1 R = 2 R = 5 R = 10

class − class + class − class + class − class + class − class +

std 0.98 ± 0.00 0.99 ± 0.00 0.98 ± 0.00 0.99 ± 0.00 0.97 ± 0.00 1.00 ± 0.00 0.95 ± 0.00 1.00 ± 0.00

rob (p = 2, ε = 3.23) 0.94 ± 0.00 0.96 ± 0.00 0.92 ± 0.00 0.98 ± 0.00 0.90 ± 0.00 0.99 ± 0.00 0.87 ± 0.00 1.00 ± 0.00

rob (p = 2, ε = 2.42) 0.96 ± 0.00 0.97 ± 0.00 0.93 ± 0.00 0.99 ± 0.00 0.92 ± 0.00 0.99 ± 0.00 0.89 ± 0.00 1.00 ± 0.00

rob (p = 2, ε = 1.62) 0.97 ± 0.00 0.99 ± 0.00 0.95 ± 0.00 0.99 ± 0.00 0.93 ± 0.00 1.00 ± 0.00 0.92 ± 0.00 1.00 ± 0.00

rob (p = ∞, ε = 0.29) 0.95 ± 0.00 0.93 ± 0.01 0.94 ± 0.01 0.97 ± 0.00 0.91 ± 0.00 0.99 ± 0.00 0.89 ± 0.01 1.00 ± 0.00

rob (p = ∞, ε = 0.22) 0.95 ± 0.01 0.94 ± 0.01 0.93 ± 0.00 0.98 ± 0.00 0.91 ± 0.00 0.99 ± 0.00 0.89 ± 0.00 1.00 ± 0.00

rob (p = ∞, ε = 0.14) 0.96 ± 0.00 0.98 ± 0.00 0.95 ± 0.00 0.99 ± 0.00 0.94 ± 0.00 1.00 ± 0.00 0.93 ± 0.00 1.00 ± 0.00

CIFAR R = 1 R = 2 R = 5 R = 10

class − class + class − class + class − class + class − class +

std 0.71 ± 0.01 0.74 ± 0.01 0.90 ± 0.01 0.33 ± 0.02 0.99 ± 0.00 0.05 ± 0.01 1.00 ± 0.00 0.00 ± 0.00

rob (p = 2, ε = 0.98) 0.19 ± 0.10 0.85 ± 0.08 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00

rob (p = 2, ε = 0.88) 0.53 ± 0.12 0.54 ± 0.14 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00

rob (p = 2, ε = 0.78) 0.44 ± 0.08 0.77 ± 0.04 0.98 ± 0.01 0.18 ± 0.07 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00

rob (p = ∞, ε = 0.030) 0.37 ± 0.10 0.70 ± 0.09 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00

rob (p = ∞, ε = 0.023) 0.51 ± 0.02 0.65 ± 0.01 0.94 ± 0.01 0.18 ± 0.02 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00

rob (p = ∞, ε = 0.015) 0.69 ± 0.03 0.79 ± 0.02 0.91 ± 0.01 0.36 ± 0.04 0.99 ± 0.00 0.07 ± 0.01 1.00 ± 0.00 0.01 ± 0.01

ImageNet R = 1 R = 2 R = 5 R = 10

class − class + class − class + class − class + class − class +

std 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 0.98 ± 0.00 1.00 ± 0.00 0.97 ± 0.00 1.00 ± 0.00 0.95 ± 0.00

rob (p = 2, ε = 4.80) 0.93 ± 0.01 0.94 ± 0.01 0.95 ± 0.01 0.89 ± 0.02 0.99 ± 0.00 0.66 ± 0.03 1.00 ± 0.00 0.49 ± 0.04

rob (p = 2, ε = 3.60) 0.96 ± 0.00 0.93 ± 0.01 0.98 ± 0.00 0.89 ± 0.01 0.99 ± 0.00 0.81 ± 0.02 0.99 ± 0.00 0.64 ± 0.03

rob (p = 2, ε = 2.40) 0.97 ± 0.00 0.96 ± 0.00 0.98 ± 0.00 0.92 ± 0.01 0.99 ± 0.00 0.89 ± 0.01 0.99 ± 0.00 0.79 ± 0.01

rob (p = ∞, ε = 0.090) 0.93 ± 0.01 0.92 ± 0.01 0.96 ± 0.01 0.87 ± 0.01 0.99 ± 0.00 0.74 ± 0.02 1.00 ± 0.00 0.45 ± 0.02

rob (p = ∞, ε = 0.068) 0.97 ± 0.00 0.94 ± 0.00 0.97 ± 0.00 0.91 ± 0.01 0.99 ± 0.00 0.81 ± 0.01 0.99 ± 0.00 0.65 ± 0.03

rob (p = ∞, ε = 0.045) 0.97 ± 0.00 0.96 ± 0.00 0.98 ± 0.00 0.94 ± 0.00 0.98 ± 0.00 0.91 ± 0.01 0.99 ± 0.00 0.79 ± 0.02
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Table 5. Overall accuracy for the standard and robust classifiers on synthetic datasets. “std” refers to the standard classifier and “rob”
refers to the robust classifier with the specified p and ε. The presented results are averaged over 5 runs.

Synthetic Gaussian R = 1 R = 2 R = 5 R = 10

std 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

rob (p = 2, ε = 5.00) 0.87 ± 0.01 0.86 ± 0.01 0.87 ± 0.01 0.86 ± 0.01

rob (p = 2, ε = 3.75) 0.90 ± 0.01 0.90 ± 0.01 0.90 ± 0.01 0.90 ± 0.01

rob (p = 2, ε = 2.50) 0.96 ± 0.01 0.96 ± 0.00 0.96 ± 0.00 0.95 ± 0.01

rob (p = ∞, ε = 1.00) 0.82 ± 0.03 0.81 ± 0.03 0.81 ± 0.03 0.80 ± 0.03

rob (p = ∞, ε = 0.75) 0.84 ± 0.02 0.84 ± 0.02 0.84 ± 0.02 0.85 ± 0.02

rob (p = ∞, ε = 0.50) 0.90 ± 0.01 0.89 ± 0.01 0.89 ± 0.01 0.90 ± 0.01

Synthetic Cauchy R = 1 R = 2 R = 5 R = 10

std 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

rob (p = 2, ε = 5.00) 0.84 ± 0.00 0.85 ± 0.01 0.86 ± 0.00 0.91 ± 0.00

rob (p = 2, ε = 3.75) 0.88 ± 0.00 0.89 ± 0.00 0.90 ± 0.00 0.93 ± 0.00

rob (p = 2, ε = 2.50) 0.95 ± 0.00 0.95 ± 0.00 0.96 ± 0.00 0.97 ± 0.00

rob (p = ∞, ε = 1.00) 0.74 ± 0.00 0.75 ± 0.01 0.84 ± 0.00 0.91 ± 0.00

rob (p = ∞, ε = 0.75) 0.80 ± 0.00 0.80 ± 0.00 0.85 ± 0.00 0.91 ± 0.00

rob (p = ∞, ε = 0.50) 0.87 ± 0.00 0.88 ± 0.00 0.90 ± 0.00 0.94 ± 0.00

Synthetic Holtsmark R = 1 R = 2 R = 5 R = 10

std 0.51 ± 0.00 0.65 ± 0.00 0.82 ± 0.00 0.89 ± 0.00

rob (p = 2, ε = 70.00) 0.51 ± 0.00 0.66 ± 0.00 0.83 ± 0.00 0.90 ± 0.00

rob (p = 2, ε = 52.50) 0.51 ± 0.01 0.66 ± 0.00 0.83 ± 0.00 0.90 ± 0.00

rob (p = 2, ε = 35.00) 0.53 ± 0.00 0.66 ± 0.00 0.82 ± 0.00 0.90 ± 0.00

rob (p = ∞, ε = 53.00) 0.51 ± 0.01 0.67 ± 0.00 0.83 ± 0.00 0.91 ± 0.00

rob (p = ∞, ε = 39.75) 0.52 ± 0.01 0.67 ± 0.00 0.83 ± 0.00 0.91 ± 0.00

rob (p = ∞, ε = 26.50) 0.50 ± 0.01 0.66 ± 0.00 0.83 ± 0.00 0.91 ± 0.00
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Table 6. Overall accuracy for the standard and robust classifiers on real-world datasets. “std” refers to the standard classifier and “rob”
refers to the robust classifier with the specified p and ε. The presented results are averaged over 5 runs.

MNIST R = 1 R = 2 R = 5 R = 10

std 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

rob (p = 2, ε = 2.70) 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00

rob (p = 2, ε = 2.02) 0.98 ± 0.00 0.98 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

rob (p = 2, ε = 1.35) 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

rob (p = ∞, ε = 0.43) 0.97 ± 0.00 0.97 ± 0.00 0.98 ± 0.00 0.99 ± 0.00

rob (p = ∞, ε = 0.33) 0.98 ± 0.00 0.98 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

rob (p = ∞, ε = 0.22) 0.98 ± 0.00 0.98 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

Fashion-MNIST R = 1 R = 2 R = 5 R = 10

std 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

rob (p = 2, ε = 3.23) 0.95 ± 0.00 0.96 ± 0.00 0.97 ± 0.00 0.98 ± 0.00

rob (p = 2, ε = 2.42) 0.96 ± 0.00 0.96 ± 0.00 0.97 ± 0.00 0.98 ± 0.00

rob (p = 2, ε = 1.62) 0.98 ± 0.00 0.98 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

rob (p = ∞, ε = 0.29) 0.94 ± 0.00 0.96 ± 0.00 0.97 ± 0.00 0.98 ± 0.00

rob (p = ∞, ε = 0.22) 0.95 ± 0.00 0.96 ± 0.00 0.98 ± 0.00 0.99 ± 0.00

rob (p = ∞, ε = 0.14) 0.97 ± 0.00 0.98 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

CIFAR R = 1 R = 2 R = 5 R = 10

std 0.72 ± 0.00 0.71 ± 0.00 0.84 ± 0.00 0.91 ± 0.00

rob (p = 2, ε = 0.98) 0.52 ± 0.01 0.67 ± 0.00 0.83 ± 0.00 0.91 ± 0.00

rob (p = 2, ε = 0.88) 0.54 ± 0.01 0.67 ± 0.00 0.83 ± 0.00 0.91 ± 0.00

rob (p = 2, ε = 0.78) 0.61 ± 0.05 0.71 ± 0.02 0.83 ± 0.00 0.91 ± 0.00

rob (p = ∞, ε = 0.030) 0.53 ± 0.01 0.67 ± 0.00 0.83 ± 0.00 0.91 ± 0.00

rob (p = ∞, ε = 0.023) 0.58 ± 0.01 0.69 ± 0.00 0.83 ± 0.00 0.91 ± 0.00

rob (p = ∞, ε = 0.015) 0.74 ± 0.01 0.72 ± 0.01 0.84 ± 0.00 0.91 ± 0.00

ImageNet R = 1 R = 2 R = 5 R = 10

std 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00

rob (p = 2, ε = 4.80) 0.94 ± 0.00 0.93 ± 0.00 0.93 ± 0.01 0.95 ± 0.00

rob (p = 2, ε = 3.60) 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.96 ± 0.00

rob (p = 2, ε = 2.40) 0.97 ± 0.00 0.96 ± 0.00 0.97 ± 0.00 0.97 ± 0.00

rob (p = ∞, ε = 0.090) 0.93 ± 0.00 0.93 ± 0.00 0.94 ± 0.00 0.95 ± 0.00

rob (p = ∞, ε = 0.068) 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.96 ± 0.00

rob (p = ∞, ε = 0.045) 0.97 ± 0.00 0.96 ± 0.00 0.97 ± 0.00 0.97 ± 0.00
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