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Abstract
Clustering aims to group unlabelled samples
based on their similarities and is widespread in
high-dimensional data analysis. However, most of
the clustering methods merely generate pseudo la-
bels and thus are unable to simultaneously present
the similarities between different clusters and out-
liers. This paper proposes a new framework called
High-dimensional Clustering onto Hamiltonian
Cycle (HCHC) to solve the above problems. First,
HCHC combines global structure with local struc-
ture in one objective function for deep clustering,
improving the labels as relative probabilities, to
mine the similarities between different clusters
while keeping the local structure in each cluster.
Then, the anchors of different clusters are sorted
on the optimal Hamiltonian cycle generated by
the cluster similarities and mapped on the circum-
ference of a circle. Finally, a sample with a higher
probability of a cluster will be mapped closer to
the corresponding anchor. In this way, our frame-
work allows us to appreciate three aspects visually
and simultaneously - clusters (formed by samples
with high probabilities), cluster similarities (rep-
resented as circular distances), and outliers (rec-
ognized as dots far away from all clusters). The
theoretical analysis and experiments illustrate the
superiority of HCHC.

1. Introduction
High-dimensional data, i.e., the data described by a large
number of features, are widely existing in many research
fields, such as image processing, pattern recognition, and
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bioinformatics (Bühlmann & Van De Geer, 2011; Donoho
et al., 2000). Analyzing high-dimensional data is a signifi-
cant but challenging task (Verleysen et al., 2003). Clustering
is widespread in high-dimensional data analysis (Mccarthy
et al., 2004; Jain et al., 1999). It can group samples so that
the samples within the same cluster are broadly more sim-
ilar to one another than those in other clusters (Hartigan,
1975; Niu et al., 2022; Huang et al., 2020). Then by simul-
taneously presenting the clusters, similarities, and outliers,
we can well recognize the insight of high-dimensional data.
For example, in the clustering of community detection, we
can find the topological information between the different
clusters of the community nodes by presenting the similari-
ties between these clusters and thus explain the community
detection result (Fortunato, 2010). However, most of the tra-
ditional clustering methods merely generate pseudo labels.
In this case, it is hard to get the knowledge of similarities
and outliers in the clustering.

A frequently-used tool to explore the outliers and similar-
ities between the different clusters is the dendrogram in
hierarchical clustering (Guha et al., 1998; Karypis et al.,
1999). But, some critical knowledge for explaining the rec-
ognized similar clusters and outliers cannot be presented
in this way. For example, the dendrogram cannot present
the in-between samples of the different clusters to explain
the recognized similar clusters. It also cannot present the
clustering probability distributions of the samples to explain
the recognized outliers. Deep clustering methods, such as
DEC, have been proposed to cluster high-dimensional data
by simultaneously learning clustering probability distribu-
tions and the embedded features of the samples (Aljalbout
et al., 2018; Xie et al., 2016). Then, we can extract simi-
larities and outliers in the generated clustering probability
distributions (Li et al., 2020). Unfortunately, there does
not exist an effective way to simultaneously present the
mined knowledge, including clusters, similarities, and out-
liers. Although some embedding methods, such as MDS
and t-SNE (Kruskal, 1978; Van der Maaten & Hinton, 2008;
McInnes et al., 2018), can visualize the distances between
the samples or the local-manifold in each cluster, the visu-
alized result may be inconsistent with the clustering result.
One reason is that it is hard to visualize all of the distin-
guishing information of high-dimensional in 2D space. The
other one is that these methods may have their limits in the
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visualization as shown in Appendix D.1 (Zu & Tao, 2022;
Li et al., 2020). For example, in the embedding space of
deep clustering, MDS cannot well keep the local-strcutre of
data and t-SNE cannot capture the global structure of data.

This paper proposes High-dimensional Clustering onto
Hamiltonian Cycle (HCHC) to solve the above problems.
It comprises two key components: (1) extracting the clus-
tering probability distributions by deep clustering and (2)
mapping the clustering probability distributions onto the
optimal Hamiltonian cycle. For extracting the clustering
probability distributions, we construct a new deep cluster-
ing method, GLDC, by combining global structure with
local structure in one objective function. GLDC constructs
a weighted adjacency matrix associated with a similarity
graph of the samples. By learning the structure of the un-
connected samples and the connected samples, respectively,
the loss function of GLDC can well mine the similarities
between different clusters while keeping the local-structure
of the samples in the same cluster. Thus, the extracted
clustering probability distributions in GLDC can well rep-
resent the similarities between different clusters and the
samples in the same cluster. Then, enlightened from Rad-
Viz Deluxe (Cheng et al., 2017; 2018; Grinstein & Wierse,
2002), an effective visualization method to analyze the re-
lationships between different features in data, we utilize
the Hamiltonian cycle to present the mined knowledge in
the extracted clustering probability distributions. We find
that by mapping the anchors of different clusters on the
circumference of a circle with Hamiltonian cycle, the simi-
larities between the different clusters can be well presented.
Concretely, to present the similarities between the different
clusters, the anchors of different clusters are sorted on the
optimal Hamiltonian cycle generated by the similarities be-
tween these clusters and mapped on the circumference of
a circle by their orders. Based on the polar coordinates of
the anchors on the circumference, a sample with a higher
probability of a cluster will be mapped closer to the corre-
sponding anchor. In this way, the data can be visualized
by the following three aspects: (1) the samples with a high
probability in the same cluster can be mapped together; (2)
similar clusters can be mapped close to each other; (3) the
samples with low probability to any cluster can be regarded
as outliers and mapped far away from all clusters.

An example of our HCHC is shown in Appendix A and
a head-to-head comparison between HCHC and Radviz
Deluxe is shown in Appendix B. Compared with visual-
izing the deep features by existing embedding methods,
such as t-SNE, our HCHC can better match the cluster-
ing result while presenting the outliers and similarities be-
tween the different clusters. Compared with the dendro-
gram in hierarchical clustering, our HCHC can better ex-
plain not only the recognized similar clusters by showing
the in-between samples of different clusters but also the

recognized outliers by showing their clustering probability
distributions. We perform experiments on six real-world
datasets and a COVID-19 dataset to illustrate the effective-
ness of our HCHC. The source code can be downloaded
from https://github.com/TianyiHuang2022.

2. Related Work
In this section, we review high-dimensional clustering and
visualization. They are highly related to our HCHC.

2.1. High-dimensional Clustering

Clustering has been a long-standing problem in machine
learning (Hartigan, 1975; Braun et al., 2022; Wang et al.,
2022). There are many well-known clustering methods,
such as k-means (MacQueen et al., 1967), DBSCAN (Ester
et al., 1996), and Gaussian Mixture models (Rasmussen,
1999). Clustering can also be combined with other tech-
niques like category discovery and semantic instance seg-
mentation (Shi & Malik, 2000; Wang et al., 2021). However,
clustering high-dimensional data is a hard issue, because
of the large time complexity and the complex structure
of data resulting from high-dimensional space (Aljalbout
et al., 2018). Spectral clustering methods are often used
to address this issue (Macgregor & Sun, 2022a; Ng et al.,
2001; Von Luxburg, 2007; Bianchi et al., 2020; Macgre-
gor & Sun, 2022b). It explores the manifold structure of
high-dimensional data in a low-dimensional space by the
eigenvectors of the Laplacian matrix from the correspond-
ing similarity graph. Another important tool for clustering
high-dimensional data is multitask clustering. It can handle
high-dimensional data by exploiting the knowledge shared
by related tasks, such as inter-task clustering correlation
and intra-task learning correlation (Yang et al., 2014; Zhang
et al., 2016). Unfortunately, most of the above clustering
methods just generate the pseudo sample label, a binary
choice of belonging to a cluster or not, and thus are un-
able to represent the other interesting knowledge in high-
dimensional clusterings, such as the similarities between
clusters and outliers.

With the advances in deep learning, combining neural net-
works into clustering tasks has drawn significant attention in
the literature (Chang et al., 2017; Chen, 2015; Ji et al., 2019;
Tian et al., 2014). Deep clustering can mine not only clus-
ters but also similarities and outliers in high-dimensional
data by learning the clustering probability distributions. We
will give a brief introduction of the promising works in deep
clustering including DEC, IDEC, deep spectral clustering,
and data augmentation next (Xie et al., 2016; Guo et al.,
2017; Shaham et al., 2018; Li et al., 2021).

DEC starts with pretraining a nonlinear mapping by an au-
toencoder and then removes the decoder. The remaining
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encoder is finetuned by minimizing the KL divergence. To
enhance the local structure preservation, IDEC improves
DEC by incorporating the autoencoder into DEC in the
whole training process (Guo et al., 2017). By combining
with deep learning, spectral clustering can work with large
datasets (Shaham et al., 2018; Bianchi et al., 2020). In deep
spectral clustering, the loss function is based on a weighted
adjacency matrix associated with a similarity graph which
includes the pairwise similarities between data points in
each mini-batch. In this way, the time complexity of deep
spectral clustering is mainly dependent on the size of the
mini-batch. Recently, data augmentation is combined into
deep image clustering and achieves great success, especially
in contrastive learning (Li et al., 2021; Van Gansbeke et al.,
2020; Niu et al., 2022). The augmentations of an image sam-
ple can be computed by the transformation functions, e.g.,
random rotation, shifting, and cropping (Guo et al., 2018;
Park et al., 2021). Then the loss function for learning the re-
lationship between this sample and its augmentation can be
computed by the dissimilarity between their corresponding
embedded features.

2.2. High-dimensional Visualization

High-dimensional visualization is the visual representation
of the data with a large number of features (Grinstein et al.,
2001). In this process, samples are mapped to numeri-
cal form and translated into a 2D graphical representation.
Many embedding methods can map high-dimensional data
in a 2D space for visualization. In this way, the important
information from the features or the sample similarities in
data can be well presented to us. These methods are also
used to visualize the embedded features in deep clustering
for presenting the mined knowledge (Xie et al., 2016; Huang
et al., 2022).

MDS (Kruskal, 1978), PCA (Abdi & Williams, 2010),
Isomap (Balasubramanian, 2002), t-SNE (Van der Maaten
& Hinton, 2008) and UMAP (McInnes et al., 2018) are
five commonly used embedding methods. MDS is a mul-
tivariate statistical method for estimating the scale values
along one or more continuous dimensions such that those
dimensions account for proximity measures defined over
pairs of samples. PCA extracts the important information
from the features in a set of new orthogonal variables called
principal components to display the similarities between
the samples in the data. Isomap extends classical multi-
dimensional scaling by considering approximate geodesic
distance instead of Euclidean distance. t-SNE is a varia-
tion of stochastic neighbour embedding (SNE) (Hinton &
Roweis, 2002). Compared with SNE, t-SNE is much easier
to optimize and produces significantly better visualizations
by reducing the tendency to crowd points together in the
centre of the map. UMAP is based on Riemannian geometry
and algebraic topology. This method is competitive with

t-SNE for visualization quality and arguably preserves more
of the global structure with superior run time performance.
However, most of the above embedding methods only map
the data samples without considering the relations between
the features.

Radviz can solve this problem by assigning the features to
points called dimensional anchors placed on the circum-
ference of a circle (Grinstein & Wierse, 2002). Original
RadVis computes the polar coordinates of the anchors by a
function of the effectiveness for discriminating each class
of the samples in data (Mccarthy et al., 2004). The details
of RadVis are in Appendix C. In unsupervised learning, the
polar coordinates of the anchors can be computed by the
similarities between the features (Sharko et al., 2008). Then
the locations of the samples are determined by a weighting
formula where sample features with higher values will re-
ceive a higher attraction to the corresponding anchors. As
an improvement of RadViz, RadViz Deluxe sorts the feature
anchors by Hamiltonian cycle and then maps the similarities
between these features by adjusting the distances between
the anchors on the circumference (Cheng et al., 2017). Thus
the similarities between the different features can be better
presented.

3. GLDC onto Hamiltonian Cycle
In this section, we propose HCHC to cluster high-
dimensional data and then visualize the clustering results
including clusters, cluster similarities, and outliers. The de-
tails of the motivation of HCHC are shown in Appendix D.
The architecture of HCHC is shown in Fig. 1. The dataset
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Figure 1: The architecture of our HCHC.

X and its augmentation X̃ are the inputs of our GLDC
network. In the pretraining of our GLDC, the autoencoder
is trained by minimizing the reconstruction loss to encode
X in Z. After pretraining, GLDC computes the clustering
probability distribution of each sample in Z by minimizing
our clustering loss which includes the reconstruction loss,
the graph learning loss, and the augmentation learning loss.
Finally, the clustering probability distributions from GLDC
is visualized based on a Hamiltonian cycle.
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3.1. Combining Global-structure with Local-structure

In this subsection, we propose a new deep clustering
method, GLDC, by incorporating global-structure with
local-structure in one objective function. At the beginning
of GLDC, self-training is used as the pretraining by min-
imizing the reconstruction loss of data. In this way, we
can capture the most salient features (Guo et al., 2017; Lin,
2007).

For a given dataset X = {x1;x2; · · · ;xn}, an encoder
Gθ, and the corresponding decoder Gθ′ , the reconstruction
loss in the pretraining can be written as

Lr =

n∑
i

||xi −Gθ′(zi)||22 =

n∑
i

||xi −Gθ′(Gθ(xi))||22 (1)

After the pretraining, in the space of Z of the l-th mini-
batch, the network is optimized by a weighted adjacency
graph which is associated with a weighted adjacency matrix
W l. Each entry in W l is defined as

wl
i,j =

e−
||zi−zj ||22

σ2 xj ∈ N k
i

0, otherwise
(2)

where NK
i is the set of k-nearest neighbors of zi in the mini-

batch. Different from the existing deep spectral clustering
where merely the local-structure of the data is represented in
Z, our GLDC represents the local-structure and the global-
structure of data in the output pi, the learned probability
distribution of xi for different clusters. In our network, we
calculate the pi = {pi,1, ..., pi,c} by

pi = Pϕ(zi) = Pϕ(Gθ(xi)) (3)

Then the graph learning loss based on W l in the mini-batch
is defined as (Rebuffi et al., 2021).

Lw = − 1

B2
(

B∑
i,j

wl
i,j logP (i = j)

+(1− wl
i,j) logP (i ̸= j)) (4)

where P (i = j) is the probability that xi and xj be-
long to the same cluster while P (i ̸= j) is the probability
that xi and xj belong to the different clusters. The item
wl

i,j logP (i = j) is to make the connected samples in the
adjacency matrix have similar clustering probability dis-
tributions and thus can keep the local-structure of data in
the same cluster. (1 − wl

i,j) logP (i ̸= j) is to make the
unconnected samples have diverse clustering probability
distributions, i.e., far points should be in different clusters,
and thus can be used to analyze the global-structure of the
data. Therefore, in our GLDC clustering, the local structure
of data and the similarities between different clusters can

be considered together and presented in our visualization.
Because

P (i = j) =
c∑

h=1

P (i = h, j = h)

=
c∑

h=1

pi,h × pj,h

= p⊺
ipj , (5)

where c is the cluster number, Lw can be written as (Rebuffi
et al., 2021)

Lw = − 1

B2
(

B∑
i,j

wl
i,j log p

⊺
ipj +

(1− wl
i,j) log(1− p⊺

ipj)) (6)

We also use a generalized data augmentation method to
improve our clustering. In our GLDC, T (xi) is defined as

x̃i = T (xi) = xi + ϵ, ϵ ∼ N (0, ξ) (7)

where N (0, ξ) is a Gaussian distribution. Define p̃i as the
output of the probability of x̃i, then the loss of the data
augmentation learning can be defined as

La =
∑
i

||pi − p̃i||22 (8)

The overall clustering loss is given by

Lclu = Lr + β1Lw + β2La (9)

The algorithm of GLDC is summarized in Appendix E. For
the input dataset X = {x1,x2, · · · ,xn}, in this algorithm
we can get the distributions P = {p1,p2, · · · ,pn}, where
pi,j is the the probability that xi belongs to cluster j. Based
on pi, the label ci assigned to xi can be obtained by

ci = argmax
j

pi,j (10)

3.2. Mapping the Distributions by the Optimal
Hamiltonian Cycle

After the deep clustering, we can get the distribution ma-
trix P = {ρ1;ρ2; · · · ;ρc}, where c is the number of the
clusters and ρi = {p1,i, p2,i, · · · , pn,i}. Then we show
the clustering results in P by the optimal Hamiltonian cy-
cle of the different clusters. This is the shortest cycle that
passes through every ρi exactly once, except the first passed
one (Dirac, 1952). The mapping process is shown in Fig. 2
and detailed as follows.

First, we use Pearson correlation coefficient to compute the
similarities between ρi and ρj as

s(ρi,ρj) =

∑n
l=1(pl,i − ρi)(pl,j − ρj)√∑n

l=1(pl,i − ρi)2
√∑n

l=1(pl,j − ρj)2
(11)
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Thus, the dissimilarities between the ρi and ρj can be
defined as

dis(ρi,ρj) =
1− s(ρi,ρj)∑c−1

i=1

∑c
j=i+1(1− s(ρi,ρj))

(12)

Secondly, based on the above dissimilarities,
{ρ1;ρ2; · · · ;ρc} are ordered by an optimal Hamil-
tonian cycle. We use dynamic programming to get the
optimal Hamiltonian cycle by the following definition.
Definition 3.1. Define dp(ρi,ρj , state) as the minimum
path between ρi and ρj with the path state state =
{pass(ρc), · · · pass(ρ2), pass(ρ1)}, where if ρi has been
passed, pass(ρi) = 1, otherwise, pass(ρi) = 0.

In the dynamic programming, dp(ρi,ρj , state) can be
updated by

dp(ρi,ρj , state) = min{dp(ρi,ρk, state

⊕(1 << (j − 1)) + dis(ρk,ρj)} (13)

where ⊕ is XOR operation and << is shift-arithmetic-left
operation. Then we can get Π∗ = {ρ1;ρ2; · · · ;ρc} as the
optimal Hamiltonian cycle of each cluster by the following
definition.
Definition 3.2. Let ρi ∈ {ρ1, · · · ,ρc} be the i-th passed
vertice of a Hamiltonian cycle. Then this Hamiltonian cycle
can be defined as Π = {ρ1;ρ2; · · · ;ρc}.

The angle αρi of ρi is used to map the anchors of different
clusters on a circle and can be computed by

αρi =


0, i = 1

αρi−1+

2π dis(ρi,ρi−1)∑c
j=2 dis(ρj ,ρj−1)+dis(ρc,ρ1)

otherwise
(14)

Thirdly, based on αρi the position of the anchor of ρi on a
circle can be computed by

µpi = [r × cos(αρi), r × sin(αρi)] (15)

Finally, the position of xi in the circle can be computed by

µxi =

c∑
j=1

pi,j∑c
k=1 pi,k

µρj =
c∑

j=1

pi,jµρj (16)

with
∑c

k=1 pi,k = 1. A Hamiltonian cycle can
present the cluster similarities {s(ρ1,ρ2), · · · ,
s(ρc−1,ρc), s(ρ1,ρc)} ∈ {s(ρi,ρj)|i = 1, · · · , c, i <
j} and based on the following theorem, the optimal
Hamiltonian cycle will select high similarities between the
clusters.
Theorem 3.3. For the cluster similarities {s(ρi,ρj)|i =
1, · · · , c− 1, i < j}, the mapping of the optimal Hamilto-
nian cycle will maximize

Ssam =
c−1∑
i=1

s(ρi,ρi+1) + s(ρ1,ρc) (17)

Clustering anchors The optimal Hamiltonian cycle Sample mapping

angle iρ

ρ1

Circle layout

Figure 2: Illustration of our mapping process by optimal
Hamiltonian cycle.

Therefore, by the optimal Hamiltonian cycle, we can get
the global optimal path to make similar clusters close to
each other in the circumference of a circle. In this way, the
similarity between ρi and ρi+k(k>1) can be measured by
the corresponding geodesic distance on this optimal Hamil-
tonian cycle. The algorithm of our mapping is presented in
Appendix E The theoretical analysis to proof theorem 3.3 is
in Appendix F.1. The theoretical analysis in Appendix F.2 il-
lustrates that the optimal Hamiltonian cycle can improve the
sample mapping based on the following assumption. The
further away a point is from the center, the more informative
its position is, being the point closer to the attributes having
the highest values (Angelini et al., 2019).

4. Experimental Results
In this section, first, we show the visualized results of our
HCHC and other visualization methods. Then, we compare
our GLDC with different clustering methods. Finally, we
analyze a dataset of COVID-19 by HCHC. The experimental
setting is shown in Appendix G. The time cost analysis and
case study are shown in Appendix H.2 and H.4, respectively.
The parameter analysis is shown in Appendix H.5.

4.1. Visualized Result

The visualized results of HCHC with MNIST (Deng,
2012), Fashion (Xiao et al., 2017), USPS (Hull, 1994),
Reuters10k (Lewis et al., 2004), HHAR (Stisen et al., 2015),
Pendigits (ASUNCION, 2007), and BH (Abdelaal et al.,
2019) are shown in Fig. 3.

From Fig. 3 (a), we can see that the different classes in
MNIST are well separated by the clustering in GLDC. The
visualized result of the samples is consistent with their labels.
By HCHC, we can also see the similarities between the
different classes such as that the cyan class and the dark
cyan class are closer to each other than other pairs of classes.

From Fig. 3 (b), we can see that the outliers in Fashion are
much more than those in MNIST. The orange class and blue
class can be well separated from the others. The similarities
between the different clusters can also be shown in Fashion
by HCHC. Then we can see that the samples in the dark-
blue class, green class, and cyan class are easily mixed in
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(a) MNIST (b) Fashion (c) USPS (d) Reuters10k (e) HHAR (f) Pendigit (g) BH

Figure 3: Visualized results on different datasets.

Table 1: ACCs and NMIs of different clustering methods.

Method MNIST Fashion USPS Reuter10K HHAR Pendigits BH

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

k-means 0.532 0.500 0.474 0.512 0.668 0.601 0.559 0.375 0.599 0.588 0.666 0.681 0.492 0.561
GMM 0.439 0.356 0.476 0.532 0.553 0.529 0.665 0.430 0.597 0.593 0.673 0.682 0.593 0.656

SC 0.680 0.759 0.551 0.630 0.712 0.656 0.658 0.401 0.538 0.741 0.724 0.784 0.554 0.601
DEC 0.863 0.834 0.518 0.546 0.762 0.767 0.773 0.528 0.764 0.700 0.776 0.706 0.648 0.618
IDEC 0.881 0.867 0.529 0.557 0.761 0.785 0.785 0.541 0.722 0.785 0.793 0.742 0.406 0.548
DSC 0.938 0.873 0.633 0.647 0.866 0.859 0.725 0.472 0.713 0.764 0.820 0.791 0.607 0.492
JULE 0.964 0.913 0.563 0.608 0.950 0.913 - - - - - - - -

DSCDAN 0.978 0.941 0.662 0.645 0.869 0.857 - - - - - - - -
N2D 0.979 0.942 0.672 0.684 0.958 0.901 0.784 0.536 0.801 0.783 0.885 0.863 0.554 0.570

GLDC 0.979 0.941 0.715 0.691 0.910 0.862 0.834 0.629 0.878 0.821 0.867 0.830 0.704 0.655
GLDC(w/o La) 0.965 0.914 0.694 0.652 0.879 0.817 0.804 0.587 0.822 0.743 0.803 0.744 0.687 0.614
GLDC(w/o Lr) 0.975 0.932 0.621 0.635 0.825 0.787 0.724 0.506 0.765 0.723 0.781 0.768 0.680 0.591

Outliers

(a) MNIST (b) Fashion

Figure 4: The clusters, samples, labels, and outliers on
MNIST and Fashion, respectively.

clustering. This is a piece of important information for us
to improve the clustering for Fashion dataset.

From Fig. 3 (c), we can see that as the visualized result of
MNIST, the different clusters in USPS are well separated.
However, some samples in the cyan class and the dark cyan
class are easily mixed.

From Fig. 3 (d), we can see that for Reuters10k, the blue
class, the green class, and the grey class are well separated
by GLDC. However, the samples in the purple class are
mixed with the samples in the green class and the grey class.

From Fig. 3 (e), we can see that most of the classes in HHAR
are well separated by GLDC. However, some samples in the

cyan class and olive class are easily mixed.

From Fig. 3 (f), we can see that most of the classes in
Pendigits are also well separated by GLDC. However, some
samples in the dark cyan class and olive class are easily
mixed while some samples in the orange class and blue
class are also easily mixed.

From Fig. 3 (g), we can see that BH is a challenging dataset.
GLDC can correctly cluster most of the samples in the
purple class, cycan class, and orange class.

Overall, the above results illustrate that HCHC can well
mine the clusters, similarities, and outliers in real-world
datasets. In most cases, the mined result of a dataset can be
highly related to the corresponding labels.

Fig. 4 (a) and (b) show the clustering results and the visu-
alizations of Fashion and MNIST by HCHC, respectively.
In this Figure, we show the randomly selected 4 images of
each cluster and the recognized outliers. As we can see,
by HCHC the similar clusters are close to each other and
the outliers can be well recognized. For example, as shown
in Fig. 4 (a) the shapes of digit numbers “9” and “4” are
similar, so their clusters are mapped close to each other.
HCHC also can recognize the illegible handwritten digits as
the outliers. As shown in Fig. 4 (b) for Fashion, HCHC can
put the clusters of different types of shoes together, it also
can recognize the outliers in the data.

We compare the different visualization methods on our em-
bedded features of MNIST and Fashion, respectively. The
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(a) HCHC (b) MDS (c) PCA

(d) Isomap (e) t-SNE (f) UMAP

Figure 5: Different visualization methods on MNIST-test.

(a) HCHC (b) MDS (c) PCA

(d) Isomap (e) t-SNE (f) UMAP

Figure 6: Different visualization methods on Fashion-test.

results are shown in Fig. 5 and 6. For MNIST, our HCHC
can better visualize the cluster number and index cluster
result than MDS, PCA, and Isomap. Compared with t-SNE
and UMAP, HCHC can better present the cluster similarities
and outliers. For Fashion, with the help of the anchors, our
HCHC can better visualize the number of the clusters and
index cluster result than any other visualization methods.
HCHC also can better present the cluster similarities and
outliers than t-SNE and UMAP for Fashion. The visualized
results of the other datasets are shown in Appendix H.3.

4.2. The Comparison of Different Clustering Methods

In this subsection, we compared our GLDC with existing
clustering methods in both the numerical and visualization
cases. We use ACC and NMI to measure the clustering

performance of GLDC with nine existing clustering meth-
ods (Kuhn, 1955). These methods are k-means (MacQueen
et al., 1967), GMM (Rasmussen, 1999), SC (Shi & Malik,
2000), DEC (Xie et al., 2016), IDEC (Guo et al., 2017),
DSC (Shaham et al., 2018), JULE (Yang et al., 2016), DSC-
DAN (Yang et al., 2019), and N2D (McConville et al., 2021).
The ACCs and NMIs of different clustering methods are
shown in Table 1. As we can see, our GLDC has the best
ACCs in clustering tasks with MNIST, Fashion, Reuters-10k,
HHAR, and BH. Our GLDC also has the best NMIs with
Fashion, Reuters-10k, and HHAR. Moreover, we perform
the ablation study with La and Lr in our overall clustering
loss. As we can see in Table 1, both La and Lr can well
improve the clustering performance of GLDC.

In HCHC, a high clustering performance in ACC or MNI is
not enough for satisfactory visualization. The similarities
between the clusters and outliers also need to be presented.
Compared with the existing deep clustering methods, our
GLDC can better analyze the similarities between the dif-
ferent clusters by considering the global-structure in data
and thus get a better visualized result. We compare GLDC
with three universal deep clustering methods including DEC,
IDEC, and DSC in the framework of HCHC. The results are
shown in Fig. 7.

As we can see, it is hard to see the similarities between
the different clusters by DEC, IDEC, and DSC, However,
our GLDC can well show the similarities between different
clusters by considering the global-structure of data in the
generated distributions. For example, by GLDC in HCHC
we can find that (1) in MNIST the blue class is not simi-
lar to other classes and thus can be well discovered in the
clustering task. (2) in Reuters-10k, the purple class is sim-
ilar to the grey class and the green class, thus these three
classes are easily mixed in the clustering task. To this end,
we need to analyze the possibilities of a non-outlier sample
belonging to different clusters. Thus even if a non-outlier
sample xi does not belong to cluster j, pi,j may not tend to
0. In this case, the max value in pi may not tend to 1 with∑c

j=1 pi,j = 1. Therefore, the mapped samples may not be
very close to the anchor of the corresponding cluster on the
red circle.

We also can see the advantages of GLDC in visualized
comparisons in Fig. 7. Concretely, we have the following
observations. (1) For the MNIST dataset, DEC can not well
recognize the dark cyan class and orange class, IDEC can
not well recognize the dark cyan class and olive class, DSC
cannot cluster the green class very well, however, GLDC can
well recognize and cluster all of the classes. (2) GLDC can
well recognize most classes in Fashion, but DEC, IDEC, and
DSC cannot do so. (3) For the USPS dataset, DEC divides
the dark cyan class into all the clusters, IDEC mistakenly
clusters the purple class and olive class together and cannot
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DEC IDEC DSC GLDC

Fashion

MNIST

USPS

Reuters10k

HHAR

Pendigits

BH

Figure 7: Different deep clustering methods on optimal
Hamiltonian cycle.

well recognize the grey class, DSC also mistakenly cluster
the purple class and olive class together, however, GLDC
can well recognize and cluster all of the classes. (4) For
the Reuters10k dataset, DEC cannot well recognize most
classes, IDEC mistakenly clusters the purple class and blue
class together and divide the samples in the green class
into two clusters, DSC mistakenly mixes the samples in
the green class and purple class, however, GLDC can well
recognize most of the classes, i.e., the green class, blue class,
and grey class. (5) For the HHAR dataset, DEC cannot well
recognize most classes, IDEC mistakenly clusters the cyan
class and olive class together and divides the samples in the
dark blue class into two clusters, DSC mistakenly divides
the samples in the dark blue class into two clusters, however,
GLDC can well recognize most of the classes. (6) For the
Pendigits dataset, DEC, IDEC, and DSC cannot recognize
the pink class and dark cyan class, however, GLDC can well
recognize these two classes. (7) For the BH dataset, DEC
and GLDC can better cluster the samples in the cyan and
purple class than IDEC and DSC.

(a) Labeled by every 6 months
2020.1 2020.5 2020.8 2020.12 2021.3 2021.7 2021.10 2022.1

(b) Daily case

Figure 8: The results of HCHC on the COVID-19 dataset.

4.3. The Result on the COVID-19 Dataset

The above experiment illustrates the effectiveness of HCHC
to discover the knowledge, i.e., clusters, similarities, and
outliers, in real-world datasets. Then, in this subsection, we
use HCHC to learn the temporal features of COVID-19 by
a dataset that includes the available COVID-19 daily infor-
mation of the different states in the USA from 21/1/2020 to
21/1/2022. The daily information includes daily cases, daily
deaths, and so on. There are 37525 samples in this dataset
and their features are detailed in Appendix G.

In Fig. 8 (a), where the data are labelled by every 6 months,
the samples from the same period can be mapped close to
the same cluster anchor. The results of the data labelled by
every 4 month, every 5 month, and every 8 month, are shown
in Appendix H.1. The total daily cases in the USA from
21/1/2020 to 21/1/2022 are shown in Fig. 8 (b). Combining
Fig. 8 (a) and (b), we can see that after 2020.8 the period
of COVID-19 can be around 6 months, i.e., the number of
daily cases increased from autumn to winter and decreased
from spring to summer. This phenomenon may illustrate
that there are more people infected with COVID-19 in the
low-temperature environment than in the high-temperature
environment.

5. Conclusion
This paper proposes HCHC to cluster high-dimensional
data, and then visualize the clustering result. It combines
global structure with local structure in one objective func-
tion, improving the labels as relative probabilities, to mine
the similarities between different clusters while keeping
the local structure in each cluster. Then, the anchors of
different clusters are sorted on the optimal Hamiltonian cy-
cle generated by the cluster similarities and mapped on the
circumference of a circle. Finally, a sample with a higher
probability of a cluster will be mapped closer to the corre-
sponding anchor. In this way, HCHC allows us to appreciate
three aspects at the same time - (1) cluster recognition, (2)

8
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cluster similarities, and (3) outlier recognition. The experi-
mental result shows the effectiveness of HCHC. As shown
in our experiment, HCHC also can serve as a visualized
clustering measure by mapping the labelled samples. In this
way, we can find the reasons for an unsatisfactory clustering
result.

In further research, we will investigate how to use HCHC to
solve the multi-cluster problem. Because we rely on an NP-
hard optimization step, the optimal Hamiltonian cycle to sort
the clusters, it is necessary to give an approximate solution
in acceptable time consumption as shown in Appendix F.1.
Mapping too many clusters in 2D space may cause high
mapping error. Therefore we can investigate how to map
these clusters in 3D space.
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Bühlmann, P. and Van De Geer, S. Statistics for high-
dimensional data: methods, theory and applications.
Springer Science & Business Media, 2011.

Chang, J., Wang, L., Meng, G., Xiang, S., and Pan, C. Deep
adaptive image clustering. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 5879–
5887, 2017.

Chen, G. Deep learning with nonparametric clustering.
arXiv preprint arXiv:1501.03084, 2015.

Cheng, S., Xu, W., and Mueller, K. Radviz deluxe: An
attribute-aware display for multivariate data. Processes,
5(4):75, 2017.

Cheng, S., Xu, W., and Mueller, K. Colormap nd: A data-
driven approach and tool for mapping multivariate data to
color. IEEE Transactions on Visualization and Computer
Graphics, 25(2):1361–1377, 2018.

Deng, L. The mnist database of handwritten digit images
for machine learning research. IEEE Signal Processing
Magazine, 29(6):141–142, 2012.

Dirac, G. A. Some theorems on abstract graphs. Proceed-
ings of the London Mathematical Society, 3(1):69–81,
1952.

Donoho, D. L. et al. High-dimensional data analysis: The
curses and blessings of dimensionality. AMS Math Chal-
lenges Lecture, 1(2000):32, 2000.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. A density-
based algorithm for discovering clusters in large spatial
databases with noise. In KDD, volume 96, pp. 226–231,
1996.

Fortunato, S. Community detection in graphs. Physics
Reports, 486(3-5):75–174, 2010.

Grinstein, G., Trutschl, M., and Cvek, U. High-dimensional
visualizations. In Proceedings of the Visual Data Mining
Workshop, KDD, volume 2, pp. 120, 2001.

Grinstein, U. M. F. G. G. and Wierse, A. Information
visualization in data mining and knowledge discovery.
Morgan Kaufmann, 2002.

Guha, S., Rastogi, R., and Shim, K. Cure: An efficient
clustering algorithm for large databases. ACM Sigmod
Record, 27(2):73–84, 1998.

Guo, X., Gao, L., Liu, X., and Yin, J. Improved deep
embedded clustering with local structure preservation. In
IJCAI, pp. 1753–1759, 2017.

Guo, X., Zhu, E., Liu, X., and Yin, J. Deep embedded
clustering with data augmentation. In Asian Conference
on Machine Learning, pp. 550–565. PMLR, 2018.

9



High-dimensional Clustering onto Hamiltonian Cycle

Hartigan, J. A. Clustering algorithms. John Wiley & Sons,
Inc., 1975.

Hinton, G. E. and Roweis, S. Stochastic neighbor em-
bedding. Advances in Neural Information Processing
Systems, 15, 2002.

Hoogeveen, J. Analysis of christofides’ heuristic: Some
paths are more difficult than cycles. Operations Research
Letters, 10(5):291–295, 1991.

Huang, T., Wang, S., and Zhu, W. An adaptive kernelized
rank-order distance for clustering non-spherical data with
high noise. Int. J. Mach. Learn. Cybern., 11(8):1735–
1747, 2020.

Huang, T., Cai, Z., Li, R., Wang, S., and Zhu, W. Consolida-
tion of structure of high noise data by a new noise index
and reinforcement learning. Information Sciences, 614:
206–222, 2022.

Hull, J. J. A database for handwritten text recognition
research. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 16(5):550–554, 1994.

Jain, A. K., Murty, M. N., and Flynn, P. J. Data clustering:
a review. ACM Computing Surveys (CSUR), 31(3):264–
323, 1999.

Ji, X., Henriques, J. F., and Vedaldi, A. Invariant informa-
tion clustering for unsupervised image classification and
segmentation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 9865–9874,
2019.

Karypis, G., Han, E.-H., and Kumar, V. Chameleon: Hierar-
chical clustering using dynamic modeling. Computer, 32
(8):68–75, 1999.

Kruskal, J. B. Multidimensional scaling. Sage, 1978.

Kuhn, H. W. The hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 2(1-2):
83–97, 1955.

Lewis, D. D., Yang, Y., Russell-Rose, T., and Li, F. Rcv1: A
new benchmark collection for text categorization research.
Journal of Machine Learning Research, 5(Apr):361–397,
2004.

Li, S. Z., Wu, L., and Zang, Z. Consistent representa-
tion learning for high dimensional data analysis. arXiv
preprint arXiv:2012.00481, 2020.

Li, Y., Hu, P., Liu, Z., Peng, D., Zhou, J. T., and Peng,
X. Contrastive clustering. In 2021 AAAI Conference on
Artificial Intelligence (AAAI), 2021.

Lin, C.-J. Large-scale kernel machines. MIT Press, 2007.

Macgregor, P. and Sun, H. A tighter analysis of spectral
clustering, and beyond. In International Conference on
Machine Learning, pp. 14717–14742. PMLR, 2022a.

Macgregor, P. and Sun, H. A tighter analysis of spectral
clustering, and beyond. In Proceedings of the 39th Inter-
national Conference on Machine Learning, pp. 14717–
14742. PMLR, 2022b.

MacQueen, J. et al. Some methods for classification and
analysis of multivariate observations. In Proceedings of
the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, volume 1, pp. 281–297. Oakland, CA,
USA, 1967.

Mccarthy, J. F., Marx, K. A., Hoffman, P. E., Gee, A. G.,
O’neil, P., Ujwal, M. L., and Hotchkiss, J. Applications
of machine learning and high-dimensional visualization
in cancer detection, diagnosis, and management. Annals
of the New York Academy of Sciences, 1020(1):239–262,
2004.

McConville, R., Santos-Rodriguez, R., Piechocki, R. J., and
Craddock, I. N2d:(not too) deep clustering via clustering
the local manifold of an autoencoded embedding. In 2020
25th International Conference on Pattern Recognition
(ICPR), pp. 5145–5152. IEEE, 2021.

McInnes, L., Healy, J., and Melville, J. Umap: Uniform
manifold approximation and projection for dimension
reduction. arXiv preprint arXiv:1802.03426, 2018.

Ng, A., Jordan, M., and Weiss, Y. On spectral clustering:
Analysis and an algorithm. Advances in Neural Informa-
tion Processing Systems, 14, 2001.

Nielsen, F. Hierarchical clustering. In Introduction to HPC
with MPI for Data Science, pp. 195–211. Springer, 2016.

Niu, C., Shan, H., and Wang, G. Spice: Semantic pseudo-
labeling for image clustering. IEEE Transactions on
Image Processing, 31:7264–7278, 2022.

Park, S., Han, S., Kim, S., Kim, D., Park, S., Hong, S.,
and Cha, M. Improving unsupervised image clustering
with robust learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 12278–12287, 2021.

Rani1, Y. and Rohil, H. A study of hierarchical clustering
algorithm. ter S & on Te SIT, 2:113, 2013.

Rasmussen, C. The infinite gaussian mixture model. Ad-
vances in Neural Information Processing Systems, 12,
1999.

Rebuffi, S.-A., Ehrhardt, S., Han, K., Vedaldi, A., and Zis-
serman, A. Lsd-c: Linearly separable deep clusters. In

10



High-dimensional Clustering onto Hamiltonian Cycle

Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 1038–1046, 2021.

Shaham, U., Stanton, K., Li, H., Nadler, B., Basri, R., and
Kluger, Y. Spectralnet: Spectral clustering using deep
neural networks. In 6th International Conference on
Learning Representations, ICLR 2018. The Weizmann
Institute of Science, 2018.

Sharko, J., Grinstein, G., and Marx, K. A. Vectorized radviz
and its application to multiple cluster datasets. IEEE
transactions on Visualization and Computer Graphics,
14(6):1444–1427, 2008.

Shi, J. and Malik, J. Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8):888–905, 2000.

Stisen, A., Blunck, H., Bhattacharya, S., Prentow, T. S.,
Kjærgaard, M. B., Dey, A., Sonne, T., and Jensen, M. M.
Smart devices are different: Assessing and mitigatingmo-
bile sensing heterogeneities for activity recognition. In
Proceedings of the 13th ACM Conference on Embedded
Networked Sensor Systems, pp. 127–140, 2015.

Tian, F., Gao, B., Cui, Q., Chen, E., and Liu, T.-Y. Learning
deep representations for graph clustering. In Proceed-
ings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, pp. 1293–1299, 2014.

Van der Maaten, L. and Hinton, G. Visualizing data using
t-sne. Journal of Machine Learning Research, 9(11),
2008.

Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Proes-
mans, M., and Van Gool, L. Scan: Learning to classify
images without labels. In European Conference on Com-
puter Vision, pp. 268–285. Springer, 2020.

Verleysen, M. et al. Learning high-dimensional data. Nato
Science Series Sub Series III Computer And Systems Sci-
ences, 186:141–162, 2003.

Von Luxburg, U. A tutorial on spectral clustering. Statistics
and Computing, 17(4):395–416, 2007.

Wang, J., Ma, Z., Nie, F., and Li, X. Progressive self-
supervised clustering with novel category discovery.
IEEE Transactions on Cybernetics, 2021.

Wang, P., Liu, H., So, A. M.-C., and Balzano, L. Conver-
gence and recovery guarantees of the k-subspaces method
for subspace clustering. In Chaudhuri, K., Jegelka, S.,
Song, L., Szepesvari, C., Niu, G., and Sabato, S. (eds.),
Proceedings of the 39th International Conference on Ma-
chine Learning, pp. 22884–22918. PMLR, 2022.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

Xie, J., Girshick, R., and Farhadi, A. Unsupervised deep
embedding for clustering analysis. In International Con-
ference on Machine Learning, pp. 478–487. PMLR, 2016.

Yang, J., Parikh, D., and Batra, D. Joint unsupervised
learning of deep representations and image clusters. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 5147–5156, 2016.

Yang, X., Deng, C., Zheng, F., Yan, J., and Liu, W. Deep
spectral clustering using dual autoencoder network. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4066–4075, 2019.

Yang, Y., Ma, Z., Yang, Y., Nie, F., and Shen, H. T. Mul-
titask spectral clustering by exploring intertask correla-
tion. IEEE Transactions on Cybernetics, 45(5):1083–
1094, 2014.

Zang, Z., Cheng, S., Lu, L., Xia, H., Li, L., Sun, Y., Xu, Y.,
Shang, L., Sun, B., and Li, S. Z. Evnet: An explainable
deep network for dimension reduction. IEEE Transac-
tions on Visualization and Computer Graphics, 2022.

Zhang, X., Zhang, X., and Liu, H. Self-adapted multi-task
clustering. In IJCAI, pp. 2357–2363, 2016.

Zhao, Y., Luo, F., Chen, M., Wang, Y., Xia, J., Zhou, F.,
Wang, Y., Chen, Y., and Chen, W. Evaluating multi-
dimensional visualizations for understanding fuzzy clus-
ters. IEEE transactions on visualization and computer
graphics, 25(1):12–21, 2018.

Zu, X. and Tao, Q. SpaceMAP: Visualizing high-
dimensional data by space expansion. In Proceedings
of the 39th International Conference on Machine Learn-
ing, pp. 27707–27723. PMLR, 2022.

11



High-dimensional Clustering onto Hamiltonian Cycle

A. An example of HCHC

Figure 9: An example on MNIST-test

Fig.1 is an example to show the visualized result on a handwriting digit number dataset, MNIST-test, by our HCHC. In
this figure, the layout of different clusters is on the circumference of a red circle by the optimal Hamiltonian cycle. Each
red dot on the circumference is the anchor of a cluster, and the blue dots in the circle are mapped samples. If a mapped
sample is close to a red dot, this sample will have a high probability of belonging to the corresponding cluster. The pictures
around the red circle are the means of the different clusters. As we can see, HCHC well mines and represents the local
similarities between the samples and the global similarities between the different clusters. Concretely, the samples of each
class in the MNIST-test can be mapped together, and thus the mean of each cluster can be a corresponding digit number.
The more similar clusters can be mapped closer to each other, e.g., the shapes of digit numbers “9” and “4” are similar, so
their clusters are mapped close to each other. Any sample in the centre of the circle will have a low possibility to belong to
any cluster. Such samples are usually not well-written and can be regarded as outliers.

B. The comparison between HCHC and Radviz Deluxe
To clarify the difference between our new HCHC and the existing Radviz Deluxe, we offer a direct comparison in the
following table.

Table 2: The Comparison between HCHC and Radviz Deluxe

Method Hamiltonian cycle Deep clustering Anchor Visualization Outlier mapping

Radviz Deluxe Yes No Data features Feature values Apart from clusters
HCHC Yes Yes Cluster labels Clustering result Near the centre

Although both HCHC and Radviz Deluxe map the samples by the Hamiltonian cycle on a circle, there are still four
differences between HCHC and Radviz Deluxe. 1. HCHC include a new deep clustering method GLDC to mine the clusters,
cluster similarities, and outliers in data, however, Radviz Deluxe is only for data visualization without clustering. 2. The
Anchors in HCHC index the cluster labels, however, the anchors in Radviz Deluxe index the data features. 3. HCHC aims to
visualize the mined clustering result in GLDC; however, Radviz Deluxe aims to visualize the feature values of the samples.
4. HCHC maps the samples by their clustering probability distributions; therefore, the outliers with low probability to any
cluster can be mapped near the circle’s centre. However, Radviz Deluxe maps the samples by their feature values, so the
outliers may be anywhere in the circle.

C. The Introduction of Radviz
Radviz defines the polar coordinate of feature fj as

µfj = [r × cos(αfj
), r × sin(αfj

)] (18)
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where αfj
is the angle corresponding to the position of fj and r is the radius of the circle. The the position of xi in the

circle can be computed by

µxi =
d∑

j=1

xi,j∑d
k=1 xi,k

µfj (19)

where d is the number of the features.

Figure 10: An example of RadVis visualization.

An example of the Radviz is shown in Fig 10. The coordinates represent the values of features f1, f2, f3, and f4 for the
indicated samples. x1 is at the center of the circle and has coordinates (1, 1, 1, 1). x2 has coordinates (1, 0, 0, 1). Therefore,
the distance between x2 and f1 is the same as the distance between x2 and f4. x3 has coordinates (0.9, 0, 0, 0). It is
located near to anchor the of f1.

D. The Motivation of Our Work
D.1. The Limitations in the Presentation of High-dimensional Clustering

For an informative clustering result that is more than pseudo sample labels for high-dimensional data, researchers use
some embedding methods, such as MDS and t-SNE, to visualize the sample structures in the embedded space of deep
clustering (Zang et al., 2022). However, the visualized result may be inconsistent with the clustering result. One reason is
that it is hard to visualize all of the distinguishing information of high-dimensional in 2D space. The other one is that these
methods may have biases in the visualization. To give a detailed analysis, in Fig 11 and 12, we show the visualized results of
five popular embedding methods including MDS (Kruskal, 1978), PCA (Abdi & Williams, 2010), Isomap (Balasubramanian,
2002), t-SNE (Van der Maaten & Hinton, 2008), and UMAP (McInnes et al., 2018) in the embedded space of our GLDC on
MNIST-test. Note that in this deep clustering, the clustering accuracy (ACC) of MNIST-test is 0.97. In other words, most
distinguishing information of the different classes in MNIST-test is included in the embedded space.

As we can see from Fig. 11 and 12, although most distinguishing information of the different classes is included in the
embedded space, we still hard to recognize the pink, green, cyan, and dark cyan classes by MDS and PCA without the
colour labels. This is because MDS and PCA cannot visualize all of the distinguishing information in embedded space with
2 dimensions. Isomap can better visualize the dissimilarities between the different classes than MDS and PCA, but we are
hard to recognize the grey and dark blue classes by Iosmap. t-SNE and UMAP can produce a better visualization than other
methods, but they cannot well capture the global-structure of the data in deep clustering, i.e., t-SNE and UMAP cannot
visualize similar classes, such as green and pink classes. Furthermore, t-SNE also cannot show the sample distribution, such
as the density distribution of different classes, to explain the clustering result.

Agglomerative hierarchical clustering combines the samples in data into clusters, those clusters into larger clusters, and
so forth, creating a hierarchy of clusters (Rani1 & Rohil, 2013). In this way, some agglomerative hierarchical clustering
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(a) MDS (b) PCA (c) Isomap (d) t-SNE (e) UMAP

Figure 11: The visualized results of deep features by different visualization methods on MNIST-test.

(a) MDS (b) PCA (c) Isomap (d) t-SNE (e) UMAP

Figure 12: The visualized results of deep features by different visualization methods on MNIST-test. The different colours
present the labels of the samples.

methods can mine the similarities between clusters and outliers in high-dimensional data and then present the mined
knowledge in a dendrogram from the clustering process (Nielsen, 2016; Ester et al., 1996). Fig. 13 is an example to show
the dendrogram with six samples.

As we can see the limitations of the presentations in the dendrogram are as follows. 1) The dendrogram cannot show the
in-between samples of the different clusters and the clustering probability distributions, thus the recognized similar clusters
and outliers cannot be well explained. 2) It is hard for a dendrogram to show all of the samples by the leaves when the
number of samples is large.

D.2. How to Improve the Visualization of High-dimensional Clustering

From the above analysis, we should improve the visualization of high-dimensional clustering in the following three goals. 1)
There should be an indicator for the cluster of each non-outlier sample and the visualization should be consistent with the
clustering result. 2) Besides the clusters, the similarities between different clusters, and outliers also should be analyzed
and then visualized. 3) The visualization should be an explanation for the clustering result. For example, the mapped
in-between samples of the different clusters can be used to explain the recognized similar clusters and the clustering
probability distributions of different clusters can be used to explain the recognized outliers.

Combining deep clustering with RadViz Deluxe can be a solution for improving the visualization of high-dimensional
clustering. By mapping the extracted clustering probability distributions on the deep clustering in RadViz Deluxe, the cluster
of each non-outlier sample can be indexed by its nearest cluster anchor and thus the visualization will be consistent with
the clustering result (Zhao et al., 2018). When we analyze the similarities between the different clusters in deep clustering,
the optimal Hamiltonian cycle generated by these similarities is the global optimal solution for placing the cluster anchors
on the circumference of a circle. In this way, the similarities between the different clusters can be well presented in the
visualization. Finally, each sample at the centre of the circle can be seen as an outlier, because it has a low probability of any
cluster and the mapped in-between samples of different clusters can be used to explain the recognized similar clusters.

14



High-dimensional Clustering onto Hamiltonian Cycle

Figure 13: An example of dendrogram in hierarchical clustering.

E. The Algorithms of HCHC
The algorithm of GLDC is summarized in Algorithm 1.

Algorithm 1 GLDC

1: Initialize θ, θ′, ϕ, β1, β2, and γ
2: Initialize a random process N
3: Get X̃ of X by (7)
4: for episode = 0 to pretraining − episodemax do
5: for mini-batch in X do
6: Update θ and θ′ by minimizing reconstruction loss in (1)
7: end for
8: end for
9: for episode = 0 to episodemax do

10: for mini-batch in X do
11: Get the embedded samples by zi = Gθ(xi)
12: Compute the reconstruction loss by (1)
13: Construct weighted adjacency matrix W l by (2)
14: Get the clustering probability distributions by (3)
15: Compute the graph learning loss by (6)
16: Compute the augmentation learning loss by (8)
17: Update θ and ϕ by minimizing the clustering loss in (9)
18: end for
19: end for
20: Get P = {p1,p2, · · · ,pn}.

The whole algorithm of our mapping is summarized in Algorithm 2
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Algorithm 2 HCHC

1: Initialize state = 1
2: Initialize cur = (1 << c)− 1
3: Initialize last = 1
4: Compute the dissimilarities between each pair of ρi and ρj based on (12)
5: while state < (1 << c) do
6: for j = 2 to c do
7: if (state&(1 << j)! = 0) then
8: for k = 2 to c do
9: if (state&(1 << k)! = 0) then

10: Update dp(ρ1,ρj , state) by (13)
11: end if
12: end for
13: end if
14: end for
15: state = state+ 2
16: end while
17: for i = c to 1 do
18: temp = 1
19: for j = 1 to c do
20: if ((cur&1 << j)! = 0 and dp(ρ1,ρj , cur) + dis(ρtemp,ρlast) > dp(ρ1,ρj , cur) + dis(ρj ,ρlast) then
21: temp = j
22: end if
23: end for
24: ρi = ρtemp

25: cur⊕ = 1 << tem
26: last = temp
27: end for
28: Compute αρi for each ρi by (14)
29: Compute µρi for each ρi by on (15)
30: Compute µxi in P by on (16)
31: Map each µρi on a circle
32: Map each µxi in the circle

F. The Theoretical Analysis of Hamiltonian Cycle Mapping
F.1. Analysis on the Mapping of Cluster Similarity

The Hamiltonian cycle problem is formulated by an Irish mathematician, William Rowan Hamilton, to ask whether there is a
cycle in a graph G passes through every vertex vi exactly once, except the first passed one v1 as Π = {v1,v2, · · · ,vm,v1},
where m is the number of the vertices (Dirac, 1952). If G has a Hamiltonian cycle, G is Hamiltonian. Hamiltonian cycle is
highly related to a classical problem, the travelling salesman. This problem is defined as follows (Hoogeveen, 1991).
Definition F.1. Given a complete undirected graph G on m vertices and a distance dis(vi,vj) for each edge between vi

and vj , find a Hamiltonian cycle of minimum total length. This Hamiltonian cycle is the optimal Hamiltonian cycle.

In HCHC, we use Hamiltonian cycle to present the similarities between different clusters. A Hamiltonian cycle can present
the sampled similarities {s(ρ1,ρ2), · · · , s(ρc−1,ρc), s(ρ1,ρc)} from {s(ρi,ρj)|i = 1, · · · , c, i < j}. Define t(ρi,ρj)
as the weighted s(ρi,ρj) as

t(ρi,ρj) = T [s(ρi,ρj)] (20)

where T (·) is the weighting function and for any s, −1 < T (s) < 1. This weight can be computed by different definitions
to select the aspect for sampling the similarities. In this paper, we define t(ρi,ρj) = s(ρi,ρj). This definition means that
the similarity and its importance are in the direct ratio. We have the following theorem to get the global optimal mapping of
the similarities in the selected aspect.
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Theorem F.2. The mapping of the optimal Hamiltonian cycle will maximize the sum of the weights of the selected similarities
as

Ssam =
c−1∑
i=1

t(ρi,ρi+1) + t(ρ1,ρc) (21)

The proof of the above theorem is as follows.

Proof. We can define a normalized dis(ρi,ρj) for ρi,ρj as

dis(ρi,ρj) =
1− t(ρi,ρj)∑c−1

i=1

∑c
j=i+1(1− t(ρi,ρj))

(22)

Then

c−1∑
i=1

dis(ρi,ρi+1) + dis(ρ1,ρc) =
c− (

∑c−1
i=1 t(ρ

i,ρi+1) + t(ρ1,ρc))∑c−1
i=1

∑c
j=i+1(1− t(ρi,ρj))

(23)

As we can see, c and
∑c−1

i=1

∑c
j=i+1(1− t(ρi,ρj)) are two invariant constants, thus Ssam can be maximized by

argmin
Π

||
c∑

i=1

dis(ρi,ρi+1) + dis(ρ1,ρc)||2 (24)

Therefore, to get the global optimal mapping of the similarities, this problem can be solved by the optimal Hamiltonian
cycle Π∗ of GP with the vector ρi and the distance dis(ρi,ρj).

We can define T [s(ρi,ρj)] as

T (s(ρi,ρj)) = sgn(s(ρi,ρj))× |s(ρi,ρj)|γ (25)

where sgn(·) is a sign function.

sgn(s(ρi,ρj)) =

{
1 s(ρi,ρj) > 0
−1 otherwise (26)

If γ = 0, the weights of all similarities in {s(ρi,ρj)|i = 1, · · · , c, i < j} will be same, in this case Ssam can be maximized
by a randomly selected Hamiltonian cycle Π. If γ → ∞, Ssam can be maximized by selecting the shortest unselected edge
that cannot form the cycle in each iteration, except the last iteration. In the last iteration, we select the edge that connects the
first vertex and the last vertex. The time complexity of this process is O(c3), in this complexity, we can get the orders of
1000 clusters in acceptable time consumption.

The visualized results with different γ on MNIST-test are shown in Fig. 14. As we can see, the similarities of the different
clusters in MNIST-test can be well presented when γ = 1 but cannot be well presented by the randomly selected Hamiltonian
cycle. When γ is very large, these similarities can be presented with acceptable time consumption.

F.2. Analysis on the Mapping Performance

The main idea to improve the mapping of Radviz is that the further away a point is from the center, the more informative
its position is, being the point closer to the attributes having the highest values (Angelini et al., 2019). Thus, on the
circumference of a circle, the objective function to improve mapping by the layout of the anchors can be defined as

arg max
Π={ρ1;··· ;ρc}

n∑
i=1

||
c∑

j=1

pi,jµρj ||22 (27)
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(a) (b) (c)

Figure 14: Visualized results with different γ. (a) Random Hamiltonian cycle with the same similarity, e.g., γ = 0. (b)
γ = 1. (c) γ = 1000.

This objective function aims to make the points far away from the center. Define r = 1, then we have

n∑
i=1

||
c∑

j=1

pi,jµρj ||22 (28)

=
n∑

i=1

||
c∑

j=1

pi,jcos(αρj ),
c∑

j=1

pi,jsin(αρj )||22

=
n∑

i=1

c∑
j=1

p2i,j(cos(αρj )2 + sin(αρj )2)

+ 2
n∑

i=1

c−1∑
j=1

c∑
k=j+1

pi,jpi,k(cos(αρj )cos(αρk) + sin(αρj )sin(αρk))

=
n∑

i=1

c∑
j=1

p2i,j(cos(αρj )2 + sin(αρj )2) + 2
n∑

i=1

c−1∑
j=1

c∑
k=j+1

pi,jpi,k(cos(αρk − αρj ))

=
n∑

i=1

c∑
j=1

p2i,j + 2
n∑

i=1

c−1∑
j=1

c∑
k=j+1

pi,jpi,kcos(αρk − αρj )

=
n∑

i=1

c∑
j=1

p2i,j +
c−1∑
j=1

c∑
k=j+1

(ρj)⊺ρkcos(αρk − αρj )

Thus the objective function (27) can be maximized by

arg max
Π={ρ1;··· ;ρc}

c−1∑
j=1

c∑
k=j+1

(ρj)⊺ρkcos(αρk − αρj ) (29)

Based on Pearson correlation coefficient, the normalized objective function can be defined by as

arg max
Π={ρ1;··· ;ρc}

c−1∑
j=1

c∑
k=j+1

(ρj − ρj)⊺(ρk − ρk)

|ρj − ρj ||ρk − ρk|
cos(αρk − αρj ) (30)

To solve this problem, we should put the anchors of similar clusters together. From the analysis in Appendix F.1, we can see
that the optimal Hamiltonian cycle Π∗ is an approximate solution of the objective function (30).
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G. Experiment Setting
We use seven datasets including MNIST (Deng, 2012), Fashion (Xiao et al., 2017), USPS (Hull, 1994), Reuters10k (Lewis
et al., 2004), HHAR (Stisen et al., 2015), Pendigits (ASUNCION, 2007), and BH (Abdelaal et al., 2019) to illustrates the
effectiveness of HCHC. The details of the datasets are shown in Table 3.

There are some parameters that need to be tuned. The initial β1 is set as 5. As we can see, with the increase of the iteration
numbers in training, the magnitudes of Lr and La will become smaller and smaller. Thus a discount factor γ is used to tune
the magnitude of β1 in every iteration t as

β1 = γtβ1 (31)

where γ is set as 0.8. β2 is set as 10. σ2 is set from {0.05, 0.1, 0.2}. ξ is set from {0.005, 0.05, 0.1, 0.2}. k is set from
{3, 4, 5, 30}. The batch size is set as 128. We use Adam optimizer in our training and the learning rate is set as 0.002. The
autoencoder is composed of eight layers with dimensions D-500- 500-2000-5-2000-500-500-D, where D is the dimension
of the input samples.

Table 3: Data description.

DID Dataset Instances Features Classes
1 MNIST 70000 784 10
2 Fashion 70000 784 10
3 USPS 9298 256 10
4 Reuters10k 10000 2000 4
5 HHAR 10299 561 6
6 Pendigits 10992 16 10
7 BH 8569 17499 14

We also compare our GLDC with nine clustering methods including k-means (MacQueen et al., 1967), GMM (Rasmussen,
1999), SC (Shi & Malik, 2000), DEC (Xie et al., 2016), IDEC (Guo et al., 2017), DSC (Shaham et al., 2018), JULE (Yang
et al., 2016), DSCDAN (Yang et al., 2019), N2D (McConville et al., 2021). The details of the compared methods are as
follows.
1. k-means works by computing centres of the different clusters and cluster assignments iteratively by the Euclidean
distance (MacQueen et al., 1967).
2. GMM works by computing the centres of the different clusters and cluster assignments iteratively by the Gaussian
model (Rasmussen, 1999).
3. SC learns a map that embeds input data points into the eigenspace of their associated Laplacian matrix and then clusters
them by k-means (Shi & Malik, 2000).
4. DEC simultaneously learns feature representations and cluster assignments by deep neural networks (Xie et al., 2016).
5. IDEC improves DEC by integrating the clustering loss and autoencoder reconstruction loss (Guo et al., 2017).
6. DSC learns a map that embeds input data points into the eigenspace of their associated Laplacian matrix and then clusters
them, in the deep neural network (Shaham et al., 2018).
7. JULE consists of a multinomial logistic regression function stacked on top of a multi-layer convolutional autoencoder in
deep clustering (Yang et al., 2016).
8. DSCDAN discriminatively performs feature embedding and spectral clustering by CNN for image clustering (Yang et al.,
2019).
9. N2D replaces the clustering layer with a manifold learning technique on the autoencoder representations (McConville
et al., 2021).

We use ACC and NMI to measure the clustering performance of GLDC with seven existing clustering methods (Kuhn,
1955). The definition of ACC is as follows. Denote a = {a1, a2, · · · , an} as the clustering results and b = {b1, b2, · · · , bn}
as the ground truth label of X . ACC is defined as:

ACC =

∑n
i=1 δ(ai,map(bi))

n
(32)

where δ(a, b) = 1, if a = b and δ(a, b) = 0, otherwise. map(bi) is the best mapping function that permutes clustering
labels to match the given truth labels using the Kuhn-Munkres algorithm. The larger ACC is, the better the clustering result
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Table 4: The mapping colours and corresponding time periods (day/month/year).

Sample color (a) (b) (c) (d)
blue 22/1/20 to 21/9/20 22/1/20 to 21/7/20 22/1/20 to 21/6/20 22/1/20 to 21/5/20
green 22/9/20 to 21/5/21 22/7/20 to 21/1/21 22/6/20 to 21/11/20 22/5/20 to 21/9/20
purple 22/5/21 to 21/1/22 22/1/21 to 21/7/21 22/11/20 to 21/4/21 22/9/20 to 22/1/21
cyan - 22/7/21 to 21/1/22 22/4/21 to 21/9/21 22/1/21 to 21/5/21
olive - - 22/9/21 to 21/1/22 22/5/21 to 21/9/21

dark-blue - - - 22/9/21 to 21/1/22

(a) Labeled by every 8 months (b) Labeled by every 6 months (c) Labeled by every 5 months (d) Labeled by every 4 months

Figure 15: The results of HCHC on the COVID-19 dataset.

is. The NMI is defined as

NMI(b,a) =
MI(b,a)√
(H(b)H(a))

(33)

where H(b) and H(a) are the entropies of b and a. MI(b,a) is the mutual information metric of b and a. The larger NMI
is, the better the clustering result is.

We use HCHC to learn the temporal features of COVID-19 by a dataset that includes the available COVID-19 daily
information of the different states in the USA from 21/1/2020 to 21/1/2022. There are 37525 samples in this dataset and
their features are detailed in Table 5.

Table 5: The features of the COVID-19 dataset.

Feature Brief explanation
#1 daily cases
#2 daily cases per 100K capita
#3 daily deaths
#4 daily deaths per 100K capita
#5 the percentage of total cases / total deaths
#6 the percentage of total cases / population
#7 weekly cases
#8 the change of weekly cases
#9 the cases in 28 days

#10 the change of the cases in 28 days

H. Supplementary Experiment
H.1. Supplementary Experiment for Covid-19 Dataset

In Fig. 15 (a) where the data are labeled by every 8 months, the samples from 22/9/20 to 21/5/21 are divided into two
clusters; In Fig. 15 (c) where the data are labeled by every 5 months, the samples from 22/1/20 to 21/6/20 and 22/6/20 to
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GLDC
Hamiltonian cycle mapping
Total

Figure 16: The time cost of HCHC.

21/11/20 are clustered in one cluster, the samples from 22/11/20 to 21/4/21 are divided into two clusters, and the samples
from 22/4/21 to 21/9/21 are also divided into two clusters; In Fig. 15 (d) where the data are labeled by every 4 months,
except the samples which from 22/1/20 to 21/5/20 and 22/5/20 to 21/9/20 are clustered into one cluster, the samples from
any other period are divided into two clusters. Whereas, in Fig. 15 (b) where the data are labeled by every 6 months, the
samples from the same period can be mapped close to the same cluster anchor.

H.2. Time Complexity Analysis

The time cost of our HCHC is linear to the number of the samples in data, thus it can effectively visualize the clustering
results in big data. Fig. 16 shows the time cost of HCHC on MNIST with different numbers of the samples. The epoch
number is set as 200. We can find that the time cost of GLDC is more than the time cost of Hamiltonian cycle mapping on
MNIST dataset.

H.3. Supplementary Experiment for Different Visualization Methods

Here we show the visualized results of HCHC, MDS, PCA, Isomap, t-SNE, and UMAP on the datasets of USPS, Reuters10k,
HHAR, Pendigits, and BH. The results are shown in Fig. 17.

From Fig. 17, we can see that for USPS, HCHC can better better present the cluster number and index the clutering results
than MDS, PCA, and Isomap. It also can better present the cluster similarities and outliers than t-SNE and UMAP for USPS
and BH. For HHAR, Pendigit, and BH, with the help of anchors, HCHC can better present the cluster number and index the
clustering results than any other visualization method. HCHC also can better present the cluster similarities than t-SNE for
HHAR and better present outliers than t-SNE and UMAP for Pendigit. For these two datasets, MDS, PCA, and Isomap
can better present the cluster similarities and outliers than t-SNE and UMAP, but t-SNE and UMAP can better present the
cluster structure than MDS, PCA, and Isomap. Although HCHC, PCA, and Isomap can well present the clustering result of
Reuters10k, only HCHC can well present the similarities between the purple class, grey class, and green class.

H.4. Case Study

This subsection summarizes the feedback from the ten experts on different visualization methods for clustering. Five
of the experts major in clustering and five of the experts major in visualization. We design the following three tasks to
evaluate the quality of different visualization methods. Task (a) is to verify the ability of each visualization method to
present the number of clusters and correctly identify which cluster a sample belongs to. Task (b) is to verify the ability of
each visualization method to present the similarities between the samples from different classes. Task (c) is to verify the
ability of each visualization method to present the outliers. Each task is scored on a scale from 0 to 5. The results of six
visualization methods including HCHC, MDS, PCA, Isomap, t-SNE, and UMAP are used to visualize the clustering results
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USPS

Reuters10k

HHAR

Pendigits

BH 

HCHC MDS PCA Isomap t-SNE UMAP

Figure 17: The visualized results of the different visualization methods. Samples are coloured by their labels.

Table 6: Expert comparison of different visualization methods on MNIST.

Method Task (a) Task (b) Task (c) Average
MDS 3.3 4.2 4.3 3.9
PCA 3.6 3.9 4.5 4

Isomap 3.9 4.4 4.1 4.1
t-SNE 4.5 2.1 2.5 3.0
UMAP 4.9 3.2 1.5 3.2
HCHC 4.5 4.6 4.5 4.5

Table 7: Expert comparison of different visualization methods on Fashion.

Method Task (a) Task (b) Task (c) Average
MDS 2.1 4.6 4.3 3.7
PCA 2.4 4.6 4.3 3.8

Isomap 1.8 4.3 4.1 3.4
t-SNE 3.0 4.0 3.5 3.5
UMAP 3.3 3.5 2.1 3.0
HCHC 4.0 4.4 4.4 4.3
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(a) MNIST-β1 (b) MNIST-β2

(c) HHAR-β1 (d) HHAR-β2

Figure 18: Parameter analysis.

of MNIST-test and Fashion-test in Fig. 5 and 6, respectively. Then based on the visualization results, the ten experts are
asked to score these visualization methods on our three designed tasks.

The average scores of the ten experts in different tasks for MNIST-test are shown in Table 6. For the results of MNIST-test,
as we can see, HCHC can well perform all of our three designed tasks and thus get the highest average score. However,
MDS, PCA, and Isomap cannot well perform task (a). For example, by MDS and PCA, we are hard to correctly identify the
pink, green, cyan, and dark cyan clusters. By Isomap, we are hard to correctly identify grey and dark blue clusters. t-SNE
and UMAP cannot well perform tasks (b) and (c). For example, the shapes of handwriting digit numbers “9” and “4” are
similar, but t-SNE and UMAP cannot map the clusters of these two digit numbers close to each other.

The average scores of in different tasks for Fashion-test are shown in Table 7. For the results of Fashion-test, as we can see,
HCHC also can well perform all of our three designed tasks and thus get the highest average score. For task (a) With the
help of the anchors, our HCHC can better visualized the cluster number and index cluster result than any other visualization
methods. For task (b) HCHC, MDS, PCA, and Isomap can well present between the samples of shirt and the samples of
dress, but t-SNE and UMAP cannot do so. We are also hard to see the outliers by t-SNE and UMAP.

H.5. Parameter Analysis

In this subsection, we analyze the parameter sensitivities of β1 and β2 in our objective function on MNIST and HHAR. The
results are shown in Fig 18. In subfigure (a) and (c), β2 is fixed as 10. In subfigure (b) and (d), the initial β1 is fixed as 5. It
can be seen that our method is not sensitive to these two parameters.
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