
Fast Algorithms for Distributed k-Clustering with Outliers

Junyu Huang 1 2 Qilong Feng 1 2 Ziyun Huang 3 Jinhui Xu 4 Jianxin Wang 1 2 5

Abstract
In this paper, we study the k-clustering problems
with outliers in distributed setting. The current
best results for the distributed k-center problem
with outliers have quadratic local running time
with communication cost dependent on the aspect
ratio ∆ of the given instance, which may con-
straint the scalability of the algorithms for han-
dling large-scale datasets. To achieve better com-
munication cost for the problem with faster local
running time, we propose an inliers-recalling sam-
pling method, which avoids guessing the optimal
radius of the given instance, and can achieve a 4-
round bi-criteria (14(1+ε), 1+ε)-approximation
with linear local running time in the data size and
communication cost independent of the aspect
ratio. To obtain a more practical algorithm for
the problem, we propose another space-narrowing
sampling method, which automatically adjusts the
sample size to adapt to different outliers distribu-
tions on each machine, and can achieve a 2-round
bi-criteria (14(1 + ε), 1 + ε)-approximation with
communication cost independent of the number
of outliers. We show that, if the data points are
randomly partitioned across machines, our pro-
posed sampling-based methods can be extended
to the k-median/means problems with outliers,
and can achieve (O(1

ε2), 1 + ε)-approximation
with communication cost independent of the num-
ber of outliers. Empirical experiments suggest
that the proposed 2-round distributed algorithms
outperform other state-of-the-art algorithms.

1School of Computer Science and Engineering, Central
South University, Changsha 410083, China 2Xiangjiang Lab-
oratory, Changsha 410205, China 3Department of Computer
Science and Software Engineering, Penn State Erie, the
Behrend College 4Department of Computer Science and Engi-
neering, State University of New York at Buffalo, NY, USA
5The Hunan Provincial Key Lab of Bioinformatics, Central
South University, Changsha 410083, China. Correspondence
to: Qilong Feng <csufeng@mail.csu.edu.cn>, Jianxin Wang
<jxwang@mail.csu.edu.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction
Clustering is a fundamental problem that has been exten-
sively studied in the past few decades. Different types of
clustering problems have been widely used in applications.
Since clustering is well known to be sensitive to outliers,
one of the major challenges for clustering is how to deal
with data noises. Charikar et al. (2001) formulated and
studied the clustering problem with outliers, in which a
given number z of data points could be discarded as out-
liers when trying to minimize the clustering cost. For the
k-median/means problems with outliers, Chawla and Gionis
(2013) modified the Lloyd’s algorithm (Lloyd, 1982) to iter-
atively label the furthest z data points as outliers and adjust
the centers according to the labels. By randomized rounding
techniques, the k-median/means problems with outliers can
be approximated up to a constant factor (Chen, 2008; Kr-
ishnaswamy et al., 2018). However, these algorithms have
polynomial running time. In order to obtain fast approxima-
tion, lots of bi-criteria approximation algorithms have been
proposed (Charikar et al., 2001; Zhang et al., 2021; Gupta
et al., 2017; Bhaskara et al., 2019; Deshpande et al., 2020;
Im et al., 2020). As for the k-center problem with outliers,
Charikar et al. (2001) gave a 3-approximation algorithm
with running time O(n2k). Ding et al. (2019) proposed
a 2-approximation algorithm with running time O(nkε) us-
ing sampling-based method, which opens O(k) centers and
discards (1 + ε)z outliers. Recently, Chakrabarty et al.
(2016) proposed a reduction-based method that achieves a
2-approximation in polynomial time.

Clustering in distributed setting has also attracted much at-
tention in recent years (Chen et al., 2018; Ding et al., 2016;
Dandolo et al., 2022; Guha et al., 2017; Malkomes et al.,
2015; Li & Guo, 2018). In this setting, the data points are
partitioned amongmmachines, and a subset Pi ⊆ P of data
points with |Pi| = ni is assigned to machine i. Communi-
cations happen in rounds between the coordinator and the
machines, where the communication cost is defined as the
total number of words sent by the coordinator and machines.
In this paper, we study the k-center/median/means problems
with outliers in distributed setting, called the distributed
(k, z)-center/median/means problems. For the distributed
(k, z)-center problem, Malkomes et al. (2015) proposed a
(13 + ε)-approximation algorithm with communication cost
O(m(k+ z)), where the local running time is O(ni(k+ z))

1

Fast Algorithms for Distributed k-Clustering with Outliers

by picking (k + z) centers on each machine using greedy
method. Awasthi et al. (2019) showed that Ω(mk+z) is the
lower bound of communication cost for constant approxima-
tion. Guha et al. (2017) proposed an O(1)-approximation
algorithm by discarding (2 + δ)z outliers with communi-
cation cost Õ(mδ + mk), where the local running time is
Õ(n2

i). Li and Guo (2018) further improved the number
of discarded outliers from (2 + δ)z to (1 + ε)z, and gave
a 24(1 + ε)-approximation algorithm with communication
cost O(kmε ·

log ∆
ε), where ∆ is the aspect ratio of the given

instance (aspect ratio of the given instance is defined as the
maximum pairwise distance between the given data points
divided by the minimum pairwise distance). Their algo-
rithm iteratively removes data points covered by balls with
radius 4L∗, where L∗ is the optimal clustering radius (from
guessing). It was pointed out in (Li & Guo, 2018) that the
quadratic running time on each machine might be the bot-
tleneck for further improvements. Furthermore, since the
optimal clustering radius is unknown, enumerations for op-
timal clustering radius result in a factor of O(log ∆

ε) on the
communication cost and local running time. In (Grunau &
Rozhoň, 2022; Bhaskara et al., 2019; Im et al., 2020; Zhang
et al., 2021), ∆ is assumed to be polynomially bounded.
In (Cohen-Addad et al., 2022), a more general case was
considered where ∆ = 2n

o(1)

, which is much larger than
poly(n).

For the distributed (k, z)-median/means problems, Guha
et al. (2017) gave a 2-round O(1)-approximation algo-
rithm with (2 + δ)z outliers discarded. The communica-
tion cost of their algorithm is Õ(mε +mk) with quadratic
local running time. Li and Guo (2018) gave a 2-round
(1 + ε)-approximation algorithm by discarding (1 + ε)z

outliers with communication cost O(Φ · log(n∆
ε)

ε), where
Φ = O(1

ε4 k + mk log mk
δ) and δ is a parameter to con-

trol the success probability. However, the running time of
their algorithm on the coordinator is exponential. Grunau
and Rozhoň (2022) gave a 2-round sampling-based O(1)-
approximation algorithm by discarding (1 + ε)z outliers.
The communication cost of their algorithm is O(mk log ∆

ε)
with near-linear local running time in the data size if ∆ is
assumed to be polynomially bounded, which is the current
best result. Although the algorithm given in (Grunau &
Rozhoň, 2022) achieves good theoretical guarantee on both
communication cost and local running time, the dependence
on aspect ratio in communication cost and running time
may deteriorate the performance of the algorithm when the
aspect ratio is arbitrarily large.

Previously, several sampling-based techniques, such as uni-
form sampling andD2-sampling, have been applied to solve
the k-clustering problems with outliers. For D2-sampling
methods (Grunau & Rozhoň, 2022; Bhaskara et al., 2019),
a guess for the optimal clustering cost is needed to serve

as a threshold for distance penalization, which leads to a
dependence on the aspect ratio in communication cost and
local running time. Ding et al. (2019) proposed a uniform
sampling algorithm for the k-center problem with outliers.
It is required that the exact number of outliers to be dis-
carded should be given. However, in distributed setting, the
exact number of outliers on each machine is unknown.

1.1. Our Contribution

To improve the running time on each machine and avoid the
dependence on the aspect ratio in communication cost, we
propose a sampling-based method (called inliers-recalling
sampling) for the distributed (k, z)-center problem. On
each machine, (1 + ε)z data points are discarded using
uniform sampling methods in order to remove the aspect
ratio ∆ from the communication cost and guarantee an ap-
proximation ratio of 2. Then, the inliers-recalling sampling
procedure is used to recover as many inliers as possible.

Theorem 1.1. For the distributed (k, z)-center problem,
there exists a 4-round distributed algorithm that outputs a
(14(1+ε), 1+ε)-approximate solution with constant proba-
bility, where the communication cost isO(m

3k log(mk)
ε2), and

the running time on each machine i is O(nim
3k log(mk)
ε2).

Inliers-recalling sampling takes four rounds of communica-
tion (between each machine and the coordinator) to avoid
the dependence on ∆ in the communication cost. This may
impact its practical performance, and may not be ideal for
the case when ∆ is small. To avoid this issue and obtain a
more practical algorithm, we propose another sampling-
based method, called space-narrowing sampling, which
adaptively adjusts the sample size to avoid the requirement
that the exact number of outliers should be given in the
local computations. With this technique, the total number
of discarded inliers on all machines can be bounded by εz.

Theorem 1.2. For the distributed (k, z)-center problem,
there exists a 2-round distributed algorithm that outputs
a (14(1 + ε), 1 + ε)-approximate solution with constant
probability, where the communication cost is O(mk logm

ε ·
log ∆
ε), and the local running time on each machine i is

O(nik logm
ε · log ∆

ε).

For the distributed (k, z)-median/means problems, if the
data points are randomly partitioned across the machines,
we show that by combining our proposed sampling-
based methods with a filtering process, we can obtain a
(O(1

ε2), 1 + ε)-approximation algorithm with communica-
tion cost O(mk logm logn

ε · log ∆
ε) and local running time

O(nik logmmax{logni,k}
ε · log ∆

ε) using the space-narrowing
sampling method. By combining our proposed inliers-
recalling sampling method with the filtering process, we
can obtain a (O(1

ε2), 1 + ε)-approximate solution with com-

2

Fast Algorithms for Distributed k-Clustering with Outliers

Table 1. Comparison results for distributed (k, z)-center

Approximation Communication Local Running Time Reference

13(1 + ε) O(m(k + z)) O(ni(k + z)) (Charikar et al., 2001)
(O(1), 2 + ε) O((mε +mk) log n) O(n2

i log n) (Guha et al., 2017)
(24(1 + ε), 1 + ε) O(mkε ·

log ∆
ε) O(

n2
i log ∆
ε) (Li & Guo, 2018)

(14(1 + ε), (1 + ε)) O(km
3 log(mk)
ε2) O(nim

3k log(mk)
ε2) Inliers-Recalling Sampling

(14(1 + ε), (1 + ε)) O(mk logm
ε · log ∆

ε) O(nik logm
ε · log ∆

ε) Space-Narrowing Sampling

Table 2. Comparison results for distributed (k, z)-median/means

Approximation Communication Local Running Time Reference

(1 + ε, 1 + ε) O((kε4 +mk log mk
δ) · log n∆

ε

ε) Polynomial (Li & Guo, 2018)
(O(1

ε), 2 + ε+ δ) O((mε +mk) log n) O(n2
i) (Guha et al., 2017)

O(1) O((k log n+ z)m) O(ni max{k, log n}) (Chen et al., 2018)
(O(1), 1 + ε) O(mk log ∆

ε) O(nik log ∆
ε) (Grunau & Rozhoň, 2022)

O(1
ε2 , 1 + ε) O(m

3k logn log(mk)
ε2) O(nim

3k log(mk) max{logni,k}
ε2) Inliers-Recalling Sampling

O(1
ε2 , 1 + ε) O(mk logm logn

ε · log ∆
ε) O(nik logmmax{logni,k}

ε · log ∆
ε) Space-Narrowing Sampling

munication costO(m
3k logn log(mk)

ε2) and local running time

O(nim
3k log(mk) max{logni,k}

ε2).

Table 1 and Table 2 show the detailed comparison results
for the distributed (k, z)-center/median/means problems. It
can be seen that, compared with other distributed (k, z)-
center algorithms, our proposed inliers-recalling sampling
method has linear local running time in the data size, where
the communication cost is independent of ∆ with better
approximation guarantee on the clustering cost.

2. Preliminaries
Let P be the given set of data points with size n in met-
ric space (X , d). For two points p, q ∈ P , let d(p, q)
denote their distance. For any point p ∈ P and a sub-
set C ⊆ P , let d(p, C) = minc∈C d(p, c). For any two
subsets C,C ′ ⊆ P , let d(C,C ′) = minc∈C d(c, C ′) and
δ(C,C ′) = maxc∈C d(c, C ′), respectively. Given the num-
ber of clusters k and the number of outliers z, the goal
of the (k, z)-center problem is to find a set C ⊆ P of k
centers and a set Z ⊆ P of z outliers such that clustering
cost maxp∈P\Z d(p, C) is minimized. For a fixed set C of
centers, the outliers discarded can be obtained by choosing
the furthest z points from C. We use C∗ to denote an op-
timal set of centers. Based on C∗, let Z∗ be the set of the
furthest z outliers from C∗. Let Popt = P\Z∗ be the set
of inliers, and let L∗ = maxp∈Popt d(p, C∗) be an optimal
radius. Based on C∗, by discarding the points in Z∗, we can
find k optimal clusters, denoted by D∗ = {D∗1 , . . . , D∗k}.
Let [m] = {1, . . . ,m}. For any point p ∈ P and a ra-
dius r, the set of points in P covered by p with radius

r is denoted as BP (p, r). For a subset Q ⊆ P , define
BP (Q, r) = ∪q∈QBP (q, r). For two subsets C, D ⊆ P ,
if each point in C is covered by at least one point in D
with radius r, then it is called that C is covered by the
points in D with radius r. For a random event E, let Pr(E)
denote the probability that event E occurs. We say that
an algorithm for the (k, z)-center/median/means problems
achieves a bi-criteria approximation ((α, β)-approximation)
for some α, β ≥ 1, if it outputs a solution with at most
βz outliers, whose cost is at most α times the cost of the
optimum solution.

Computation Model. We follow the same distributed set-
ting as in (Li & Guo, 2018), where all communications need
to go through a central coordinator. Following the one in
(Li & Guo, 2018), our distributed algorithms only need to
output a set C of k centers on the coordinator as the solution.

3. Algorithm for Distributed (k, z)-Center
without ∆ on Communication Cost

For the distributed (k, z)-center problem, the number of in-
liers discarded by m machines should be less than εz before
executing a central clustering algorithm on the coordinator.
Thus, a key challenge is to ensure that the sampling method
discards no more than εz inliers across m machines.

In this section, we give an inliers-recalling sampling method
to remove ∆ from the communication cost. Our proposed
method is based on a 2-approximate solution with (1 + ε)z
data points discarded as an initialization on each machine.
To reduce the number of inliers discarded, we propose a
sampling process with two stages to recall back as many

3

Fast Algorithms for Distributed k-Clustering with Outliers

inliers as possible. In the first stage, by randomly taking a
small sample from the (1 + ε)z discarded data points and
adding them to the candidate set of centers, there are at most
εz
2m inliers with distances larger than 2L∗ to the candidate
set of centers, where L∗ is an optimal clustering radius of
the given instance. In the second stage, on each machine,
the algorithm iteratively removes the nearest εz

2m data points
from the discarded data points. By repeating the process
for O(mε) rounds, a list of clustering radii with size O(mε)
can be obtained. Moreover, we can get that there exists at
least one radius in the list such that at most εzm inliers are
discarded on each machine, which ensures that the total
number of inliers discarded across the machines can be
bounded by εz. In the following, subscript i represents the
i-th machine, and subscript j represents the j-th iteration of
the “for” loop.

Assume that we execute the inliers-recalling sampling (Al-
gorithm 1) on machine i (i ∈ [m]) with a set Pi ⊆ P of data
points. Let Si be the set of data points sampled in step 3 of
Round 1 in Algorithm 1. We first prove that, with constant
probability, |Si ∩ Popt| > 0. Due to space limit, all the
proofs in section 3 are given in Appendix A.
Lemma 3.1. By executing Algorithm 1 on machine i, with
probability at least 1 − η, the set Si sampled in step 3 of
Round 1 in Algorithm 1 contains at least one point from
Popt ∩ Pi.

There are two cases that may happen during the sampling
process in steps 4-7 of Round 1 in Algorithm 1: (1) a 2-
approximate solution can be obtained by discarding the
furthest (1 + ε)z data points; (2) at least one optimal cluster
can be covered by the data points sampled in step 6 of Round
1 in Algorithm 1. In the following, we discuss the two cases
separately. In the j-th iteration of the for loop in step 4 of
Round 1 in Algorithm 1, let Qi,j be the candidate set of
centers obtained in step 6 of Round 1, and let Ri,j be the
set of the furthest (1 + ε)z points from Qi,j−1 in step 5 of
Round 1. Let βi(Qi,j) ⊆ [k] denote the set of indices of
optimal clusters covered by the points in Qi,j with radius
2L∗, i.e., h ∈ βi(Qi,j) if δ(D∗h ∩ Pi, Qi,j) ≤ 2L∗.
Lemma 3.2. In each iteration j of the for loop in
step 4 of Round 1 in Algorithm 1 on machine i, either
d(Ri,j , Qi,j−1) ≤ 2L∗ or |βi(Qi,j)| > |βi(Qi,j−1)| with
probability at least 1− η.

We first argue that a 2-approximate solution can be obtained
if d(Ri,j , Qi,j−1) ≤ 2L∗. Note that Ri,j is the set of the
furthest (1 + ε)z points from Qi,j−1. Thus, for each point
p ∈ Pi\Ri,j , we have d(p,Qi,j−1) ≤ d(Ri,j , Qi,j−1) ≤
2L∗. Hence, a 2-approximate solution can be obtained by
discarding the data points in Ri,j . Then, consider the case
that d(Ri,j , Qi,j−1) > 2L∗ holds for each j ∈ [λ] during
the sampling process in steps 4-7, where λ = γk logm and
γ is a large constant. LetQi,λ be the candidate set of centers

Algorithm 1 IRS
Input: A partition (P1, P2, ..., Pm) of dataset P among m
machines, and parameters k, z, η, ε.
Output: A collection of weighted representations.
Round 1 on each machine i ∈ [m]

1: Initialize Qi = ∅, and Li = ∅.
2: if |Pi| > (1 + ε)z then
3: Randomly sample a subset Si ⊆ Pi of size 1+ε

ε log 1
η ,

and add data points in Si to Qi.
4: for j = 1, 2, . . . , O(k logm) do
5: Let Rj ⊆ Pi be the set of the furthest (1 + ε)z

points to Qi.
6: Randomly sample a subset Sj ⊆ Rj of size

1+ε
ε log 1

η , and add data points in Sj to Qi.
7: end for
8: end if
9: Let Ri ⊆ Pi be the set of the furthest (1 + ε)z data

points from Qi, and set Li = Li ∪ {δ(Pi\Ri, Qi)}.
10: Randomly sample a subset Vi ⊆ Ri of size

2km(1+ε)
ε log km

η , and add data points in Vi to Qi.

11: for j = 1 to d 2m(1+ε)
ε e do

12: Let Tj ⊆ Ri be the set of the nearest εz
2m data points

from Qi.
13: Ri = Ri\Tj .
14: lj = δ(Pi\Ri, Qi), and Li = Li ∪ {lj}.
15: end for
16: Send Li to the coordinator.

Round 2 on coordinator
1: Let L′ =

⋃
i∈m Li be the collection of radii.

2: Send L′ to each machine i ∈ [m].

Round 3 on each machine i ∈ [m]

1: for L ∈ L′ do
2: SLi = Qi, Hs = ∪si∈SLi BPi(si, L).
3: Assign each point in Hs to its closest center in SLi .
4: For each s ∈ SLi , let σ(s) be the number of points

assigned to s, and assign a weight σ(s) to s.
5: Send (SLi , L) to the coordinator.
6: end for

obtained after λ rounds. We prove that with probability at
least 1− η

m , points in
⋃k
t=1D

∗
t ∩ Pi are all covered by the

points in Qi,λ with radius 2L∗.

Lemma 3.3. Chernoff Bound . Let x1, x2, ..., xn be n
independent random variables with values 1 or 0, where
xi takes value 1 with probability at least q for each i =
1, 2, ..., n. Let X =

∑n
i=1 xi. For any real number ε ∈

(0, 1], we have Pr (X < (1− ε)E(X)) < e−
ε2qn

2 .

Lemma 3.4. For each machine i ∈ [m], assume that
d(Ri,j , Qi,j−1) > 2L∗ holds for each j ∈ [λ] during the
sampling process in steps 4-7 of Round 1 in Algorithm 1,

4

Fast Algorithms for Distributed k-Clustering with Outliers

Algorithm 2 MCA
Input: a set P ′ of weighted representations, and parameters
z′, R.
Output: A set C ′ ⊆ P of centers with size at most k and a
radius r.

1: Let dmax be the maximum pairwise distance in P ′,
l = blog1+ε

R
2 c, u = dlog1+ε dmaxe. For each point

p ∈ P ′, let w(p) be the weight of p.
2: for i = l to u do
3: L = (1 + ε)i, Y = P ′ and C ′ = ∅.
4: for j = 1 to k do
5: cj = arg maxp∈Y

∑
q∈BY (p,6L) w(q).

6: C ′ = C ′ ∪ {cj}, and Y = Y \BY (cj , 12L).
7: end for
8: if

∑
p∈Y w(p) ≤ z′ then

9: Return (C ′, L).
10: end if
11: end for

Algorithm 3 Distributed (k, z)-center using IRS
Input: A partition {P1, P2, ..., Pm} of dataset P among m
machines, and parameters k, z, η, ε, L.
Output: A set C ⊆ P of centers with size at most k.
Rounds 1-3

1: IRS({P1, P2, ..., Pm}, k, z, η, ε).

Round 4 on coordinator
1: Initialize Cf = ∅, and Lf =∞.
2: for L ∈ L′ do
3: PL = ∪mi=1S

L
i .

4: For each point p in PL, let w(p) be the weight of p.
5: z′ = (1 + ε)z +

∑
p∈PL w(p)− |P |.

6: if z′ > 0 then
7: (Ct, Lt) = MCA(PL, z

′, L).
8: if Lt < Lf then
9: Lf = Lt, Cf = Ct.

10: end if
11: end if
12: end for
13: Return Cf .

where λ = γk logm, and γ is a large constant. Then, with
probability at least 1− η

m , βi(Qi,λ) = k.

By Lemma 3.4, in step 9 of Round 1 in Algorithm 1, if
the data points in Ri are discarded as outliers, a set Qi of
candidate centers with approximation ratio 2 on machine i
can be obtained. By taking a union bound over the success
probability across machines, a 2-approximate solution can
be obtained on each machine with probability at least 1− η.

However, in the worst case, the discarded (1 + ε)z data
points in Ri are all inliers. Then, a sampling process with

two stages is used to reduce the number of discarded inliers.
In the first stage (step 10 of Round 1 in Algorithm 1), by
sampling data points fromRi as new centers, we can guaran-
tee that there are few inliers with distances larger than 2L∗

to the clustering centers. More formally, a small sample Vi
is randomly taken from Ri to guarantee that for any optimal
cluster D∗t with |D∗t ∩Ri| ≥ εz

2km , |D∗t ∩ Vi| > 0 happens
with certain probability. Observe that if |D∗t ∩Ri| ≥ εz

2km ,
|D∗t∩Ri|
|Ri| ≥ ε

2(1+ε)km . By Lemma 3.1, if randomly taking a

sample Vi of size 2(1+ε)km
ε log 1

η from Ri, with probability
at least 1− η, one point from D∗t ∩Ri can be sampled. A
union bound on success probability over all clusters and
machines can be obtained by replacing η with mk

η . Then,
by adding data points in Vi to Qi, with probability at least
1− η

m , the total number of uncovered inliers by data points in
Qi with radius 2L∗ can be bounded by εz

2m on each machine
i.

In the second stage (steps 11-15 in Round 1 of Algorithm
1), a recalling process is used to find most discarded inliers
back such that a unified clustering radius can be obtained
across machines. On each machine i ∈ [m], the goal is
to find as many inliers as possible with distances smaller
than 2L∗ to Qi. There are at most O(m(1+ε)

ε) iterations
to recall the inliers, in which the nearest εz

2m data points in
Ri to Qi are iteratively removed from Ri in steps 12-13. It
holds trivially that there must exist at least one iteration such
that at most εz

2m inliers in the discarded (1 + ε)z outliers
with distances smaller than 2L∗ to Qi are not recalled back.
Hence, in step 16, we can find a radius Lfi ∈ Li such that
Lfi ≤ 2L∗, and by using data points in Qi with radius Lfi ,
there are at most εzm inliers that are not covered (εz2m inliers
with distances larger than 2L∗to Qi, and εz

2m inliers without
being recalled back). Let Lf = maxi∈[m] L

f
i . Putting all

things together, since Lf ≤ 2L∗, with probability at least
(1−η)2, a 2-approximate solution on each machine i can be
obtained using data points in Qi with radius Lf in Round
2 of Algorithm 1, where at most εz inliers are discarded
across machines.
Corollary 3.5. In Round 2 of Algorithm 1, with constant
probability, there exists at least one clustering radius Lf ∈
L′ such that Lf ≤ 2L∗, and for each machine i ∈ [m],
|Popt ∩ (Pi\BPi(Qi, Lf))| ≤ εz

m .

The algorithm solving the distributed (k, z)-center by inliers-
recalling sampling is given in Algorithm 3. In the first
round, each machine conducts random sampling and inliers
recalling to obtain a list of clustering radii, and sends the
list of radii to the coordinator. In the second round, the
coordinator collects the radii lists from machines, and sends
the collection of radii back to each machine. In the third
round, machines send back all the weighted representations
constructed using the radii list sent by the coordinator. In the
fourth round, the coordinator performs a weighted clustering

5

Fast Algorithms for Distributed k-Clustering with Outliers

algorithm to obtain a final solution. Note that the radii
list on each machine has size at most O(mε). Thus, the
total number of possible radii can be bounded by O(m

2

ε).
On each machine, there are at most O(mk log(mk)

ε) centers
sampled as representations. Then, the total communication
cost is O(m

3k log(mk)
ε2).

Corollary 3.6. The total communication cost of Algorithm 1
is O(m

3k log(mk)
ε2).

The algorithm solving the weighted (k, z)-center problem is
given in Algorithm 2. We first show how to obtain a bound
for L∗. By Corollary 3.5, there exists a radius Lf ∈ L′

such that Lf ≤ 2L∗ and the number of uncovered inliers
across machines is at most εz. Let PLf denote the collection
of weighted representations with radius Lf in step 3 of
Round 4 in Algorithm 3, and let dmax be the maximum
pairwise distance in PLf . Since Lf ≤ 2L∗, L∗ is in range
[
Lf
2 , dmax].

The goal of Algorithm 2 is to greedily find a point that
covers the most data points within distances 6L∗. We show
that such a greedy strategy works. In step 2 of Algorithm 2,
assume that an estimation L of L∗ with L ∈ [L∗, (1 + ε)L∗]
is obtained by enumeration. Let H be the set of the data
points discarded across machines by PLf . Let X = P\H
be the set of the covered data points. For each p ∈ X , we
have d(p, PLf) ≤ Lf ≤ 2L∗ by Corollary 3.5. In step 4 of
Algorithm 2, there are k iterations. In the j-th iteration, let
Yj be the set of the uncovered data points before adding a
center cj toC ′ in step 6. For any point p ∈ Pi, if p is covered
by a point q ∈ Qi with radius 2L∗, then denote sp = q as the
representation of p. In the j-th iteration of Algorithm 2, for
an optimal clusterD∗h, let UD∗h = {p ∈ D∗h ∩X : sp ∈ Yj}
be the set of the data points in D∗h whose representations
are not covered before the j-th iteration.

Lemma 3.7. In the j-th iteration of Algorithm 2, let cj be
the center added to C ′ in step 6. Then, for each uncovered
optimal cluster D∗h,

∑
p∈BYj (cj ,6L) w(p) ≥ |UD∗h |.

Lemma 3.8. In the j-th iteration of Algorithm 2, let λj =

BYj (cj , 12L). Then,
∑k
j=1

∑
p∈λj w(p) ≥ |Popt ∩X|.

By Lemma 3.8, it holds that the number of covered inliers
on the coordinator is at least the number of covered inliers
across machines. Together with Corollary 3.5, the number
of data points discarded can be bounded by (1 + ε)z.

Corollary 3.9. In Algorithm 3, the number of data points
with distances large than 2L∗ to Cf is bounded by (1 + ε)z.

The proof of Theorem 1.1 is in Appendix A.

4. A More Practical Algorithm with Smaller
Communication Rounds

Although the aspect ratio for a given instance may be ar-
bitrarily large, experiments show that for many datasets,
∆ is actually much smaller and is often a small constant,
which makes the removal of the dependence on ∆ in the
communication cost less exciting. Algorithm 3 needs four
rounds of communication between machines and the coordi-
nator, which could deteriorate the practical performance of
the algorithm. To obtain a much more practical algorithm
for small ∆, we propose another sampling method, called
space-narrowing sampling, based on a guess for the opti-
mal clustering radius L∗. The space-narrowing sampling
method can adjust the sample size according to the number
of uncovered points to avoid the requirement that the exact
number of outliers should be given on each machine.

The space-narrowing sampling process is given in Algo-
rithm 4, which is executed on each machine i ∈ [m]. The
basic idea behind is to iteratively use random sampling
method to find some centers and remove the data points
covered by the centers with radius 2L∗. On each machine
i, let Ui,j be the set of the uncovered data points before
the execution of the j-th iteration of step 2 in Algorithm 4.
For a single machine i ∈ [m], during the sampling process,
there are two cases that may happen: (1) there are enough
uncovered inliers, i.e., |Ui,j | ≥ (1 + ε)z; (2) the number
of uncovered data points is small, i.e., |Ui,j | < (1 + ε)z.
In the following, we discuss the two cases separately. Ac-
cording to the results of (Li & Guo, 2018), we can obtain
an estimation L of optimal clustering radius L∗ such that
L ∈ [L∗, (1 + ε)L∗] by trying O(log ∆

ε) radii to serve as the
input of Algorithm 5, which results in an O(log ∆

ε) factor
on communication cost and running time.

Assume that we execute Algorithm 4 on machine i (i ∈
[m]). In Algorithm 4, all data points sampled are added
to a weighted set Q of centers in step 10. Assume that
Qi,j is the set of centers found after the j-th iteration of
the for loop in step 2. Let βi(Qi,j) ⊆ [k] denote the set of
indices of optimal clusters covered by the points inQi,j , i.e.,
h ∈ βi(Qi,j), if δ(D∗h ∩ Pi, Qi,j) ≤ 2L. By Lemma 3.1,
if there are enough uncovered data points left in Pi ∩ Popt,
i.e., |Ui,j | ≥ (1 + ε)z, in the j-th iteration, we can sample
at least one point p ∈ Popt ∩ Ui,j with constant probability
in step 7. Let D∗t be the optimal cluster containing p. By
removing the data points covered by p with radius 2L in
Pi, since L ∈ [L∗, (1 + ε)L∗], all the points in D∗t ∩ Pi are
covered. Thus, |βi(Qi,j)| > |βi(Qi,j−1)|. If case (2) never
happens during the sampling process, Lemma 3.4 shows
that by repeating the sampling process O(k logm) times,
with probability at least 1− η

m , the points in
⋃k
t=1D

∗
t ∩ Pi

are all covered by the points in Qi with L, where Qi is a
set of weighted representations returned by Algorithm 4 on

6

Fast Algorithms for Distributed k-Clustering with Outliers

machine i.

For case (2), assume that |Ui,j | < (1 + ε)z, which means
that there are not enough uncovered inliers. In this case, we
need to carefully adjust the sample size to guarantee that
at least one uncovered inlier can still be sampled. We first
show that, before each execution of step 7 of Algorithm 4,
we can always bound the size of Ui,j to guess the number
of uncovered inliers. Before step 7, we can find an integer
ri,j such that (1+ε1)ε1ri,jz

m ≤ |Ui,j | < (1+ε1)ε1(ri,j+1)z
m ,

where ε1 = ε
3 . Then, there are two subcases to consider.

In the first subcase, we have |Z∗ ∩ Ui,j | < ε1ri,jz
m . In this

subcase, we show that the total number of uncovered inliers
is roughly bounded by εz

m . In the second subcase, we have
|Z∗ ∩ Ui,j | ≥ ε1ri,jz

m , where inliers can still be picked with
certain probability by increasing the sample size.

Algorithm 4 SNS
Input: A set Pi of data points, and parameters k, z, η, ε, m,
L.
Output: A weighted set Q of representations.

1: Initialize Q = ∅, and U = Pi.
2: for i = 1, 2, ..., O(k logm) do
3: ε1 = ε.
4: if |U | < (1 + ε)z then
5: ε1 = ε

3 .
6: end if
7: Randomly sample a subset S ⊆ U of size 1+ε1

ε1
log 1

η .
8: for each s ∈ S do
9: Hs = BU (s, 2L).

10: Assign a weight |Hs| to point s, add s to Q, and
set U = U\Hs.

11: end for
12: end for
13: Return Q.

In the following, by considering all m machines together,
we give a bound on the number of uncovered inliers. We first
assume that subcase 2 never happens on each machine, i.e.,
|Z∗∩Ui,j | < ε1ri,jz

m for each i ∈ [m] and j ∈ [λdk logme],
where λ is a large constant. In this subcase, data points in⋃k
t=1D

∗
t ∩ Pi (i ∈ [m]) can be covered by the points in

Qi with radius 2L, where L ∈ [L∗, (1 + ε)L∗]. Note that
on each machine i (i ∈ [m]), we have |Popt ∩ Ui,j | ≥
ε1|Z∗ ∩ Ui,j |. Let Si,j be the set of the data points sampled
in step 7 of Algorithm 4 in the j-th iteration. Then, by
Lemma 3.1, with probability at least 1 − η, the set Si,j
contains at least one uncovered point from Popt. Thus, by
taking a union bound of the success probability over all
machines, we can get that with probability at least 1 − η,
βi(Qi) is equal to k for each machine i ∈ [m] by Lemma
3.4, where the total number of uncovered inliers is 0. On the
other hand, we consider that subcase 2 happens on a subset
F ⊆ [m] of machines. In this case, we show that the total

number of uncovered inliers is bounded by εz. Due to space
limit, proof of Lemma 4.1 is given in Appendix B.
Lemma 4.1. Let F ⊆ [m] denote the set of machines where
subcase 2 happens at least once during the space-narrowing
sampling process. Then, the total number of uncovered
inliers is bounded by εz.

Algorithm 5 Distributed (k, z)-center using SNS
Input: A partition {P1, P2, ..., Pm} of data set P among m
machines, parameters k, z, η, ε, L.
Output: A set C ⊆ P of size at most k or “No”.
Round 1 on each machine i ∈ [m]

1: Qi = SNS(Pi, k, z, η, ε, m, L).
2: Send the weighted representation Qi to the coordinator.

Round 2 on coordinator
1: P ′ = ∪i∈[m]Qi.
2: For each point p in P ′, let w(p) be the weight of p.
3: z′ = (1 + ε)z +

∑
p∈P ′ w(p)− |P |.

4: if z′ < 0 then
5: Return “No”.
6: else
7: Return MCA(P ′, z′, L).
8: end if

Our main algorithm for the distributed (k, z)-center prob-
lem is given in Algorithm 5, which consists of two rounds.
In the first round, each machine conducts space-narrowing
sampling to obtain a set of weighted representations, and
sends the result to the coordinator. In the second round, the
coordinator collects the weighted representations, and exe-
cutes the algorithm (given in Algorithm 2) for the weighted
(k, z)-center to obtain the final clustering results.
Corollary 4.2. The total communication cost of Algorithm 5
is O(mk logm

ε · log ∆
ε).

The proof of Theorem 1.2 is in Appendix B.

5. Extension to the k-Median/Means Problems
with Outliers

For the k-means/median problems with outliers, although
the uniform sampling method in (Chen et al., 2018) can
achieve a communication cost independent of ∆, the com-
munication cost has linear dependence on the number of
outliers. For non-uniform sampling methods, the sampling
process should rely on a guess for the optimal clustering cost
to trim the distances between data points and their centers,
which leads to an O(log ∆) loss on both communication
cost and running time. Thus, it is challenging to obtain
an approximation algorithm with communication cost in-
dependent of aspect ratio, where the local running time is
near-linear in the data size on each machine.

7

Fast Algorithms for Distributed k-Clustering with Outliers

We sketch the high-level idea of the process solving the k-
median/means problems, and the detailed algorithms are in
Appendix C. The general idea behind is to firstly use a filter-
ing process to obtain a constant approximate solution with
O(z) data points discarded on each machine. We can use
the algorithm proposed in (Chen et al., 2018) as the filtering
process, which is given in Appendix C. According to the
random partition rule, we show that the number of discarded
data points can be bounded by O(zm) on each machine. By
taking a small sample from the discarded data points using
our proposed sampling-based methods, at most εz inliers
are discarded across the machines. Furthermore, the loss on
approximation ratio can be bounded by O(OPTε). Hence,
we can get a set of weighted representations with O(1

ε)-
approximation on the coordinator by discarding at most
εz inliers across the machines. By executing a weighted
(O(1

ε), 1 + ε)-approximation algorithm on the coordinator,
such as the LS++ algorithm given in (Grunau & Rozhoň,
2022), we can get a (O(1

ε2), 1 + ε)-approximate solution
on the coordinator. Putting these together, we have the
following results for the distributed (k, z)-median/means
problems.
Theorem 5.1. For the distributed (k, z)-median/means
problem, if the data points are randomly partitioned across
the machines, there exists a 4-round distributed algorithm
that outputs a (O(1

ε2), 1 + ε)-approximate solution with
constant probability, where the communication cost and
the running time on machines are O(m

3k logn log(mk)
ε2) and

O(nim
3k log(mk) max{logni,k}

ε2), respectively.
Theorem 5.2. For the distributed (k, z)-median/means
problem, if the data points are randomly partitioned across
the machines, there exists a 2-round distributed algorithm
that outputs a (O(1

ε2), 1 + ε)-approximate solution with
constant probability, where the communication cost and the
running time on machines are O(mk logm logn

ε · log ∆
ε) and

O(nik logmmax{logni,k}
ε · log ∆

ε), respectively.

6. Experiments
In this section, we evaluate the performance of our algo-
rithms on several real-world datasets1 including 3 small
datasets (letter: 20,000 × 16, skin: 245,057 × 3, covertype:
581,012 × 54) and 3 large datasets (gas: 928,991 × 10 and
higgs: 11,000,000 × 27, sift2: 100,000,000 × 128). The
datasets for testing the k-center and k-means algorithms are
different in (Li & Guo, 2018). For fair comparison, we use
the same datasets as in (Li & Guo, 2018) to compare our
algorithms with the ones in (Li & Guo, 2018).

For hardware, we use a machine with 72 Intel Xeon Gold
6230 CPUs and 1TB memory. The notation “machine” used

1https://archive.ics.uci.edu/ml/index.php
2http://corpus-texmex.irisa.fr

in our algorithms refers to an individual processor. In (Li &
Guo, 2018), the partition of a dataset is stored in a list, and
each part of the dataset is processed sequentially by a single
processor to simulate the distributed environment. In our
experiments, for fair comparison, we follow the settings in
(Li & Guo, 2018). Although our hardware has 72 processors,
we also use a single processor to handle each part of the
dataset sequentially.

Algorithms and parameters. We compare our algorithm
described in Algorithm 5 with other distributed algorithms.
Algorithm glz is proposed by (Malkomes et al., 2015),
which serves as the baseline for clustering cost. Algo-
rithm dist kzc 0.99 is proposed by (Li & Guo, 2018) with
ε = 0.99. Algorithm dist kzc 0.1 is the one in (Li & Guo,
2018) with ε = 0.1. Algorithm ours 0.1 is our Algorithm 5
with ε = 0.1, and algorithm ours 0.99 is our Algorithm 5
with ε = 0.99. In our experiments, we fix the parame-
ter η = 0.5 and multiply the sampling rounds by a factor
β = 0.01.

Experiment setup. For each parameter setting, the exper-
iments are repeated for five times, and we take the average
results. In the source code of dist kzc3 (Li & Guo, 2018),
a process to guess the optimal radius of the given instance
was presented using O(log log ∆) rounds of communica-
tion, which avoids sending O(log ∆

ε) sets of results to the
coordinator. In our experiment, we follow the operations
of dist kzc to avoid sending O(log ∆

ε) sets of results to co-
ordinator. Following the settings in (Li & Guo, 2018), the
communication cost is defined as the number of representa-
tions sent by the machines multiplied by its dimension, and
the final results are computed by removing only z outliers.
For the (k, z)-center problem, since the radius of a solution
is actually equivalent to the clustering cost, we compare the
clustering radius between different algorithms to show the
clustering quality of them. In (Li & Guo, 2018), different
values of m were used for different datasets, where the num-
ber of machines gradually increases as the data sizes grow,
which is very common in real-world applications. In our ex-
periments, for fair comparison, we follow the same settings
and use the same values of m as in (Li & Guo, 2018). For
the number z of outliers, in the experiments of (Li & Guo,
2018), z is fixed to be 1024 when testing the performance
of different distributed algorithms with varying number k of
clusters . For fair comparison, we follow the same settings
in (Li & Guo, 2018) and fix z = 1024 when k varies.

Results. Assume that z and m are fixed on the datasets.
Figrue 1 shows the comparison results of the clustering cost,
communication cost and running time with varying number
of clusters k on large datasets. The comparison results of

3https://github.com/xyguo/clusterz

8

Fast Algorithms for Distributed k-Clustering with Outliers

0 20 40 60
0

10

20

30

40

50

gas, z=1024, m=20

k
ra

d
iu

s

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

0 20 40 60
6

8

10

12

14

Higgs, z=1024, m=50

k

ra
d

iu
s

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

0 20 40 60
500

520

540

560

580

600

SIFT, z=1024, m=50

k

ra
d

iu
s

ours_0.1

ours_0.99

0 20 40 60
103

104

105

106

gas, z=1024, m=20

k

c
o

m
u

.c
o

st

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

0 20 40 60
103

104

105

106

107

Higgs, z=1024, m=50

k

c
o

m
u

.c
o

st

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

0 20 40 60
103

104

105

106

107

SIFT, z=1024, m=50

k

c
o

m
u

.c
o

st

ours_0.1

ours_0.99

0 20 40 60
100

101

102

103

gas, z=1024, m=20

k

s
e

c
o

n
d

s
(s

)

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

0 20 40 60
101

102

103

104

105

106

Higgs, z=1024, m=50

k

s
e

c
o

n
d

s
(s

)

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

0 20 40 60
102

103

104

105

106

107

SIFT, z=1024, m=50

k

s
e

c
o

n
d

s
(s

)

ours_0.1

ours_0.99

Figure 1. Comparison results of clustering performance on large datasets for (k, z)-center with varying z

the clustering cost, communication cost and running time
with varying number of clusters k on small datasets are
given in Figure 2 (see Appendix D). For clustering cost, our
algorithms are very close to the baseline algorithm glz. The
communication cost of our algorithm with ε = 0.99 is much
smaller than other algorithms. On datasets gas, covertype
and Higgs, the communication cost is reduced by at least
30% compared to dist kzc 0.99. The experiment results
show that ours 0.99 runs faster than other algorithms. For
dataset Higgs, ours 0.99 is more than 26 times faster than
other algorithms. For dataset SIFT, it requires at least 48
hours for other algorithms to return the clustering results,
and our sampling-based algorithm with ε = 0.99 gives
clustering results within 2 hours. Compared to dist kzc, by
calculating the average values of five datasets, we can get
that the communication cost is reduced by 48%, and our
algorithm is more than 24 times faster than other algorithms.

Assume that k and m are fixed on the datasets. The compar-
ison results of the clustering cost, communication cost and
running time with varying number of z on large datasets are
given in Figure 3 (see Appendix D). The comparison results
of the clustering cost, communication cost and running time
with varying number of z on small datasets are given in Fig-
ure 4 (see Appendix D). Our algorithm with ε = 0.99 gets
the smallest communication cost on datasets skin, covertype
and gas, where the communication cost is reduced by at
least 35% compared to dist kzc 0.99. Moreover, ours 0.99
is the fastest one compared to other algorithms. For dataset
Higgs, ours 0.99 is more than 30 times faster than other

algorithms. For dataset SIFT, it needs at least 48 hours for
other algorithms to return the clustering results even when
the number of outliers z is small, and our sampling-based
algorithm with ε = 0.99 gives clustering results within 2
hours. Compared to dist kzc, by calculating the average
values of five datasets, we can get that the communication
cost is reduced by 50%, and our algorithm is more than 19
times faster than other algorithms.

7. Conclusion
In this paper, we give improved approximation algorithms
for the distributed (k, z)-center problem based on sampling
methods. We show that our proposed sampling-based meth-
ods can be extended to the distributed (k, z)-median/means
problems. Experiments show that the proposed algorithm
based on space-narrowing sampling outperforms the state-
of-the-art distributed algorithms.

Acknowledgments
This work was supported by National Natural Science Foun-
dation of China (62172446, U1909208, 61972423), Open
Project of Xiangjiang Laboratory (22XJ02002, 22XJ03005),
and Central South University Research Programme of Ad-
vanced Interdisciplinary Studies (2023QYJC023). This
work was also carried out in part using computing resources
at the High Performance Computing Center of Central South
University.

9

Fast Algorithms for Distributed k-Clustering with Outliers

References
Awasthi, P., Bakshi, A., Balcan, M., White, C., and

Woodruff, D. P. Robust communication-optimal dis-
tributed clustering algorithms. In Proceedings of the
46th International Colloquium on Automata, Languages,
and Programming, pp. 18:1–18:16, 2019.

Balcan, M.-F. F., Ehrlich, S., and Liang, Y. Distributed
k-means and k-median clustering on general topologies.
In Proceedings of the 27th International Conference on
Neural Information Processing Systems, pp. 1995–2003,
2013.

Bhaskara, A., Vadgama, S., and Xu, H. Greedy sampling
for approximate clustering in the presence of outliers. In
Proceedings of the 33rd International Conference on Neu-
ral Information Processing Systems, pp. 11146–11155,
2019.

Chakrabarty, D., Goyal, P., and Krishnaswamy, R. The non-
uniform k-center problem. In Proceedings of the 43rd
International Colloquium on Automata, Languages, and
Programming, pp. 67:1–67:15, 2016.

Charikar, M., Khuller, S., Mount, D. M., and Narasimhan, G.
Algorithms for facility location problems with outliers. In
Proceedings of the 12th Annual Symposium on Discrete
Algorithms, pp. 642–651, 2001.

Chawla, S. and Gionis, A. K-means-: A unified approach
to clustering and outlier detection. In Proceedings of the
13th SIAM International Conference on Data Mining, pp.
189–197, 2013.

Chen, J., Azer, E. S., and Zhang, Q. A practical algorithm
for distributed clustering and outlier detection. In Pro-
ceedings of the 32nd International Conference on Neural
Information Processing Systems, pp. 2253–2262, 2018.

Chen, K. A constant factor approximation algorithm for
k-median clustering with outliers. In Proceedings of the
19th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 826–835, 2008.

Cohen-Addad, V., Mirrokni, V., and Zhong, P. Massively
parallel k-means clustering for perturbation resilient in-
stances. In Proceedings of the 39th International Con-
ference on Machine Learning, pp. 4180–4201. PMLR,
2022.

Dandolo, E., Pietracaprina, A., and Pucci, G. Distributed
k-means with outliers in general metrics. arXiv preprint
arXiv:2202.08173, 2022.

Deshpande, A., Kacham, P., and Pratap, R. Robust k-
means++. In Proceedings of the 36th Conference on Un-
certainty in Artificial Intelligence, pp. 799–808. PMLR,
2020.

Ding, H., Liu, Y., Huang, L., and Li, J. K-means clustering
with distributed dimensions. In Proceedings of the 33rd
International Conference on Machine Learning, pp. 1339–
1348, 2016.

Ding, H., Yu, H., and Wang, Z. Greedy strategy works for
k-center clustering with outliers and coreset construction.
In Proceedings of the 27th Annual European Symposium
on Algorithms, pp. 40:1–40:16, 2019.

Grunau, C. and Rozhoň, V. Adapting k-means algorithms
for outliers. In Proceedings of the 39th International
Conference on Machine Learning, volume 162, pp. 7845–
7886, 2022.

Guha, S., Li, Y., and Zhang, Q. Distributed partial clus-
tering. In Proceedings of the 29th ACM Symposium on
Parallelism in Algorithms and Architectures, pp. 143–152,
2017.

Gupta, S., Kumar, R., Lu, K., Moseley, B., and Vassilvit-
skii, S. Local search methods for k-means with outliers.
Proceedings of the VLDB Endowment, 10:757–768, 2017.

Im, S., Qaem, M. M., Moseley, B., Sun, X., and Zhou, R.
Fast noise removal for k-means clustering. In Proceed-
ings of the 23rd International Conference on Artificial
Intelligence and Statistics, pp. 456–466. PMLR, 2020.

Krishnaswamy, R., Li, S., and Sandeep, S. Constant ap-
proximation for k-median and k-means with outliers via
iterative rounding. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, pp.
646–659, 2018.

Li, S. and Guo, X. Distributed k-clustering for data with
heavy noise. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems,
pp. 7849–7857, 2018.

Lloyd, S. Least squares quantization in pcm. IEEE Trans-
actions on Information Theory, 28:129–137, 1982.

Malkomes, G., Kusner, M. J., Chen, W., Weinberger, K. Q.,
and Moseley, B. Fast distributed k-center clustering with
outliers on massive data. In Proceedings of the 28th Inter-
national Conference on Neural Information Processing
Systems, pp. 1063–1071, 2015.

Zhang, Z., Feng, Q., Huang, J., Guo, Y., Xu, J., and Wang,
J. A local search algorithm for k-means with outliers.
Neurocomputing, 450:230–241, 2021.

10

Fast Algorithms for Distributed k-Clustering with Outliers

A. Missing Proofs in Section 3
Lemma 3.1. By executing Algorithm 1 on machine i, with probability at least 1− η, the set Si sampled in step 3 of Round 1
in Algorithm 1 contains at least one point from Popt ∩ Pi.

Proof. Define ζ =
|Pi∩Popt|
|Pi| . Since |Pi| ≥ (1 + ε)z, it holds that ζ ≥ ε

1+ε . By randomly sampling a set Si from Pi, the

probability that Si contains at least one data point from Popt ∩ Pi is at least 1− (1− ζ)|Si|. In order to guarantee that, with
probability at least 1− η, at least one data point is sampled from Pi ∩ Popt, we have 1− (1− ζ)|Si| ≥ 1− η. Thus, Si has

size at least
log 1

η

log 1
1−ζ
≤ 1

ζ log 1
η . Since ζ ≥ ε

1+ε , if |Si| ≥ 1+ε
ε log 1

η , then Si contains at least one point from Pi ∩ Popt with

probability at least 1− η.

Lemma 3.2. In each iteration j of the for loop in step 4 of Round 1 in Algorithm 1 on machine i, either d(Ri,j , Qi,j−1) ≤ 2L∗

or |βi(Qi,j)| > |βi(Qi,j−1)| with probability at least 1− η.

Proof. In the j-th iteration of the for loop in step 4 of Round 1 in inliers-recalling sampling, let Ri,j be the set of
the furthest (1 + ε)z points from Qi,j−1 in step 5. We have the following two cases: (1) d(Ri,j , Qi,j−1) ≤ 2L∗; (2)
d(Ri,j , Qi,j−1) > 2L∗. For case (2), let F be the set of optimal clusters that are not covered by the points in Qi,j−1 with
radius 2L∗, and let P (F) be the set of data points contained in clusters of F with distances larger than 2L∗ to Qi,j−1. Since
d(Ri,j , Qi,j−1) > 2L∗, we have (Ri,j ∩ Popt) ⊆ P (F). According to Lemma 3.1, by randomly sampling 1+ε

ε log 1
η points

from Ri,j , the sampled set contains at least one point from P (F) with probability at least 1− η, which makes at least one
uncovered optimal cluster covered by data points in Qi,j with radius 2L∗. Thus, we can get that in the j-the iteration of the
for loop in step 4 of Round 1 in Algorithm 1, either d(Ri,j , Qi,j−1) ≤ 2L∗ or |βi(Qi,j)| > |βi(Qi,j−1)| with probability at
least 1− η.

Lemma 3.4. For each machine i ∈ [m], assume that d(Ri,j , Qi,j−1) > 2L∗ holds for each j ∈ [λ] during the sampling
process in steps 4-7 of Round 1 in Algorithm 1, where λ = γk logm, and γ is a large constant. Then, with probability at
least 1− η

m , βi(Qi,λ) = k.

Proof. Consider a single machine i ∈ [m]. In inliers-recalling sampling, let Qi,j be the set of centers found after j
iterations of the for loop in step 4 of Round 1 in Algorithm 1, and let βi(Qi,j) ⊆ [k] denote the set of indices of
optimal clusters covered by the points in Qi,j with radius 2L∗. We define a variable aj = 1 if |βi(Qi,j)| > |βi(Qi,j−1)|.
Otherwise aj = 0. Since we assume that d(Ri,j , Qi,j−1) > 2L∗ holds on each machine, aj is equal to 1 with probability
at least 1 − η for each j by Lemma 3.2. Let t be the number of iterations of the for loop in step 4 of Round 1 in
Algorithm 1 such that t ≥ 2δk ln m

η

1−η , where δ is a constant with δ ≥ 4. Then, by Chernoff Bounds (Lemma 3.3), we have

Pr

(∑t
j=1 aj < k

)
< Pr

(∑t
j=1 aj <

1
2 (1− η)t

)
< e−

t(1−η)
8 ≤ e−

δ ln m
η

4 , where the first inequality follows from the

assumption that k ≤ 1
2 (1− η)t, the second inequality follows from Lemma 3.2 and the fact that E

(∑t
j=1 aj

)
≥ (1− η)t,

and the last inequality follows from the assumption that t ≥ 2δ
1−η ln m

η . This implies that Pr(βi(Qi) = k) = 1 −

Pr

(∑t
j=1 aj < k

)
> 1 − e−

δ ln m
η

4 ≥ 1 − η
m , where the last inequality follows from the assumption that δ ≥ 4. Thus,

given that η and δ are constants, by repeating the sampling process for O(k logm) times, with probability at least 1− η
m ,

we have βi(Qi) = k.

Lemma 3.7. In the j-th iteration of Algorithm 2, let cj be the center added to C ′ in step 6. Then, for each uncovered optimal
cluster D∗h,

∑
p∈BYj (cj ,6L) w(p) ≥ |UD∗h |.

Proof. Let H be the set of points discarded across machines by PLf with radius Lf , and let X = P\H . Consider an
optimal cluster D∗h (1 ≤ h ≤ k). Let p, q be two arbitrary points in D∗h ∩ X . We first bound the distance between sp
and sq. By Corollary 3.5, we have d(p, sp) ≤ Lf ≤ 2L∗ and d(q, sq) ≤ Lf ≤ 2L∗. According to the triangle inequality,
d(sp, sq) ≤ d(sp, p) + d(p, q) + d(q, sq) ≤ 2Lf + d(p, d∗h) + d(d∗h, q) ≤ 6L, where L ∈ [L∗, (1 + ε)L∗]. For any point
u ∈ D∗h with su ∈ Yj , BPLf (su, 6L) contains all the representation points in D∗h ∩X . Note that our algorithm always

11

Fast Algorithms for Distributed k-Clustering with Outliers

chooses a point cj ∈ Yj with maximum summation of the weights in BYj (cj , 6L). Hence, for each uncovered optimal
cluster D∗h,

∑
p∈BYj (cj ,6L) w(p) ≥ |UD∗h |.

Lemma 3.8. In the j-th iteration of Algorithm 2, let λj = BYj (cj , 12L). Then,
∑k
j=1

∑
p∈λj w(p) ≥ |Popt ∩X|.

Proof. We prove the lemma by induction based on the following claim: After j iterations of the step 7 in Algorithm 2, there
exists an ordering D∗t1 , . . . , D

∗
tj of optimal clusters such that the summation of the weights in PLf covered by the points

in C ′ is at least |
⋃j
h=1(D∗th ∩X)|. By Lemma 5, for j = 1, the claim is correct. Assume that before iteration j, there

exists an ordering D∗t1 , . . . , D
∗
t(j−1)

such that the summation of the weights in PLf covered by the points in CLf is at least

|
⋃j−1
h=1(D∗th ∩X)|, and each point in

⋃j−1
h=1(D∗th ∩X) has been mapped to a unique weight unit of points in ∪j−1

h=1λj . Let
Gj = BYj (cj , 6L). For each iteration of Algorithm 2, we have the following two cases: (1) there exists an optimal cluster
D∗f (f ∈ [k]\{t1, . . . , t(j−1)}) such that at least one point p ∈ D∗f can be found with its representation sp intersecting with
∪ji=1Gj , i.e., sp ∈ ∪ji=1Gj ; (2) for any index (f ∈ [k]\{t1, . . . , t(j−1)}), no representation of the points in D∗f is contained
in ∪ji=1Gj .

For case (1), by Lemma 5, for any point q ∈ D∗h ∩X , d(sq, cj) ≤ d(sq, sp) + d(sp, cj) ≤ 12L. Hence, the representations
of the points in D∗h ∩X are all contained in BYj (cj , 12L). Let tj = f . We now map each data point in p ∈ D∗f to a weight
unit of its representation sp, and the unit weight can be viewed as the weight that p contributes to sp.

For case (2), let D∗f be an arbitrary optimal cluster such that f ∈ [k]\
{
t1, . . . , t(j−1)

}
. Let VD∗f ={

p ∈ D∗f ∩X : sp ∈ ∪j−1
i=1λj

}
denote the set of points in D∗f whose representations are already covered before the j-

th iteration. Denote UD∗f = (D∗f ∩X)\VD∗f as the set of points whose representations are uncovered. Similar to case (1),
we map each point in VD∗f to a weight unit of its representation. For the data points in UD∗f , by Lemma 5, we get that∑

p∈Gj wp ≥ |UD∗f |, and there exists a mapping such that no two points in UD∗f are mapped to the same weight unit.

For both cases, each point must be mapped to a unique unit of weight. For the first case, all the representations of data points
in D∗f are not in Yj after the j-th iteration, and points in D∗f will not be used for mapping again. Since each point is mapped
to a weight unit of its representation, no two points in D∗f are mapped to the same weight unit. For the second case, similar
to case (1), the representations of data points in VD∗f are not in Yj after the j-th iteration, and points in VD∗f will not be used
for mapping again. For data points in UD∗f , they are mapped to the weight units of the points in Gj . After the j-th iteration,
Gj is removed from Yj . Hence, no data point in D∗f where f ∈ [k]\{t1, . . . , t(j−1)} is mapped to Gj in case (2). Note that
Gj does not intersect with any optimal cluster D∗f , where f ∈ [k]\{t1, . . . , t(j−1)}, and the points in Gj will not be mapped
again in case (1). Based on D∗t1 , . . . , D

∗
t(j−1)

and D∗f , we can find an ordering D∗t1 , . . . , D
∗
tj of optimal clusters with tj = f

such that the summation of the weights in PLf covered by the points in C ′ is at least |
⋃j
h=1(D∗th ∩X)| = |Popt ∩X|.

Theorem 1.1. For the distributed (k, z)-center problem, there exists a 4-round distributed algorithm that outputs a
(14(1 + ε), 1 + ε)-approximate solution with constant probability, where the communication cost is O(m

3k log(mk)
ε2), and

the running time on each machine i is O(nim
3k log(mk)
ε2).

Proof. By Corollary 3.6 and Corollary 3.9, the communication cost and the number of outliers discarded are O(m
3k log(mk)

ε2)
and (1+ε)z, respectively. For any given instance of the distributed (k, z)-center problem, letC ′ be the set of centers obtained
with minimum cost. For each point p in P whose representation point is covered by C ′, by triangle inequality, we have
d(p, C ′) ≤ d(p, sp) + d(sp, C

′) ≤ Lf + 12L ≤ 14L, where L ∈ [L∗, (1 + ε)L∗]. Then a (14(1 + ε), (1 + ε))-approximate
solution can be obtained with probability at least (1 − η)2. For inliers-recalling sampling, the sampling process takes
O(1) time, and the furthest (1 + ε)z and the nearest εz

2m data points can be found in O(ni) time using linear selection
algorithm in (Ding et al., 2019). Thus, the running time on each machine for Round 1 of Algorithm 1 and Round 3 of
Algorithm 1 are O(nim

2k log(mk)
ε2) and O(nim

3k log(mk)
ε2), respectively. Hence, the total running time on each machine is

O(nim
3k log(mk)
ε2).

12

Fast Algorithms for Distributed k-Clustering with Outliers

B. Missing Proofs in Section 4
Lemma 4.1 Let F ⊆ [m] denote the set of machines where case (2) happens at least once during the space-narrowing
sampling process. Then, the total number of uncovered inliers is bounded by εz.

Proof. For each machine i ∈ F , in Algorithm 3, let ri,j be the integer found before step 7 of Algorithm 3 when case (2)
happens at the first time on machine i. Since case (2) happens on machine i, i.e., |Z∗ ∩ Ui,j−1| ≥ ε1rijz

m , |Popt ∩ Ui,j−1|
is at most (1+ε1)ε1(rij+1)z

m − ε1rijz
m . Therefore, the total number of uncovered inliers among m machines is bounded

by
∑
i∈F

(
(1+ε1)ε1(rij+1)z

m − ε1rijz
m

)
=
∑
i∈F

(
ε21rijz
m + (1+ε1)ε1z

m

)
. Observe that there are only z outliers and |Z∗ ∩

Ui,j−1| ≥ ε1rijz
m , which means

∑
i∈F

ε1rijz
m ≤

∑
i∈F |Z∗ ∩ Ui| ≤ z. Then, the total number of uncovered inliers is

bounded by ε1z + (1 + ε1)ε1z. Together with the fact that ε ∈ (0, 1] and ε1 = ε
3 , the total number of uncovered points is

bounded by εz.

Theorem 1.2. For the distributed (k, z)-center problem, there exists a 2-round distributed algorithm that outputs a
(14(1 + ε), 1 + ε)-approximate solution with constant probability, where the communication cost is O(mk logm

ε · log ∆
ε), and

the local running time on each machine i is O(nik logm
ε · log ∆

ε).

Proof. By Corollary 3.9 and Corollary 4.2, the communication cost and the number of outliers discarded are O(mk logm
ε ·

log ∆
ε) and (1 + ε)z, respectively. For any given instance of the distributed (k, z)-center problem, by calling Algorithm

5 for each possible values of L, let C ′ be the set of centers obtained with minimum cost. For each point p in P whose
representation point is covered by C ′, by triangle inequality, we have d(p, C ′) ≤ d(p, sp) + d(sp, C

′) ≤ 12L+ 2L = 14L.
If L ∈ [L∗, (1 + ε)L∗], then a (14(1 + ε), (1 + ε))-approximation solution can be obtained with probability at least 1− η.
In space-narrowing sampling, the sampling process takes O(1) time, and the ball coverage for the removal of data points
takes time O

(
(1+ε)ni

ε

)
. By repeating the whole process O(k logm) times, the total running time on each machine is

O(nik logm log ∆
ε2).

C. Extension to the k-Median/Means Problems with Outliers
In this section, we consider the (k, z)-median/means problems in distributed setting. The goal of the (k, z)-median/means
problems is to find a set C ⊆ P of k centers and a set Z ⊆ P of z outliers such that the corresponding clustering cost
on P\Z with respect to C is minimized. For the (k, z)-median problem, the clustering cost is defined as the sum of the
distances from data points in P\Z to their closest centers in C, i.e.,

∑
p∈P\Z d(p, C). For the (k, z)-means problem, the

clustering cost is defined as the sum of the squared distances from data points in P\Z to their closest centers in C, i.e.,∑
p∈P\Z d

2(p, C). For two sets A, B ⊆ P , we use Ψ(A,B) =
∑
x∈A d(x,B) to denote the summation of the distances

from data points in A to their closest data points in B. In the following, we take the distributed (k, z)-median problem as an
example for analysis. By using a relaxed triangle inequality (Chen et al., 2018), the results for distributed (k, z)-median
can be easily extended to distributed (k, z)-means. Given an instance of distributed (k, z)-median, for an optimal cluster
D∗h ∈ D∗, we use OPTh = Ψ(P ∗h , C

∗) to denote the optimal clustering cost of D∗h. Define OPT =
∑k
i=1OPTi as the

optimal clustering cost. Let Cf ⊆ P be a set of centers. We use Ψ−(1+ε)z(P,Cf) to denote the clustering cost of data
points in P\Zf to Cf , where Zf is the set of the furthest (1 + ε)z data points in P to Cf .

C.1. Distributed (k, z)-Median/Means Algorithm by Inliers-Recalling Sampling Method

In this subsection, we show how to apply our proposed inliers-recalling sampling method to obtain an O(1
ε2)-approximate

solution with (1 + ε)z outliers discarded and near-linear local running time in the data size, where the communication cost
is independent of the aspect ratio. The general idea behind is to firstly use a filtering process to obtain a bi-criteria solution
with (O(1), O(1))-approximation on each machine such that the number of data points discarded can be bounded by O(zm)
if the data points are randomly partitioned among machines. Denote the set of outliers discarded on machine i as Zi. By the
filtering process, it can be guaranteed that the inliers take a large fraction of the data points in Zi. Then, by applying our
proposed inliers-recalling sampling algorithm (Algorithm 1) on Zi, most inliers can be recalled back, which ensures that
there are at most εz uncovered inliers across the machines.

13

Fast Algorithms for Distributed k-Clustering with Outliers

Algorithm 6 Distributed (k, z)-median/means by IRS
Input: A partition {P1, P2, ..., Pm} of dataset P among m machines, and parameters k, z, η, ε.
Output: A set C ⊆ P of size at most k.
Rounds 1-2

1: Call the algorithm in (Chen et al., 2018) by setting z = (1+ε)z
m to obtain an O(1)-approximate solution Si on Pi with

8(1+ε)z
m outliers discarded, and denote the set of outliers discarded as Zi.

2: Execute Rounds 1-2 of IRS({Z1, Z2, ..., Zm}, k, (1 + ε
2)z, η, ε2).

3: Let Qi be the candidate set of centers obtained by executing Rounds 1-2 of IRS on Zi.

Round 3 on each machine i ∈ [m]

1: Let L′ be the collection of radii sent from the coordinator.
2: for L ∈ L′ do
3: Hs = ∪q∈QiBZi(q, L), Q′ = Qi, S′ = Si.
4: Assign each data point in Hs to its closest center in Q′.
5: For each q ∈ Q′, let σ(q) be the number of points assigned to q, and assign a weight of σ(q) to q.
6: Assign each data point in Pi\Zi to its closest center in S′.
7: For each s ∈ S′, let σ(s) be the number of points assigned to s, and assign a weight of σ(s) to s.
8: SLi = Q′ ∪ S′.
9: Send (SLi , L) to the coordinator.

10: end for
Round 4 on the coordinator.

1: Initialize Cf = ∅, Lf =∞.
2: for L ∈ L′ do
3: PL = ∪mi=1S

L
i .

4: For each point p in PL, let w(p) be the weight of p.
5: z′ = (1 + ε)z +

∑
p∈PL w(p)− |P |.

6: if z′ > 0 then
7: Call a weighted clustering with outliers algorithm on PL with z = z′, and denote the set of centers returned as Ct.
8: if Ψ−(1+ε)2z(P,Ct) < Lf then
9: Lf = Ψ−(1+ε)2z(P,Ct), Cf = Ct.

10: end if
11: end if
12: end for
13: Return Cf .

Following the settings in (Chen et al., 2018), we assume that z
m ≥ Ω(log n), i.e., z

m ≥
3
ε2 log n

η , where parameters ε and
η ∈ (0, 1] are used to control the number of outliers discarded and the success probability, respectively. As pointed out in
(Chen et al., 2018), this assumption is justifiable in practice since the number of outliers z typically scales with the size of
the dataset while the number of machines m is usually a fixed number. Consider a single machine i ∈ [m], for each outlier
z ∈ Z∗, define Xi

z = 1 if z is assigned to machine i. Otherwise define Xi
z = 0. The outliers in Z∗ are called true outliers.

According to the random partition rule, it holds that Pr(Xi
z = 1) = 1

m for each z ∈ Z∗, which means E[
∑
z∈Z∗ X

i
z] = z

m ,
where E[X] denote the expectation of the random variable X . By applying the Chernoff Bound (Lemma 3.3), we can get

that with probability at least 1− e−
z
m
ε2

3 ≥ 1− η
n , the number of true outliers assigned on machine i can be bounded by

(1 + ε) zm . By taking a union bound over all machines, we have that the number of true outliers assigned on each machine
i ∈ [m] can be bounded by (1 + ε) zm with probability at least 1− η. In the following, we assume that the number of true
outliers assigned on each machine is upper bounded by (1+ε)z

m .

Theorem 5.3 (Chen et al., 2018) For the (k, z)-median/means problems, there exists an approximation algorithm that
outputs a (O(1), 8)-approximate solution with high probability by opening O(k log n) centers, where the running time is
O(max{k, log n}n).

By Theorem 5.3, we can obtain an O(1)-approximate solution with 8(1+ε)z
m outliers discarded on each machine i ∈ [m].

14

Fast Algorithms for Distributed k-Clustering with Outliers

The formal algorithm solving the distributed (k, z)-median/means by inliers-recalling sampling is given in Algorithm
6. In the following, we focus on the distributed (k, z)-median problem to analyze Algorithm 6. Let P ′ = {p ∈ Popt :
d(p, C∗) > 2OPT

εz } be the set of the inliers with distances larger than 2OPT
εz to their optimal clustering centers. Observe

that |P ′| ≤ εz
2 . Otherwise, the clustering cost of the data points in P ′ to C∗ is at least OPT , which contradicts with the

fact that ∆(P ′, C∗) ≤ OPT . We can view the data points in P ′ as the set of additional outliers to be discarded since
they are far from optimal clustering centers. By replacing z with (1 + ε

2)z and ε with ε
2 in the input of inliers-recalling

sampling algorithm (Algorithm 1) and executing the inliers-recalling sampling on Zi, we show that there are at most εz
inliers discarded across machines.

Now, we consider executing step 2 in rounds 1-2 of Algorithm 6, in which Algorithm 1 is called to find a collection of radii.
On each machine i ∈ [m], in step 2 of Round 1 in Algorithm 1, we have |Ui| ≥ (1 + ε

2)(1 + ε
2)z, where data points in

Popt\P ′ take a fraction of at least (1+ ε
2)(1+ ε

2)z−z− ε2 z
(1+ ε

2)(1+ ε
2)z = ε

2+ε . Hence, in step 3 of Algorithm 1, by randomly taking a subset

Si ⊆ Pi with size 1+ ε
2

ε
2

log 1
η = 2+ε

ε log 1
η from Pi, we can sample at least one data point q ∈ Popt\P ′ with probability

at least 1 − η. Assume that q ∈ D∗j for some D∗j ∈ D∗. Then, data points in D∗j \P ′ can be covered by q with radius
4OPT
εz . Similarly, in each step 6 of Algorithm 1, with probability at least 1− η, an optimal cluster D∗j can be covered by the

data points sampled with radius 4OPT
εz using Lemma 3.1. Then, by Lemma 3.4, at most (1 + ε

2)(1 + ε
2)z data points are

discarded as outliers on each machine i ∈ [m].

Next, we consider the sampling process with two stages in steps 10-15 of Round 1 in Algorithm 1. Let Ri be the set of the
furthest (1 + ε

2)(1 + ε
2)z data points from Qi in step 9 of Algorithm 1. The goal of the first stage (step 10 of Round 1 in

Algorithm 1) is to make the large optimal clusters with |(D∗j \P ′) ∩Ri| ≥
ε(1+ ε

2)z

4km covered by sampling at least one data

point from D∗j \P ′. For each large optimal cluster D∗j , we have
|D∗j \P

′|
|Ri| ≥

ε(1+ ε
2

)z

4km

(1+ ε
2)(1+ ε

2)z = ε
4(1+ ε

2)km . This indicates that

by randomly taking a set Vi ⊆ Ri of data points such that |Vi| =
4km(1+ ε

2)

ε log km
η , with probability at least 1 − η

m , we
can make each large optimal cluster D∗j covered by data points in Vi with radius 4OPT

εz . Then, in the second stage (steps
11-15 of Round 1 in Algorithm 1), a recalling process is used to iteratively find the discarded inliers back. The analysis is
similar to the case for the distributed (k, z)-center problem. By Corollary 3.5, with probability at least 1− η, the increase
on clustering cost by recalling data points can be bounded by O(OPTεm) on each machine, where at most ε(1+ ε

2)z

4m inliers
are discarded. In the second round of inliers-recalling sampling algorithm, each machine sends a list of radii Li to the
coordinator, and we can obtain a collection L′ of radii with size |L′| = O(m

2

ε). Let Qi be the set of centers obtained in
step 10 of Round 1 in Algorithm 1. By Corollary 3.5, it can be seen that there exists at least one radius Lf ∈ L′ such that
at most ε2 (1 + ε

2)z inliers are discarded across the machines using each Qi as the set of centers with radius Lf . Note that
there are at most 8(1 + ε) zm data points in Zi on each machine. Hence, the increase on clustering cost can be bounded by
8(1 + ε) zm ·

4OPT
εz = O(OPTεm) on each machine even if all the data points are covered by balls with radius L = 4OPT

εz . By
taking a summation over all machines, the increase on clustering cost can be bounded by O(OPTε).

As discussed above, by applying the inliers-recalling sampling method, we can obtain a set PLf of weighted representations
in step 3 of Round 4 in Algorithm 6 with approximation ratio O(1

ε) and at most εz uncovered inliers across the machines
for some Lf ∈ L′. Denote the set of outliers discarded across machines as Rf . More formally, we have Rf ∩ Popt ≤
ε
2 (1 + ε

2)z ≤ εz, and PLf induces an O(1
ε)-approximation, i.e.,

∑
p∈P\Rf d(p, PLf) ≤ O(1

ε)OPT . By executing a
weighted (k, z)-median/means approximation algorithm, such as the local search algorithm given in (Grunau & Rozhoň,
2022), that achieves an O(1

ε)-approximation with (1 + ε)z outliers discarded and replacing z with (1 + ε)z−|Rf |, we prove
that an O(1

ε2)-approximate solution with (1 + ε)2z outliers discarded can be obtained. In this case, a set Zf of data points
with size (1 + ε)((1 + ε)z− |Rf |) is discarded by the weighted algorithm. Hence, the total number of outliers discarded can
be bounded by |Rf ∪Zf | ≤ (1 + ε)2z. By replacing ε with 1

3ε, the total number of data points discarded can by bounded by
(1 + ε)z using the fact that ε ≤ 1.

Lemma 5.4. Let PL be a collection of weighted representations with O(1
ε)-approximation on the coordinator in step

3 of Round 4 in Algorithm 6, where at most εz inliers are discarded across the machines. Let Rf be the set of data
points discarded across the machines. Suppose that there is a weighted (k, z)-median/means algorithm A that achieves an
O(1

ε)-approximation with (1 + ε)z outliers discarded. By executing algorithm A on PL and setting the number of outliers
discarded as z = (1 + ε)z − |Rf |, we can obtain a (O(1

ε2), 1 + ε)-approximate solution.

15

Fast Algorithms for Distributed k-Clustering with Outliers

Proof. Let Cf be the set of centers returned by Algorithm A. Based on Cf , let Zf be the set of the furthest (1 + ε)((1 +
ε)z − |Rf |) data points in P\Rf to Cf . For each data point x ∈ P , we use sx ∈ PL to denote the data point in PL with the
smallest distance to x. For each data point x ∈ PL, by assigning each data point in P\(Rf ∪ Zf) to its closest center in PL,
we use w(x) to denote the number of data points assigned to x. Let Zg = Z∗ ∪Rf . Note that |Zg| ≤ (1 + ε)z since there
are at most εz inliers in Rf , which means |Zg| ≤ |Rf ∪ Zf |. For each data point x ∈ PL, by assigning data points in P\Zg
to its closest center in PL, we use v(x) to denote the number of data points assigned to x. Observe that

Ψ−(1+ε)2z(P,Cf) ≤ Ψ(P\(Zf ∪Rf), Cf) ≤
∑

x∈P\(Zf∪Rf)

d(x, sx) +
∑

x∈P\(Zf∪Rf)

d(sx, Cf)

≤
∑

x∈P\Rf

d(x, sx) +
∑

x∈P\(Zf∪Rf)

d(sx, Cf) =
∑

x∈P\Rf

d(x, sx) +
∑
x∈PL

w(x)d(x,Cf)

≤ O(
1

ε
)OPT +O(

1

ε
)
∑
x∈PL

v(x)d(x,C∗)

≤ O(
1

ε
)OPT +O(

1

ε
)
∑

x∈P\Zg

d(x, sx) + d(x,C∗)

≤ O(
1

ε
)OPT +O(

1

ε
)(O(

1

ε
)OPT +OPT) = O(

1

ε2
)OPT,

where the second inequality follows from the triangle inequality, the fourth inequality follows from the facts that the set PL of
weighted representations induces an O(1

ε)-approximation, |Zg| ≤ |Rf ∪ Zf | and Algorithm A gives an O(1
ε)-approximate

solution, the fifth inequality follows from the triangle inequality, and the sixth inequality follows from the fact that the set
PL of weighted representations induces an O(1

ε)-approximation. By replacing ε with ε
3 , the number of outliers discarded

can be bounded by (1 + ε)z. Together with Corollary 3.5 and Theorem 5.3, the total communication cost of Algorithm 6 is
O(m

3k logn log(mk)
ε2), and the running time on each machine is O(nim

3k log(mk) max{logni,k}
ε2).

Putting all things together, Theorem 5.1 can be proved.

C.2. Distributed (k, z)-Median/Means Algorithm by Space-Narrowing Sampling Method

In this subsection, we propose a more practical algorithm for the distributed (k, z)-median/means problems with smaller
communication rounds and communication cost independent of the number of outliers under the assumption that data points
are randomly partitioned across the machines. The formal algorithm is given in Algorithm 7. As discussed in section
C.1, we assume that the true outliers assigned on each machine can be bounded by (1+ε)z

m . By applying the bi-criteria
approximation scheme given in (Chen et al., 2018) as a filtering process and replacing z with (1 + ε) zm , we can obtain an
O(1)-approximate solution with 8(1 + ε) zm outliers discarded on each machine by Theorem 5.3. However, in the worst
case, the discarded 8(1 + ε) zm outliers on each machine are all inliers. Hence, in step 2 of Round 1 in Algorithm 7, we can
apply our space-narrowing sampling method on the discarded outliers to reduce the number of inliers discarded.

In the process of space narrowing sampling in Algorithm 7, the coverage radius is set to be 2L
εz . As pointed out in (Li & Guo,

2018), a radius L can be obtained from guessing such that OPT ≤ L ≤ (1 + ε)OPT by losing a factor of O(log ∆
ε) on

communication cost and running time. Since there are at most 8(1 + ε) zm outliers discarded on each machine, the clustering
cost is be increased by a factor of 8(1 + ε) zm ·

4L
εz = O(OPTεm) on each machine even if all the data points are covered by

balls with radius 4L
εz . By taking a summation of approximation loss over all machines, we can obtain a set of weighted

representations on the coordinator with O(1
ε)-approximation. Next, we show that the overall number of inliers discarded

across machines can be bounded by εz. Let P ′ = {p ∈ Popt : d(p, C∗) > 2OPT
εz } be the set of inliers with distances

larger than 2OPT
εz to their optimal clustering centers. Observe that |P ′| ≤ εz

2 . Otherwise, the clustering cost of the data
points in P ′ to C∗ is at least OPT , which contradicts with the fact ∆(P ′, C∗) < OPT . In the following, we consider
executing the space-narrowing sampling method in step 2 of Round 1 in Algorithm 7 on a single machine i ∈ [m]. For an
optimal cluster D∗h ∈ D, let q ∈ D∗h be an arbitrary data point in D∗h\P ′. Note that q can cover all the data points in D∗h\P ′
with radius 4L

εz since d(p, q) ≤ d(p, c∗i) + d(c∗i , q) ≤ 4OPT
εz for each p ∈ D∗h\P ′. Then, in space narrowing sampling, the

goal is to iteratively sample a data point q from Zi\P ′ to cover most discarded inliers with radius 4L
εz . Since during the

sub-sampling process, data points in P ′ may not be covered, we can view them as additional outliers. Hence, by replacing z
with (1 + ε

2)z and ε with ε
2 , in each iteration of space-narrowing sampling in Algorithm 4, if |U | ≥ (1 + ε

2)(1 + ε
2)z, then

16

Fast Algorithms for Distributed k-Clustering with Outliers

Algorithm 7 Distributed (k, z)-median/means by SNS
Input: A partition {P1, P2, ..., Pm} of data set P among m machines, parameters k, z, η, ε, L.
Output: A set C ⊆ P of size at most k or “No”.
Round 1 on each machine i ∈ [m]

1: Call the algorithm in (Chen et al., 2018) by setting z = (1+ε)z
m to obtain an O(1)-approximate solution Si on Pi with

8(1+ε)z
m outliers discarded, and denote the set of outliers discarded as Zi.

2: Qi = SNS(Zi, k, (1 + ε
2)z, η, ε2 , m, 2L

εz).
3: Assign each data point in Pi\Zi to its closest center in Si.
4: For each s ∈ Si, let σ(s) be the number of points assigned to s, and assign a weight of σ(s) to s.
5: Si = Si ∪Qi.
6: Send the weighted representation Si to the coordinator.

Round 2 on the coordinator
1: S = S1 ∪ S2 ∪ ... ∪ Sm.
2: For each point p ∈ S, let w(p) be the weight of p.
3: z′ = (1 + ε)z +

∑
p∈S w(p)− |P |.

4: if z′ < 0 then
5: Return “No”.
6: else
7: Perform a weighted (k, t)-median/means algorithm on S with t = z′, and return the resulting clustering.
8: end if

|Zi\(Z∗∪PL)|
|U | ≥ (1+ ε

2)(1+ ε
2)z−z− εz2

(1+ ε
2)(1+ ε

2)z =
ε
2

(1+ ε
2) = ε

2+ε . By randomly taking a sample of size 1+ ε
2

ε
2

log 1
η = 2+ε

ε log 1
η from U ,

with probability at least 1− η, we can sample at least one data point from Popt\P ′ to make an uncovered optimal cluster
covered with radius 4L

εz . If |U | ≤ (1 + ε
2)(1 + ε

2)z, we can get that in step 7 of Algorithm 4, at least one data point from
Popt\P ′ can still be sampled to make an uncovered optimal cluster covered. By Lemma 4.1, the total number of uncovered
inliers over all machines can be bounded by ε

2 (1 + ε
2)z ≤ εz using the fact that ε ≤ 1. By using Lemma 5.4 and putting all

things together, Theorem 5.2 can be proved.

D. Complementary experimental results
D.1. Complementary Experimental Results for (k, z)-Center Problem

Table 3 shows the comparison results with fixed z and m using ours 0.99 algorithm as reference. We fix the results of
ours 0.99 algorithm as 1, and give the ratios between other algorithms and ours 0.99 algorithm. We take the computation of
clustering cost as an example to illustrate how to get the comparison results. For each dataset i, assume that we compare
algorithmA with ours 0.99 algorithm. The ratio between algorithmA and ours 0.99 (denoted byRiA) isRiA = 1

5

∑j=5
j=1

Si,j
Oi,j

,
where Si,j is the clustering cost returned by algorithm A with k = 10 × j, and Oi,j is the clustering cost returned by
ours 0.99 with k = 10× j. The average clustering cost of algorithm A (denoted as RavgA) is obtained by calculating the
average values of all five datasets, i.e., RavgA = 1

5

∑i=5
i=1R

i
A, where RiA is the clustering cost obtained on the i-th dataset.

Table 4 shows the comparison results with fixed k and m using ours 0.99 algorithm as reference. We fix the results of
ours 0.99 algorithm as 1, and give the ratios between other algorithms and ours 0.99 algorithm. We take the computation of
clustering cost as an example to illustrate how to get the comparison results. For each dataset i, assume that we compare
algorithmAwith ours 0.99 algorithm. The ratio between algorithmA and ours 0.99 (denoted by T iA) is T iA = 1

5

∑j=11
j=7

S′i,j
O′i,j

,

where S′i,j is the clustering cost returned by algorithm A with z = 2j , and O′i,j is the clustering cost returned by ours 0.99
with z = 2j . The average clustering cost of algorithm A (denoted as T avgA) is obtained by calculating the average values of
all five datasets, i.e., T avgA = 1

5

∑i=5
i=1 T

i
A, where T iA is the clustering cost obtained on the i-th dataset.

17

Fast Algorithms for Distributed k-Clustering with Outliers

Table 3. Comparison results for distributed (k, z)-center with fixed z and m using ours 0.99 as reference

Datasets Index
Algorithms

glz dist kzc 0.99 dist kzc 0.1

Letter (m = 5, z = 1024)
Clustering Cost 1.0783 0.9953 0.9628

Communication Cost 53.7438 1.0131 10.6955
Time 20.4076 14.5418 42.2432

Skin (m = 10, z = 1024)
Clustering Cost 0.9373 1.0083 0.9267

Communication Cost 49.7843 1.8273 10.7531
Time 19.7599 10.0266 46.8667

Covertype (m = 20, z = 1024)
Clustering Cost 0.9602 1.0711 0.9807

Communication Cost 47.5037 1.5676 10.2716
Time 28.5633 4.1265 14.5009

Gas (m = 20, z = 1024)
Clustering Cost 0.8471 1.0629 0.9213

Communication Cost 53.5668 1.9709 11.9300
Time 61.2919 7.4533 31.2366

Higgs (m = 50, z = 1024)
Clustering Cost 1.1493 1.1123 1.0286

Communication Cost 150.2571 3.3773 29.3654
Time 36.1794 87.4402 197.3946

Average
Clustering Cost 0.9944 1.0500 0.9641

Communication Cost 70.9711 1.9512 14.6031
Time 33.2404 24.7177 66.4484

Table 4. Comparison results for distributed (k, z)-center with fixed k and m using ours 0.99 as reference

Datasets Index
Algorithms

glz dist kzc 0.99 dist kzc 0.1

Letter (m = 5, k = 20)
Clustering Cost 1.0729 1.0325 0.9806

Communication Cost 42.4735 1.0673 8.4694
Time 37.0074 16.6316 37.0381

Skin (m = 10, k = 20)
Clustering Cost 0.9224 1.0898 0.9231

Communication Cost 41.6273 1.6791 12.0273
Time 24.2500 10.3500 55.8778

Covertype (m = 20, k = 20)
Clustering Cost 0.9453 1.0224 0.9669

Communication Cost 39.8061 1.6150 11.1283
Time 27.3802 5.5003 14.0578

Gas (m = 20, k = 20)
Clustering Cost 0.9119 1.0742 0.8956

Communication Cost 40.9110 1.9311 12.2475
Time 45.0791 9.2592 27.1068

Higgs (m = 50, k = 20)
Clustering Cost 1.0486 0.9165 0.9083

Communication Cost 106.9722 4.5867 35.7192
Time 26.7273 57.7062 73.8065

Average
Clustering Cost 0.9802 1.0271 0.9349

Communication Cost 54.3580 2.1758 15.9184
Time 32.0888 19.8895 41.5774

18

Fast Algorithms for Distributed k-Clustering with Outliers

0 20 40 60
8

9

10

11

12

13

letter, z=1024, m=5

k

ra
d

iu
s

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

0 20 40 60
0

50

100

150

skin, z=1024, m=10

k

ra
d

iu
s

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

0 20 40 60
0

500

1000

1500

2000

2500

covertype, z=1024, m=20

k

ra
d

iu
s

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

0 20 40 60
102

103

104

105

letter, z=1024, m=5

k

c
o

m
u

.c
o

st

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

0 20 40 60
102

103

104

105

skin, z=1024, m=10

k

c
o

m
u

.c
o

st

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

0 20 40 60
104

105

106

107

covertype, z=1024, m=20

k

c
o

m
u

.c
o

st

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

0 20 40 60
10 -1

100

101

102

letter, z=1024, m=5

k

s
e

c
o

n
d

s
(s

)

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

0 20 40 60
100

101

102

103

skin, z=1024, m=10

k

s
e

c
o

n
d

s
(s

)

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

0 20 40 60
101

102

103

covertype, z=1024, m=20

k

s
e

c
o

n
d

s
(s

)

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

Figure 2. Comparison results of clustering performance on small datasets for distributed (k, z)-center with varying k

19

Fast Algorithms for Distributed k-Clustering with Outliers

6 7 8 9 10 11 12
15

20

25

30

35

gas, k=20, m=20

logz

ra
d

iu
s

dist_kzc_0.1

dist_kzc_0.99

ours_0.99

glz

ours_0.1

6 7 8 9 10 11 12
6

8

10

12

14

Higgs, k=20, m=50

logz

ra
d

iu
s

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

6 7 8 9 10 11 12
530

540

550

560

570

SIFT, k=20, m=50

logz

ra
d

iu
s

ours_0.1

ours_0.99

6 7 8 9 10 11 12
103

104

105

106

gas, k=20, m=20

logz

c
o

m
u

.c
o

st

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

6 7 8 9 10 11 12
103

104

105

106

107

Higgs, k=20, m=50

logz

c
o

m
u

.c
o

st

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

6 7 8 9 10 11 12
104

105

106

107

108

SIFT, k=20, m=50

logz

c
o

m
u

.c
o

st

ours_0.1

ours_0.99

6 7 8 9 10 11 12
100

101

102

103

104

gas, k=20, m=20

logz

s
e

c
o

n
d

s
(s

)

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

6 7 8 9 10 11 12
102

103

104

105

Higgs, k=20, m=50

logz

s
e

c
o

n
d

s
(s

)

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

6 7 8 9 10 11 12
103

104

105

106

107

SIFT, k=20, m=50

logz

s
e

c
o

n
d

s
(s

)

ours_0.1

ours_0.99

Figure 3. Comparison results of clustering performance on large datasets for distributed (k, z)-center with varying z

20

Fast Algorithms for Distributed k-Clustering with Outliers

6 7 8 9 10 11 12
8

9

10

11

12

13

letter, k=20, m=5

logz

ra
d

iu
s

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

6 7 8 9 10 11 12
60

80

100

120

140

skin, k=20, m=10

logz

ra
d

iu
s

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

6 7 8 9 10 11 12
1100

1200

1300

1400

1500

covertype, k=20, m=20

logz

ra
d

iu
s

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

6 7 8 9 10 11 12
102

103

104

105

106

letter, k=20, m=5

logz

c
o

m
u

.c
o

st

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

6 7 8 9 10 11 12
102

103

104

105

skin, k=20, m=10

logz

c
o

m
u

.c
o

st

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

6 7 8 9 10 11 12
104

105

106

107

covertype, k=20, m=20

logz

c
o

m
u

.c
o

st

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

6 7 8 9 10 11 12
10 -1

100

101

102

letter, k=20, m=5

logz

s
e

c
o

n
d

s
(s

)

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

6 7 8 9 10 11 12
100

101

102

103

skin, k=20, m=10

logz

s
e

c
o

n
d

s
(s

)

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

6 7 8 9 10 11 12
101

102

103

104

covertype, k=20, m=20

logz

s
e

c
o

n
d

s
(s

)

dist_kzc_0.1

dist_kzc_0.99

glz

ours_0.1

ours_0.99

Figure 4. Comparison results of clustering performance on small datasets for distributed (k, z)-center with varying z

21

Fast Algorithms for Distributed k-Clustering with Outliers

D.2. Experiments on Distributed (k, z)-Means

Datasets. In this section, we evaluate the performance of our distributed (k, z)-means algorithm on several real-world
datasets4 as used in (Li & Guo, 2018; Chen et al., 2018). The datasets include 3 small datasets (spambase: 4, 601 × 57,
parkinsons: 5, 875 × 16, pendigits: 10, 992 × 16) and 3 large datasets (KDD: 4, 898, 431 × 37, SUSY: 5, 000, 000 × 18,
SIFT: 100, 000, 000× 128).

Algorithms and parameters. In experiments, we compare our algorithm described in Algorithm 7 with other distributed
algorithms. Algorithm bel is the one proposed by (Balcan et al., 2013), which is based on coreset construction. Algorithm
Li 0.99 is the distributed (k, z)-means algorithm proposed by (Li & Guo, 2018) with ε = 0.99. Algorithm ours 0.99 is our
Algorithm 7 with ε = 0.99. In our algorithm, we fix the parameter η = 0.5 and multiply the sampling rounds by a factor
of β = 0.01. Algorithm D-Sampling is the distributed algorithm given in (Grunau & Rozhoň, 2022), which is based on
D2-sampling methods. Algorithm Summary Outlier is the distributed algorithm given in (Chen et al., 2018) with α = 0.45
and β = 0.5.

Experimental setup. Unlike the (k, z)-center problem, the furthest z data points of a (k, z)-median/means instance are
unable to significantly influence the objective value. Thus, following the settings in (Chen et al., 2018; Li & Guo, 2018),
we manually add the outliers using the following steps. Firstly, we normalize the dataset such that the mean and standard
deviation are 0 and 1 on each dimension, respectively. Then, for each dataset, we randomly add 1% outliers that lie in range
[−∆,∆]

d for ∆ = 5. For each algorithm, the experiments are executed for five times, and we take the average results.
Following the settings in (Li & Guo, 2018), the number of centers k is fixed to be 10, and we test the performance of
different algorithms with varying number of outliers z, where the number of machines m is fixed to be 5 on small datasets.
For large datasets, we fix the number of machines m as 20 to match the experimental setup in the (k, z)-center problem, and
test the performance of different algorithms with varying number of outliers z. We compute the final clustering cost for each
algorithm by removing (1 + ε)z outliers, same as the one used in (Li & Guo, 2018).

Results. Figure 5 shows the comparison results on small datasets with varying z, fixed m and k. It can be seen that our
algorithm performs slightly better than D-Sampling method on clustering cost with faster running time. However, the
communication cost of our algorithm is slightly worse than D-Sampling method. This is because, the filtering process used
in our algorithm (see Summary Outlier) has much larger communication cost compared with other algorithms. However,
compared with Li 0.99 and Summary Outlier, the communication cost of our proposed algorithm is much smaller. The
coreset-based method (bel) achieves the best communication cost with the worst performance on clustering cost, since it
was not designed for handling outliers.

Figure 6 shows the comparison results on large datasets with varying z, fixed m and k. For Li 0.99, it takes more than
24 hours to handle the large datasets, which indicates that the exponential running time may constraint the scalability of
algorithm in (Li & Guo, 2018) for handling large-scale datasets. On large datasets, it can be seen that our proposed algorithm
is much faster than D-Sampling method on datasets KDD and SUSY. On dataset SUSY, the clustering cost of our algorithm
is better than D-sampling, with a slightly worse communication cost. On dataset KDD, there are no significant difference on
clustering cost and communication cost between our algorithm and D-Sampling method. For running time, our algorithm is
much faster than D-Sampling method on datasets KDD and SUSY.

4https://archive.ics.uci.edu/ml/index.php

22

Fast Algorithms for Distributed k-Clustering with Outliers

5 6 7 8 9 10 11
0

5×104

1×105

1.5×10 5

2×105

sapmbase, k=10, m=5

logz

C
o

st

Li_0.99

bel

ours_0.99

D-Sampling

Summary_Outlier

5 6 7 8 9 10 11
0

1×104

2×104

3×104

4×104

5×104

parkinson, k=10, m=5

logz

C
o

st
Li_0.99

bel

ours_0.99

Summary_Outlier

D-Sampling

5 6 7 8 9 10 11
0

2×104

4×104

6×104

8×104

pendigits, k=10, m=5

logz

C
o

st

Li_0.99

bel

ours_0.99

Summary_Outlier

D-Sampling

5 6 7 8 9 10 11
103

104

105

106

spambase, k=10, m=5

logz

c
o

m
u

.c
o

st

Li_0.99

bel

ours_0.99

Summary_Outlier

D-Sampling

5 6 7 8 9 10 11
103

104

105

106

parkinson, k=10, m=5

logz

c
o

m
u

.c
o

st

Li_0.99

bel

ours_0.99

Summary_Outlier

D-Sampling

5 6 7 8 9 10 11
103

104

105

106

pendigits, k=10, m=5

logz

c
o

m
u

.c
o

st

Li_0.99

bel

ours_0.99

Summary_Outlier

D-Sampling

5 6 7 8 9 10 11
0.01

0.1

1

10

100

spambase, k=10, m=5

logz

s
e

c
o

n
d

s
(s

)

Li_0.99

bel

ours_0.99

Summary_Outlier

D-Sampling

5 6 7 8 9 10 11
10 -1

100

101

102

parkinson, k=10, m=5

logz

s
e

c
o

n
d

s
(s

)

Li_0.99

bel

ours_0.99

Summary_Outlier

D-Sampling

5 6 7 8 9 10 11
0.1

1

10

pendigits, k=10, m=5

logz

s
e

c
o

n
d

s
(s

)

Li_0.99

bel

ours_0.99

Summary_Outlier

D-Sampling

Figure 5. Comparison results of clustering performance on small datasets for distributed (k, z)-means with varying z

23

Fast Algorithms for Distributed k-Clustering with Outliers

5 6 7 8 9 10 11
0

1×106

2×106

3×106

4×106

KDD, k=10, m=20

logz

C
o

st

bel

ours_0.99

Summary_Outlier

D-Sampling

5 6 7 8 9 10 11
4.8×10 7

5×107

5.2×10 7

5.4×10 7

5.6×10 7

SUSY, k=10, m=20

logz

C
o

st
bel

ours_0.99

Summary_Outlier

D-Sampling

5 6 7 8 9 10 11
1.03×1010

1.035×1010

1.04×1010

1.045×1010

1.05×1010

1.055×1010

SIFT, k=10, m=20

logz

C
o

st

bel

Summary_Outlier

5 6 7 8 9 10 11
104

105

106

kdd_comu

logz

c
o

m
u

.c
o

st

bel

ours_0.99

Summary_Outlier

D-Sampling

5 6 7 8 9 10 11
103

104

105

106

SUSY, k=10, m=20

logz

c
o

m
u

.c
o

st

bel

ours_0.99

Summary_Outlier

D-Sampling

5 6 7 8 9 10 11
105

106

107

SIFT, k=10, m=20

logz

c
o

m
u

.c
o

st

bel

Summary_Outlier

5 6 7 8 9 10 11
10 -1

100

101

102

103

kdd_time

logz

s
e

c
o

n
d

s
(s

)

bel

ours_0.99

Summary_Outlier

D-Sampling

5 6 7 8 9 10 11
100

101

102

103

SUSY, k=10, m=20

logz

s
e

c
o

n
d

s
(s

)

bel

ours_0.99

Summary_Outlier

D-Sampling

5 6 7 8 9 10 11
102

103

104

SIFT, k=10, m=20

logz

s
e

c
o

n
d

s
(s

)

bel

Summary_Outlier

Figure 6. Comparison results of clustering performance on large datasets for distributed (k, z)-means with varying z

24

