
Searching Large Neighborhoods for
Integer Linear Programs with Contrastive Learning

Taoan Huang 1 Aaron Ferber 1 Yuandong Tian 2 Bistra Dilkina 1 Benoit Steiner 3

Abstract

Integer Linear Programs (ILPs) are powerful tools
for modeling and solving a large number of com-
binatorial optimization problems. Recently, it
has been shown that Large Neighborhood Search
(LNS), as a heuristic algorithm, can find high-
quality solutions to ILPs faster than Branch and
Bound. However, how to find the right heuristics
to maximize the performance of LNS remains an
open problem. In this paper, we propose a novel
approach, CL-LNS, that delivers state-of-the-art
anytime performance on several ILP benchmarks
measured by metrics including the primal gap,
the primal integral, survival rates and the best
performing rate. Specifically, CL-LNS collects
positive and negative solution samples from an
expert heuristic that is slow to compute and learns
a more efficient one with contrastive learning. We
use graph attention networks and a richer set of
features to further improve its performance.

1. Introduction
Algorithm designs for combinatorial optimization problems
(COPs) are important and challenging tasks. A wide variety
of real-world problems are COPs, such as vehicle routing
(Toth & Vigo, 2002), path planning (Pohl, 1970) and re-
source allocation (Manne, 1960) problems, and a majority
of them are NP-hard to solve. In the past few decades,
algorithms, including optimal algorithms, approximation
algorithms and heuristic algorithms, have been studied ex-
tensively due to the importance of COPs. Those algorithms
are mostly designed by humans through costly processes
that often require a deep understanding of the problem do-
mains and their underlying structures as well as considerable
time and effort.

1University of Southern California 2Meta AI, FAIR 3Anthropic.
Correspondence to: Taoan Huang <taoanhua@usc.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Recently, there has been an increased interest in automating
algorithm designs for COPs with machine learning (ML).
Many ML approaches learn to either construct or improve
solutions within an algorithmic framework, such as greedy
search, local search or tree search, for a specific COP, such
as the traveling salesman problem (TSP) (Xin et al., 2021;
Zheng et al., 2021), vehicle routing problem (VRP) (Kool
et al., 2018) or independent set problem (Li et al., 2018),
and are often not easily applicable to other COPs.

In contrast, Integer Linear Programs (ILPs) can flexibly
encode and solve a broad family of COPs, such as net-
work design (Johnson et al., 1978; Dilkina & Gomes, 2010;
Huang & Dilkina, 2020), mechanism design (De Vries &
Vohra, 2003), facility location (Heragu & Kusiak, 1991;
Amaral, 2008) problems. ILPs can be solved by Branch and
Bound (BnB) (Land & Doig, 2010), an optimal tree search
algorithm that can achieve state-of-the-art for ILPs. Over
the past decades, BnB has been improved tremendously to
become the core of many popular ILP solvers such as SCIP
(Bestuzheva et al., 2021), CPLEX (Cplex, 2009) and Gurobi
(Gurobi Optimization, LLC, 2022). However, due to its
exhaustive search nature, it is hard for BnB to scale to large
instances (Khalil et al., 2016; Gasse et al., 2019).

On the other hand, Large Neighborhood Search (LNS) has
been shown to find high-quality solutions much faster than
BnB for large ILP instances (Song et al., 2020; Wu et al.,
2021; Sonnerat et al., 2021; Huang et al., 2023a). LNS starts
from an initial solution (i.e., a feasible assignment of values
to variables) and then improves the current best solution by
iteratively picking a subset of variables to reoptimize while
leaving others fixed. Picking which subset to reoptimize, i.e.,
the destroy heuristic, is a critical component in LNS. Hand-
crafted destroy heuristics, such as the randomized heuristic
(Song et al., 2020; Sonnerat et al., 2021) and the Local
Branching (LB) heuristic (Fischetti & Lodi, 2003), are often
either inefficient (slow to find good subsets) or ineffective
(find subsets of bad quality). ML-based destroy heuristics
have also been proposed and outperformed hand-crafted
ones. State-of-the-art approaches include IL-LNS (Sonnerat
et al., 2021) that uses imitation learning (IL) to imitate
the LB heuristic and RL-LNS (Wu et al., 2021) that uses a
similar framework to IL-LNS but trained with reinforcement

1

Searching Large Neighborhoods for ILPs with Contrastive Learning

learning (RL).

In this paper, we propose a novel ML-based LNS for ILPs,
namely CL-LNS, that uses contrastive learning (CL) (Chen
et al., 2020; Khosla et al., 2020) to learn efficient and effec-
tive destroy heuristics. Similar to IL-LNS (Sonnerat et al.,
2021), we learn to imitate the Local Branching (LB) heuris-
tic, a destroy heuristic that selects the optimal subset of
variables within the Hamming ball of the incumbent solu-
tions. LB requires solving another ILP with the same size as
the original problem and thus is computationally expensive.
We not only use the optimal subsets provided by LB as the
expert demonstration (as in IL-LNS) but also leverage inter-
mediate solutions and perturbations. When solving the ILP
for LB, intermediate solutions are found and those that are
close to optimal in terms of effectiveness become positive
samples. We also collect negative samples by randomly per-
turbing the optimal subset. With both positive and negative
samples, instead of a classification loss as in IL-LNS, we
use a contrastive loss that encourages the model to predict
the subset similar to the positive samples but dissimilar to
the negative ones with similarity measured by dot products
(Oord et al., 2018; He et al., 2020). Finally, we also use a
richer set of features and graph attention networks (GAT)
instead of GCN to further boost performance.

Empirically, we show that CL-LNS outperforms state-of-the-
art ML and non-ML approaches at different runtime cutoffs
ranging from a few minutes to an hour in terms of multiple
metrics, including the primal gap, the primal integral, the
best performing rate and the survival rate, demonstrating
the effectiveness and efficiency of CL-LNS. In addition,
CL-LNS shows great generalization performance on test
instances two times larger than training instances.

2. Background
In this section, we first define ILPs and then introduce LNS
for ILP solving and the Local Branching (LB) heuristic.

2.1. ILPs

An integer linear program (ILP) is defined as

min cTx s.t. Ax ≤ b and x ∈ {0, 1}n, (1)

where x = (x1, . . . , xn)
T denotes the n binary variables to

be optimized, c ∈ Rn is the vector of objective coefficients,
A ∈ Rm×n and b ∈ Rm specify m linear constraints. A
solution to the ILP is a feasible assignment of values to the
variables. In this paper, we focus on the formulation above
that consists of only binary variables, but our methods can
be applied to mixed integer linear programs with continuous
variables and/or non-binary integer variables.

2.2. LNS for ILP solving

LNS is a heuristic algorithm that starts with an initial so-
lution and then iteratively destroys and reoptimizes a part
of the solution until a runtime limit is exceeded or some
stopping condition is met. Let I = (A, b, c) be the input
ILP, where A, b and c are the coefficients defined in Equa-
tion (1), and x0 be the initial solution (typically found by
running BnB for a short runtime). In iteration t ≥ 0 of LNS,
given the incumbent solution xt, defined as the best solution
found so far, a destroy heuristic selects a subset of kt vari-
ables X t = {xi1 , . . . , xikt}. The reoptimization is done by
solving a sub-ILP with X t being the variables while fixing
the values of xj /∈ X t the same as in xt. The solution to the
sub-ILP is the new incumbent solution xt+1 and then LNS
proceeds to iteration t+ 1. Compared to BnB, LNS is more
effective in improving the objective value cTx, especially on
difficult instances (Song et al., 2020; Sonnerat et al., 2021;
Wu et al., 2021). Compared to other local search methods,
LNS explores a large neighborhood in each step and thus, is
more effective in avoiding local minima.

Adaptive Neighborhood Size Adaptive methods are com-
monly used to set the neighborhood size kt in previous
work (Sonnerat et al., 2021; Huang et al., 2023a). The ini-
tial neighborhood size k0 is set to a constant or a fraction
of the number of variables. In this paper, we consider the
following adaptive method (Huang et al., 2023a): in itera-
tion t, if LNS finds an improved solution, we let kt+1 = kt,
otherwise kt+1 = min{γ · kt, β · n} where γ > 1 is a con-
stant and we upper bound kt to a constant fraction β < 1
of the number of variables to make sure the sub-ILP is not
too large (thus, too difficult) to solve. Adaptively setting
kt helps LNS escape local minima by expanding the search
neighborhood when it fails to improve the solution.

2.3. LB Heuristic

The LB Heuristic (Fischetti & Lodi, 2003) is originally
proposed as a primal heuristic in BnB but also applicable
in LNS for ILP solving (Sonnerat et al., 2021; Liu et al.,
2022). Given the incumbent solution xt in iteration t of
LNS, LB aims to find the subset of variables to destroy X t

such that it leads to the optimal xt+1 that differs from xt on
at most kt variables, i.e., it computes the optimal solution
xt+1 that sits within a given Hamming ball of radius kt

centered around xt. To find xt+1, the LB heuristic solves
the LB ILP that is exactly the same ILP from input but with
one additional constraint that limits the distance between xt

and xt+1:∑
i∈[n]:xt

i=0

xt+1
i +

∑
i∈[n]:xt

i=1

(1− xt+1
i) ≤ kt.

The LB ILP is of the same size of the input ILP (i.e., it
has the same number of variables and one more constraint),

2

Searching Large Neighborhoods for ILPs with Contrastive Learning

Figure 1. An overview of training and data collection for CL-LNS. For each ILP instance for training, we run several LNS iterations with
LB. In each iteration, we collect both positive and negative neighborhood samples and add them to the training dataset, which is used in
downstream supervised contrastive learning for neighborhood selections.

therefore, it is often too slow to be useful in practice.

3. Related Work
In this section, we summarize related work on LNS for
ILPs and other COPs, learning to solve ILPs with BnB
and contrastive learning for COPs. We also summarize
additional related work on LNS-based primal heuristics for
BnB and learning to solve other COPs in Appendix.

3.1. LNS for ILPs and Other COPs

A huge effort has been made to improve BnB for ILPs in the
past decades, but LNS for ILPs has not been studied exten-
sively. Recently, Song et al. (2020) show that even a random-
ized destroy heuristic in LNS can outperform state-of-the-art
BnB. They also show that an ML-guided decomposition-
based LNS can achieve even better performance, where they
apply RL and IL to learn destroy heuristics that decompose
the set of variables into equally-sized subsets using a classi-
fication loss. Sonnerat et al. (2021) learn to select variables
by imitating LB. RL-LNS (Wu et al., 2021) uses a similar
framework but trained with RL and outperforms Song et al.
(2020). Both Wu et al. (2021) and Sonnerat et al. (2021)
use the bipartite graph representations of ILPs to learn the
destroy heuristics represented by GCNs. Another line of
related work focuses on improving LB. Liu et al. (2022)
use ML to tune the runtime limit and neighborhood sizes
for LB. Huang et al. (2023a) propose LB-RELAX to select
variables by solving the LP relaxation of LB.

Besides ILPs, LNS has been applied to solve many COPs,
such as VRP (Ropke & Pisinger, 2006; Azi et al., 2014),
TSP (Smith & Imeson, 2017), scheduling (Kovacs et al.,
2012; Žulj et al., 2018) and path planning problems (Li
et al., 2022; 2021a; Huang et al., 2023b). ML methods have
also been applied to improve LNS for those applications

(Chen & Tian, 2019; Lu et al., 2020; Hottung & Tierney,
2020; Li et al., 2021b; Huang et al., 2022a).

3.2. Learning to Solve ILPs with BnB

Several studies have applied ML to improve BnB. The ma-
jority of works focus on learning to either select variables
to branch on (Khalil et al., 2016; Gasse et al., 2019; Gupta
et al., 2020; Zarpellon et al., 2021) or select nodes to expand
(He et al., 2014; Labassi et al., 2022). There are also works
on learning to schedule and run primal heuristics (Khalil
et al., 2017b; Chmiela et al., 2021) and to select cutting
planes (Tang et al., 2020; Paulus et al., 2022; Huang et al.,
2022b).

3.3. Contrastive Learning for COPs

While contrastive learning of visual representations (Hjelm
et al., 2019; He et al., 2020; Chen et al., 2020) and graph rep-
resentations (You et al., 2020; Tong et al., 2021) have been
studied extensively, it has not been explored much for COPs.
Mulamba et al. (2021) derive a contrastive loss for decision-
focused learning to solve COPs with uncertain inputs that
can be learned from historical data, where they view non-
optimal solutions as negative samples. Duan et al. (2022)
use contrastive pre-training to learn good representations
for the boolean satisfiability problem.

4. Contrastive Learning for LNS
Our goal is to learn a policy, a destroy heuristic represented
by an ML model, that selects a subset of variables to de-
stroy and reoptimize in each LNS iteration. Specifically, let
st = (I,xt) be the current state in iteration t of LNS where
I = (A, b, c) is the ILP and xt is the incumbent solution,
the policy predicts an action at = (at1, . . . , a

t
n) ∈ {0, 1}n,

3

Searching Large Neighborhoods for ILPs with Contrastive Learning

a binary representation of the selected variables X t indicat-
ing whether xi is selected (ati = 1) or not (ati = 0). We
use contrastive learning to learn to predict high quality at

such that, after solving the sub-ILP derived from at (or
X t), the resulting incumbent solution xt+1 is improved as
much as possible. We use contrastive learning instead of
other approaches since it is shown to be effective theoret-
ically (Tian, 2022) and has outperformed other learning
techniques empirically in other domains (Eysenbach et al.,
2022). Next, we describe our novel data collection process,
the policy network and the contrastive loss used in training.
An overview of our training and data collection pipeline is
shown in Figure 1. Finally, we introduce how the learned
policy is used in CL-LNS.

4.1. Data Collection

Following previous work by Sonnerat et al. (2021), we use
LB as the expert policy to collect good demonstrations to
learn to imitate. Formally, for a given state st = (I,xt),
we use LB to find the optimal action at that leads to the
minimum cTxt+1 after solving the sub-ILP. Different from
the previous work, we use contrastive learning to learn to
make discriminative predictions of at by contrasting posi-
tive and negative samples (i.e., good and bad examples of
actions at). In the following, we describe how we collect
the positive sample set St

p and the negative sample set St
n.

Collecting Positive Samples St
p During data collection,

given st = (I,xt), we solve the LB ILP with the incum-
bent solution xt and neighborhood size kt to find the op-
timal xt+1. LNS proceeds to iteration t + 1 with xt+1

until no improving solution xt+1 could be found by the LB
ILP within a runtime limit. In experiments, the LB ILP
is solved with SCIP 8.0.1 (Bestuzheva et al., 2021) with
an hour runtime limit and kt is fine-tuned for each type
of instances. After each solve of the LB ILP, in addition
to the best solution found, SCIP records all intermediate
solutions found during the solve. We look for intermediate
solutions x′ whose resulting improvements on the objective
value is at least 0 < αp ≤ 1 times the best improvement
(i.e., cT(xt −x′) ≥ αp · cT(xt −xt+1)) and consider their
corresponding actions as positive samples. We limit the
number of the positive samples |St

p| to up. If more than up

positive samples are available, we record the top up ones to
avoid large computational overhead with too many samples
when computing the contrastive loss (see Section 4.3). αp

and up are set to 0.5 and 10, respectively, in experiments.

Collecting Negative Samples St
n Negative samples are

critical parts of contrastive learning to help distinguish be-
tween good and bad demonstrations. We collect a set of
ctn negative samples St

n, where ctn = κ|St
p| and κ is a hy-

perparameter to control the ratio between the numbers of

positive and negative samples. Suppose X t is the optimal
set of variables selected by LB. We then perturb X t to get
X̂ t by replacing 5% of the variables in X t with the same
number of those not in X t uniformly at random. We then
solve the corresponding sub-ILP derived from X̂ t to get a
new incumbent solution x̂t+1. If the resulting improvement
of x̂t+1 is less than 0 ≤ αn < 1 times the best improvement
(i.e., cT(xt − x̂t+1) ≤ αn · cT(xt − xt+1)), we consider
its corresponding action as a negative sample. We repeat
this ctn times to collect negative samples. If less than ctn
negative samples is collected, we increase the perturbation
rate from 5% to 10% and generate another ctn samples. We
keep increasing the perturbation rate at an increment of 5%
until ctn negative samples are found or it reaches 100%. In
experiments, we set κ = 9 and αn = 0.05 and it takes less
than 5 minutes to collect negative samples for each state.

4.2. Policy Network

Following previous work on learning for ILPs (Gasse et al.,
2019; Sonnerat et al., 2021; Wu et al., 2021), we use a bi-
partite graph representation of ILP to encode a state st. The
bipartite graph consists of n+m nodes representing the n
variables and m constraints on two sides, respectively, with
an edge connecting a variable and a constraint if the variable
has a non-zero coefficient in the constraint. Following Son-
nerat et al. (2021), we use features proposed in Gasse et al.
(2019) for node features and edge features in the bipartite
graph and also include a fixed-size window of most recent
incumbent values as variable node features with the window
size set to 3 in experiments. In addition to features used
in Sonnerat et al. (2021), we include features proposed in
Khalil et al. (2016) computed at the root node of BnB to
make it a richer set of variable node features.

We learn a policy πθ(·) represented by a graph attention net-
work (GAT) (Brody et al., 2022) parameterized by learnable
weights θ. The policy takes as input the state st and out-
puts a score vector πθ(s

t) ∈ [0, 1]n, one score per variable.
To increase the modeling capacity and to manipulate node
interactions proposed by our architecture, we use embed-
ding layers to map each node feature and edge feature to
space Rd. Let vj , ci, ei,j ∈ Rd be the embeddings of the
j-th variable, i-th constraint and the edge connecting them
output by the embedding layers. Since our graph is bipartite,
following previous work (Gasse et al., 2019), we perform
two rounds of message passing through the GAT. In the first
round, each constraint node ci attends to its neighbors Ni

using an attention structure with H attention heads to get
updated constraint embeddings c′i (computed as a function
of vj , ci, ei,j). In the second round, similarly, each vari-
able node attends to its neighbors to get updated variable
embeddings v′ (computed as a function of vj , c

′
i, ei,j) with

another set of attention weights. After the two rounds of
message passing, the final representations of variables v′

4

Searching Large Neighborhoods for ILPs with Contrastive Learning

are passed through a multi-layer perceptron (MLP) to obtain
a scalar value for each variable and, finally, we apply the
sigmoid function to get a score between 0 and 1. Full details
of the network architecture are provided in Appendix. In
experiments, d and H are set to 64 and 8, respectively.

4.3. Training with a Contrastive Loss

Given a set of ILP instances for training, we follow the
expert’s trajectory to collect training data. Let D =
{(s,Sp,Sn)} be the set of states with their corresponding
sets of positive and negative samples in the training data. A
contrastive loss is a function whose value is low when the
predicted action πθ(s) is similar to the positive samples Sp

and dissimilar to the negative samples Sn. With similarity
measured by dot products, a form of supervised contrastive
loss, called InfoNCE (Oord et al., 2018; He et al., 2020), is
used in this paper:

L(θ) =
∑

(s,Sp,Sn)∈D

−1

|Sp|
∑
a∈Sp

log
exp(aTπθ(s)/τ)∑

a′∈Sn∪{a} exp(a
′Tπθ(s)/τ)

where τ is a temperature hyperparameter set to 0.07 (He
et al., 2020) in experiments.

4.4. Applying Learned Policy πθ

During testing, we apply the learned policy πθ in LNS.
In iteration t, let (v1, · · · , vn) := πθ(s

t) be the variable
scores output by the policy. To select kt variables, CL-
LNS greedily selects those with the highest scores. Previous
works (Sonnerat et al., 2021; Wu et al., 2021) commonly use
sampling methods to select the variables, but those sampling
methods are empirically worse than our greedy method in
CL-LNS. However, when the adaptive neighborhood size kt

reaches its upper bound β ·n, CL-LNS may repeat the same
prediction due to the deterministic selection process. When
this happens, we switch to the sampling method introduced
in (Sonnerat et al., 2021). The sampling method selects
variables sequentially: at each step, a variable xi that has not
been selected yet is selected with probability proportional
to vηi , where η is a temperature parameter set to 0.5 in
experiments.

5. Empirical Evaluation
In this section, we introduce our evaluation setup and
then present the results. Our code and other resources
are available at https://taoanhuang.github.io/
LNS_ILP.

5.1. Setup

Instance Generation We evaluate on four NP-hard prob-
lem benchmarks that are widely used in existing studies (Wu
et al., 2021; Song et al., 2020; Scavuzzo et al., 2022), which

consist of two graph optimization problems, namely the min-
imum vertex cover (MVC) and maximum independent set
(MIS) problems, and two non-graph optimization problems,
namely the combinatorial auction (CA) and set covering
(SC) problems. We first generate a test set of 100 small
instances for each problem, namely MVC-S, MIS-S, CA-S
and SC-S. MVC-S instances are generated according to the
Barabasi-Albert random graph model (Albert & Barabási,
2002), with 1,000 nodes and an average degree of 70 fol-
lowing (Song et al., 2020). MIS-S instances are generated
according to the Erdos-Renyi random graph model (Erdos
et al., 1960), with 6,000 nodes and an average degree of 5
following (Song et al., 2020). CA-S instances are generated
with 2,000 items and 4,000 bids according to the arbitrary
relations in Leyton-Brown et al. (2000). SC-S instances
are generated with 4,000 variables and 5,000 constraints
following Wu et al. (2021). We then generate another test
set of 100 large instances for each problem by doubling
the number of variables, namely MVC-L, MIS-L, CA-L
and SC-L. For each test set, Table 1 shows its average num-
bers of variables and constraints. More details of instance
generation are included in Appendix.

For data collection and training, we generate another set
of 1,024 small instances for each problem. We split these
instances into training and validation sets, each consisting
of 896 and 128 instances, respectively.

Baselines We compare CL-LNS with five baselines: (1)
BnB: using SCIP (v8.0.1), the state-of-the-art open-source
ILP solver, with the aggressive mode fine-tuned to focus on
improving the objective value; (2) RANDOM: LNS which
selects the neighborhood by uniformly sampling kt vari-
ables without replacement; (3) LB-RELAX (Huang et al.,
2023a): LNS which selects the neighborhood with the LB-
RELAX heuristics; (4) IL-LNS (Sonnerat et al., 2021); (5)
RL-LNS (Wu et al., 2021). We compare with two more
baselines in Appendix. For each ML approach, a separate
model is trained for each problem on the small training set
and tested on both small and large test sets. We implement
IL-LNS and fine-tune its hyperparameters for each problem
since the authors do not fully open source the code. For
RL-LNS, we use the code and hyperparameters provided by
the authors and train the models with five random seeds to
select one with the best performance on the validation sets.
We do not compare to the approach by Song et al. (2020)
since it performs worse than RL-LNS on multiple problems
(Wu et al., 2021). For both IL-LNS and RL-LNS, we also
test their generalization performance on the large instances.

Metrics We use the following metrics to evaluate all ap-
proaches:

1. The primal bound is the objective value of the ILP;

5

https://taoanhuang.github.io/LNS_ILP
https://taoanhuang.github.io/LNS_ILP

Searching Large Neighborhoods for ILPs with Contrastive Learning

Table 1. Names and the average numbers of variables and constraints of the test instances.
Small Instances Large Instances

Name MVC-S MIS-S CA-S SC-S MVC-L MIS-L CA-L SC-L
#Variables 1,000 6,000 4,000 4,000 2,000 12,000 8,000 8,000

#Constraints 65,100 23,977 2,675 5,000 135,100 48,027 5,353 5,000

BnB RANDOM LB-RELAX IL-LNS RL-LNS CL-LNS

0 1000 2000 3000
Runtime in Seconds

10−2

Pr
im

al
 G
ap

0 1000 2000 3000
Runtime in Seconds

10−3

10−2
Pr
im

al
 G
ap

(a) MVC-S (left) and MVC-L (right).

0 1000 2000 3000
Runtime in Seconds

10−2

10−1

Pr
im

al
 G
ap

0 1000 2000 3000
Runtime in Seconds

10−3

10−2

10−1

Pr
im

al
 G
ap

(b) MIS-S (left) and MIS-L (right).

0 1000 2000 3000
Runtime in Seconds

10−2

10−1

Pr
im

al
 G
ap

0 1000 2000 3000
Runtime in Seconds

0

10−2

10−1

Pr
im

al
 G
ap

(c) CA-S (left) and CA-L (right).

0 1000 2000 3000
Runtime in Seconds

10−2

10−1

Pr
im

al
 G
ap

0 1000 2000 3000
Runtime in Seconds

10−2

10−1

Pr
im

al
 G
ap

(d) SC-S (left) and SC-L (right).

Figure 2. The primal gap (the lower the better) as a function of runtime, averaged over 100 test instances. For ML approaches, the policies
are trained on only small training instances but tested on both small and large test instances.

Table 2. Primal gap (PG) (in percent), primal integral (PI) at 60
minutes runtime cutoff, averaged over 100 test instances and their
standard deviations. “↓” means the lower the better. For ML
approaches, the policies are trained on only small training instances
but tested on both small and large test instances.

PG (%) ↓ PI ↓ PG (%) ↓ PI ↓
MVC-S MIS-S

BnB 1.32±0.43 66.1±13.1 5.10±0.69 222.8±25.9
RANDOM 0.96±1.26 38.0±44.8 0.24±0.14 22.1±5.0
LB-RELAX 1.38±1.51 57.0±51.2 0.65±0.20 46.9±6.5

IL-LNS 0.29±0.23 19.2±10.2 0.22±0.17 19.4±5.8
RL-LNS 0.61±0.34 29.6±11.5 0.22±0.14 17.2±5.2
CL-LNS 0.17±0.09 8.7±6.7 0.15±0.15 12.8±5.4

CA-S SC-S
BnB 2.28±0.59 137.4±25.9 1.13±0.95 86.7±37.9

RANDOM 5.90±1.02 235.6±34.9 2.67±1.29 124.3±45.4
LB-RELAX 1.65±0.57 140.5±18.3 0.86±0.83 63.2±31.6

IL-LNS 1.09±0.51 90.0±20.8 1.33±0.97 63.2±34.3
RL-LNS 6.32±1.03 249.2±35.9 1.10±0.77 77.8±28.9
CL-LNS 0.65±0.32 50.7±22.7 0.50±0.58 26.2±12.8

MVC-L MIS-L
BnB 2.41±0.40 130.2±11.1 6.29±1.62 285.1±18.2

RANDOM 0.38±0.24 22.7±8.0 0.11±0.08 19.0±3.1
LB-RELAX 0.46±0.23 48.4±7.5 0.91±0.16 68.6±5.5

IL-LNS 0.27±0.23 21.2±8.1 0.29±0.15 27.1±5.5
RL-LNS 0.59±0.30 37.3±9.6 0.14±0.12 18.9±4.1
CL-LNS 0.05±0.04 9.1±3.4 0.12±0.11 12.9±4.4

CA-L SC-L
BnB 2.74±1.87 320.9±83.1 1.54±1.33 115.0±42.5

RANDOM 5.37±0.75 229.2±24.4 3.31±1.79 166.4±61.3
LB-RELAX 1.61±1.50 153.0±50.3 1.91±1.42 88.3±48.9

IL-LNS 4.56±0.98 254.2±33.4 1.72±1.19 79.1±42.4
RL-LNS 4.91±0.81 197.0±28.5 0.66±0.72 116.2±27.1
CL-LNS 0.09±0.10 116.1±18.0 0.58±0.45 39.2±23.2

2. The primal gap (Berthold, 2006) is the normalized dif-
ference between the primal bound v and a precomputed
best known objective value v∗, defined as |v−v∗|

max(v,v∗,ϵ)

if v exists and v · v∗ ≥ 0, or 1 otherwise. We use
ϵ = 10−8 to avoid division by zero; v∗ is the best pri-
mal bound found within 60 minutes by any approach
in the portfolio for comparison.

3. The primal integral (Achterberg et al., 2012) at time q
is the integral on [0, q] of the primal gap as a function
of runtime. It captures the quality of and the speed at
which solutions are found;

4. The survival rate to meet a certain primal gap threshold
is the fraction of instances with primal gaps below the
threshold (Sonnerat et al., 2021);

5. The best performing rate of an approach is the fraction
of instances on which it achieves the best primal gap
(including ties) compared to all approaches at a given
runtime cutoff.

Since BnB and LNS are both anytime algorithms, we show
these metrics as a function of runtime or the number of
iterations in LNS (when applicable) to demonstrate their
anytime performance.

6

Searching Large Neighborhoods for ILPs with Contrastive Learning

BnB RANDOM LB-RELAX IL-LNS RL-LNS CL-LNS

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%
(a) MVC-S (left) and MVC-L (right).

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

(b) MIS-S (left) and MIS-L (right).

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0
Su

rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

(c) CA-S (left) and CA-L (right).

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

(d) SC-S (left) and SC-L (right).

Figure 3. The survival rate (the higher the better) over 100 test instances as a function of runtime to meet primal gap threshold 1.00%. For
ML approaches, the policies are trained on only small training instances but tested on both small and large test instances.

Hyperparameters We conduct experiments on 2.5GHz
Intel Xeon Platinum 8259CL CPUs with 32 GB memory.
Training is done on a NVIDIA A100 GPU with 40 GB
memory. All experiments use the hyperparameters de-
scribed below unless stated otherwise. We use SCIP (v8.0.1)
(Bestuzheva et al., 2021) to solve the sub-ILP in every it-
eration of LNS. To run LNS, we find an initial solution
by running SCIP for 10 seconds. We set the time limit to
60 minutes to solve each instance and 2 minutes for solv-
ing the sub-ILP in every LNS iteration. All approaches
require a neighborhood size kt in LNS, except for BnB and
RL-LNS (kt in RL-LNS is defined implicitly by how the
policy is used). For LB-RELAX, IL-LNS and CL-LNS, the
initial neighborhood size k0 is set to 100, 3000, 1000 and
150 for MVC, MIS, CA and SC, respectively, except k0 is
set to 150 for SC for IL-LNS; for RANDOM, it is set to
200, 3000, 1500 and 200 for MVC, MIS, CA and SC, re-
spectively. All approaches use adaptive neighborhood sizes
with γ = 1.02 and β = 0.5, except for BnB and RL-LNS.
For IL-LNS, when applying its learned policies, we use
the sampling methods on MVC and CA instances and the
greedy method on SC and MIS instances. For CL-LNS, the
greedy method is used on all instances. Additional details
on hyperparameter tunings are provided in Appendix.

For data collection, we use different neighborhood sizes
k0 = 50, 500, 200 and 50 for MVC, MIS, CA and SC,
respectively, which we justify in Section 5.2. We set γ = 1
and run LNS with LB until no new incumbent solution is
found (i.e., we do not adaptively update neighborhood sizes
during data collection). The runtime limit for solving LB
in every iteration is set to 1 hour. For training, we use the

Adam optimizer (Kingma & Ba, 2015) with learning rate
10−3. We use a batch size of 32 and train for 30 epochs (the
training typically converges in less than 20 epochs and 24
hours).

5.2. Results

Figure 2 shows the primal gap as a function of runtime. Ta-
ble 2 presents the average primal gap and primal integral at
60 minutes runtime cutoff on small and large instances, re-
spectively (see results at 15, 30 and 45 minutes runtime cut-
off in Appendix). Note that we were not able to reproduce
the results on CA-S and CA-L reported in Wu et al. (2021)
for RL-LNS despite using their code and repeating training
with five random seeds. CL-LNS shows significantly better
anytime performance than all baselines on all problems. On
the small instances, it achieves 32%-42% lower average pri-
mal gaps and 26%-59% lower average primal integrals than
the second best approach at the 60 minutes runtime cutoff.
It also demonstrates strong generalization performance on
large instances unseen during training, reducing the second
best average primal gap and average primal integral by up
to 94.4% and 57.1%, respectively. Figure 3 shows the sur-
vival rate to meet the 1.00% primal gap threshold. CL-LNS
achieves the best survival rate at 60 minutes runtime cutoff
on all instances, except that, on SC-L, its final survival rate
is slightly worse than RL-LNS but it achieves the rate with
a much shorter runtime. On MVC-L, MIS-S and MIS-L
instances, several baselines achieve the same survival rate
as CL-LNS but it always achieves the rates with the shortest
runtime. Figure 4 shows the best performing rate. CL-LNS
consistently performs best on 50% to 100% of the small

7

Searching Large Neighborhoods for ILPs with Contrastive Learning

BnB RANDOM LB-RELAX IL-LNS RL-LNS CL-LNS

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te
(a) MVC-S (left) and MVC-L (right).

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te

(b) MIS-S (left) and MIS-L (right).

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te

(c) CA-S (left) and CA-L (right).

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te

(d) SC-S (left) and SC-L (right).

Figure 4. The best performing rate (the higher the better) as a function of runtime on 100 test instances. The sum of the best performing
rates at a given runtime might sum up greater than 1 since ties are counted multiple times.

instances and has the highest best performing rate in most
cases on the large instances. In Appendix, we present strong
results in comparison with two more baselines and on one
more performance metric.

Comparison with LB (the Expert) Both IL-LNS and
CL-LNS learn to imitate LB. On the small test instances,
we run LB with two different neighborhood sizes, one that
is fine-tuned in data collection and the other the same as
CL-LNS, for 10 iterations and compare its per iteration
performance with IL-LNS and CL-LNS. This allows us to
compare the quality of the learned policies to the expert
independently of their speed. The runtime limit per iter-
ation for LB is set to 1 hour. Figure 5 shows the primal
bound as a function of the number of iterations. The table
in the figure summarizes the neighborhood sizes and the
average runtime per iteration. For LB, the result shows
that the neighborhood size affects the overall performance.
Intuitively, using a larger neighborhood size in LB allows
LNS to find better incumbent solutions due to being able to
explore larger neighborhoods. However, in practice, LB be-
comes less efficient in finding good incumbent solutions as
the neighborhood size increases, sometimes even performs
worse than using a smaller neighborhood size (the one for
data collection). The neighborhood size for data collection
is fine-tuned on validation sets to achieve the best primal
bound upon convergences, allowing the ML models to ob-
serve demonstrations that lead to as good primal bounds as
possible in training. However, when using the ML models
in testing, we have the incentive to use a larger neighbor-

hood size and fine-tune it since we no longer suffer from
the bottleneck of LB. Therefore, we fine-tune the neighbor-
hood sizes for IL-LNS and CL-LNS separately on validation
sets. CL-LNS has a strong per-iteration performance that is
consistently better than IL-LNS. With the fine-tuned neigh-
borhood size, CL-LNS even outperforms the expert that it
learns from (LB for data collection) on MIS-S and CA-S.

Ablation Study We evaluate how contrastive learning and
two enhancements contribute to CL-LNS’s performance.
Compared to IL-LNS, CL-LNS uses (1) addition features
from Khalil et al. (2016) and (2) GAT instead of GCN. We
denote by “FF” the full feature set used in CL-LNS and
“PF” the partial feature set in IL-LNS. In addition to IL-LNS
and CL-LNS, we evaluate the performance of IL-LNS with
FF and GAT (denoted by IL-LNS-GAT-FF), CL-LNS with
GCN and PF (denoted by CL-LNS-GCN-PF) as well as
CL-LNS with GAT and PF (denoted by CL-LNS-GAT-PF)
on MVC-S and CA-S. Figure 6 shows the primal gap as a
function of runtime. Table 3 presents the primal gap and
primal integral at 60 minutes runtime cutoff. The result
shows that IL-LNS-GAT-FF, imitation learning with the two
enhancements, still performs worse than CL-LNS-GCN-
PF without any enhancements. CL-LNS-GCN-PF and CL-
LNS-GAT-PF perform similarly in terms of the primal gaps
but CL-LNS-GAT-PF has better primal integrals, showing
the benefit of replacing GCN with GAT. On MVC-S, CL-
LNS and its other two variants have similar average primal
gaps. On CA-S, CL-LNS has better average primal gap than
the other two variants. But adding the two enhancements

8

Searching Large Neighborhoods for ILPs with Contrastive Learning

MVC-S MIS-S CA-S SC-S
NH size Runtime NH size Runtime NH size Runtime NH size Runtime

LB 100 3600±0 3,000 3600±0 1,000 3600±0 100 3600±0
LB (data collection) 50 3600±0 500 3600±0 200 3600±0 50 3600±0

IL-LNS 100 2.1±0.1 3,000 1.3±0.2 1,000 20.8±13.1 150 120.9±1.3
CL-LNS 100 2.2±0.1 3,000 1.3±0.1 1,000 25.1±15.3 100 50.1±10.4

LB (data collection) LB IL-LNS CL-LNS

0 2 4 6 8 10
Number of Iterations

445

450

455

460

Pr
im

al
 B
ou

nd

(a) MVC-S

0 2 4 6 8 10
Number of Iterations

−2100

−2050

−2000

−1950

Pr
im

al
 B
ou

nd

(b) MIS-S

0 2 4 6 8 10
Number of Iterations

−115000

−110000

−105000

−100000

−95000

Pr
im

al
 B
ou

nd

(c) CA-S

0 2 4 6 8 10
Number of Iterations

170

175

180

185

Pr
im

al
 B
ou

nd

(d) SC-S

Figure 5. The primal bound (the lower the better) as a function of number of iterations, averaged over 100 small test instances. LB and LB
(data collection) are LNS with LB using the neighborhood sizes fune-tunded for CL-LNS and for data collection, respectively. The table
shows the neighborhood size (NH size) and the average runtime in seconds (with standard deviations) per iteration for each approach.

helps improve the primal integral, leading to the overall best
performance of CL-LNS on both MVC-S and CA-S.

IL-LNS(-GCN-PF)
IL-LNS-GAT-FF

CL-LNS-GCN-PF
CL-LNS-GAT-PF

CL-LNS(-GAT-FF)

0 1000 2000 3000
Runtime in Seconds

10−2

Pr
im

al
 G
ap

(a) MVC-S

0 1000 2000 3000
Runtime in Seconds

10−2

10−1

Pr
im

al
 G
ap

(b) CA-S

Figure 6. Ablation study: The primal gap (the lower the better) as
a function of time, averaged over 100 small test instances.

6. Conclusion
We proposed CL-LNS, which uses a contrastive loss to learn
efficient and effective destroy heuristics in LNS for ILPs.
We presented a novel data collection process tailored for CL-
LNS and used GAT with a richer set of features to further
improve its performance. Empirically, CL-LNS significantly
outperformed state-of-the-art approaches on four ILP bench-
marks w.r.t. to the primal gap, the primal integral, the best
performing rate and the survival rate. CL-LNS achieved
good generalization performance on out-of-distribution in-
stances that are two times larger than those used in training.
It is future work to learn policies that can generalize across
problem domains. CL-LNS does not guarantee optimality
and it is also interesting future work to integrate it in BnB
for which many other learning techniques are developed.
Our approach is closely related to and could be useful for

many problems of identifying substructures in combinato-
rial searches, for example, identifying backdoor variables
in ILPs (Ferber et al., 2022) and selecting neighborhoods in
LNS for other COPs.

Table 3. Ablation study: Primal gap (PG) (in percent) and primal
integral (PI) at 60 minutes runtime cutoff, averaged over 100 small
test instances and their standard deviations. “↓” means the lower
the better.

PG (%) ↓ PI ↓ PG (%) ↓ PI ↓
MVC-S CA-S

IL-LNS(-GCN-PF) 0.29±0.23 19.2±10.2 1.09±0.51 90.0±20.8
IL-LNS-GAT-FF 0.24±0.17 15.3±7.3 1.13±0.63 78.9±22.7

CL-LNS-GCN-PF 0.17±0.10 11.4±8,8 0.75±0.40 57.9±21.2
CL-LNS-GAT-PF 0.16±0.09 10.1±0.6 0.76±0.39 53.8±22.1

CL-LNS(-GAT-FF) 0.17±0.09 8.7±6.7 0.65±0.32 50.7±22.7

Acknowledgements.
This paper reports on research done while Taoan Huang and
Aaron Ferber were interns at Meta AI (FAIR). The research
at the University of Southern California was supported by
the National Science Foundation (NSF) under grant num-
ber 2112533. We also thank the anonymous reviewers for
helpful feedback.

References
Achterberg, T., Berthold, T., and Hendel, G. Rounding

and propagation heuristics for mixed integer program-
ming. In Operations research proceedings 2011, pp. 71–
76. Springer, 2012.

Albert, R. and Barabási, A.-L. Statistical mechanics of
complex networks. Reviews of modern physics, 74(1):47,
2002.

Amaral, A. R. An exact approach to the one-dimensional

9

Searching Large Neighborhoods for ILPs with Contrastive Learning

facility layout problem. Operations research, 56(4):1026–
1033, 2008.

Amizadeh, S., Matusevych, S., and Weimer, M. Learn-
ing to solve circuit-sat: An unsupervised differentiable
approach. In International Conference on Learning Rep-
resentations, 2018.

Azi, N., Gendreau, M., and Potvin, J.-Y. An adaptive large
neighborhood search for a vehicle routing problem with
multiple routes. Computers & Operations Research, 41:
167–173, 2014.

Berthold, T. Primal heuristics for mixed integer programs.
PhD thesis, Zuse Institute Berlin (ZIB), 2006.

Berthold, T. Rens. Mathematical Programming Computa-
tion, 6(1):33–54, 2014.

Bestuzheva, K., Besançon, M., Chen, W.-K., Chmiela,
A., Donkiewicz, T., van Doornmalen, J., Eifler, L.,
Gaul, O., Gamrath, G., Gleixner, A., Gottwald, L.,
Graczyk, C., Halbig, K., Hoen, A., Hojny, C., van der
Hulst, R., Koch, T., Lübbecke, M., Maher, S. J.,
Matter, F., Mühmer, E., Müller, B., Pfetsch, M. E.,
Rehfeldt, D., Schlein, S., Schlösser, F., Serrano, F.,
Shinano, Y., Sofranac, B., Turner, M., Vigerske, S.,
Wegscheider, F., Wellner, P., Weninger, D., and Witzig,
J. The SCIP Optimization Suite 8.0. Technical
report, Optimization Online, December 2021. URL
http://www.optimization-online.org/
DB_HTML/2021/12/8728.html.

Brody, S., Alon, U., and Yahav, E. How attentive are graph
attention networks? International conference on learning
representations, 2022.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International conference on machine
learning, pp. 1597–1607. PMLR, 2020.

Chen, X. and Tian, Y. Learning to perform local rewrit-
ing for combinatorial optimization. Advances in Neural
Information Processing Systems, 32, 2019.

Chmiela, A., Khalil, E., Gleixner, A., Lodi, A., and Pokutta,
S. Learning to schedule heuristics in branch and bound.
Advances in Neural Information Processing Systems, 34:
24235–24246, 2021.

Cplex, I. I. V12. 1: User’s manual for cplex. International
Business Machines Corporation, 46(53):157, 2009.

Danna, E., Rothberg, E., and Pape, C. L. Exploring relax-
ation induced neighborhoods to improve mip solutions.
Mathematical Programming, 102(1):71–90, 2005.

De Vries, S. and Vohra, R. V. Combinatorial auctions: A
survey. INFORMS Journal on computing, 15(3):284–309,
2003.

Dilkina, B. and Gomes, C. P. Solving connected subgraph
problems in wildlife conservation. In CPAIOR, volume
6140, pp. 102–116. Springer, 2010.

Duan, H., Vaezipoor, P., Paulus, M. B., Ruan, Y., and Mad-
dison, C. Augment with care: Contrastive learning for
combinatorial problems. In International Conference on
Machine Learning, pp. 5627–5642. PMLR, 2022.

Erdos, P., Rényi, A., et al. On the evolution of random
graphs. Publ. Math. Inst. Hung. Acad. Sci, 5(1):17–60,
1960.

Eysenbach, B., Zhang, T., Levine, S., and Salakhutdinov,
R. R. Contrastive learning as goal-conditioned reinforce-
ment learning. Advances in Neural Information Process-
ing Systems, 35:35603–35620, 2022.

Ferber, A., Song, J., Dilkina, B., and Yue, Y. Learning
pseudo-backdoors for mixed integer programs. In Interna-
tional Conference on Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research,
pp. 91–102. Springer, 2022.

Fischetti, M. and Lodi, A. Local branching. Mathematical
programming, 98(1):23–47, 2003.

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., and Lodi,
A. Exact combinatorial optimization with graph convolu-
tional neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

Ghosh, S. Dins, a mip improvement heuristic. In Interna-
tional Conference on Integer Programming and Combi-
natorial Optimization, pp. 310–323. Springer, 2007.

Gupta, P., Gasse, M., Khalil, E., Mudigonda, P., Lodi, A.,
and Bengio, Y. Hybrid models for learning to branch.
Advances in neural information processing systems, 33:
18087–18097, 2020.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2022. URL https://www.gurobi.com.

He, H., Daume III, H., and Eisner, J. M. Learning to search
in branch and bound algorithms. Advances in neural
information processing systems, 27, 2014.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738,
2020.

10

http://www.optimization-online.org/DB_HTML/2021/12/8728.html
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
https://www.gurobi.com

Searching Large Neighborhoods for ILPs with Contrastive Learning

Hendel, G. Adaptive large neighborhood search for mixed
integer programming. Mathematical Programming Com-
putation, 14(2):185–221, 2022.

Heragu, S. S. and Kusiak, A. Efficient models for the fa-
cility layout problem. European Journal of Operational
Research, 53(1):1–13, 1991.

Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal,
K., Bachman, P., Trischler, A., and Bengio, Y. Learning
deep representations by mutual information estimation
and maximization. International conference on learning
representations, 2019.

Hottung, A. and Tierney, K. Neural large neighborhood
search for the capacitated vehicle routing problem. In
ECAI 2020, pp. 443–450. IOS Press, 2020.

Hu, Y., Yao, Y., and Lee, W. S. A reinforcement learn-
ing approach for optimizing multiple traveling salesman
problems over graphs. Knowledge-Based Systems, 204:
106244, 2020.

Huang, T. and Dilkina, B. Enhancing seismic resilience of
water pipe networks. In Proceedings of the 3rd ACM SIG-
CAS Conference on Computing and Sustainable Societies,
pp. 44–52, 2020.

Huang, T., Dilkina, B., and Koenig, S. Learning node-
selection strategies in bounded suboptimal conflict-based
search for multi-agent path finding. In International Joint
Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS), 2021a.

Huang, T., Koenig, S., and Dilkina, B. Learning to resolve
conflicts for multi-agent path finding with conflict-based
search. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 35, pp. 11246–11253, 2021b.

Huang, T., Li, J., Koenig, S., and Dilkina, B. Anytime
multi-agent path finding via machine learning-guided
large neighborhood search. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), pp. 9368–
9376, 2022a.

Huang, T., Ferber, A., Tian, Y., Dilkina, B., and Steiner, B.
Local branching relaxation heuristics for integer linear
programs. In International Conference on Integration
of Constraint Programming, Artificial Intelligence, and
Operations Research, pp. 96–113. Springer, 2023a.

Huang, T., Shivashankar, V., Caldara, M., Durham, J., Li, J.,
Dilkina, B., and Koenig, S. Deadline-aware multi-agent
tour planning. In Proceedings of the International Con-
ference on Automated Planning and Scheduling (ICAPS),
2023b.

Huang, Z., Wang, K., Liu, F., Zhen, H.-L., Zhang, W., Yuan,
M., Hao, J., Yu, Y., and Wang, J. Learning to select
cuts for efficient mixed-integer programming. Pattern
Recognition, 123:108353, 2022b.

Johnson, D. S., Lenstra, J. K., and Kan, A. R. The com-
plexity of the network design problem. Networks, 8(4):
279–285, 1978.

Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., and Dilk-
ina, B. Learning to branch in mixed integer programming.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 30, 2016.

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song,
L. Learning combinatorial optimization algorithms over
graphs. Advances in neural information processing sys-
tems, 30, 2017a.

Khalil, E. B., Dilkina, B., Nemhauser, G. L., Ahmed, S.,
and Shao, Y. Learning to run heuristics in tree search. In
Ijcai, pp. 659–666, 2017b.

Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola,
P., Maschinot, A., Liu, C., and Krishnan, D. Supervised
contrastive learning. Advances in Neural Information
Processing Systems, 33:18661–18673, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. 2015.

Kool, W., Van Hoof, H., and Welling, M. Attention,
learn to solve routing problems! arXiv preprint
arXiv:1803.08475, 2018.

Kovacs, A. A., Parragh, S. N., Doerner, K. F., and Hartl,
R. F. Adaptive large neighborhood search for service
technician routing and scheduling problems. Journal of
scheduling, 15(5):579–600, 2012.

Labassi, A. G., Chételat, D., and Lodi, A. Learning to
compare nodes in branch and bound with graph neural
networks. Advances in neural information processing
systems, 2022.

Land, A. H. and Doig, A. G. An automatic method for
solving discrete programming problems. In 50 Years of
Integer Programming 1958-2008, pp. 105–132. Springer,
2010.

Leyton-Brown, K., Pearson, M., and Shoham, Y. Towards a
universal test suite for combinatorial auction algorithms.
In Proceedings of the 2nd ACM conference on Electronic
commerce, pp. 66–76, 2000.

Li, J., Chen, Z., Harabor, D., Stuckey, P. J., and Koenig, S.
Anytime multi-agent path finding via large neighborhood
search. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence (IJCAI), pp. 4127–4135,
2021a.

11

Searching Large Neighborhoods for ILPs with Contrastive Learning

Li, J., Chen, Z., Harabor, D., Stuckey, P. J., and Koenig, S.
MAPF-LNS2: Fast repairing for multi-agent path finding
via large neighborhood search. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), pp.
10256–10265, 2022.

Li, S., Yan, Z., and Wu, C. Learning to delegate for large-
scale vehicle routing. Advances in Neural Information
Processing Systems, 34:26198–26211, 2021b.

Li, Z., Chen, Q., and Koltun, V. Combinatorial optimization
with graph convolutional networks and guided tree search.
Advances in neural information processing systems, 31,
2018.

Liu, D., Fischetti, M., and Lodi, A. Learning to search in
local branching. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 3796–3803,
2022.

Lu, H., Zhang, X., and Yang, S. A learning-based iterative
method for solving vehicle routing problems. In Interna-
tional conference on learning representations, 2020.

Maher, S. J., Fischer, T., Gally, T., Gamrath, G., Gleixner,
A., Gottwald, R. L., Hendel, G., Koch, T., Lübbecke, M.,
Miltenberger, M., et al. The scip optimization suite 4.0.
2017.

Manne, A. S. On the job-shop scheduling problem. Opera-
tions research, 8(2):219–223, 1960.

Mulamba, M., Mandi, J., Diligenti, M., Lombardi, M.,
Lopez, V. B., and Guns, T. Contrastive losses and solution
caching for predict-and-optimize. In 30th International
Joint Conference on Artificial Intelligence, pp. 2833. In-
ternational Joint Conferences on Artificial Intelligence,
2021.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Paulus, M. B., Zarpellon, G., Krause, A., Charlin, L., and
Maddison, C. Learning to cut by looking ahead: Cut-
ting plane selection via imitation learning. In Interna-
tional conference on machine learning, pp. 17584–17600.
PMLR, 2022.

Pohl, I. Heuristic search viewed as path finding in a graph.
Artificial intelligence, 1(3-4):193–204, 1970.

Prouvost, A., Dumouchelle, J., Scavuzzo, L., Gasse, M.,
Chételat, D., and Lodi, A. Ecole: A gym-like li-
brary for machine learning in combinatorial optimization
solvers. In Learning Meets Combinatorial Algorithms
at NeurIPS2020, 2020. URL https://openreview.
net/forum?id=IVc9hqgibyB.

Ropke, S. and Pisinger, D. An adaptive large neighborhood
search heuristic for the pickup and delivery problem with
time windows. Transportation science, 40(4):455–472,
2006.

Rothberg, E. An evolutionary algorithm for polishing mixed
integer programming solutions. INFORMS Journal on
Computing, 19(4):534–541, 2007.

Scavuzzo, L., Chen, F. Y., Chételat, D., Gasse, M., Lodi, A.,
Yorke-Smith, N., and Aardal, K. Learning to branch with
tree mdps. arXiv preprint arXiv:2205.11107, 2022.

Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L.,
and Dill, D. L. Learning a sat solver from single-bit
supervision. arXiv preprint arXiv:1802.03685, 2018.

Smith, S. L. and Imeson, F. Glns: An effective large neigh-
borhood search heuristic for the generalized traveling
salesman problem. Computers & Operations Research,
87:1–19, 2017.

Song, J., Yue, Y., Dilkina, B., et al. A general large neigh-
borhood search framework for solving integer linear pro-
grams. Advances in Neural Information Processing Sys-
tems, 33:20012–20023, 2020.

Sonnerat, N., Wang, P., Ktena, I., Bartunov, S., and
Nair, V. Learning a large neighborhood search al-
gorithm for mixed integer programs. arXiv preprint
arXiv:2107.10201, 2021.

Tang, Y., Agrawal, S., and Faenza, Y. Reinforcement learn-
ing for integer programming: Learning to cut. In Interna-
tional conference on machine learning, pp. 9367–9376.
PMLR, 2020.

Tian, Y. Understanding deep contrastive learning via
coordinate-wise optimization. In Advances in Neural
Information Processing Systems, 2022.

Tong, Z., Liang, Y., Ding, H., Dai, Y., Li, X., and Wang, C.
Directed graph contrastive learning. Advances in Neural
Information Processing Systems, 34:19580–19593, 2021.

Toth, P. and Vigo, D. The vehicle routing problem. SIAM,
2002.

Wu, Y., Song, W., Cao, Z., and Zhang, J. Learning large
neighborhood search policy for integer programming. Ad-
vances in Neural Information Processing Systems, 34:
30075–30087, 2021.

Xin, L., Song, W., Cao, Z., and Zhang, J. Neurolkh: Com-
bining deep learning model with lin-kernighan-helsgaun
heuristic for solving the traveling salesman problem. Ad-
vances in Neural Information Processing Systems, 34:
7472–7483, 2021.

12

https://openreview.net/forum?id=IVc9hqgibyB
https://openreview.net/forum?id=IVc9hqgibyB

Searching Large Neighborhoods for ILPs with Contrastive Learning

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen,
Y. Graph contrastive learning with augmentations. Ad-
vances in Neural Information Processing Systems, 33:
5812–5823, 2020.

Yu, C., Li, Q., Gao, S., and Prorok, A. Accelerating multi-
agent planning using graph transformers with bounded
suboptimality. arXiv preprint arXiv:2301.08451, 2023.

Zarpellon, G., Jo, J., Lodi, A., and Bengio, Y. Parameter-
izing branch-and-bound search trees to learn branching
policies. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 35, pp. 3931–3939, 2021.

Zhang, S., Li, J., Huang, T., Koenig, S., and Dilkina, B.
Learning a priority ordering for prioritized planning in
multi-agent path finding. In Proceedings of the Interna-
tional Symposium on Combinatorial Search, volume 15,
pp. 208–216, 2022.

Zheng, J., He, K., Zhou, J., Jin, Y., and Li, C.-M. Combining
reinforcement learning with lin-kernighan-helsgaun algo-
rithm for the traveling salesman problem. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 35, pp. 12445–12452, 2021.

Žulj, I., Kramer, S., and Schneider, M. A hybrid of adaptive
large neighborhood search and tabu search for the order-
batching problem. European Journal of Operational
Research, 264(2):653–664, 2018.

13

Searching Large Neighborhoods for ILPs with Contrastive Learning

Appendix
A. Additional Related Work
A.1. LNS-Based Primal Heuristics in BnB

LNS-based primal heuristics is a family of primal heuristics in BnB and have been studied extensively in past decades. With
the same purpose of improving primal bounds, the main differences between the LNS-based primal heuristics in BnB and
LNS for ILPs are: (1) LNS-based primal heuristics are executed periodically at different search tree nodes during the search
and the execution schedule is itself dynamic, because they are often more expensive to run than the other primal heuristics in
BnB; (2) the destroy heuristics in LNS-based primal heuristics are often designed to use information specific to BnB, such
as the dual bound and the LP relaxation at a search tree node, and they are not directly applicable in LNS for ILPs in our
setting.

Next, we briefly summarize the destroy heuristics in LNS-based primal heuristics:

• Crossover heuristics (Rothberg, 2007): it destroys variables that have different values in a set of selected known
solutions (typically two). The Mutation heuristics (Rothberg, 2007) destroys a random subset of variables.

• Relaxation Induced Neighborhood Search (RINS) (Danna et al., 2005): it destroys variables whose values disagree in
the solution of the LP relaxation at the search tree node and the incumbent solution.

• Relaxation Enforced Neighborhood Search (RENS) (Berthold, 2014): it restricts the neighborhood to be the feasible
roundings of the LP relaxation at the current search tree node.

• Local Branching (LB)(Fischetti & Lodi, 2003): it restricts the neighborhood to a ball around the current incumbent
solution.

• Distance Induced Neighborhood Search (DINS) (Ghosh, 2007): it takes the intersection of the neighborhoods of the
Crossover, Local Branching and Relaxation Induced Neighborhood Search heuristics.

• Graph-Induced Neighborhood Search (GINS) (Maher et al., 2017): it destroys the breadth-first-search neighborhood of
a variable in the bipartite graph representation of the ILP.

Recently, an adaptive LNS primal heuristic (Hendel, 2022) has been proposed to combine the power of these heuristics,
where it essentially solves a multi-armed bandit problem to choose which heuristic to apply.

A.2. Learning to Solve Other COPs

ML has been applied to solve a number of COPs, including TSP (Hu et al., 2020; Xin et al., 2021; Zheng et al., 2021),
vehicle routing (Kool et al., 2018; Lu et al., 2020), boolean satisfiability (Selsam et al., 2018; Amizadeh et al., 2018), general
graph optimization problems (Khalil et al., 2017a; Li et al., 2018) and multi-agent path finding (Huang et al., 2021a;b;
Zhang et al., 2022; Yu et al., 2023).

B. Network Architecture
We give full details of the GAT architecture described in Section 4.2. The policy takes as input the state st and output a
score vector πθ(s

t) ∈ [0, 1]n, one score per variable. We use 2-layer MLPs with 64 hidden units per layer and ReLU as the
activation function to map each node feature and edge feature to Rd where d = 64.

Let vj , ci, ei,j ∈ Rd be the embeddings of the j-th variable, i-th constraint and the edge connecting them output by the
embedding layers. We perform two rounds of message passing through the GAT. In the first round, each constraint node ci
attends to its neighbors Ni using an attention stucture with H = 8 attention heads:

c′i =
1

H

H∑
h=1

α
(h)
ii,1θ

(h)
c,1ci +

∑
j∈Ni

α
(h)
ij,1θ

(h)
v,1vj

14

Searching Large Neighborhoods for ILPs with Contrastive Learning

where θ
(h)
c,1 ∈ Rd×d and θ

(h)
v,1 ∈ Rd×d are learnable weights. The updated constraint embeddings c′i are averaged across H

attention heads using attention weights (Brody et al., 2022)

α
(h)
ij,1 =

exp(wT
1 ρ([θ

(h)
c,1ci,θ

(h)
v,1vj ,θ

(h)
e,1ei,j]))∑

k∈Ni
exp(wT

1 ρ([θ
(h)
c,1ci,θ

(h)
v,1vk,θ

(h)
e,1ei,k]))

where the attention coefficients w1 ∈ R3d and θ
(h)
e,1 ∈ Rd×d are both learnable weights and ρ(·) refers to the LeakyReLU

activation function with negative slope 0.2. In the second round, similary, each variable node attends to its neighbors to get
updated variable node embeddings

v′
j =

1

H

H∑
h=1

α
(h)
jj,2θ

(h)
v,2vj +

∑
i∈Nj

α
(h)
ji,2θ

(h)
c,2c

′
i

with attention weights

α
(h)
ji,2 =

exp(wT
2 ρ([θ

(h)
c,2c

′
i,θ

(h)
v,2vj ,θ

(h)
e,2ei,j]))∑

k∈Nj
exp(wT

2 ρ([θ
(h)
c,2c

′
i,θ

(h)
v,2vj ,θ

(h)
e,2ei,k]))

where w2 ∈ R3d and θ
(h)
c,2 ,θ

(h)
v,2,θ

(h)
e,2 ∈ Rd×d are learnable weights. After the two rounds of message passing, the final

representations of variables v′ are passed through a 2-layer MLP with 64 hidden units per layer to obtain a scalar value for
each variable. Finally, we apply the sigmoid function to get a score between 0 and 1.

B.1. Features

We use features proposed in Gasse et al. (2019) for node features and edge features in the bipartite graph and also include a
fixed-size window of most recent incumbent values as variable node features with the window size set to 3 in experiments.
In addition, we include features proposed in Khalil et al. (2016) computed at the root node of BnB to make it a richer set of
variable node features. The full list of features can be found in Table 2 in Appendix of Gasse et al. (2019) and Table 1 in
Khalil et al. (2016). In our implementation, we compute them using the APIs provided by the Ecole library (Prouvost et al.,
2020)1.

C. Additional Details of Instance Generation
We present the ILP formulations for the minimum vertex cover (MVC), maximum independent set (MIS), set covering (SC)
and combinatorial auction (CA) problems.

C.1. MVC

In an MVC instance, we are given an undirected graph G = (V,E). The goal is to select the smallest subset of nodes such
that at least one end point of every edge in the graph is selected:

min
∑

v∈V xv

s.t. xu + xv ≥ 1, ∀(u, v) ∈ E,

xv ∈ {0, 1}, ∀v ∈ V.

C.2. MIS

In an MIS instance, we are given an undirected graph G = (V,E). The goal is to select the largest subset of nodes such that
no two nodes in the subsets are connected by an edge in G:

min−
∑

v∈V xv

s.t. xu + xv ≤ 1, ∀(u, v) ∈ E,

xv ∈ {0, 1}, ∀v ∈ V.

1More details and the source code can be found at https://doc.ecole.ai/py/en/stable/reference/
observations.html.

15

https://doc.ecole.ai/py/en/stable/reference/observations.html
https://doc.ecole.ai/py/en/stable/reference/observations.html

Searching Large Neighborhoods for ILPs with Contrastive Learning

C.3. SC

In an SC instance, we are given m elements and a collection S of n sets whose union is the set of all elements. The goal is
to select a minimum number of sets from S such that the union of the selected set is still the set of all elements:

min
∑

s∈S xs

s.t.
∑

s∈S:i∈s xs ≥ 1, ∀i ∈ [m],

xs ∈ {0, 1}, ∀s ∈ S.

C.4. CA

In a CA instance, we are given n bids {(Bi, pi) : i ∈ [n]} for m items, where Bi is a subset of items and pi is its associated
bidding price. The objective is to allocate items to bids such that the total revenue is maximized:

min−
∑

i∈[n] pixi

s.t.
∑

i:j∈Bi
xi ≤ 1, ∀j ∈ [m],

xi ∈ {0, 1}, ∀i ∈ [n].

D. Additional Details on Hyperparameter Tuning
For RL-LNS, we use all the hyperparameters provided in their code (Wu et al., 2021) in our experiments. For the other LNS
methods, all hyperparameters used in experiments are fine-tuned on the validation set and the hyperparameter tunings are
described in the following.

For β, which upper bounds the neighborhood size, we tried values from {0.25, 0.5, 0.6, 0.7}. β = 0.25 is the worst for all
approaches, resulting in the highest gap. For LB-RELAX, IL-LNS and CL-LNS, all values perform similarly (because they
select effective neighborhoods early in the search and their neighborhood sizes either do not reach the upper bound or they
already converge to good solutions before reaching it). For RANDOM and GRAPH, β = 0.5 is the best for them. So we set
β = 0.5 consistently for all approaches.

For initial neighborhood sizes k0, we observe that the best values are sensitive for approaches that need longer runtime to
select variables, such as LB-RELAX, IL-LNS and CL-LNS, thus they need the right k0 from the beginning and we fine-tune
it for them. For RANDOM and GRAPH, their runtime for selecting variables is short, and with the adaptive neighborhood
size mechanism, they could very quickly find the right neighborhood size and are insensitive to k0. They converge to the
same primal gaps (< 1% relative differences) with similar primal integrals (< 2% relative differences) using different k0.
Despite the differences being small, we still use the best k0 for them.

For γ that controls the rate at which kt increases, we tried values from {1, 1.01, 1.02, 1.05}. Overall, γ does not have a big
impact on the performance if γ > 1, however γ = 1 is far worse than the others.

For the runtime limit for each repair operation, we tried different limits of 0.5, 1, 2 and 5 minutes. All approaches are
not sensitive to it since most repairs are finished within 20 seconds. Except for IL-LNS on the SC instances, it selects
neighborhoods that require a longer time to repair and a 2-minute runtime limit is necessary. Therefore, we use 2 minutes
consistently.

For BnB, the aggressive mode is fine-tuned for each problem on the validation set. With the aggressive mode turned on,
BnB (SCIP) does not always deliver better anytime performance than having it turned off. Based on the validation results,
the aggressive mode is turned on for MVC and SC instances and turned off for CAT and MIS instances.

For IL-LNS, it uses the same training dataset as CL-LNS but uses only the positive samples. We fine-tune its hyperparameters
for each problem on the validation set, resulting in a different k0 on the SC instance from CL-LNS. Also in Sonnerat et al.
(2021), they use sampling methods to select variables when using the learned policy. For the temperature parameter η in the
sampling method, we tried values from {1/2, 2/3, 1} and η = 0.5 performs the best overall. However, in our experiment, we
observe that our greedy method described in Section 4.4 works better for IL-LNS on SC and MIS instances, thus, CL-LNS
is compared against the corresponding results on SC and MIS instances.

16

Searching Large Neighborhoods for ILPs with Contrastive Learning

Table 4. Hyperparameters with their notations and values used.
Hyperparameter Notation Value
Suboptimality threshold to determine positive samples αp 0.5
Upper bound on the number of positive samples up 10
Suboptimality threshold to determine negative samples αn 0.05
Ratio between the numbers of positive and negative samples κ 9
Feature embedding dimension d 64
Window size of the most recent incumbent values in variable features 3
Number of attention heads in the GAT H 8
Temperature parameter in the contrastive loss τ 0.07
Rate at which kt increases γ 1.02
Upper bound on kt as a fraction of number of variables β 0.5
Temperature parameter for sampling variables in IL-LNS η 0.5
Initial neighborhood size k0 Fine-tuned for each case
Runtime for finding initial solution 10 seconds
Runtime limit for each reoptimization 2 minutes
Learning rate (CL-LNS and IL-LNS) 10−3

Batch size (CL-LNS and IL-LNS) 32
Number of training epochs (CL-LNS and IL-LNS) 30

For LB-RELAX, there are three variants of it presented in Huang et al. (2023a). We present only the best of the three
variants for each problem in the paper for simplicity.

In Table 4, we summarize all the hyperparameters with their notations and values used in our experiments.

E. Additional Experimental Results
In this section, we add two more baselines and evaluate all approaches on one more metric. We show that CL-LNS
outperforms all approaches in terms of all metrics.

We establish two additional baselines:

• LB: LNS which selects the neighborhood with the LB heuristics. We set the time limit to 10 minutes for solving the
LB ILP in each iteration;

• GRAPH: LNS which selects the neighborhood based on the bipartite graph representation of the ILP similar to GINS
(Maher et al., 2017). A bipartite graph representation consists of nodes representing the variables and constraints on
two sides, respectively, with an edge connecting a variable and a constraint if a variable has a non-zero coefficient in
the constraint. It runs a breadth-first search starting from a random variable node in the bipartite graph and selects the
first kt variable nodes expanded.

Figure 7 shows the full results on the primal gap as a function of runtime. Figure 8 shows the full results on the survival rate
as a function of runtime. Figure 9 shows the full results on the primal bound as a function of runtime. Tables 5, 6, 7 and 8
present the average primal bound, primal gap and primal integral at 15, 30, 45 and 60 minutes runtime cutoff, respectively,
on the small instances. Tables 9, 10, 11 and 12 present the average primal bound, primal gap and primal integral at 15, 30,
45 and 60 minutes runtime cutoff, respectively, on the large instances.

Next, we evaluate the performance with one additional metric: The gap to virtual best at time q for an approach is the
normalized difference between its best primal bound found up to time q and the best primal bound found up to time q by any
approach in the portfolio.

Figure 10 shows the full results on the best performing rate as a function of runtime. Figure 11 shows the full results on the
gap to virtual best as a function of runtime.

17

Searching Large Neighborhoods for ILPs with Contrastive Learning

BnB RANDOM LB-RELAX GRAPH LB IL-LNS RL-LNS CL-LNS

0 1000 2000 3000
Runtime in Seconds

10−2

Pr
im

al
 G
ap

0 1000 2000 3000
Runtime in Seconds

10−3

10−2

Pr
im

al
 G
ap

(a) MVC-S (left) and MVC-L (right).

0 1000 2000 3000
Runtime in Seconds

10−2

10−1

Pr
im

al
 G
ap

0 1000 2000 3000
Runtime in Seconds

10−3

10−2

10−1

Pr
im

al
 G
ap

(b) MIS-S (left) and MIS-L (right).

0 1000 2000 3000
Runtime in Seconds

10−2

10−1

Pr
im

al
 G
ap

0 1000 2000 3000
Runtime in Seconds

0

10−2

10−1

Pr
im

al
 G
ap

(c) CA-S (left) and CA-L (right).

0 1000 2000 3000
Runtime in Seconds

10−2

10−1

Pr
im

al
 G
ap

0 1000 2000 3000
Runtime in Seconds

10−2

10−1

Pr
im

al
 G
ap

(d) SC-S (left) and SC-L (right).

Figure 7. The primal gap (the lower the better) as a function of time, averaged over 100 instances. For ML approaches, the policies are
trained on only small training instances but tested on both small and large test instances.

BnB RANDOM LB-RELAX GRAPH LB IL-LNS RL-LNS CL-LNS

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

(a) MVC-S (left) and MVC-L (right).

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

(b) MIS-S (left) and MIS-L (right).

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

(c) CA-S (left) and CA-L (right).

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

0 1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
wi
th

Pr
im

al
 G
ap

≤
1.
00

%

(d) SC-S (left) and SC-L (right).

Figure 8. The survival rate (the higher the better) over 100 instances as a function of time to meet primal gap threshold 1.00%. For ML
approaches, the policies are trained on only small training instances but tested on both small and large test instances.

18

Searching Large Neighborhoods for ILPs with Contrastive Learning

BnB RANDOM LB-RELAX GRAPH LB IL-LNS RL-LNS CL-LNS

0 1000 2000 3000
Runtime in Seconds

445

450

455

460

Pr
im

al
 B
ou

nd

0 1000 2000 3000
Runtime in Seconds

890

900

910

920

Pr
im

al
 B
ou

nd

(a) MVC-S (left) and MVC-L (right).

0 1000 2000 3000
Runtime in Seconds

−2100

−2050

−2000

−1950

Pr
im

al
 B
ou

nd

0 1000 2000 3000
Runtime in Seconds

−4200

−4100

−4000

−3900

Pr
im

al
 B
ou

nd

(b) MIS-S (left) and MIS-L (right).

0 1000 2000 3000
Runtime in Seconds

−115000

−110000

−105000

−100000

−95000

Pr
im

al
 B
ou

nd

0 1000 2000 3000
Runtime in Seconds

−230000

−220000

−210000

−200000

−190000

Pr
im

al
 B
ou

nd

(c) CA-S (left) and CA-L (right).

0 1000 2000 3000
Runtime in Seconds

170

175

180

185

Pr
im

al
 B
ou

nd
0 1000 2000 3000

Runtime in Seconds

107.5

110.0

112.5

115.0

117.5

120.0

Pr
im

al
 B
ou

nd

(d) SC-S (left) and SC-L (right).

Figure 9. The primal bound (the lower the better) as a function of time, averaged over 100 instances. For ML approaches, the policies are
trained on only small training instances but tested on both small and large test instances.

BnB RANDOM LB-RELAX GRAPH LB IL-LNS RL-LNS CL-LNS

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te

(a) MVC-S (left) and MVC-L (right).

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te

(b) MIS-S (left) and MIS-L (right).

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te

(c) CA-S (left) and CA-L (right).

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te

1000 2000 3000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Be
st
 P
er
fo
rm

in
g
Ra

te

(d) SC-S (left) and SC-L (right).

Figure 10. The best performing rate (the higher the better) as a function of runtime over 100 test instances. For ML approaches, the
policies are trained on only small training instances but tested on both small and large test instances.

19

Searching Large Neighborhoods for ILPs with Contrastive Learning

BnB RANDOM LB-RELAX GRAPH LB IL-LNS RL-LNS CL-LNS

1000 2000 3000
Runtime in Seconds

0

10−4

10−3

10−2

10−1

Ga
p
to
 V
irt
ua

l B
es
t

1000 2000 3000
Runtime in Seconds

0

10−4

10−3

10−2

10−1

Ga
p
to
 V
irt
ua

l B
es
t

(a) MVC-S (left) and MVC-L (right).

1000 2000 3000
Runtime in Seconds

0

10−4

10−3

10−2

10−1

Ga
p
to
 V
irt
ua

l B
es
t

1000 2000 3000
Runtime in Seconds

0

10−4

10−3

10−2

10−1

Ga
p
to
 V
irt
ua

l B
es
t

(b) MIS-S (left) and MIS-L (right).

1000 2000 3000
Runtime in Seconds

010−4

10−3

10−2

10−1

Ga
p
to
 V
irt
ua

l B
es
t

1000 2000 3000
Runtime in Seconds

010−4

10−3

10−2

10−1

Ga
p
to
 V
irt
ua

l B
es
t

(c) CA-S (left) and CA-L (right).

1000 2000 3000
Runtime in Seconds

0

10−4

10−3

10−2

10−1

Ga
p
to
 V
irt
ua

l B
es
t

1000 2000 3000
Runtime in Seconds

0

10−4

10−3

10−2

10−1

Ga
p
to
 V
irt
ua

l B
es
t

(d) SC-S (left) and SC-L (right).

Figure 11. The gap to virtual best (the lower the better) as a function of runtime, averaged over 100 test instances. For ML approaches, the
policies are trained on only small training instances but tested on both small and large test instances.

Table 5. Test results on small instances: Primal bound (PB), primal gap (PG) (in percent), primal integral (PI) at 15 minutes time cutoff,
averaged over 100 instances and their standard deviations.

PB PG (%) PI PB PG (%) PI
MVC MIS

BnB 450.41±9.85 1.71±0.48 25.7±3.3 -1,981.72±23.49 6.66±0.89 74.2±4.4
LB 456.78±11.22 3.07±1.00 32.9±5.1 -2,047.01±18.76 3.58±0.60 62.4±3.8

RANDOM 447.33±11.33 1.02±1.28 11.5±11.3 -2,110.73±11.86 0.58±0.19 12.8±1.6
GRAPH 447.98±11.30 1.16±1.28 14.0±10.6 -2,104.62±12.23 0.87±0.17 18.5±1.7

LB-RELAX 449.23±11.49 1.43±1.51 19.6±10.9 -2,093.80±12.07 1.38±0.23 22.9±2.1
IL-LNS 444.50±9.69 0.40±0.28 10.2±5.5 -2,111.49±12.10 0.54±0.20 10.5±1.8
RL-LNS 446.12±10.10 0.76±0.36 11.9±2.9 -2,113.48±11.72 0.45±0.17 9.5±1.7
CL-LNS 443.51±9.58 0.18±0.10 4.0±2.1 -2,114.66±12.42 0.39±0.19 6.4±1.6

CA SC
BnB -112,703±1,682 3.06±0.70 67.4±16.6 173.26±13.00 2.28±1.34 45.9±13.0
LB -108,647±2,227 6.55±1.42 140.7±9.9 173.83±12.93 2.60±1.31 70.6±15.6

RANDOM -108,576±1,709 6.61±1.12 69.1±8.5 175.61±12.76 3.60±1.44 43.6±13.8
GRAPH -107,189±1,977 7.81±1.15 84.7±9.8 187.69±14.24 9.77±2.17 89.9±19.9

LB-RELAX -107,133±1,816 7.86±0.76 89.5±6.2 172.79±12.76 2.02±1.21 30.0±11.4
IL-LNS -113,501±1,611 2.38±0.66 52.4±10.9 171.72±12.42 1.43±1.00 26.9±9.2
RL-LNS -108,120±1,906 7.01±1.10 71.8±9.3 172.35±12.45 1.79±0.96 41.4±8.2
CL-LNS -115,499±1,626 0.66±0.33 33.3±6.8 170.27±12.21 0.59±0.67 11.7±7.4

Table 6. Test results on small instances: Primal bound (PB), primal gap (PG) (in percent), primal integral (PI) at 30 minutes time cutoff,
averaged over 100 instances and their standard deviations.

PB PG (%) PI PB PG (%) PI
MVC MIS

BnB 449.67±9.69 1.55±0.44 40.2±6.6 -2,004.24±26.21 5.60±1.00 127.1±12.4
LB 454.89±11.55 2.66±1.16 58.2±14.1 -2,064.30±16.40 2.77±0.51 89.9±7.3

RANDOM 447.16±11.22 0.98±1.26 20.6±22.5 -2,115.23±11.82 0.37±0.16 16.9±2.7
GRAPH 447.75±11.39 1.11±1.30 24.2±22.1 -2,111.84±12.06 0.53±0.16 24.4±2.7

LB-RELAX 449.02±11.53 1.38±1.51 32.1±24.2 -2,102.85±11.97 0.95±0.19 33.0±3.6
IL-LNS 444.27±9.61 0.35±0.25 13.5±6.9 -2,115.30±12.04 0.36±0.18 14.4±3.2
RL-LNS 445.71±9.98 0.67±0.35 18.2±5.7 -2,116.64±11.53 0.30±0.15 12.7±2.9
CL-LNS 443.48±9.56 0.17±0.09 5.5±3.6 -2,117.58±11.86 0.26±0.17 9.3±3.0

CA SC
BnB -113,068±1,595 2.75±0.62 93.5±18.6 172.09±12.65 1.63±1.20 62.9±22.5
LB -110,303±2,001 5.13±1.08 191.6±16.9 172.37±12.71 1.79±1.11 89.4±22.3

RANDOM -109,040±1,685 6.21±1.05 126.8±17.6 174.70±12.75 3.10±1.38 73.4±24.6
GRAPH -107,802±1,892 7.28±1.07 152.2±18.9 186.79±14.13 9.33±2.28 175.7±38.8

LB-RELAX -114,103±1,521 1.86±0.57 109.5±9.4 171.60±12.43 1.36±1.02 44.6±19.3
IL-LNS -114,621±1638 1.41±0.58 68.1±13.9 171.59±12.45 1.35±1.00 39.3±17.4
RL-LNS -108,562±1,854 6.63±1.05 132.9±18.2 171.70±12.30 1.42±0.88 55.7±15.6
CL-LNS -115,513±1,621 0.65±0.32 39.1±11.6 170.16±12.13 0.53±0.63 16.7±12.3

20

Searching Large Neighborhoods for ILPs with Contrastive Learning

Table 7. Test results on small instances: Primal bound (PB), primal gap (PG) (in percent), primal integral (PI) at 45 minutes time cutoff,
averaged over 100 instances and their standard deviations.

PB PG (%) PI PB PG (%) PI
MVC MIS

BnB 449.28±9.77 1.46±0.42 53.7±9.9 -2,010.68±21.72 5.29±0.79 176.0±19.7
LB 453.84±11.65 2.44±1.26 80.7±24.6 -2,075.43±14.84 2.24±0.46 111.6±10.5

RANDOM 447.09±11.21 0.96±1.26 29.4±33.6 -2,116.96±11.54 0.29±0.15 19.8±3.9
GRAPH 447.42±11.19 1.04±1.27 33.9±33.4 -2,114.42±11.74 0.41±0.16 28.6±3.8

LB-RELAX 449.01±11.53 1.38±1.51 44.6±37.6 -2,106.88±11.40 0.76±0.20 40.6±5.0
IL-LNS 444.13±9.68 0.32±0.26 16.5±8.5 -2,117.43±11.79 0.26±0.17 17.2±4.5
RL-LNS 445.54±9.98 0.63±0.34 24.0±8.6 -2,117.79±11.34 0.25±0.14 15.2±4.1
CL-LNS 443.48±9.56 0.17±0.09 7.1±5.1 -2,119.04±11.98 0.19±0.16 11.3±4.2

CA SC
BnB -113,421±1,599 2.45±0.62 116.3±22.0 171.47±12.67 1.27±1.01 75.9±30.6
LB -111,113±1,835 4.43±0.81 233.3±22.3 171.54±12.85 1.30±0.98 102.4±28.5

RANDOM -109,253±1,697 6.03±1.02 181.9±26.2 174.15±12.94 2.78±1.30 99.8±35.3
GRAPH -108,169±1,834 6.96±1.06 216.2±27.8 186.12±14.24 9.00±2.23 258.1±58.1

LB-RELAX -114,268±1,512 1.72±0.57 125.3±13.6 170.98±12.38 1.00±0.88 54.8±25.6
IL-LNS -114,871±1,602 1.20±0.56 79.7±17.3 171.55±12.47 1.33±0.97 51.2±25.7
RL-LNS -108,776±1,813 6.44±1.04 191.7±27.0 171.35±12.29 1.22±0.85 67.5±22.6
CL-LNS -115,513±1,621 0.65±0.32 44.9±17.0 170.15±12.12 0.53±0.62 21.5±17.5

Table 8. Test results on small instances: Primal bound (PB), primal gap (PG) (in percent), primal integral (PI) at 60 minutes time cutoff,
averaged over 100 instances and their standard deviations.

PB PG (%) PI PB PG (%) PI
MVC-S MIS-S

BnB 448.63±9.58 1.32±0.43 66.1±13.1 -2,014.85±20.04 5.10±0.69 222.8±25.9
LB 453.45±11.81 2.35±1.30 102.2±35.9 -2,079.07±14.34 2.07±0.44 130.9±13.6

RANDOM 447.06±11.21 0.96±1.26 38.0±44.8 -2,117.92±11.31 0.24±0.14 22.1±5.0
GRAPH 447.14±10.83 0.98±1.20 42.9±44.0 -2,116.15±11.58 0.32±0.15 31.8±5.0

LB-RELAX 449.01±11.53 1.38±1.51 57.0±51.2 -2,109.17±11.17 0.65±0.20 46.9±6.5
IL-LNS 444.00±9.73 0.29±0.23 19.2±10.2 -2,118.38±11.77 0.22±0.17 19.4±5.8
RL-LNS 445.45±9.99 0.61±0.34 29.6±11.5 -2,118.44±11.36 0.22±0.14 17.2±5.2
CL-LNS 443.48±9.56 0.17±0.09 8.7±6.7 -2,119.78±12.14 0.15±0.15 12.8±5.4

CA-S SC-S
BnB -113,608±1,611 2.28±0.59 137.4±25.9 171.22±12.50 1.13±0.95 86.7±37.9
LB -111,342±1,732 4.23±0.75 272.1±26.9 171.39±12.81 1.22±0.97 113.7±35.2

RANDOM -109,397±1,684 5.90±1.02 235.6±34.9 173.95±12.98 2.67±1.29 124.3±45.4
GRAPH -108,422±1,775 6.74±1.03 277.7±36.5 185.57±14.17 8.74±2.13 337.8±76.4

LB-RELAX -114,348±1,516 1.65±0.57 140.5±18.3 170.74±12.35 0.86±0.83 63.2±31.6
IL-LNS -115,001±1,564 1.09±0.51 90.0±20.8 171.55±12.47 1.33±0.97 63.2±34.3
RL-LNS -108,920±1,816 6.32±1.03 249.2±35.9 171.14±12.30 1.10±0.77 77.8±28.9
CL-LNS -115,513±1,621 0.65±0.32 50.7±22.7 170.11±12.10 0.50±0.58 26.2±12.8

Table 9. Generalization results on large instances: Primal bound (PB), primal gap (PG) (in percent), primal integral (PI) at 15 minutes
time cutoff, averaged over 100 instances and their standard deviations.

PB PG (%) PI PB PG (%) PI
MVC MIS

BnB 919.96±12.38 4.06±0.38 36.8±3.4 -3,888.39±20.62 8.24±0.31 76.3±2.8
LB 907.06±12.46 2.69±0.36 32.7±3.2 -3,959.15±59.75 6.57±1.34 70.0±3.6

RANDOM 886.97±12.69 0.49±0.25 11.5±2.0 -4,215.32±15.86 0.52±0.12 12.4±1.0
GRAPH 888.28±12.61 0.64±0.26 18.0±2.3 -4,185.96±17.29 1.22±0.17 23.2±1.5

LB-RELAX 901.37±12.66 2.08±0.30 30.1±2.8 -4,148.06±19.51 2.11±0.20 33.2±1.8
IL-LNS 886.32±12.63 0.42±0.26 12.6±1.8 -4,203.74±16.80 0.80±0.17 14.8±1.7
RL-LNS 890.78±12.34 0.92±0.30 18.7±2.5 -4,215.17±15.97 0.53±0.14 11.5±1.2
CL-LNS 883.18±12.52 0.06±0.05 7.7±1.5 -4,220.96±15.68 0.39±0.14 6.8±1.5

CA SC
BnB -194,128±14,403 15.43±6.20 164.4±11.8 110.42±7.44 2.92±1.49 63.3±12.2
LB -203,872±4,522 11.18±1.72 149.9±8.6 117.36±8.84 8.58±2.85 89.3±19.3

RANDOM -215,183±2,670 6.26±0.74 75.8±6.0 112.91±7.72 5.04±2.03 59.9±16.8
GRAPH -210,157±2,697 8.44±0.85 108.8±6.9 116.28±7.84 7.81±1.86 89.2±19.6

LB-RELAX -222,638±4,846 3.01±1.78 102.5±12.3 109.66±7.24 2.25±1.51 36.2±13.3
IL-LNS -211,938±3,323 7.67±1.22 89.9±8.9 109.12±6.97 1.79±1.26 32.4±10.7
RL-LNS -216,788±2,730 5.56±0.85 58.1±6.9 109.38±6.89 2.03±1.08 83.6±8.8
CL-LNS -218,510±2,989 4.81±0.81 61.3±7.1 107.95±6.78 0.73±0.57 23.1±8.6

21

Searching Large Neighborhoods for ILPs with Contrastive Learning

Table 10. Generalization results on large instances: Primal bound (PB), primal gap (PG) (in percent), primal integral (PI) at 30 minutes
time cutoff, averaged over 100 instances and their standard deviations.

PB PG (%) PI PB PG (%) PI
MVC MIS

BnB 919.96±12.38 4.06±0.38 73.4±6.8 -3,888.39±20.62 8.24±0.31 150.5±5.6
LB 900.15±12.32 1.95±0.35 52.6±6.0 -4,009.23±71.94 5.39±1.59 123.1±15.1

RANDOM 886.39±12.71 0.43±0.25 15.6±3.9 -4,225.74±15.63 0.28±0.10 15.8±1.8
GRAPH 886.89±12.79 0.48±0.23 22.9±3.9 -4,206.29±16.76 0.74±0.16 31.6±2.7

LB-RELAX 887.64±12.21 0.57±0.23 39.4±4.4 -4,177.14±18.22 1.42±0.16 48.5±3.0
IL-LNS 885.58±12.65 0.33±0.26 15.9±4.0 -4,216.32±17.30 0.50±0.17 20.4±3.0
RL-LNS 888.89±12.64 0.71±0.30 25.8±4.8 -4,224.37±15.79 0.31±0.13 15.1±2.2
CL-LNS 883.07±12.61 0.05±0.04 8.1±2.1 -4,226.65±15.56 0.26±0.13 9.7±2.6

CA SC
BnB -216,772±13,060 5.58±5.42 257.1±56.4 109.39±7.26 2.02±1.36 84.4±22.2
LB -206,526±3,750 10.03±1.39 245.1±19.2 116.43±8.97 7.84±2.88 162.6±39.2

RANDOM -216,326±2,603 5.76±0.74 129.4±12.1 111.71±7.65 4.02±1.86 100.6±32.0
GRAPH -213,142±2,713 7.14±0.78 177.6±13.2 112.74±7.64 4.91±1.80 141.7±31.1

LB-RELAX -225,154±4,366 1.91±1.60 121.9±23.9 109.26±7.07 1.91±1.42 53.9±24.5
IL-LNS -214,495±3,148 6.56±1.01 154.0±17.9 109.04±6.94 1.72±1.19 48.1±21.3
RL-LNS -217,600±2,705 5.20±0.84 106.3±14.2 108.66±6.83 1.38±0.99 98.1±15.1
CL-LNS -223,257±2,667 2.74±0.71 95.0±12.5 107.78±6.64 0.58±0.45 28.6±12.6

Table 11. Generalization results on large instances: Primal bound (PB), primal gap (PG) (in percent), primal integral (PI) at 45 minutes
time cutoff, averaged over 100 instances and their standard deviations.

PB PG (%) PI PB PG (%) PI
MVC MIS

BnB 907.44±12.77 2.73±0.43 107.2±9.4 -3,913.03±46.93 7.66±1.06 222.6±9.1
LB 894.77±12.41 1.36±0.30 66.3±8.2 -4,063.18±54.80 4.11±1.18 165.2±25.7

RANDOM 886.15±12.71 0.40±0.24 19.2±5.9 -4,230.24±15.56 0.17±0.09 17.8±2.5
GRAPH 886.53±12.72 0.44±0.23 27.0±5.7 -4,215.85±16.16 0.51±0.16 37.1±3.9

LB-RELAX 887.00±12.32 0.49±0.23 44.1±5.8 -4,191.17±17.76 1.09±0.16 59.7±4.2
IL-LNS 885.23±12.65 0.29±0.24 18.7±6.0 -4,222.04±16.64 0.36±0.16 24.2±4.3
RL-LNS 888.25±12.70 0.63±0.31 31.8±7.2 -4,228.78±15.68 0.20±0.12 17.3±3.1
CL-LNS 883.07±12.61 0.05±0.04 8.6±2.7 -4,230.20±15.19 0.17±0.11 11.6±3.6

CA SC
BnB -221,424±7,149 3.54±2.83 293.0±71.3 109.02±7.39 1.67±1.38 100.7±32.1
LB -208,294±3,906 9.26±1.42 330.9±27.6 115.67±8.66 7.25±2.68 230.3±60.0

RANDOM -216,819±2,611 5.54±0.73 180.1±18.1 111.24±7.54 3.63±1.81 134.9±46.8
GRAPH -214,331±2,641 6.63±0.83 239.2±19.7 111.96±7.60 4.25±1.78 182.5±43.6

LB-RELAX -225,641±4,235 1.70±1.53 138.1±37.1 109.26±7.07 1.91±1.42 71.1±36.5
IL-LNS -216,705±3,062 5.59±0.97 208.7±25.7 109.04±6.94 1.72±1.19 63.6±31.8
RL-LNS -217,987±2,711 5.03±0.81 152.3±21.4 108.22±6.75 0.99±0.87 108.6±21.2
CL-LNS -227,235±2,698 1.01±0.54 111.7±16.6 107.78±6.64 0.58±0.45 33.9±17.6

Table 12. Generalization results on large instances: Primal bound (PB), primal gap (PG) (in percent) and primal integral (PI) at 60 minutes
time cutoff, averaged over 100 instances and their standard deviations.

PB PG (%) PI PB PG (%) PI
MVC-L MIS-L

BnB 904.41±12.95 2.41±0.40 130.2±11.1 -3,970.78±71.54 6.29±1.62 285.1±18.2
LB 893.56±12.62 1.22±0.30 77.8±10.1 -4,079.76±43.09 3.72±0.87 200.7±32.5

RANDOM 886.00±12.74 0.38±0.24 22.7±8.0 -4,232.68±15.42 0.11±0.08 19.0±3.1
GRAPH 886.34±12.67 0.42±0.23 30.9±7.6 -4,220.89±16.42 0.39±0.15 41.1±5.1

LB-RELAX 886.68±12.33 0.46±0.23 48.4±7.5 -4,199.04±17.54 0.91±0.16 68.6±5.5
IL-LNS 885.00±12.56 0.27±0.23 21.2±8.1 -4,225.28±16.25 0.29±0.15 27.1±5.5
RL-LNS 887.90±12.67 0.59±0.30 37.3±9.6 -4,231.52±15.97 0.14±0.12 18.9±4.1
CL-LNS 883.07±12.61 0.05±0.04 9.1±3.4 -4,232.50±14.86 0.12±0.11 12.9±4.4

CA-L SC-L
BnB -223,225±5,106 2.74±1.87 320.9±83.1 108.87±7.35 1.54±1.33 115.0±42.5
LB -208,500±3,976 9.17±1.43 414.0±36.9 115.12±8.77 6.80±2.73 293.5±79.7

RANDOM -217,204±2,612 5.37±0.75 229.2±24.4 110.88±7.55 3.31±1.79 166.4±61.3
GRAPH -214,926±2,649 6.37±0.86 297.5±26.9 111.49±7.51 3.85±1.74 218.9±56.7

LB-RELAX -225,848±4,201 1.61±1.50 153.0±50.3 109.26±7.07 1.91±1.42 88.3±48.9
IL-LNS -219,074±3,278 4.56±0.98 254.2±33.4 109.04±6.94 1.72±1.19 79.1±42.4
RL-LNS -218,273±2,725 4.91±0.81 197.0±28.5 107.87±6.74 0.66±0.72 116.2±27.1
CL-LNS -229,331±2,800 0.09±0.10 116.1±18.0 107.78±6.64 0.58±0.45 39.2±23.2

22

