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Abstract

We study the power of uniform sampling for
k-MEDIAN in various metric spaces. We re-
late the query complexity for approximating k-
MEDIAN, to a key parameter of the dataset,
called the balancedness β ∈ (0, 1] (with 1 be-
ing perfectly balanced). We show that any al-
gorithm must make Ω(1/β) queries to the point
set in order to achieve O(1)-approximation for
k-MEDIAN. This particularly implies existing
constructions of coresets, a popular data reduc-
tion technique, cannot be query-efficient. On the
other hand, we show a simple uniform sample
of poly(kε−1β−1) points suffices for (1 + ε)-
approximation for k-MEDIAN for various metric
spaces, which nearly matches the lower bound.
We conduct experiments to verify that in many
real datasets, the balancedness parameter is usu-
ally well bounded, and that the uniform sam-
pling performs consistently well even for the case
with moderately large balancedness, which justi-
fies that uniform sampling is indeed a viable ap-
proach for solving k-MEDIAN.

1. Introduction
We investigate the power of uniform sampling in data re-
duction for k-MEDIAN, which is a fundamental machine
learning problem that has wide applications. Given a met-
ric space (X ,dist), k-MEDIAN takes an n-point dataset
X ⊆ X and an integer parameter k ≥ 1 as inputs, and the
goal is to find a k-point center set C ⊆ X that minimizes
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the objective

cost(X,C) :=
∑
x∈X

dist(x,C),

where dist(x,C) := minc∈C dist(x, c) is the distance to
the closest center.

Data reduction is a powerful way for dealing with cluster-
ing problems, and a popular method called coreset (Har-
Peled & Mazumdar, 2004) has been extensively studied
during the last decades. Roughly, an ε-coreset aims to
find a tiny but accurate proxy of the data, so that an ε-
approximate center set C can be found by running ex-
isting algorithms on top of it. Specifically, coresets for
k-MEDIAN in Euclidean Rd has been studied in a series
of works (Har-Peled & Mazumdar, 2004; Har-Peled &
Kushal, 2007; Chen, 2009; Feldman & Langberg, 2011;
Feldman et al., 2020; Sohler & Woodruff, 2018; Huang
& Vishnoi, 2020; Braverman et al., 2021b; Cohen-Addad
et al., 2021b; Braverman et al., 2022), and coresets of size
poly(kε−1) were obtained, which is independent of the di-
mension d and the data size. In addition to speeding up
existing algorithms, coresets can also be used to derive al-
gorithms in sublinear modesl such as streaming (Har-Peled
& Mazumdar, 2004), distributed (Balcan et al., 2013) and
dynamic algorithms (Henzinger & Kale, 2020).

Despite the progress on the size bounds, an outstanding
issue of coresets is that known coreset constructions are
usually not query-efficient, i.e., it needs to access Ω(n)
data points (even in sublinear models such as streaming).
In fact, it is not hard to see that this limitation cannot be
avoided, and in the worst case, any algorithm must make
Ω(n) queries to the identity of data points in order to con-
struct a coreset (see Theorem 1.2 which we discuss later).
Technically, existing coreset constructions are often based
on non-uniform sampling which is not data-oblivious, and
this inherently requires to read the entire dataset. This also
makes it more difficult to efficiently implement in practice
due to the sophisticated sampling procedure. Hence, in or-
der to achieve a sublinear query complexity, one must con-
sider other methods than the coreset.

To this end, we consider uniform sampling as a natural al-
ternative data reduction approach for clustering. Clearly,
uniform sampling is data-oblivious and hence has a great
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potential to achieve sublinear query complexity. Moreover,
it often yields near-optimal solutions with only a few sam-
ples in practice, as was demonstrated by various experi-
ments on real datasets in recent works on coresets for vari-
ants of clustering where uniform sampling is considered
as a baseline (e.g., Marom & Feldman 2019; Jubran et al.
2020; Baker et al. 2020; Braverman et al. 2021a; Huang
et al. 2023; Lu et al. 2023), even though it is known that
uniform sampling cannot yield a coreset in the worst case.

Thus, the focus of this paper is to understand the sampling
complexity of uniform sampling for k-MEDIAN and to jus-
tify its performance in practice.

1.1. Our Results

We first give a hardness result (Theorem 1.2) that even
for k = 2 and 1D line, any algorithm, not only the uni-
form sampling, must make Ω(n) queries to the identity of
points (which is the coordinate in 1D), in order to be O(1)-
approximate to k-MEDIAN. In addition, Theorem 1.2 fur-
ther states that the number of queries must depend on a
parameter β ∈ (0, 1], called balancedness (Definition 1.1),
which is a property of the dataset. Intuitively, β measures
how balance the optimal solution is, and precisely, it re-
quires the size of the smallest cluster in an optimal solution
is at least β times of the average cluster size |X|k .

Definition 1.1 (Balancedness). Given a dataset X ⊆ X ,
the balancedness β ∈ (0, 1] of X is the largest number
such that there is an optimal solution of k-MEDIAN on X
satisfying that every cluster1 has at least β|X|k points.

The same notion of balancedness was considered in Mey-
erson et al. (2004) which also studied the complexity of
uniform sampling for k-MEDIAN but achieved a weaker
bound (which we will discuss later). This balanced-
ness was also enforced as a constraint to clustering prob-
lems (Bradley et al., 2000), and more generally in capac-
itated clustering (Charikar et al., 2002) and fair cluster-
ing (Chierichetti et al., 2017). A similar idea of introducing
the "balancedness" has been investigated in the context of
coresets for logistic problems (Mai et al., 2021; Munteanu
et al., 2021; 2022; Lu et al., 2023; Munteanu et al., 2023;
Woodruff & Yasuda, 2023). However, due to the substan-
tial differences between logistic regression and clustering,
their findings can not be directly applied in clustering prob-
lem.

Theorem 1.2. Any O(1)-approximate algorithm for 2-
MEDIAN with success probability at least 3/4 must query
the identify of data points in X for Ω(1/β) times, where β
is the balancedness of the dataset X , even if the queried
points have free access to the distance function.

1For a center set C = {ci}ki=1, each ci defines a cluster Xi ⊆
X that consists of points whose nearest neighbor in C is ci.

Intuitively, the hard instance in Theorem 1.2 has two clus-
ters, one has only one point and the other has many points
with a small diameter, and the two clusters are very far
away. Then the uniform sampling fails to pick any point
from singleton cluster with high probability, which incurs
a big error. The detailed proof can be found in Appendix E.

Theorem 1.2 suggests that the balancedness β of the dataset
may be a fundamental parameter that determines the neces-
sary size of uniform sampling. In our main result, stated in
Theorem 1.3, we give a nearly-matching upper bound (with
respect to β) for k-MEDIAN in Euclidean Rd, which helps
to justify this parameter is indeed fundamental. This bound
breaks the Ω(n) query complexity barrier of coresets, and
it readily yields sublinear-time algorithms for k-MEDIAN.
The theorem may also be interpreted as beyond worst case
analysis for uniform sampling, where the parameter β pro-
vides a refined description to the structure of the dataset.
Theorem 1.3 (Informal version of Theorem 3.1). Given a
dataset X ⊂ Rd with balancedness β ∈ (0, 1], ε ∈ (0, 0.5)

and integer k ≥ 1, let S be Õ( k
2

βε3 ) uniform samples2

from X , then with probability 0.9, one can find a (1 + ε)-
approximation for k-MEDIAN on X only using S.

As mentioned, the dependence of β in Theorem 1.3 is
nearly optimal. Furthermore, the dependence of k and
ε−1 is only low-degree polynomial, and it also matches the
known coreset size bounds. Another feature of our bound
is that it does not have a dependence in the Euclidean di-
mension d, thus it is very useful for dealing with high di-
mensional and/or sparse datasets.

In addition to the Euclidean case, we show a more gen-
eral version (Theorem 3.1) that relates the sampling com-
plexity to a notion of covering number (Definition 3.5)
which measures the complexity of the underlying met-
ric space (X ,dist). By bounding the mentioned covering
number (see Section 3.4), we also obtain similar bounds
of poly(kε−1β−1) for various other metric spaces such as
doubling metrics and shortest-path metrics of graphs with
bounded treewidth. For general finite metric spaces, we
obtain a bound of poly(kε−1β−1 log |X |).

Compared with the notion of coreset (Har-Peled & Mazum-
dar, 2004), the uniform sample S may be interpreted as a
coreset in a weaker sense. Specifically, coresets usually
require the clustering cost be preserved for all center sets
C ⊆ X , while in Theorem 1.3 we only guarantee the cost
on some specific solutions, yet we still ensure that it suf-
fices for finding good approximation efficiently by running
algorithms on S. Another important difference is that for
coresets, the size does not need to have a dependence in β
which we have, but as mentioned earlier, this size bound
of coreset cannot be realized by query-efficient algorithms,

2Throughout, Õ(f) = O(f poly log f).
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which the uniform sampling does.

Indeed, similar idea of using uniform sampling was pre-
viously studied in the literature, but the focus was mostly
on the Euclidean case, and our bounds for doubling metrics
and graph metrics are new. Even for Euclidean spaces, only
the special case of k = 1 was studied, and previous bounds
either depend on d (Munteanu & Schwiegelshohn, 2018)
or have a worse ε−4 dependence than our ε−3 (Cohen-
Addad et al., 2021a; Danos, 2021) (noting that β = 1 if
k = 1). For general metrics, Meyerson et al. (2004) gave
a very similar size bound as in ours (which also depends
on β−1), but it only achieves O(1) error instead of our
ε. Somewhat less related, Mishra et al. (2001); Ben-David
(2007); Czumaj & Sohler (2007) gave uniform sampling
bounds for the additive error guarantee, which is incom-
parable to ours. Recently, Braverman et al. (2022) pro-
poses a coreset construction algorithm based on uniform
sampling. However, it should be noted that their overall
sampling distribution is actually non-uniform. Specifically,
they partition the dataset into multiple parts and only apply
uniform sampling in each part. As a result, their approach
is not query-efficient. In contrast, our approach focuses on
a "weaker" coreset and relies solely on uniform sampling,
thereby achieving sublinear query complexity.

Finally, even though Theorem 1.3 implies a small uniform
sample S suffices for a sublinear-time algorithm for k-
MEDIAN, to actually find the near-optimal solution on the
sample S can be tricky. A natural idea is to find the optimal
k-MEDIAN on S as the approximate solution forX , but we
show that this does not work, even when the dataset is bal-
anced. In particular, if one uses the optimal k-MEDIAN on
S as the approximate solution, then it still requires Ω(n)
samples even for a balanced dataset (see Lemma F.1).

This motivates us to consider a variant of k-MEDIAN,
called (k, β)-MEDIAN, which aims to find the optimal cen-
ter set C subject to the constraint that C is β-balanced
(i.e., every cluster induced by C has size at least β |X|k ;
see Definition 2.1). The balancedness constraint in (k, β)-
MEDIAN is intuitive, since if the dataset is already bal-
anced, then by definition there must be a balanced opti-
mal solution, which (k, β)-MEDIAN can find. We show in
Theorem 3.1 (i.e., the full statement of Theorem 1.3) that
an α-approximate (k, β)-MEDIAN on S is O(α(1 + ε))-
approximate k-MEDIAN on X with constant probability.

Experiments Our experiments focus on validating the
performance of running an algorithm for k-MEDIAN (in-
stead of (k, β)-MEDIAN) on top of the uniform S, since
it is arguably the most natural approach and is likely to be
used in practice. Our experiments were conducted on vari-
ous real datasets of different types of metric spaces includ-
ing Euclidean Rd and shortest-path metrics. We find that

the solution returned by the k-MEDIAN algorithm is fairly
balanced, which effectively enforces the balancedness con-
straint of (k, β)-MEDIAN. Moreover, we find that these
datasets are mostly balanced, especially when the number
of clusters k is small. Even when k is relatively large and
the balancedness becomes worse, the factor of 1/β in our
upper bound is still reasonably bounded (~100), and we
also observe that the practical performance is not signifi-
cantly worse than that of the small-k case, if at all. All
these findings, together with our Theorem 1.3, justifies the
effectiveness of uniform sampling in real datasets.

1.2. Technical Overview

Our proof of Theorem 1.3 builds on a structural lemma
(Lemma 3.7), which states that if a center set C is “bad”,
i.e., its cost is larger than (1 + ε) OPT, then this badness
carries on to the sample. Specifically, let C? be the optimal
center set, if a center set C satisfies cost(X,C) ≥ (1 +
ε) cost(X,C?), then we have cost(S,C)− cost(S,C?) ≥
O(ε)|S|

n cost(X,C?) with probability 1 − exp(−O(|S|))
(the big O hides dependence in other parameters such as
k and ε). Intuitively, conditioning on this event, one can
conclude that any “good” center found in S is also good in
X , which implies the main theorem.

The special case k = 1 of the structural lemma was
proved in Munteanu & Schwiegelshohn (2018), but the
analysis does not seem to generalize our case k ≥ 2.
Specifically, to bound cost(S,C) − cost(S,C?), it suf-
fices to bound dist(x,C) − dist(x,C?) for x ∈ S, and
in Munteanu & Schwiegelshohn (2018) they can use tri-
angle inequality dist(x,C) − dist(x,C?) ≤ dist(C,C?)
since |C| = |C?| = 1, and the remaining analysis is
on dist(C,C?) which does not depend on the variable
x. However, when k ≥ 2 such a triangle inequality
no longer holds, and this forces us to use an alternative
bound dist(x,C) − dist(x,C?) ≤ maxc∈C dist(c, C?) +
maxc?∈C? dist(c?, C). To analyze this, we crucially use a
new observation of balancedness: if C is a balanced center
set, then C and C? must be “close” which depends on 1/β
(see Definition 3.3 and Lemma 3.4). This implies that both
maxc∈C dist(c, C?) and maxc?∈C? dist(c?, C) are small
enough, and this bound eventually allows us to apply a con-
centration inequality to bound cost(S,C) − cost(S,C?).
Indeed, the use of balancedness is a fundamental difference
to Munteanu & Schwiegelshohn (2018).

Once the structural lemma is established, a natural next step
is to apply it with a union bound on all centers that are close
to C∗. While these centers can still be infinitely many, one
can apply standard discretization techniques, such as ρ-nets
in Rd, to reduce the number of events in the union bound.
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Removing Dependence on d However, for Euclidean
Rd, a naive application of the net argument only leads to
a size bound that depends on d. To remove the depen-
dence on d for the Euclidean case, we need a better union
bound. To this end, we use an alternative interpretation of
the structural lemma. In particular, we change the “vari-
able” in the lemma from the center set C to a vector vC :=
(dist(x,C)− dist(x,C?))x∈X ∈ RX which represents all
the relevant costs that C induce. Then the structural lemma
is equivalently stated as: if some v ∈ RX satisfies ‖v‖1 ≥
ε · cost(X,C?), then ‖v|S‖1 ≥ O(ε)|S|

n cost(X,C?) with
high probability, where v|S means restricting v to the uni-
form sample S. Now, we try to apply the union bound on
a discretization of the cost vectors {vC}C , instead of the
space of all center points C.

Specifically, for a fixed sample S, we need to find a dis-
cretized set U such that for every v, U contains a vector
v′ with ‖v|S‖1 ≈ ‖v′|S‖1 (recalling that we do not need
to preserve ‖v‖1). Note that this U needs not be a subset
of {vC}C . In other words, a vector u ∈ U may not cor-
respond to a center set C ⊂ X , and they can be any real
vector in RX . This turns out to be great freedom compared
with discretization of center sets. Indeed, for Euclidean Rd,
to preserve ‖v|S‖, we can map S ∪ C? into a low dimen-
sional space of dimension d′ := O(log(|S ∪ C?|)/ε2) us-
ing a terminal version of the Johnson-Lindenstrauss trans-
form Narayanan & Nelson 2019, and discretize only in this
lower dimensional space. This removes the dependence in
d and replaces it with d′. In addition, we use a chaining
argument (Talagrand, 1996) which was also used in several
recent works about coresets (Cohen-Addad et al., 2021a;
2022a; Huang et al., 2022), to further save an ε−1 factor
and obtain ε−3 dependence in the final bound. Compared
with a closely related work Cohen-Addad et al. (2021a),
our chaining argument is applied on the entire X , while
theirs is applied on O(ε−2) pieces of X separately which
results in an addition ε−1 factor more than ours. Finally, we
note that it may cause randomness issues since we assumed
fixed sample S before finding U . Luckily, we manage to fix
this by relating it with a Gaussian process.

Beyond Euclidean Spaces In fact, the above argument
is useful not only for removing the dependence on d for
Euclidean spaces, but also for obtaining bounds for other
metric spaces. We show it suffices to bound the size of U
in order to obtain a bound for uniform sampling. We for-
mulate this minimum size of U as the covering number (see
Definition 3.5), and we derive covering number bounds for
several types of metric spaces. Previously, A similar notion
of covering number as well as its use to bound the coreset
size was also considered in the coreset literature (Cohen-
Addad et al., 2022a; Huang et al., 2022). We give a more
detailed comparison in Section 3.2.

1.3. Related Work

Stemming from Har-Peled & Mazumdar (2004), the study
of size bounds for coresets has been very fruitful. For
k-MEDIAN in Euclidean Rd, a series of works im-
proves the size from O(poly(k)ε−d log n) all the way
to poly(kε−1) (Har-Peled & Mazumdar, 2004; Har-Peled
& Kushal, 2007; Chen, 2009; Feldman & Langberg,
2011; Feldman et al., 2020; Sohler & Woodruff, 2018;
Cohen-Addad et al., 2021a; 2022a). Recent works fo-
cus on deriving tight bounds for k and ε−1. The
state-of-the-art coresets for k-MEDIAN in Rd achieves
a size of Õ(min{kε−3, k

4
3 ε−2}) (Cohen-Addad et al.,

2022a; Huang et al., 2022), which nearly matches a lower
bound of Ω(kε−2) (Huang & Vishnoi, 2020; Cohen-Addad
et al., 2022a). Beyond Euclidean spaces, coresets for
k-MEDIAN were obtained in doubling metrics (Huang
et al., 2018), shortest-path metrics of graphs with bounded
treewidth (Baker et al., 2020) and graphs that exclude a
fixed minor (Braverman et al., 2021b). In addition, coresets
for variants of clustering have also been studied, notably
capacitated clustering and the highly related fair cluster-
ing (Schmidt et al., 2019; Huang et al., 2019; Bandyapad-
hyay et al., 2021; Braverman et al., 2022), and robust clus-
tering (Feldman & Schulman, 2012; Huang et al., 2023).

2. Preliminaries
We define (k, β)-MEDIAN problem in Definition 2.2 which
depends on the notion of balanced center sets (Defini-
tion 2.1). The notion of weak coreset (Definition 2.3) cap-
tures the main guarantee of Theorem 3.1.
Definition 2.1 (Balanced Center Set). Given a datasetX ⊆
X , an integer k ≥ 1 and β ∈ (0, 1), we say a center set
C ⊆ X is β-balanced if for every cluster Xi (i ∈ [k])
induced by C contains at least β|X|/k points. Let Cβ(X)
denote the collection of all β-balanced center sets on X .

Recall that if the balancedness ofX is β, there exists an op-
timal solution of k-MEDIAN onX that is β-balanced. Then
we naturally define the following (k, β)-MEDIAN problem
that aims to find optimal solutions within Cβ(X).
Definition 2.2 ((k, β)-MEDIAN). Given a dataset X ⊆ X ,
an integer k ≥ 1 and β ∈ (0, 1], the goal of the (k, β)-
MEDIAN problem is to find a k-point set C ∈ Cβ(X) that
minimizes cost(X,C). Let OPTβ(X) := cost(X,C?)
where C? is an optimal solution for (k, β)-MEDIAN on X .

Again, if the balancedness of X is β, solving (k, β)-
MEDIAN also solves k-MEDIAN and OPTβ(X) equals the
optimal k-MEDIAN cost on X . A similar notion of (k, β)-
MEDIAN also appears in the literature, e.g., Bradley et al.
(2000); Malinen & Fränti (2014); Costa et al. (2017); Lin
et al. (2019); Ding (2020). The main difference is that
they allow points being assigned to a non-closest center for
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achieving a balanced dataset partition, and hence, consider
all possible k points sets instead of Cβ(X).

Definition 2.3 (Weak Coreset for (k, β)-MEDIAN). Given
a dataset X ⊆ X , an integer k ≥ 1 and β, ε ∈ (0, 1],
an ε-weak coreset for (k, β)-MEDIAN on X is a subset
S ⊆ X such that for every k-point set C ∈ Cβ/2(S)
with

∑
x∈S dist(x,C) ≤ (1 + ε) OPTβ/2(S), it holds that∑

x∈X dist(x,C) ≤ (1 +O(ε)) OPTβ(X).

Intuitively, the above definition requires that any near-
optimal solution for (k, β/2)-MEDIAN on a weak coreset S
is a near-optimal solution for (k, β)-MEDIAN on X . Con-
sequently, solving (k, β/2)-MEDIAN on S leads to a near-
optimal solution for k-MEDIAN on X if the balancedness
of X is β. The points are unweighted in our weak coreset,
as opposed to the weighted points considered in (strong)
coresets (Har-Peled & Mazumdar, 2004). This is natural
since we consider uniform sampling.

Note that an optimal solution C? for (k, β)-MEDIAN on
X may not be β-balanced on S due to the small size of S,
and hence, we consider a relaxed balancedness β/2 instead
of β for S such that the considered collection Cβ/2(S) is
likely to include C?.

It is noteworthy that existing literature usually defines a
weak coreset as one that preserves the cost for all near-
optimal solutions, and thus allows any algorithms to run on
it. In contrast, the weak coreset we define in Definition 2.3
requires a (k, β/2)-MEDIAN algorithm. Nonetheless, as
stated in Section 1.1, this relaxation is necessary, provided
that only uniform sampling is used and we have excluded
the possibility of a set of o(n) uniform samples even pre-
serving the cost for the optimal solution. (see Lemma F.1).

3. Uniform Sampling Yields Weak Coreset
Theorem 3.1 (Main Theorem). Let (X ,dist) be a metric
space and X ⊆ X be a dataset. Given an integer k ≥ 1
and real numbers β ∈ (0, 1], ε ∈ (0, 0.5), let integer m
satisfy that

m ≥ O

 k

βε2

log ε−1∑
i=1

√
2−i logN2−i

X (m)

2
 (1)

where Nα
X(m) is the covering number defined in Defini-

tion 3.5. Then, a set S of m uniform samples from X is an
ε-weak coreset for (k, β)-MEDIAN on X with probability
at least 0.9.

The factor
∑log ε−1

i=1

√
2−i logN2−i

X (m) plays a similar
role as the entropy integral (or Dudley integral) that are
commonly used in the chaining argument (see e.g., Corol-
lary 5.25 of van Handel 2016). A more concise sufficient

condition for (1) is

m ≥ O
(

k

βε2
· logNε

X(m)

)
(2)

which is derived directly by the monotonicity of the cover-
ing number, i.e., N2−i

X (m) ≤ Nε
X(m) for all i ≤ log ε−1.

However, we still need to use (1) in order to obtain bet-
ter sample complexity, especially for Euclidean spaces. We
give bounds for this term for various metrics in Section 3.4.

Proof Overview To utilize the balancedness, we consider
candidate center sets C′(X) (Definition 3.3) as a collection
of center sets C that are “close” to C?. We show that any
near-optimal center set for (k, β/2)-Median on S is likely
to be a candidate (Lemma 3.4). Then it suffices to show
that all center sets C ∈ C′(X) with cost(X,C) ≥ (1 +
O(ε)) OPTβ(X), denoted as Cbad(X), are likely to have a
large cost on S, i.e., cost(S,C) > (1 + ε) OPTβ/2(S). In
other words, we need a uniform convergence guarantee on
Cbad(X). To this end, we need to bound the “complexity”
of Cbad(X), by considering the notion of covering, which
may be viewed as a set of representatives, and the cover-
ing number which measures the complexity of the covering
(Definition 3.5). In the last steps of the proof (Section 3.3),
we reduce the above requirement for Cbad(X) to a Gaus-
sian process and applies a chaining argument based on the
covering.

3.1. Good Event and Candidate Center Sets

We first introduce some useful notations. Let λ > 1000 be
a constant throughout this section. For a center set C ⊆ X
and x ∈ X , denote by C(x) = arg minc∈C dist(c, x) the
closest center in C to x (breaking ties arbitrarily). Let C?

denote an optimal center set of X for (k, β)-MEDIAN. For
a subset A ⊆ X , and real numbers η ∈ (0, 1), α > 0,
denote by F (α)

η (A) := {C ∈ X k : cost(A,C) ≤
(1 + α) OPTη(A)} the collection of all k-points whose

cost is at most (1 + α) OPTη(A) and let F (α)

η (A) =

X k \ F (α)
η (A). By definition, CS := Cβ/2(S) ∩ F (ε)

β/2(S)

is the collection of all (1 + ε)-approximate k-point set for
(k, β/2)-MEDIAN on S, and thus we know that S is an ε-
coreset weak coreset for (k, β)-MEDIAN on X if and only
if

CS ∩F
(O(ε))

β (X) = ∅. (3)

Let P? = {X?
1 , ..., X

?
k} be the partition of X induced by

C?. We denote by ξS the event that

1

m
cost(S,C?) ≤ λ · 1

n
OPTβ(X)

∧ ∀i ∈ [k],
|S ∩X?

i |
|S|

∈ (1± 1

2
)
|X?

i |
|X|

,
(4)
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where the first condition requires that the average k-
MEDIAN cost of S to C? is not too large compared to that
of X , and the second condition requires that the ratio of
sampled points in every cluster X?

i is close to the underly-
ing one. The following lemma claims that ξS happens with
high probability, and hence, we can condition on ξS in the
analysis. The proof can be found in Appendix A.1.

Lemma 3.2. ξS happens with probability at least 0.99.

Definition 3.3 (Candidate Center Sets). We say a k-point
set C ⊆ X is a candidate center set if we have

1

n

∑
x∈X

dist(C?(x), C) ≤ 6λ

n
OPTβ(X), (5)

and for every x ∈ X ,

|dist(x,C)− dist(x,C?)| ≤ 6λk

βn
OPTβ(X). (6)

Let C′(X) := {C ⊆ X : |C| = k,C satisfies (5),(6)}
denote the collection of all candidate center sets on X .

Intuitively, a candidate center set C is “close” to C?. (5)
means that the average distance from every C?(x) to C
is not too large, and (6) states that all distance differences
|dist(x,C)− dist(x,C?)| are small. We note that the def-
inition of candidate center sets is independent of S, which
is useful for the probability analysis on S.

The following lemma states that all (1 + ε)-approximate
center sets for (k, β/2)-MEDIAN on S are candidate cen-
ter sets conditioning on ξS . Recall that we want to
prove (3), hence by Lemma 3.4, it remains to prove
CS ∩

(
C′(X) ∩ F (O(ε))

β (X)
)

= ∅, which is easier to han-

dle due to good properties of C′(X).

Lemma 3.4. CS ⊆ C′(X) holds conditioning on ξS .

3.2. Covering and Covering Number

The notion of covering and covering number, defined in
Definition 3.5, plays a crucial role in our analysis. We start
with giving the definition, and then discuss how the several
relevant parameters are chosen for our application.

Definition 3.5 (Covering and Covering Number). Given
a dataset X ⊆ X and a subset S ⊆ X , a set of vectors
V ⊂ RX , an error function err : X × V → R and real
numbers α, γ > 0, we say U ⊂ RX is a γ-bounded α-
covering of V w.r.t. (S, err) if the following holds:

1. (Bounded Covering Error) for every v ∈ V , there ex-
ists a vector u ∈ U such that

∀x ∈ S, |vx − ux| ≤ α · err(x, v)

2. (Bounded L∞ Norm) for every u ∈ U , ‖u‖∞ ≤ γ.

Define Nα,γ(S, V, err) to be the minimum cardinality |U |
of any γ-bounded α-covering U of V w.r.t. (S, err). More-
over, let S ⊆ 2X be a collection of subsets and define the
γ-bounded α-covering number of V w.r.t. (S, err) to be

Nα,γ
X (S, V, err) := max

S∈S
Nα,γ(S, V, err)

Explanation of Definition 3.5 The idea of ε-covering
has also been used in the coreset literature, e.g., Cohen-
Addad et al. (2022a;b); Huang et al. (2022). Intuitively, the
covering may be viewed as a discretization/representative
of V , and the covering number measures its complexity.
The parameter α together with the error function err con-
trols the granularity of the discretization of V , and the
covering number Nα,γ(S, V, err) increases as α becomes
larger. The relative errors err(x, v) should often be tailored
to the application (e.g., Cohen-Addad et al. 2022a;b; Huang
et al. 2022) and we need to use a specific definition of it.
Compared with a standard definition of covering, we addi-
tionally require ‖u‖∞ for all u ∈ U bounded (by parameter
γ). This requirement is useful for bounding the variance of
a Gaussian process in our analysis, which plays a similar
role as excluding huge subsets as in the definition of cover-
ing in Huang et al. (2022) (their Definition 3.2). A natural
choice of S is the collection of all S ⊆ X with a fixed car-
dinality but in our case we need additional constraints on S
to bound the overall covering errors.

Specifying V , γ, err and S For a center set C ⊆ X ,
define vC ∈ RX to be a cost vector such that

∀x ∈ X, vCx = dist(x,C)− dist(x,C?),

and this is motivated by (6) which considers the difference
of the distances. Since our proof is focusing on C′(X), we
consider the following V on candidate center sets:

V = {vC : C ∈ C′(X)}.

As (6) implies ‖vC‖∞ ≤ 6λk
βn OPTβ(X), we select

γ =
12λk

βn
OPTβ(X).

Now we define function err : X × V → R. For every
x ∈ X and vC ∈ V ,

err(x, vC)

= vCx + 2 dist(x,C?) +
1

n
OPTβ(X)

= dist(x,C) + dist(x,C?) +
1

n
OPTβ(X).

The term 1
n OPTβ(X) is consistent with the selection of

γ. The term dist(x,C) + dist(x,C?) is mainly designed

6
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for obtaining a dimension-independent covering number in
Euclidean spaces; see Lemma D.2 for details.

Finally, we specify S with an additional restriction ξS .

S(m) = {S ⊆ X : |S| ≤ m, ξS}.

We shorten the notation of the covering number by

Nα
X(m) := Nα,γ

X (S(m), V, err) ,

and call it the α-covering number. We have the following
lemma showing that ξS leads to a bound of the total cover-
ing error, which is helpful for bounding the variance of our
Gaussian process. The proof can be found in Appendix B.

Lemma 3.6 (ξS Implies Bounded Covering Error). For S
such that ξS happens, we have for every C ∈ C′(X),

∑
x∈S

err(x, vC) ≤ 15λm

n
OPTβ(X).

3.3. Proof of Main Theorem: Theorem 3.1

Omitted proofs can be found in Appendix C. Conditioning
on ξS , for every C ∈ CS , it holds that∑

x∈S
dist(x,C) ≤ (1 + ε)

∑
x∈S

dist(x,C?)

≤
∑
x∈S

dist(x,C?) +
λεm

n
OPTβ(X),

(7)

where the second inequality is due to (4). Let

Cbad(X) := C′(X) ∩ F (10λ2ε)

β (X)

denote the collection of all candidate solutions C which
are bad on X , i.e., cost(X,C) ≥ (1 + 10λ2ε) OPTβ(X).
To show S is an ε-weak coreset, let φS denotes the event
that for every C ∈ Cbad(X), (7) is far from being sat-
isfied, that is,

∑
x∈S dist(x,C) ≥

∑
x∈S dist(x,C?) +

λ2εm
n OPTβ(X). Then it suffices to bound the following

probability

Pr
S

[CS ∩F
(10λ2ε)

β (X) 6= ∅]

= Pr
S

[CS ∩F
(10λ2ε)

β (X) 6= ∅ ∧ φS ]

+ Pr
S

[CS ∩F
(10λ2ε)

β (X) 6= ∅ ∧ ¬φS ]

≤ Pr
S

[CS ∩F
(10λ2ε)

β (X) 6= ∅ ∧ φS ] + Pr
S

[¬φS ].

For the first term, we have

Pr
S

[CS ∩F
(10λ2ε)

β (X) 6= ∅ ∧ φS ]

= Pr
S

[CS ∩F
(10λ2ε)

β (X) 6= ∅ ∧ φS | ξS ] Pr[ξS ]

+ Pr
S

[CS ∩F
(10λ2ε)

β (X) 6= ∅ ∧ φS | ¬ξS ] Pr
S

[¬ξS ]

≤ Pr
S

[CS ∩F
(10λ2ε)

β (X) 6= ∅ ∧ φS | ξS ] + Pr
S

[¬ξS ]

By the discussion above, conditioning on ξS , it holds that

CS ⊆ C′(X). So CS ∩F̄
(10λ2ε)
0 (X) 6= ∅ is equivalent to

CS ∩Cbad(X) 6= ∅, which implies that there exists C ∈
Cbad(X) such that (7) holds. We know this contradicts φS .
Therefore, we have

Pr
S

[CS ∩F
(10λ2ε)

β (X) 6= ∅ ∧ φS | ξS ] = 0,

and thus

Pr
S

[CS ∩F
(10λ2ε)

β (X) 6= ∅ ∧ φS ] ≤ Pr
S

[¬ξS ] ≤ 0.01,

where the second inequality follows from Lemma 3.2.

It remains to bound PrS [¬φS ] ≤ 0.09. Recall that
for any C ∈ Cbad(X), ‖vC‖1 =

∑
x∈X(dist(x,C) −

dist(x,C?)) ≥ 10λ2εOPTβ(X). Pr[¬φS ] can be re-
garded as a uniformly convergence guarantee for all vC ∈
V and, let µ := εm

n OPTβ(X), it is equivalent to bound

Pr
S

[
inf

C∈Cbad(X)

∑
x∈S

vCx ≤ λ2µ

]
≤ 0.09 (8)

To bound (8), our plan is to set up a Gaussian process and
apply the chaining argument. The following lemma pro-
vides a convergence guarantee for a single C.

Lemma 3.7. For any C ∈ Cbad(X), the following holds:
PrS

[∑
x∈S v

C
x ≤ 5λ2µ

]
≤ 2 exp

(
−Θ

(
ε2βm/k

))
.

By Lemma 3.7, it remains to bound the “complexity” of
Cbad(X). To this end, we reduce to a Gaussian process
where we only need to consider the complexity of cover-
ings with respect to the sample set S. This idea is formal-
ized in the following lemma.

Lemma 3.8 (Reduction to Gaussian Process). (8) holds if
the following holds:

ES

[
Egi

[
sup

C∈Cbad(X)

1

µ

∣∣∣∣∣
m∑
i=1

giu
C
si

∣∣∣∣∣
]
| ξS

]
≤ λ. (9)

Here, g1, . . . , gm are the independent standard Gaussian
random variables, Uε is an ε-covering of V w.r.t. a random
set S = {s1, . . . , sm} ⊆ X , and uC ∈ Uε denotes the ε-
covering of vC for C ∈ Cbad(X),

7
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Now it suffices to prove (9). The main idea is to apply a
chaining argument. For every C ∈ Cbad(X), let vC,h ∈
U2−h denote the 2−h-covering of vC , then we can rewrite
uC as a telescoping sum uC =

∑log ε−1

h=1 (vC,h − vC,h−1).
Hence, it suffices to prove the following lemma which im-
plies (9), and this completes the proof of Theorem 3.1.
Lemma 3.9 (Bounding Error in the Chaining Argument).
Conditioning on ξS , the following holds:

log ε−1∑
h=1

Egi

[
sup

C∈Cbad(X)

1

µ

∣∣∣∣∣
m∑
i=1

gi(v
C,h
si − v

C,h−1
si )

∣∣∣∣∣
]
≤ λ.

The proof of Lemma 3.9 heavily relies on our definition
of covering. In particular, it allows us to bound the dif-
ference |vC,hx − vC,h−1

x | either by 2−h+2 · err(x, vC), or
by an absolute value 2γ. This eventually guarantees that
each Gaussian variable

∑m
i=1 gi(v

C,h
si −v

C,h−1
si ) has a well

bounded variance.

3.4. Weak Coresets in Various Metric Spaces

We apply Theorem 3.1 to various metric spaces and obtain
the following theorem, by analyzing their covering number.
The details can be found in Appendix D.
Theorem 3.10. For a metric space M = (X ,dist) and
a dataset X ⊆ X , an integer k ≥ 1 and real numbers
β, ε ∈ (0, 1), let S be a set of uniform samples with size

• O
(
k2

βε3 · log2 k
βε · log2 1

ε

)
if M is Euclidean Rd;

• O
(
k2

βε2 · ddim · log k
βε

)
ifM has doubling dimension

ddim;
• O

(
k2

βε2 · log |X | · log k
βε

)
if M is a finite metric;

• O
(
k2

βε2 · tw · log k
βε

)
if M is the shortest-path metric

of a graph with treewidth tw.

Then S is an ε-weak coreset for (k, β)-MEDIAN onX with
probability 0.9.

4. Experiments
Experiment Setup Our experiments are conducted on
3 real datasets: Twitter, Census1990 and NY. For Twit-
ter (Chan et al., 2018) and Census1990 (Meek et al., 1990),
we select numerical features and normalize them into Eu-
clidean vectors in Rd, with n = 21040936 data points and
d = 2 for Twitter, and n = 2458285, d = 68 for Cen-
sus1990. The NY dataset is a weighted graph with |V | =
2276360 vertices and |E| = 2974516 edges, represent-
ing the largest connected component of the road network
of New York State, extracted from OpenStreetMap (Open-
StreetMap contributors, 2017). All experiments are con-
ducted on a PC with Intel Core i7 CPU and 16 GB memory,
and algorithms are implemented in C++ 11.

Error Measure To measure the error of a center set C
(which is a solution to k-MEDIAN), ideally one should
compare cost(X,C) with OPT. However, since the ex-
act value of OPT is NP-hard to find, we turn to compare
it with an approximate solution Capx instead. Hence, our
measure of error for a center set C is defined as the fol-
lowing ε̂ which is a signed relative error compared with
cost(X,Capx): ε̂(C) := cost(X,C)−cost(X,Capx)

cost(X,Capx) . The rea-
son to keep the sign is that Capx is not the optimal so-
lution, hence it is possible that cost(X,C) is better than
cost(X,Capx) which leads to a negative sign. To com-
pute Capx, we first construct a coreset (e.g., using Feld-
man & Langberg (2011)) to reduce the size of the dataset,
and then apply a standard approximation algorithm for k-
MEDIAN (Arya et al., 2001) on top of it. The use of coreset
is to ensure the local search can run for sufficiently large
number of rounds to converge in a reasonable time.

Experiment: Size-error Tradeoff and Balancedness
Given k ≥ 1, we take m uniform samples S from the
dataset with varying m, and run a local search algo-
rithm (Arya et al., 2001) on S to find a center set CS for
k-MEDIAN. We evaluate the error ε̂(CS) and plot the size-
error curves in Figure 1 for various choices of k. In fact, it
turns out that the choice of k also affect the balancedness
parameter β. Hence, for each dataset and value of k, we
evaluate the balancedness β of the abovementioned Capx

on the original dataset, and we also take m = 500 uni-
form samples S and evaluate the balancedness β′ of CS
on S. The resulted β and β′ are reported in Table 1. To
make the measurement stable, we repeat the sampling and
local search 20 times independently and report the average
statistics.

As can be seen from Figure 1, uniform sampling shows
an outstanding performance, and admits a similar conver-
gence of the error curve regardless of the choice of k and
the consequent balancedness of datasets. In NY dataset, it
even achieves negative error when k = 20, which means it
performs even better than the baseline. We also observe in
Table 1 that the datasets are mostly balanced even when k
is relatively large, and thus the factor of 1/β is reasonably
bounded (i.e., no greater than 100), and even for the less
balanced scenario, the error is still very small. Moreover,
the center set computed on S, although computed using a
vanilla local search for k-MEDIAN, actually satisfies the
balancedness constraint of (k, β)-MEDIAN problem, that
is, β′ ≥ β/2 for every choice of k and every dataset. This
suggests that it is not necessary to run the more sophisti-
cated (k, β)-MEDIAN at all in practice. These findings help
to justify why it is often seen in practice that a few uniform
samples are enough to compute a good approximation.
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Figure 1: The size-error tradeoff of the uniform sampling.
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Figure 2: The size-objective tradeoff, compared with that of coresets.

Experiment: Comparison to Coreset Since uniform
sampling is usually very efficient, we expect to see an ad-
vantage in running time compared with coreset construc-
tions. Our second experiment aims to demonstrate this
advantage, particularly to compare with the coresets con-
structed by importance sampling (Feldman & Langberg,
2011). We set k = 20, and vary the sample size m for
both uniform sampling and importance sampling. Let S
and S′ be the subsets constructed by uniform sampling
and importance sampling, respectively. We run a local
search algorithms on each of S and S′, and compute the
objective value of the output center set on the original
dataset. In Figure 2, we plot the objective-size curves,
and observe that uniform sampling is comparable to core-
set on all these datasets. However, for the running time,
it takes 391s/114s/298s to compute the coreset on Twit-
ter/Census1990/NY dataset, while the runtime of the lo-
cal step is 16s/42s/203s. Hence, the coreset construction is
even more costly than the local search, and the coreset ac-
tually becomes the bottleneck of the total running time. On
the other hand, the uniform sampling takes merely 10−3s to
sample 500 points from the dataset which is significantly
more efficient. This also justifies the practical benefit of
using uniform sampling than methods like importance sam-
pling.
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A. Missing Proofs in Section 3.1
A.1. Proof of Lemma 3.2

Lemma A.1 (Restatement of Lemma 3.2). ξS happens with probability at least 0.99.

Proof. Since C? is a β-balanced center set on X , we have |X?
i | ≥

βn
k for every i ∈ [k]. Recall that S is a set of uniform

samples, therefore by Chernoff bound, we have

Pr

[
|S ∩X?

i |
|S|

6∈
(

1± 1

2

)
|X?

i |
|X|

]
≤ 2 exp

(
−βm

12k

)
≤ 0.001/k.

By the union bound, we have

Pr

[
∀i ∈ [k],

|S ∩X?
i |

|S|
∈
(

1± 1

2

)
|X?

i |
|X|

]
≥ 0.999.

Also note that ES [cost(S,C?)] = m
n OPTβ(X). Then by the Markov inequality, with probability at least 0.999, we have

cost(S,C?) ≤ λ · mn OPTβ(X) since λ > 1000. This completes the proof.

A.2. Proof of Lemma 3.4

Lemma A.2 (Restatement of Lemma 3.4). CS ⊆ C′(X) holds conditioning on ξS .

Proof. Conditioning on ξS , we have C? ∈ Cβ/2(S) and for every C ∈ CS , it holds that∑
x∈S

dist(C?(x), C)

≤
∑
x∈S

(dist(x,C?) + dist(x,C))

≤ (2 + ε)
∑
x∈S

dist(x,C?)

≤ 3λm

n
OPTβ(X),

(10)

where the first derivation is due to the triangle inequality, the second derivation is because
∑
x∈S dist(x,C) ≤ (1 +

ε) OPTβ/2(S) ≤ (1 + ε)
∑
x∈S dist(x,C?), and the last derivation is due to (4).

We can rewrite
∑
x∈S dist(C?(x), C) as

∑
c?i∈C?

dist(c?i , C) · |S ∩ X?
i |, where c?i denotes the center of cluster X?

i .
Therefore, we have by (4), ∑

x∈S
dist(C?(X), C) ≥ m

2n

∑
c?i∈C?

dist(c?i , C) · |X?
i |

=
m

2n

∑
x∈X

dist(C?(x), C),

which combining with (10) completes the proof of (5).

To prove (6), we observe that for every x ∈ X , it holds that

|dist(x,C)− dist(x,C?)|
≤ max{dist(C(x), C?),dist(C?(x), C)}.

We only upper bound dist(c, C?) for every c ∈ C, and bounding dist(c?, C) for every c? ∈ C? is almost the same. Since

12
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C ∈ Cβ/2(S), for every c ∈ C, we have

dist(c, C?) ≤
∑
c∈C

dist(c, C?)

≤ 2k

β
· 1

m

∑
c∈C

βm

2k
dist(c, C?)

≤ 2k

β
· 1

m

∑
x∈S

dist(C(x), C?)

≤ 2k

β
· 1

m

∑
x∈S

(dist(x,C) + dist(x,C?))

≤ 2k

β
· 2 + ε

m

∑
x∈S

dist(x,C?)

≤ 6λk

βn
OPTβ(X),

where the third derivation is because
∑
x∈S dist(C(x), C?) =

∑
ci∈C dist(ci, C

?) · |Xi| for {X1, . . . , Xk} being the
partition of X induced by C, and |Xi| ≥ βm

2k since C ∈ Cβ/2(S).

B. Proof of Lemma 3.6
Lemma B.1 (Restatement of Lemma 3.6). For S such that ξS happens, we have for every C ∈ C′(X),∑

x∈S
err(x, vC) ≤ 15λm

n
OPTβ(X).

Proof. ξS implies that cost(S,C?) ≤ λ · mn OPTβ(X) and∑
x∈S

dist(C?(x), C) =
∑
c?i∈C?

dist(c?i , C) · |S ∩X?
i |

≤
∑
c?i∈C?

dist(c?i , C) · 2|X?
i | ·

m

n

≤ 2m

n

∑
x∈X

dist(C?(x), C)

≤ 12λm

n
OPTβ(X).

where the second derivation is due to (4), and the forth derivation is due to (5). Therefore for every C ∈ C′(X), it holds
that ∑

x∈S
err(x, vC) =

∑
x∈S

(
dist(x,C) + dist(x,C?) +

1

n
OPTβ(X)

)
≤ m

n
OPTβ(X) +

∑
x∈S

(2 dist(x,C?) + dist(C?(x), C))

≤ 15λm

n
OPTβ(X)

C. Missing Proofs in Section 3.3

13
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Lemma C.1 (Restatement of Lemma 3.7). For any C ∈ Cbad(X), the following holds:

Pr
S

[∑
x∈S

vCx ≤ 5λ2µ

]
≤ 2 exp

(
−Θ

(
ε2βm

k

))
,

Proof. Since Cbad(X) ⊆ C′(X), due to (6), for every C ∈ Cbad(X), it holds that

‖vC‖∞ ≤ γ =
12λk

βn
OPTβ(X).

Since S is a set of m uniform samples, and E
∑
x∈S v

C
x = m

n ‖v
C‖1 ≥ 10λ2εm

n OPTβ(X), we have

Pr
S

[∑
x∈S

vCx ≤
5λ2εm

n
OPTβ(X)

]
≤ Pr

S

[∣∣∣∣∣∑
x∈S

vCx − E
∑
x∈S

vCx

∣∣∣∣∣ ≥ 5λ2εm

n
OPTβ(X)

]
Here we apply Bernstein inequality to finish the proof. To this end, we should also bound the variance of

∑
x∈S v

C
x , which

is

≤ m · 1

n

∑
x∈X

(vCx )2

≤ γ · m
n

∑
x∈X
|vCx |

≤ γ · m
n

∑
x∈X

(dist(x,C) + dist(x,C?))

≤ γ · m
n

∑
x∈X

(2 dist(x,C?) + dist(C?(x), C))

≤ O
(
km

βn2
(OPTβ(X))2

)
.

where the last derivation is due to (5). Therefore, by Bernstein inequality, we have

Pr
S

[∣∣∣∣∣∑
x∈S

vCx − E
∑
x∈S

vCx

∣∣∣∣∣ ≥ 5λ2εm

n
OPTβ(X)

]
≤ 2 exp

(
−Θ

(
ε2βm

k

))
which completes the proof.

Lemma C.2 (Restatement of Lemma 3.8). (8) holds if the following holds:

ES

[
Egi

[
sup

C∈Cbad(X)

1

µ

∣∣∣∣∣
m∑
i=1

giu
C
si

∣∣∣∣∣
]
| ξS

]
≤ λ. (11)

Here, g1, . . . , gm are the independent standard Gaussian random variables, Uε is an ε-covering of V w.r.t. a random set
S = {s1, . . . , sm} ⊆ X , and uC ∈ Uε denotes the ε-covering of vC for C ∈ Cbad(X).

Proof. Let S′ = {s′1, ..., s′m} be another set of independent uniform samples from X that is independent of S. We first use
the symmetrization trick to show that

Pr
S

[
inf

C∈Cbad(X)

m∑
i=1

vCsi ≤ λ
2µ

]
≤ 2 Pr

S,S′

[
sup

C∈Cbad(X)

∣∣∣∣∣
m∑
i=1

(vCsi − v
C
s′i

)

∣∣∣∣∣ ≥ 4λ2µ

]
.

To see this, we assume for some S, the event φS , i.e., infC∈Cbad(X)

∑m
i=1 v

C
si ≤ λ2µ happens, then take an arbitrarily

CS ∈ Cbad(X) such that
∑m
i=1 v

CS
si ≤ λ2µ (if ξS does not happen, we let CS be an arbitrarily center set). If the event∑m

i=1 v
CS
s′i
≥ 5λ2µ, denoted by ϕCS ,S′ , happens, then it holds that∣∣∣∣∣

m∑
i=1

(vCSsi − v
CS
s′i

)

∣∣∣∣∣ ≥ 4λ2µ.

14



The Power of Uniform Sampling for k-Median

Note that ϕCS ,S′ is a convergence guarantee for CS ∈ Cbad(X), and Lemma 3.7 gives a lower bound of 1/2 to
PrS′ [ϕCS ,S′ ]. Therefore, the following holds.

Pr
S,S′

[
sup

C∈Cbad(X)

∣∣∣∣∣
m∑
i=1

(vCsi − v
C
s′i

)

∣∣∣∣∣ ≥ 4λ2µ

]
≥ Pr
S,S′

[φS ∧ ϕCS ,S′ ]

= Pr
S

[φS ] Pr
S,S′

[ϕCS ,S′ | φS ]

= Pr
S

[φS ]ES
[
Pr
S′

[ϕCS ,S′ ] | φS
]

≥ 1

2
Pr
S

[φS ],

Let r1, ..., rm be independent Rademacher random variables3. We have

Pr
S,S′

[
sup

C∈Cbad(X)

∣∣∣∣∣
m∑
i=1

(vCsi − v
C
s′i

)

∣∣∣∣∣ ≥ 4λ2µ

]

= Pr
S,S′,ri

[
sup

C∈Cbad(X)

∣∣∣∣∣
m∑
i=1

ri(v
C
si − v

C
s′i

)

∣∣∣∣∣ ≥ 4λ2µ

]

≤ Pr
S,S′,ri

[
sup

C∈Cbad(X)

(∣∣∣∣∣
m∑
i=1

riv
C
si

∣∣∣∣∣+

∣∣∣∣∣
m∑
i=1

riv
C
s′i

∣∣∣∣∣
)
≥ 4λ2µ

]

where the first derivation is because vCsi − v
C
s′i

is symmetric and thus is distributed identically to ri(vCsi − v
C
s′i

), the sec-

ond derivation is due to the triangle inequality. If supC∈Cbad(X)

(∣∣∑m
i=1 riv

C
si

∣∣+
∣∣∣∑m

i=1 riv
C
s′i

∣∣∣) ≥ 4λ2µ holds, then

either supC∈Cbad(X)

∣∣∑m
i=1 riv

C
si

∣∣ ≥ 2λ2µ or supC∈Cbad(X)

∣∣∣∑m
i=1 riv

C
s′i

∣∣∣ ≥ 2λ2µ holds. Since S and S′ are distributed
identically, by union bound, we have

Pr
S,S′,ri

[
sup

C∈Cbad(X)

(∣∣∣∣∣
m∑
i=1

riv
C
si

∣∣∣∣∣+

∣∣∣∣∣
m∑
i=1

riv
C
s′i

∣∣∣∣∣
)
≥ 4λ2µ

]

≤ 2 Pr
S,ri

[
sup

C∈Cbad(X)

∣∣∣∣∣
m∑
i=1

riv
C
si

∣∣∣∣∣ ≥ 2λ2µ

]

= 2 Pr
S,ri

[
sup

C∈Cbad(X)

∣∣∣∣∣
m∑
i=1

riv
C
si

∣∣∣∣∣ ≥ 2λ2µ | ξS

]
Pr[ξS ]

+ 2 Pr
S,ri

[
sup

C∈Cbad(X)

∣∣∣∣∣
m∑
i=1

riv
C
si

∣∣∣∣∣ ≥ 2λ2µ | ¬ξS

]
Pr[¬ξS ]

≤ 2 Pr
S,ri

[
sup

C∈Cbad(X)

∣∣∣∣∣
m∑
i=1

riv
C
si

∣∣∣∣∣ ≥ 2λ2µ | ξS

]
+ 0.02, (12)

It suffices to prove that

ES

[
Eri sup

C∈Cbad(X)

∣∣∣∣∣
m∑
i=1

riv
C
si

∣∣∣∣∣ | ξS
]
≤ 20λµ. (13)

We can thus apply Markov inequality to bound the probability in (12) by 0.01, which leads to Pr[¬φS ] ≤ 0.08 and
completes the proof of (8). It remains to show how to derive (13).

3A Rademacher random variable r takes value −1 with probability 1/2 and takes value 1 with probability 1/2.
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Recall that Uε denotes an ε-covering of V w.r.t. random subset S. We next replace the cost vector vC with its ε-covering
uC ∈ Uε, which satisfies that |uCx − vCx | ≤ ε · err(x, vC) for every x ∈ S.

sup
C∈Cbad(X)

∣∣∣∣∣
m∑
i=1

riv
C
si

∣∣∣∣∣
≤ sup
C∈Cbad(X)

∣∣∣∣∣
m∑
i=1

riu
C
si + ri(v

C
si − u

C
si)

∣∣∣∣∣
≤ sup
C∈Cbad(X)

(∣∣∣∣∣
m∑
i=1

riu
C
si

∣∣∣∣∣+ ε

m∑
i=1

err(si, v
C)

)

≤ sup
C∈Cbad(X)

∣∣∣∣∣
m∑
i=1

riu
C
si

∣∣∣∣∣+ ε · 15λm

n
OPTβ(X)

≤ sup
C∈Cbad(X)

∣∣∣∣∣
m∑
i=1

riu
C
si

∣∣∣∣∣+ 15λµ

(14)

where the second derivation is due to the triangle inequality, and the third derivation is due to Lemma 3.6 and |ri| = 1 for
every i ∈ [m]. Then it suffices to prove

ES

[
Eri sup

C∈Cbad(X)

∣∣∣∣∣
m∑
i=1

riu
C
si

∣∣∣∣∣ | ξS
]
≤ 5λµ

which is equivalent to

ES

[
Eri sup

C∈Cbad(X)

1

µ

∣∣∣∣∣
m∑
i=1

riu
C
si

∣∣∣∣∣ | ξS
]
≤ 5λ (15)

Finally, we replace the Rademacher random variables with standard Gaussian random variables.

Lemma C.3 (Lemma 7.4 of van Handel (2016)). For r1, . . . , rm are Rademacher random variables, let g1, . . . , gm be the
independent standard Gaussian random variables, it holds that

Eri

[
sup

C∈Cbad(X)

1

µ

∣∣∣∣∣
m∑
i=1

riu
C
si

∣∣∣∣∣
]

≤
√
π

2
Egi

[
sup

C∈Cbad(X)

1

µ

∣∣∣∣∣
m∑
i=1

giu
C
si

∣∣∣∣∣
]

It suffices to prove

ES

[
Egi sup

C∈Cbad(X)

1

µ

∣∣∣∣∣
m∑
i=1

giu
C
si

∣∣∣∣∣ | ξS
]
≤ λ

which leads to (15) by Lemma C.3, and completes the proof.

Lemma C.4 (Restatement of Lemma 3.9). Conditioning on ξS , the following holds:

log ε−1∑
h=1

Egi

[
sup

C∈Cbad(X)

1

µ

∣∣∣∣∣
m∑
i=1

gi(v
C,h
si − v

C,h−1
si )

∣∣∣∣∣
]
≤ λ.

Proof. For every h ∈ [log ε−1], let

Eh := Egi

[
sup

C∈Cbad(X)

1

µ

∣∣∣∣∣
m∑
i=1

gi(v
C,h
si − v

C,h−1
si )

∣∣∣∣∣
]
.
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For every C ∈ Cbad(X),
∑m
i=1

gi
µ (vC,hsi − v

C,h−1
si ) is Gaussian with zero mean and variance

m∑
i=1

(
1

µ
(vC,hsi − v

C,h−1
si )

)2

≤ ‖v
C,h‖∞ + ‖vC,h−1‖∞

µ

m∑
i=1

|vC,hsi − v
C,h−1
si |

µ

≤ 24λk

βεm

m∑
i=1

|vC,hsi − v
C
si + vCsi − v

C,h−1
si |

µ

≤ 24λk

βεm

∑
x∈S

2−h+2err(x, vC)

µ

≤ O
(

2−h+6k

βε2m

)

where the second derivation is due to ‖vC,h‖∞ ≤ γ for all h ∈ [log ε−1] and the last derivation is due to Lemma 3.6. The
following lemma demonstrates that an upper bound of the variance of each

∑m
i=1

gi
µ (vC,hsi − v

C,h−1
si ) leads to an upper

bound of Eh.

Lemma C.5 (Lemma 2.3 of Massart (2007)). Let gi ∼ N(0, σ2
i ) for i ∈ [m] be Gaussian random variables (not need to

be independent ) and let σ = maxi∈m σi, then it holds that

E
[

max
i∈[m]

|gi|
]
≤ 2σ ·

√
2 lnn.

The number of distinct difference vector vC,h− vC,h−1 is at most |U2−h ×U2−h+1 | ≤ N2−h

X (m) ·N2−h+1

X (m). Therefore,
we have

Eh ≤

√
8 log(|U2−h | · |U2−h+1 |) ·O

(
2−h+6k

βε2m

)

≤

√
O(1) · logN2−h

X (m) · 2−hk

βε2m

Plug in
∑log ε−1

h=1 Eh, we have
log ε′−1∑
h=1

Eh

≤ O(1) ·

√
k

βε2m

log ε−1∑
h=1

√
logN2−h

X (m).

(16)

Since m ≥ t · k
βε2

(∑log ε−1

i=1

√
2−i logN2−i

X (m)

)2

for sufficiently large constant t, we can bound
∑log ε−1

h=1 Eh by λ.

which completes the proof.

D. Proof of Theorem 3.10: Sample Sizes in Various Metrics
Theorem D.1 (Restatement of Theorem 3.10). For a metric space M = (X ,dist) and a dataset X ⊆ X , an integer k ≥ 1
and real numbers β, ε ∈ (0, 1), let S be a set of uniform samples with size

• O
(
k2

βε3 · log2 k
βε · log2 1

ε

)
if M is Euclidean Rd;
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• O
(
k2

βε2 · ddim · log k
βε

)
if M has doubling dimension ddim;

• O
(
k2

βε2 · log |X | · log k
βε

)
if M is a finite metric;

• O
(
k2

βε2 · tw · log k
βε

)
if M is the shortest-path metric of a graph with treewidth tw.

Then S is an ε-weak coreset for (k, β)-MEDIAN on X with probability 0.9.

We prove Theorem D.1 by bounding the covering number in each metric space respectively.

D.1. Euclidean Space

Lemma D.2 (Covering Number in Euclidean Space). In Euclidean space (Rd,dist), for integer m > 0 and real number
0 < α < 1/2, it holds that

log |Nα
X(m)| ≤ O

(
kα−2 log(m+ k) log

k

βα

)
Proof. By Definition 3.5 of the covering number, it suffices to construct an α-covering of V w.r.t (S, err) for every S ∈
S(m). We need terminal embedding as stated in the following theorem:

Theorem D.3 (Terminal Johnson-Lindenstrauss Lemma (Narayanan & Nelson, 2019)). For every ε ∈ (0, 1/2) and finite
set Y ⊆ Rd, there exists an embedding g : Rd → Rt for t = O(ε−2 log |Y |) such that

∀x ∈ Y,∀c ∈ Rd, dist(x, c) ≤ dist(g(x), g(c)) ≤ (1 + ε) dist(x, c).

We call g is an ε-terminal embedding for Y .

For every S ∈ S(m), let Y := S ∪ C?, by Theorem D.3, there exists an α-terminal embedding g for Y with target
dimension t = O(α−2 log |Y |) = O(α−2 log(m + k)). For a set A ⊂ Rd, we denote by g(A) := {g(x) : x ∈ A} the set
of images of all x ∈ A. By the definition of C′(X), for every C ∈ C′(X), c ∈ C,

dist(g(c), g(C?)) ≤ dist(g(c), g(C?(c)))

≤ 2 dist(c, C?)

≤ 12λk

βn
OPT(X)

We denote by BA(c, r) := {x ∈ A : dist(x, c) ≤ r} the ball centered at c of radius r for A ⊆ X . Thus we have for every
C ∈ C′(X),

g(C) ⊆
⋃

c?∈C?
BRt

(
g(c?),

12λk

βn
OPTβ(X)

)
To construct a covering for the set of cost vectors, we discretize each ball via a classical covering of a point set.

Definition D.4 (Covering of a Point Set). For a metric space (X ,dist), a point set A ⊆ X and real number 0 ≤ α < 1, we
say T ⊆ X is an α-covering of A if for every x ∈ A, there exists y ∈ T such that dist(x, y) ≤ α.

Note that the above definition of covering is different from Definition 3.5, since they are for different objects. The following
lemma bounds the cardinality of α-covering of an Euclidean ball.

Lemma D.5 (Covering of a Euclidean Ball). For α > 0 and an Euclidean ball B ⊂ Rt of radius ∆ > 0, there exists an
α-covering T ⊆ B of size at most exp (O(t log(∆/α))).

For every c? ∈ C?, let Tc? be such an αOPTβ(X)
n -covering of BRt

(
g(c?), 12λk

β · 1
n OPTβ(X)

)
, and let TC? :=⋃

c?∈C? Tc? . By Lemma D.5, we have

|TC? | ≤ k · exp

(
O

(
t log

k

αβ

))
18
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Let g′ : Rd → TC? be a function satisfying that

g′(x) = arg min
y∈TC?

dist(g(x), y),

Construct U is {ṽC ∈ RX : C ∈ C′(X)}, where ṽC is a cost function defined as: for every x ∈ X , ṽCx :=
dist(g(x), g′(C))− dist(g(x), g(C?)). Observe that

|U | ≤ |TC? |k ≤ exp

(
O

(
kt log

k

αβ

))
,

which implies that log |U | ≤ O(kt log k
βα ) = O(kα−2 log(m + k) log k

βα ), it remains to show that U is the desired
α-covering of V .

Bounded Covering Error By the definition of g′, we have that for every C ∈ C′(X) and c ∈ C,

dist(g(c), g′(C)) ≤ dist(g(c), g′(c)) ≤ α

n
OPTβ(X),

and
dist(g′(c), g(C)) ≤ dist(g′(c), g(c)) ≤ α

n
OPTβ(X),

and thus for every x ∈ S, let c1 denote the closest center in g(C) to g(x), and c2 denote the closest center in g′(C) to g(x),
then it holds that

|dist(g(x), g(C))− dist(g(x), g′(C))| ≤ max {dist(c1, g
′(C)),dist(c2, g(C))} ≤ α

n
OPTβ(X). (17)

The error incurred by the covering is

|vCx − ṽCx | = |dist(x,C)− dist(x,C?)− dist(g(x), g′(C)) + dist(g(x), g(C?))|
≤ |dist(x,C)− dist(g(x), g′(C))|+ |dist(x,C?)− dist(g(x), g(C?))|

≤ |dist(x,C)− dist(g(x), g(C))|+ |dist(x,C?)− dist(g(x), g(C?))|+ α

n
OPTβ(X)

≤ α dist(x,C) + α dist(x,C?) +
α

n
OPTβ(X)

= α · err(x, vC)

where the second derivation is due to triangle inequality, the third derivation is due to (17), and the forth derivation is due
to the terminal embedding guarantee.

Bounded L∞ Norm For every ṽC ∈ U ,

‖ṽC‖∞ = max
x∈X
|dist(g(x), g′(C))− dist(g(x), g(C?))|

≤ max
x∈X
|dist(g(x), g(C))− dist(g(x), g(C?))|+ α

n
OPTβ(X)

≤ max

{
max
c∈C

dist(g(c), g(C?)), max
c?∈C?

dist(g(c?), g(C))

}
+
α

n
OPTβ(X)

≤ (1 + α) max

{
max
c∈C

dist(c, C?), max
c?∈C?

dist(c?, C)

}
+
α

n
OPTβ(X)

≤ 12λk

βn
OPTβ(X),

where the second derivation is due to (17), the third derivation is due to the triangle inequality, and the last derivation
follows from a similar argument of Lemma 3.4. Thus we can construct α-covering of V with respect to any S ∈ S(m),
which concludes the proof.
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Proof of Theorem D.1 in Euclidean space. We only need to bound the summation in (1).

log ε−1∑
i=1

√
2−i logN2−i

X (m)

≤
log ε−1∑
i=1

O(1) ·

√
2−i · k · 22i logm log

k

β2−i

≤ O(1) · log ε−1 ·

√
ε−1 · k logm log

k

βε
.

Therefore, it suffices to set m = O
(
k2

βε3 · log2 k
βε · log2 1

ε

)
.

D.2. Doubling Metric Space

Definition D.6 (Doubling Dimension (Assouad, 1983; Gupta et al., 2003)). The doubling dimension of a metric space
M = (X ,dist), denoted as ddim(M), is the smallest integer d such that any ball can be covered by at most 2d balls of
half the radius.

Lemma D.7 (Covering Number in Doubling Metric Space). In a metric space (X ,dist) with doubling dimension ddim,
for integer m > 0 and real number 0 < α < 1/2, it holds that

log |Nα
X(m)| ≤ O(k · ddim · log(k/αβ)).

Proof. It suffices to construct α-covering with respect to S for every S ∈ S(m). Different from the Euclidean case
(Lemma D.2), we directly apply the covering of point set without using terminal embedding. The following lemma bounds
the cardinality of a covering of point set in doubling metrics.

Lemma D.8 (Gupta et al. 2003). For α > 0 and a metric space (X ,dist) with doubling dimension ddim and diameter ∆,
there exists an α-covering T of X with |T | ≤ exp (O(ddim · log(∆/α))).

By definition of C′(X), for every C ∈ C′(X), c ∈ C, it holds that dist(c, C?) ≤ 6λk
β ·

1
n OPT(X). Hence, consider an

αOPT(X)
n -covering Tc? of BX

(
c?, 6λk

β ·
1
n OPT(X)

)
for every c? ∈ C? and let TC? :=

⋃
c?∈C? Tc? . By Lemma D.8,

we have

|TC? | ≤ k · exp

(
O

(
ddim · log

k

αβ

))
We define g : V → V such that for every c ∈ V ,

g(c) = arg min
c′∈TC?

dist(c, c′).

Construct U is {ṽC ∈ RX : C ∈ C′(X)}, where ṽC is a cost function defined as: for every x ∈ X , ṽCx := dist(x, g(C))−
dist(x,C?). Then a similar analysis for bounding the covering error and L∞ norm as in Euclidean case(Lemma D.2)
certifies that U is an α-covering of V with respect to any S ∈ S(m), and log |U | ≤ O(k · ddim · log k

αβ ).

Proof of Theorem D.1 in doubling metric space and general discrete metric space. Directly plugging the covering number
in Lemma D.7 into (2) concludes the proof in doubling metric space. For general discrete metric space M = (X ,dist), we
know that the doubling dimension is O(log |X |), and thus directly applying the result of doubling metric space completes
the proof.

D.3. Shortest-path Metric of a Graph with Bounded Treewidth

Definition D.9 (Tree Decomposition and Treewidth). A tree decomposition of a graph G = (V,E) is a tree T = (V, E),
where each node in V , called a bag, is a subset of vertices in V , such that the following holds.
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•
⋃
S∈V S = V .

• ∀u ∈ V , the nodes in V that contain u form a connected component in T .

• ∀(u, v) ∈ E, there exists S ∈ V such that {u, v} ⊆ S.

The treewidth of G, denoted as tw(G), is the smallest integer t such that there is a tree decomposition of G with maximum
bag size t+ 1.

Lemma D.10 (Covering Number in Shortest-path Metric of a Graph). In shortest-path metric M = (X ,dist) of a graph
with bounded treewidth tw, for integer m > 0 and real number 0 < α < 1/2, it holds that

log |Nα
X(m)| ≤ O(k · tw · log(k/αβ +m/α)).

Proof. To bound the covering number in graph metrics, it suffices to construct an α-covering of V with respect S for every
S ∈ S(m). The proof of Lemma D.10 relies on the following structural lemma, proposed by (Baker et al., 2020).

Lemma D.11 (Structural Lemma, (Baker et al., 2020)). Given graph G = (X , E) with treewidth tw, and A ⊆ X , there
exists a collection TA of subsets of X , such that the following holds.

1.
⋃
T∈TA T = X .

2. |TA| ≤ poly(|A|).

3. For every T ∈ TA, |T ∩ A| ≤ O(tw) and there exists PT ⊆ X with |PT | ≤ O(tw) such that there is no edge in E
between T and X \ (T ∪ PT ).

Recall that any S ∈ S(m) makes ξS happens, i.e., S satisfies (4). Thus for every C ∈ C′(X) and every x ∈ S,

dist(x,C?) ≤
∑
x∈S

dist(x,C?) ≤ λm

n
OPT(X),

and thus

dist(x,C) ≤ dist(C(x), C?) + dist(x,C?) ≤
(

6k

β
+m

)
· λ
n

OPT(X).

Let TS be a collection of subsets asserted by Lemma D.11. We can construct the covering as follows:

For every T ∈ T , and c ∈ T , let PT ⊆ X be a set asserted in condition 3 in Lemma D.11. By Lemma D.11, we have for
every x ∈ X \ T , it holds that

dist(x, c) = min
x 6=y∈PT

{dist(x, y) + dist(y, c)} ,

since the shortest path between x and c must pass by some vertices in PT . Let IT := (S ∩ T ) ∪ PT denote the important
vertices of T , we define a rounded distance function dist′T : T ×X → R+ w.r.t. T as follows:

• ∀c ∈ T, x ∈ IT , dist′T (c, x) is the closest multiple of αn OPT(X) to dist(x, c) no greater than
(

6k
β +m

)
·λn OPT(X).

• ∀c ∈ T, x ∈ X \ IT , dist′T (c, x) = miny∈PT
{

dist′T (c, y) + dist(y, x)
}

.

Note that for x ∈ T \ S or for x ∈ X that satisfies dist(c, x) >
(

6k
β +m

)
· λn OPT(X), the rounded distance dist′T (c, x)

may be distorted badly. However, as discussed above, we only case about x ∈ S which is ensured that the distance to c is
not that far.

Notice that for a fixed c ∈ T , the rounded distance function dist(c, ·) is determined by the values of dist′T (c, x) for all
x ∈ IT , and each of them is among 6λk

αβ + λm
α possible values. Therefore the number of distinct rounded distance functions

|{dist′T (c, ·) : c ∈ T}| w.r.t. T is

≤
(

2λk

αβ
+
λm

α

)|IT |
≤
(
k

αβ
+
m

α

)O(tw)
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We define dist′ : X ×X → R+ as: for every c ∈ X , let Tc ∈ T that contains c, it holds that dist′(c, x) = dist′Tc(c, x).
Then we have

|{dist′(c, ·) : c ∈ X}| ≤ |TS | ·
(
k

αβ
+
m

α

)O(tw)

≤ poly(|S|) ·
(
k

αβ
+
m

α

)O(tw)

.

For every C ∈ C′(X), we denote by ṽC ∈ RX the rounded coset vector defined as follows: for every x ∈ X , ṽCx :=
minc∈C dist′(c, x) − dist(x,C?). Let Ṽ denote the set {ṽC : C ∈ C ′(X)}, we construct U as follows: for every ṽ ∈ Ṽ ,
U contains one vC for some C ∈ C′(X) such that ṽC = ṽ.

We next show that U is the desired α-covering.

Cardinality ofU Observe that the cardinality ofU is upper bounded by the number of distinct rounded distance functions
|{minc∈C dist′(c, ·) : C ∈ X k}|, which is at most

(
poly(|S|) ·

(
k

αβ
+
m

α

))O(tw)·k

≤
(
k

αβ
+
m

α

)O(k·tw)

Thus it holds that log |U | ≤ O(k · tw · log( k
αβ + m

α )).

Bouneded Covering Error For every C ∈ C′(X), and x ∈ S, we have dist(x,C) ≤
(

6k
β +m

)
· λn OPT(X). Hence,

the error incurred by rounding, i.e., |dist′(c, x) − dist(c, x)| is at most αn OPT(X). Let ṽC be the rounded cost vector
with respect to vC , by definition, there exists C ′ ∈ C′(X) such that vC

′ ∈ U and ṽC
′

= ṽC . The covering error is∣∣∣vCx − vC′x ∣∣∣ ≤ ∣∣∣vCx − ṽC + ṽC
′
− vC

′

x

∣∣∣
≤
∣∣vCx − ṽC∣∣+

∣∣∣ṽC′ − vC′x ∣∣∣
≤ 2α

n
OPT(X)

≤ 2α · err(x, vC).

It suffices to rescale α.

Bounded L∞ Norm For every vC ∈ U , we have vC ∈ V also, thus the L∞ norm is bounded because the L∞ norm of
cost vectors in V is bounded.

Proof of Theorem D.1 in graph metric space. Similar to doubling metric case, we plug the covering number
in Lemma D.10 into (2) to concludes the proof.

E. Proof of Theorem 1.2: An Ω(1/β) Query Complexity Lower Bound for Any Algorithm
Theorem E.1 (Restatement of Theorem 1.2). There exists a family of datasets X ⊂ R with balancedness β such that any
(randomized) O(1)-approximate algorithm for 2-MEDIAN with success probability at least 3/4 must query the identify of
data points in X for Ω(1/β) times (provided that queried points have free access to distance function).

To prove our lower bound, we first apply the Yao’s principle (Yao, 1983) and derive the following lemma that reduce to
proving lower bounds for deterministic algorithms with respect to some input distribution.

Lemma E.2. For real number α > 1, let D be a distribution over a family of datasets X ⊂ R, if any deterministic
algorithm must query Ω(1/β) times to computes an α-approximate center set for 2-MEDIAN on X sampled from D with
success probability at least 3/4, then any randomized α-approximate algorithm for 2-MEDIAN with success probability at
least 3/4 must query Ω(1/β) times.
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Proof. For an algorithm A, we denote by A(X) the output of A when running on X . For any randomized algorithm R
which makes at most o(1/β) queries, it can be seen as a distribution over some deterministic algorithms R1, . . . ,Rs. By
assumption, for every i ∈ [s], it holds that

Pr
X∼D

[cost(X,Ri(X)) > αOPT(X)] > 1/4.

Therefore, averaging over all deterministic algorithms, we have

Pr
X∼D

[cost(X,R(X)) > αOPT(X)] > 1/4.

where the randomness is from the choice of X and the randomness of R. Hence, there exists an instance X ∈ supp(D)
such that

Pr [cost(X,R(X)) > αOPT(X)] > 1/4.

which completes the proof.

Proof of Theorem E.1. For an integer n ≥ 10/β, let m = βn/2, we construct a family of n-point datasets as follows. For
a set Π ∈ [n] and a real number t, let XΠ,t := {xΠ,t

1 , . . . , xΠ,t
n } denotes an ordered n-point set in 1-dimensional space

such that,

∀i ∈ [n], xΠ,t
i =

{
t i ∈ Π

0 i 6∈ Π
.

Let X := {XΠ,t; |Π| = m, t ∈ {1, 2}} be a family of n-point datasets. Clearly, every X ∈ X is of balancedness β for
2-MEDIAN, and the optimal objective value of X for 2-MEDIAN is 0. Let D be a uniform distribution over X .

By Lemma E.2, it suffices to prove that for any α > 1 and any deterministic algorithmA, which makes at most 1
2β queries,

will compute a 2-point center set C such that cost(X,C) > α ·OPT(X) for X sampled from D with probability at least
1/4. We assume A queries with index i1, . . . , il with l ≤ 1

2β , and receives xi1 , . . . , xil from the oracle. We observe that
A finds a 2-center set C such that cost(X,C) > α ·OPT(X) if and only if A finds the exact optimal solution (otherwise,
we say A fails). Therefore, we have

Pr
X∼D

[cost(X,A(X)) > α ·OPT(X)]

= Pr
X∼D

[A fails]

= Pr
X∼D

[
A fails | ∀j ∈ [l], Xij = 0

]
Pr
X∼D

[
∀j ∈ [l], xij = 0

]
+ Pr
X∼D

[
A fails | ∃j ∈ [l], Xij 6= 0

]
Pr
X∼D

[
∃j ∈ [l], xij 6= 0

]
≥ Pr
X∼D

[
A fails | ∀j ∈ [l], Xij = 0

]
Pr
X∼D

[
∀j ∈ [l], xij = 0

]
(18)

Recall that A makes queries with index i1, . . . , il, and thus the output A(X) depends only on xij for all j ∈ [l]. For X
sampled uniformly from X , its optimal center set is {0, 1} with probability 0.5 and {0, 2} with probability 0.5. Therefore,
condition on ∀j ∈ [l], Xij = 0, A will fail with probability at least 0.5, i.e.,

Pr[A fails | ∀j ∈ [l], Xij = 0] ≥ 1

2
(19)
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since it can not determine the center other than 0. It remains to bound PrX∼D[∀j ∈ [l], Xij = 0].

Pr
X∼D

[∀j ∈ [l], Xij = 0] =

(
n− l
m

)
·
(
n

m

)−1

=
(n− l)!(n−m)!

(n− l −m)!n!

=
(n− l −m+ 1)(n− l −m+ 2) · · · (n− l)

(n−m+ 1)(n−m+ 2) · · ·n

=

(
1− l

n−m+ 1

)(
1− l

n−m+ 2

)
· · ·
(

1− l

n

)
≥
(

1− l

n−m+ 1

)m
≥ 1− lm

n−m+ 1

≥ 1− 1

2β
· βn

2
·
((

1− β

2

)
n+ 1

)−1

≥ 1

2

(20)

where the sixth derivation is due to Bernoulli’s inequality. Therefore, plugging (19) and (20) into (18), we have

Pr
X∼D

[cost(X,A(X)) > α ·OPT(X)] ≥ 1

4

which completes the proof.

F. Vanilla k-MEDIAN on Uniform Sample Can Incur Big Error
Lemma F.1. There exists a family of 0.5-balanced datasetsXn ⊂ R with |Xn| = n for any integer n ≥ 1, such that letting
Sn be a set of o(n) uniform samples fromXn, with probability at least 1/4, it holds that cost(Xn, C

?
n) ≥ 1.01 ·OPT(Xn),

where C?n is an optimal center set for 3-MEDIAN on Sn.

Proof. Our proof is constructive. For n ≥ 10, assume Sn has f(n) points sampled uniformly and independently from Xn,
where 3 ≤ f(n) < n/2. To simplify the proof, we construct Xn with size of O(n) (instead of n) as follows. We place
n points at 0 and n points at 1. Also, we place n points at w, n

1.01·f(n) points at w + f(n), and let w → ∞. Clearly, the
optimal 3-point center set C?n is {0, 1, w}, and the objective value is n/1.01.

Recall that Sn is a set of f(n) uniform samples from Xn, we have the probability of that w + f(n) ∈ Sn is

Pr[w + f(n) ∈ Sn] = 1−
(

1− n/(1.01 · f(n))

3n+ n/(1.01 · f(n))

)f(n)

≥ 1− exp

(
− n/1.01

3n+ n/(1.01 · f(n))

)
≥ 1− exp

(
− 1

3.03 + 1/3

)
≥ 0.25

where the third derivation is due to f(n) ≥ 3. Condition on w + f(n) ∈ Sn, we observe that Sn contains at most f(n)
points at 0, at most f(n) points at 1, at most f(n) points at w and at least 1 point at w + f(n). In this case, the optimal 3-
point center set C ′ must contain w+f(n). OnXn, the optimal center set that contains w+f(n) is either {0, w, w+f(n)}
or {1, w, w + f(n)}, both of which have an objective value n ≥ 1.01 · OPT(Xn). Therefore, f(n) must be greater than
n/2, which completes the proof.
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