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Abstract
Adversarial imitation learning (AIL) is a popular
method that has recently achieved much success.
However, the performance of AIL is still unsatis-
factory on the more challenging tasks. We find
that one of the major reasons is due to the low
quality of AIL discriminator representation. Since
the AIL discriminator is trained via binary classi-
fication that does not necessarily discriminate the
policy from the expert in a meaningful way, the re-
sulting reward might not be meaningful either. We
propose a new method called Policy Contrastive
Imitation Learning (PCIL) to resolve this issue.
PCIL learns a contrastive representation space by
anchoring on different policies and generates a
smooth cosine-similarity-based reward. Our pro-
posed representation learning objective can be
viewed as a stronger version of the AIL objec-
tive and provide a more meaningful comparison
between the agent and the policy. From a theo-
retical perspective, we show the validity of our
method using the apprenticeship learning frame-
work. Furthermore, our empirical evaluation on
the DeepMind Control suite demonstrates that
PCIL can achieve state-of-the-art performance. Fi-
nally, qualitative results suggest that PCIL builds
a smoother and more meaningful representation
space for imitation learning.

1. Introduction
Imitation is one of the fundamental capabilities of an intel-
ligent agent (Hussein et al., 2017). Animals and humans
can acquire many skills by mimicking each other (Byrne,
2009). In engineering, imitation learning also enables
many robotics applications. One mainstream class of imita-
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tion learning algorithms is the adversarial imitation learn-
ing (AIL) (Ho & Ermon, 2016). AIL converts the imitation
task into a distribution matching problem and proposes to
imitate it by training a policy against an adversarial dis-
criminator. AIL has enjoyed great success on many imita-
tion tasks: it achieves superior performance (Ho & Ermon,
2016; Kostrikov et al., 2018), and has been experimentally
proven to alleviate some of the distributional drift issue,
and can work even without expert actions (Torabi et al.,
2018b).However, AIL is hard to train in practice, usually
involving careful tuning of discriminator neural network
sizes and learning rates (Wang et al., 2017; Kim & Park,
2018; Orsini et al., 2021). The fragility of the discriminator
(Peng et al., 2018) not only leads to poor performance but
also severely limits the applicability of AIL to a broader
range of tasks.

Numerous techniques have been proposed to improve the
performance of AIL, such as using regularization and gradi-
ent penalties (Fu et al., 2017; Kostrikov et al., 2018; Gulra-
jani et al., 2017). Some works also propose to use different
distribution metrics (e.g., KL divergence, Wasserstein dis-
tance) (Xiao et al., 2019) for distribution matching and show
some improvements. Though these methods show encour-
aging results, we notice that they ignore one crucial aspect
of the problem: the representation of AIL’s discriminator.
To be specific, the discriminator in AIL is usually trained
with binary classification loss that distinguishes expert tran-
sitions from agent transitions. This discriminator is then
used to define rewards. However, since the only goal of the
discriminator is to distinguish the expert from the agent, it
does not necessarily learn a good, smooth representation
space that can provide a reasonable comparison between the
behavior of two agents.Ideal representations should be able
to provide semantically meaningful signals to compare the
expert policy and the agent policy.

In this paper, we propose a new algorithm called Policy
Contrastive Imitation Learning (PCIL) to achieve this goal.
Instead of training with a binary-classification objective, we
propose to train a discriminator representation space with
the contrastive learning loss. Our method differs from the
prior representation learning approach in AIL in that we per-
form contrastive learning between different policies. More
specifically, we push the expert’s representation together
and pull the agent policy’s representation away from them.
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Figure 1. Comparison between the representation space of AIL method and our method. Since the AIL methods use a binary classification
objective to distinguish expert and non-expert transitions, the representation space is only required to separate two classes in two disjoint
subspaces. So the embedding space is not required to be semantically meaningful enough, e.g. (Left) the distance between 2 expert data
points may be even longer than the distance between expert data point and sub-optimal non-expert data point. (Right) We overcome
this limitation by proposing PCIL. Our method enforces the compactness of the expert’s representation. This ensures that the learned
representation can capture common, robust features of the expert’s transitions, which leads to a more meaningful representation space.

We define the imitation learning reward via cosine similarity
between the policy’s and expert’s transition.

As is shown in Figure 1, the discriminator (binary classifier)
might not have a good representation space: the distance
between two expert transitions can be even larger than the
distance between an expert transition and an agent transition.
This implies that the discriminator may not encode some
common features of the expert’s behavior and may use non-
robust features to compare the behavior. The lack of proper
structure in the representation space of traditional discrimi-
nators may yield low-quality AIL rewards. To alleviate this
issue, we explicitly define a constraint on the representation
space, requiring that the distance between expert transitions
be smaller than their distance to the agent’s transitions. This
is a stronger constraint on the discriminator’s representation:
it is easy to derive a binary classifier from our learned rep-
resentation. However, the binary classifier’s representation
space does not necessarily satisfy our objective.

We validate PCIL by first showing that PCIL is perform-
ing distribution matching between the expert and the agent
policy. We also carry out empirical evaluation by bench-
marking our method on the DeepMind Control Suite (Tassa
et al., 2018). Experimental results show that our method
is able to achieve state-of-the-art results. Through ablation
study and qualitative visualization, we find that our method
is more effective than prior representation learning meth-
ods and able to provide a better representation space for
imitation learning.

In summary, our contributions in this paper are as follows.
(1). We point out a new direction to improve the perfor-
mance of the AIL methods, i.e., going beyond naive binary
classification and leveraging more stable and meaningful
representation learning algorithms for imitation. (2). We
propose an algorithm called Policy Contrast Imitation Learn-
ing (PCIL) method that instantiates such an improvement
and establishes its connection to apprenticeship learning
from a theoretical perspective. (3). We evaluate our method
on the DeepMind Control Suite and achieve state-of-the-
art performance. Through ablation studies, we highlight
its essential difference from previous contrastive learning
methods in AIL.

2. Preliminaries
2.1. Notations

In this paper, we model the imitation lean-
ring problem as a markov decision process
M = (S,A, p0(s), p (s

′ | s, a) , r (s, a, s′) , γ). Here,
S is the state space. A is the action space. p0(s) defines
the initial state distribution. p(s′|s, a) defines the transition
dynamics. r(s, a, s′) is the reward function. γ is the
discount factor. The goal is to maximize the expected return
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of the learned policy π, which is defined by

J (π) = E s0∼p0(s),
ai∼π(·|si),

si+1∼p(·|si,ai)

[ ∞∑
k=0

γkr (sk, ak, sk+1)

]
.

For the imitation learning problem, the algorithm does not
have access to the reward function and the transition dy-
namics. Instead, it is provided with an expert demonstration
dataset D sampled from an expert policy πE , which can
perform well in M. Here, D takes the form of {(sEi , aEi )},
where (sEi , a

E
i ) is sampled from ρE , the stationary state-

action visiting distribution of πE . The imitation learning
algorithm is then required to reproduce the expert’s behavior
with D.

2.2. Adversarial Imitation Learning

One popular class of the imitation learning algorithm is the
adversarial imitation learning (AIL), whose vanilla version
is Generative Adversarial Imitation Learning (GAIL) (Ho
& Ermon, 2016). The idea of GAIL is to minimize the
divergence between ρE and ρπ. It uses a discriminator
D(s, a) to distinguish expert’s transitions (sEi , a

E
i ) ∼ D

from the policy transitions (s, a) ∼ ρπ , which is trained by
maximizing the objective

L = E(si,ai)∼π[log(D(si, ai))]+

E(sEi ,aE
i )∼D[log(1−D(sEi , a

E
i ))].

To achieve imitation, the agent policy is then required to fool
the discriminator, which can only be possible when the pol-
icy π resembles the expert πE . Specifically, GAIL defines
an adversarial reward r(st, at) = − log(1−D(st, at)), and
trains π to maximize the expected return with respect to this
reward using on-policy RL algorithms.

3. Policy Contrastive Imitaiton Learning
3.1. Overview

We propose a novel representation-learning-based approach
called Policy Contrastive Imitation Learning to improve the
AIL reward. The overview of PCIL is illustrated in Figure 2.
Our key insight is to learn a policy-contrastive representation
space. Unlike the contrastive learning studied in previous
AIL literature, the policy-contrastive representation here is
learned by anchoring on the rollout of different policies,
based on which we can compare the behavior of different
policies in a meaningful way. We will discuss the training
of this representation in Section 3.2 and the reward design
in Section 3.3. Then, we will show the convergence of our
algorithm in Section 3.4.

3.2. Contrastive Policy Representation for Imitation

The vanilla AIL algorithms are based on unconstrained rep-
resentations and can be very non-robust. One possible ap-
proach to handle this problem is to learn a more meaningful
representation by contrastive learning. Researchers (He
et al., 2020) have found that it can usually learn semanti-
cally meaningful representation, leading to better perfor-
mance on downstream tasks, such as classification. How-
ever, though it is effective in the field of supervised learning,
prior work (Chen et al., 2021) has found that it does not
greatly improve AIL much.

To understand the reason behind this, we first recall that the
contrastive learning method learns by drawing the represen-
tation of one training sample x towards a similar positive
sample xp, and pulling it away from a dissimilar, negative
sample xn. Some heuristic rules determine the choice of
positive and negative samples: the positive sample is usu-
ally defined as a data augmentation of x. Therefore, this
augmentation decides what should be similar to the rep-
resentation. Nevertheless, we argue that the definition of
similarity in the previous works is not strong enough for
AIL. This is because, in AIL, the representation should also
be able to let us discern good behavior from the bad behav-
ior. However, the difference between good and bad behavior
here can sometimes be very faint. For example, consider
a case where a robot misses the exact point to execute a
certain action and, as a result, fails to accomplish the task.
The good and bad states right before this point may look
very similar. More specifically, the difference can simply
be minor in a particular physical measurement, like the dis-
tance. In this case, the representation should consider this
as a semantic component and be sensitive to such a dif-
ference to succeed. Unfortunately, the difference between
the positive sample and the anchor sample in the previous
representation learning methods is usually very large and
overwhelms the difference between good and bad states. As
a result, the model may not distinguish between good and
bad states effectively. Though combining the representation
learning objective and the AIL objective may help combat
this problem by enforcing a hard distinguishing constraint
over contrastive representation, in practice we find this does
not work well (Section 4.4).

These observations motivate us to learn a representation that
is semantically meaningful and able to distinguish between
good and bad states. We find a surprisingly simple yet very
effective approach: we can consider the samples drawing
from the same policy as the positive samples and the samples
from all the other policies as negative samples. In the case
of imitation learning, our samples can be naturally divided
into two categories, namely expert and non-expert samples.
Then given the encoder Φ : S → S that maps the state to
a representation vector in a high-dimensional sphere, we
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Figure 2. Illustration of our contrastive learning approach. We first select an anchor state (the orange) from the expert trajectory. Then, we
select a positive state sample (the red) from another expert trajectory and a negative state sample (the green) from the agent trajectory. We
map these selected states to the representation space. Finally, we push the representation of the anchor state and the positive state together
and pull the representation of negative samples away from the representation of the anchor state.

define its infoNCE representation loss function as follows:

L = E x0=(s,a)∼D,
xp=(sp,ap)∼D,
x̃i=(s̃i,ãi)∼ρπ

[
Φ(x0)

TΦ(xp)+

log

(
expΦ(x0)

TΦ(xp) +

n∑
i=1

expΦ(x0)
TΦ(x̃i)

)]
.

(1)

Here, x0 is some state-action pair from the expert transi-
tions; xp is some transition from the expert data acting as
positives; x̃i is some agent transition working as negatives.
In other words, we require Φ to draw the expert samples
towards each other and pull all the policy samples away
from the expert samples.

Our proposed objective function is a strictly stronger con-
straint on the discriminator. The binary classification dis-
criminator can find any hyper-plane that separates the two
types of transitions, with no constraint on how the transi-
tions are embedded. However, our objective enforces the
pair-wise distance constraint between any triplets. One can
derive a binary expert-policy transition classifier from a
trained Φ by computing Φ(x0)

TΦ(x) > t, where x0 is
any expert transition, x is the transition to be classified and
t is some threshold. However, on the other hand, the bi-
nary classification induced latent space might not satisfy
our constraint. As illustrated in Figure 1, the latent space
for the binary classification discriminator might have some
expert-expert pairs that are even further away than some
expert-agent pairs.

Interestingly, our approach echoes the supervised con-
trastive learning (SCL) (Khosla et al., 2020), which sug-
gests that we consider all the samples in one class as similar,

positive samples. Here we also consider all the samples in
the expert demonstrations as similar. However, unlike SCL,
we do not require the samples from the agents to be similar
to each other. This is because the agent transitions are gen-
erated from different policies during the training process.

3.3. Similarity-Based Imitation Reward

With a representation that can capture the difference be-
tween good and bad states, we can then define a reward
function to encourage imitation learning. Though using an
AIL-style reward with this representation is still possible,
we find that a better choice is to use a cosine similarity
metric to define the reward. It has several advantages: it is
bounded and appears relatively smooth in practice, leading
to more stable learning. Concretely, we define:

r(x) = Φ (x)
T ExE∼DΦ (xE) . (2)

Nevertheless, in practice evaluating the latter expectation
can be time-consuming since Φ is frequently updated. There-
fore, we use a random expert sample for the reward calcu-
lation. From this reward, we can see that a policy can only
obtain high rewards when it frequently visits the expert’s
distribution. This naturally connects our method to the dis-
tribution matching, and we provide the theoretical analysis
of our algorithm in the following subsection.

3.4. Theoretical Analysis

In this part, we first show that PCIL can be reduced to
Apprenticeship Learning (AL) (Abbeel & Ng, 2004). Based
on this observation, we can further show that PCIL is also
perform distribution matching by minimizing a divergence
ρE and ρπ that is equivalent to the total variation divergence.

Recall that an AL problem takes the following form (Ho &
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Ermon, 2016):

min
π

max
r∈R

E
x=(s,a)∼D

[r(x)]− E
x=(s,a)∼ρπ

[r(x)] , (3)

where R is a set of reward functions. AL plays a min-
max game between the policy π and the reward function r.
Intuitively, in the inner loop we would like to find a cost
function such that the expert data’s cummulative return is
higher than that of the agent’s, and their gap is maximized.
Meanwhile, the policy π tries to minimize this gap.

Now, we reduce our objective to the AL formulation. For
simplicity, we consider the case that we only have one nega-
tive sample. We notice that Equation 1 is then

L = E
[
− log

expΦ(x0)
TΦ(xp)

expΦ(x0)TΦ(xp) + expΦ(x0)TΦ(xn)

]
.

(4)
As suggested by (Khosla et al., 2020), we can apply the
Taylor expansion trick to approximate this loss function
with the following form:

L ≈ E [∥Φ(x0)− Φ(xp)∥2 − ∥Φ(x0)− Φ(xn)∥2]. (5)

Note that we drop the constant terms and the scaling con-
stant since they do not affect the optimization objective.
Moreover, since Φ embeds the data points to the sphere, we
have ∥Φ(x)∥2 = 1,∀x. As a result, we can further expand
each term above and have

L = E
[
Φ(x0)

TΦ(xn)− Φ(x0)
TΦ(xp)

]
. (6)

Since the variables in this equation are independent from
each other, we are minimizing

L = Exn∼ρπ
[Ex0∼D[Φ(x0)]

TΦ(xn)]−
Exp∼D[Ex0∼D[Φ(x0)]

TΦ(xp)].
(7)

Let the reward function rθ(x) = Ex0∼D[Φθ(x0)]
TΦθ(x)

as we defined in Equation 2, then minimizing the Equation 7
is exactly doing the maximization of

Ex∼D [rθ(x)]− Ex∼ρπ
[rθ(x)] , (8)

which is exactly the inner maximization loop of AL. Then
optimizing the policy with respect to this rθ is exactly the
outer loop. Hence, our algorithm is reduced to AL.

Finally, we can show that we are minimizing the total varia-
tion divergence between the expert and policy distribution as
follows. First, let us define the inner objective of Equation
3 as

Dcont(ρ
E ||ρπ) = max

rθ
[Ex∼ρErθ(x)− Ex∼ρπrθ(x)].

Here we assume that the expert dataset D is large enough,
so sampling from D can be regarded as sampling from ρE .

Then we can show that

Theorem 1 (Equivalence to TV divergence)

0.25DTV (ρ
E ||ρπ) ≤ Dcont(ρ

E ||ρπ) ≤ 2.0DTV (ρ
E ||ρπ).

Here, DTV (ρ
E ||ρπ) = 1

2

∫
X |ρE(x)−ρπ(x)|dx is the total

variation divergence. Therefore, our objective is a proxy of
DTV (ρ

E ||ρπ).

We leave the proof of the theorem to Appendix E.

4. Experiments
In this section, we empirically evaluate PCIL on an exten-
sive set of tasks from the DeepMind control suite (Tassa
et al., 2018), a widely used benchmark for continuous con-
trol. Our experiments are designed to answer the following
questions: (1) Can PCIL achieve expert performance, and
how sample efficient is PCIL compared to state-of-the-art
imitation learning algorithms? (2) How does the represen-
tation space of PCIL differ from that of the AIL methods?
(3) How does our method perform when we use different
representation learning methods and reward design?

4.1. Experimental Setup

Environments We experiment with 10 MuJoCo (Todorov
et al., 2012) tasks provided by DeepMind Control Suite.
The selected tasks cover various difficulty levels, ranging
from simple control problems, such as the single degree
of freedom cart pole, to complex high-dimensional tasks,
such as the quadruped run. The episode length for all tasks
is 1000 steps, where a per-step ground truth environment
reward is in the unit interval [0, 1]. For each task, we train
an expert policy using DrQ-v2 (Yarats et al., 2021) with the
true environment reward function and use it to collect 10
demonstrations. We refer readers to Appendix A for the full
task list and more details about the demonstrations.

Training Details To update the encoder, we randomly
sample 128 expert transitions and 128 agent transitions from
a replay buffer. For arbitrary expert transition, any other
expert transition is considered a positive sample, and all the
agent transitions constitute the set of negative samples. We
update the encoder by minimizing Equation 1 with respect
to these samples. We use DrQ-v2 (Yarats et al., 2021) as the
underlying RL algorithm to train the agent with the cosine
similarity reward given in Equation 2. We use a budget
of 2M environment steps for all the experiments. Further
implementation details can be found in Appendix B.

Baselines We compare PCIL to Behavioral Cloning (BC)
and two major classes of imitation learning algorithms:
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1. Adversarial IRL: We consider Discriminator-Actor-
Critic (DAC) (Kostrikov et al., 2018), a state-of-the-art
AIL method that employs an unbiased AIL reward
function and performs off-policy training to reduce
environmental interactions.

2. Trajectory-matching IRL: Primal Wasserstein Im-
itation Learning (PWIL) (Dadashi et al., 2020) and
Sinkhorn Imitation Learning (SIL) (Papagiannis & Li,
2020) are two recently proposed trajectory-matching
imitation learning methods. PWIL computes the re-
ward based on an upper bound of Wasserstein dis-
tance. SIL computes the reward based on Sinkhorn
distances (Cuturi, 2013).

To ensure a fair comparison, we implement all the baselines
using the same RL algorithm. The implementation details
of these algorithms are in the Appendix.

4.2. Main Results

We show the performance curves of 6 tasks in Figure 3,
which are averaged over three random seeds. More results
on DeepMind control tasks are provided in Appendix D. We
find that PCIL is able to outperform the existing methods
on all of these tasks. It achieves near-expert performance
within our online sample budget in all considered tasks
except Hopper Hop. In terms of sample efficiency, i.e., the
number of environment interactions required to solve a task,
PCIL shows significant improvements over prior methods on
five tasks: Cheetah Run, Finger Spin, Hopper Hop, Hopper
Stand, and Quadruped Run. For the remaining tasks, PCIL
achieves similar results compared with the state-of-the-art
adversarial imitation learning method DAC. In particular,
we notice that PCIL’s performance gain is larger on more
difficult tasks (e.g., Cheetah Run, Quadruped Run). On
those easier tasks (e.g., Walker Stand, Walker Walk), the
baselines are also able to achieve strong results.

4.3. Analysis of Representation Space

We visualize the representation space of PCIL and DAC us-
ing t-SNE (Van der Maaten & Hinton, 2008) in Figure 4. For
DAC, since there is no explicit representation learning in the
discriminator, we treat the last hidden layer of its discrimi-
nator as the representation. We randomly sample 128 expert
transitions and 256 agent transitions for visualization. For
a fair comparison, all the transitions of PCIL and DAC are
selected from the same episode during the training process
on the same task. We use color to indicate the real environ-
ment reward of the agent’s transitions. The lighter (yellow)
color indicates a higher reward for agent transition while
the darker (green) indicates a lower reward agent transition.
The blue color indicates the expert’s transition.

We observe that in the representation space of PCIL, the

expert transitions are concentrated in a cluster. Moreover,
the distance between each agent transition to the cluster of
expert transition is highly correlated with the real reward of
that agent transition. This fact suggests that the contrastive
objective of PCIL indeed induces a meaningful representa-
tion space here. On the contrary, the representation space
of DAC is much less structured. The expert transitions are
scattered throughout the representation space of DAC. More-
over, we identify that in the DAC’s representation space, the
agent’s real ward does not correlate well with its distance
to the expert transitions. These facts show that our method
indeed learns a better representation space.

4.4. Ablation Studies

As described in our method, our method has two com-
ponents: a policy contrastive representation for imitation
(Section 3.2) and a similarity-based imitation reward (Sec-
tion 3.3). In this part, we carry out ablation studies to
analyze their effects. We first introduce our design choices
as follows.

PCIL Representation v.s. TCN Representation We re-
place our proposed policy contrastive objective with other
contrastive learning methods. For this purpose, we adopt
the popular self-supervised representation learning method
that leverages temporal information: Time-Contrastive Net-
works (TCN) (Sermanet et al., 2018). In this case, the
positive samples are selected within a small window around
the anchor sample, while the negative samples are selected
from distant time steps in the same rollout trajectory. See
Appendix C for implementation details.

Similarity-based Reward v.s. GAIL-like Reward We
also ablate the similarity-based reward in PCIL by replac-
ing the similarity-based imitation reward with a GAIL-like
reward. Specifically, we train a linear binary classifier on
the policy contrastive embedding space to distinguish ex-
pert or non-expert data. In this case, the embedding space
is still trained by PCIL contrastive loss, and the GAIL re-
ward’s gradient is detached from the embedding network.
We use the same reward predictor as other GAIL-style meth-
ods (Kostrikov et al., 2018), i.e. log(D(x))−log(1−D(x)).

Analysis By comparing rows 1 and 2 in Table 1, we find
that the approach with TCN encoder does not work in three
out of four environments. This is because the optimization
goal of TCN is not to distinguish between expert and non-
expert data. Thus the reward produced by comparing expert
and non-expert data in the learned representation space is
not necessarily meaningful. Note that the case in row 2
is no longer an adversarial IRL method. We also consider
a case (row 4 in Table 1) where we use TCN and GAIL-
like reward predictor, but the performance of this method
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Figure 3. Comparisons of algorithms on 6 selected tasks. See Appendix D for more tasks. For every 20k environment steps, we perform
10-episode rollouts of the policy without exploration noise and report average episode returns over the 10 episodes. We plot the mean
performance over 3 seeds together with the shaded regions, which represent 95% confidence intervals.

Table 1. Ablation studies on the policy contrastive representation and similarity-based imitation reward. We report the average final returns
on 4 selected tasks over 3 random seeds and standard deviations are given in error bars.

Methods Finger Spin Walker Run Hopper Stand Hopper Hop

PCL + Sim-reward (Ours) 964.2 ±24.2 778.4 ±14.1 771.2 ±142.1 243.2 ±20.1
TCN + Sim-reward 975.2 ±45.1 180.5 ±11.4 2.0 ±1.2 6.8 ±0.2
PCL + GAIL-reward 2.5 ±2.4 18.5 ±6.5 1.2 ±1.8 0.1 ±0.1
TCN + GAIL-reward 35.4 ±19.2 19.8 ±4.2 1.5 ±0.3 17.3 ±4.6

is poor. Moreover, we observe that in the absence of the
similarity-based imitation reward (compare rows 1 and 3 in
Table 1), our method does not work. This is because our
representation space has metric-space characteristics. As a
result, we should use a distance-based metric to compute the
reward. In conclusion, the two components of our method
are necessary for achieving good performance.

5. Related Work
5.1. Imitation Learning

Imitation learning is a class of algorithms that enables a
robot to acquire behaviors from a demonstration dataset.
There are two classes of imitation learning algorithms: be-
havioral cloning (BC) and Inverse Reinforcement Learn-
ing (IRL) (Ng et al., 2000). BC is a simple supervised

learning algorithm that directly fits the expert’s action. How-
ever, some work suggests that it has some drawbacks: it
suffers from covariate shift problem (Ross et al., 2011), and
it is hard to learn from a demonstration dataset without ex-
pert actions (Torabi et al., 2018a). Instead, IRL (Abbeel
& Ng, 2004) proposes to recover the underlying policy by
estimating the underlying reward function and then maxi-
mizing the overall return with this reward. In particular, a
recent branch of IRL is the AIL, which proposes to match
agents’ state-action distribution with experts via adversarial
training. GAIL (Ho & Ermon, 2016) proposed a maximum
entropy occupancy measure matching method which learns
a discriminator to bypass the need to recover the expert’s
reward function. Later, several works proposed an improved
version of the GAIL methods (Ghasemipour et al., 2020;
Blondé et al., 2022; Baram et al., 2017; Kostrikov et al.,
2018; Fu et al., 2017). AIRL (Fu et al., 2017) replaced the
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DAC Cheetah Run

PCIL Cheetah Run PCIL Hopper Hop

DAC Hopper Hop

PCIL Finger Spin

DAC Finger Spin

Figure 4. t-SNE visualization results for DAC (top panels) and our PCIL method (bottom panels). The blue color indicates the expert’s
transition. The lighter (yellow) color indicates agent transitions with higher real reward while the darker (green) indicates lower real
reward.

Shannon-Jensen divergence used in GAIL by KL divergence
to measure similarity between state-action pair distributions.
(Baram et al., 2017) bridges the GAIL framework to model-
based reinforcement learning. DAC (Kostrikov et al., 2018)
improved the sample efficiency by leveraging a replay buffer
without importance sampling and dealing with the absorb-
ing state problem. In contrast to these works, we focus on
the representation of AIL’s discriminator and reformulating
AIL in a contrastive embedding space.

5.2. Representation Learning For Policy Learning

In this work, we propose a representation-learning-based
approach to improve imitation learning. As imitation learn-
ing is a major class of policy learning algorithms, we review
works that use self-supervised learning to improve policy
learning in this part. Pioneer works (Mirowski et al., 2016;
Jaderberg et al., 2016; Shelhamer et al., 2016; Lample &
Chaplot, 2017) explore using auxiliary objectives (e.g., pre-
dict some property of the environment) as a self-supervision
signal. Recent works employ more general self-supervised
objectives (Oord et al., 2018). In particular, (Srinivas et al.,
2020) are based on contrastive representation learning. (Ser-
manet et al., 2018) learn representation from multiview

video using time contrastive learning. Some other methods
also explore the use of self-supervised representation pre-
trained on environment data (Ha & Schmidhuber, 2018) or
from real-world images (Xiao et al., 2022; Parisi et al., 2022;
Nair et al., 2022). In imitation learning, (Mandi et al., 2022)
proposes to use contrastive learning for one-shot imitation
learning in robotics. (Chen et al., 2021) investigate the use
of representation for imitation learning. However, their re-
sult suggests that self-supervised representation learning
only provides a small improvement of imitation learning
algorithms’ performance. Our method differs from all these
existing works by proposing to anchor on different policies
and learn a discriminative self-supervised representation for
imitation learning.

6. Conclusion
In this paper, we suggested a new approach to improve
adversarial imitation learning algorithms: to learn a more
meaningful, discriminative representation space for imita-
tion. To this end, we proposed a new algorithm called
PCIL. We conducted a theoretical analysis of our method
and showed its connection to apprenticeship learning. We
also conducted experiments on the DeepMind Control Suite
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and showed that PCIL could achieve state-of-the-art perfor-
mance. Moreover, we used an ablation study to highlight its
difference from the previous representation learning method.
In the future, we will focus on further improving our loss
function design. For example, can we anchor on the agent
policies at different training stages? It will also be interest-
ing to extend the proposed representation learning method
in the relaxed setting of IL, like the scene where we can
access both the reward and demonstration.

7. Reproducibility
We implement our algorithm according to parameters and
details described in Appendix B and Section 4.1. We will
release our code and data.
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A. Environments
We use 10 continuous control tasks from the DeepMind control suite (Tassa et al., 2018). The summary for each task is
provided in Table 2.

Task dim(S) dim(A)
Finger Spin 6 2
Hopper Stand 14 4
Pendulum Swingup 2 1
Walker Stand 18 6
Walker Walk 18 6
Acrobot Swingup 4 1
Cheetah Run 18 6
Hopper Hop 14 4
Quadruped Run 56 12
Walker Run 18 6

Table 2. A detailed description of each tasks used in our experiments.

Demonstrations For each task, we train expert policies using DrQ-v2 (Yarats et al., 2021) on the actual environment
rewards. We run 3 seeds and pick the seed that achieves the highest return. Then we use this expert policy to collect 10
demonstrations.

B. Algorithm Details
B.1. Implementation

RL agent We use DrQ-v2 as the underlying RL algorithm. DrQ-v2 is an off-policy actor-critic algorithm for continuous
control. The core of DrQ-v2 is Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015) augmented with n-step
returns. The critic is trained using clipped double Q-learning (Fujimoto et al., 2018) to reduce the overestimation bias in the
target value. The deterministic actor is trained using deterministic policy gradients (DPG) (Silver et al., 2014). We also
follows the setting of actor’s and critic’s neural network architectures in state-based DrQ-v2 (Yarats et al., 2021).

Contrastive encoder The contrastive encoder is implemented as a 4 layer MLP with hidden size [256, 256, 256]. The
output dimension is 64. Following the architecture in (Yarats et al., 2021), the contrastive encoder, the critic and the actor
share the same encoder backbone. This shared encoder is trained with the gradient of the critic alone, which is also following
the suggestion of (Kostrikov et al., 2020; Yarats et al., 2021). The input of this shared encoder is state s of a transition.

Reward predictor Reward of the agent transition is computed according to Equation 2. Note that cosine similarity
between expert data points is high due to the optimization goal described in Equation ??. Thus, we randomly sample one
expert transition from the expert replay buffer to compute agent reward. Empirically, we find that using the mean embedding
of the expert data yields similar performance.

Gradient penalty In order to make the algorithm more stable, we use the gradient penalty technique (Gulrajani et al.,
2017) widely used in Wasserstein-GANs (Arjovsky et al., 2017). We make minor adjustments to accommodate our policy
contrastive loss. GAIL-like methods usually constrain the gradient norm of the discriminator’s output with respect to its
input. While for PCIL, the contrastive encoder’s output needs one more step. Specifically, the output embeddings are first
used to calculate rewards following Equation 2, then we compute and penalize the gradient norm of the rewards. We use 10
as the weighting for the gradient penalty.

B.2. Hyperparameters

Table 3 lists the hyperparameters that are used for all baseline methods and our method. Expert data ratio in PCIL means
the ratio between expert data and batch size. A ratio of 0.5 means that half of the batch is expert data and the other half
is the agent data. The contrastive learning usually needs a temperature scaling after computing the cos-similarity, before
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computing the exponential. For simplicity, we ignored it in the main text. In the experiment, we follow prior contrastive
learning work (He et al., 2020) and use a typical value of 0.07 for the temperature.

Methods Parameter Value

all methods Replay buffer size 500k
Agent update frequency 2

Optimizer Adam
Learning rate 1e-4

Critic soft-update rate 0.01
Random seed 1,2,3
RL batch size 128

Discriminator training batch size 256
Hidden dim 256

PCIL Expert data ratio 0.5
Contrastive temperature 0.07

Table 3. The hyperparameters of baseline methods and our method.

C. Ablation study implementation details
C.1. TCN representation

TCN encoder shares the same network architecture as the PCL encoder. During the training process in TCN encoder, for a
random sampled anchor, we use data point adjacent to it as positive pair and another random sampled data point as negative
pair. We also set contrastive temperature to 0.07 and batch size to 256, which is the same as PCL encoder.

C.2. GAIL-like reward

GAIL reward predictor can be seen as a simplified version of GAIL discriminator which has only one linear classifier layer.
The reward predictor is trained independently to distinguish whether the input is from a expert data or non-expert data with
a binary classification loss.

D. Additional Experimental Results
Figure 5 shows the performance of PCIL on the other 4 tasks from the DeepMind Control suite. We notice that the
performance of some relatively easy tasks has saturated. All the baselines achieve expert performance on Pendulum Swingup.
On Walker Stand and Walker Walk, PCIL is competitive with DAC, which already demonstrates impressive sample efficiency.

E. Proof
At the last of Section 3.4, we have shown that

min
π

max
rθ

Ex∼Drθ(x)− Ex∼ρπrθ(x),

where rθ = (Ex′∼DΦθ(x
′)dx′)TΦθ(x), and D is the expert dataset. We may as well regart D as ρE when the dataset size is

large.

Define the inner objective as
Dcont(ρ

E ||ρπ) = max
rθ

[Ex∼ρErθ(x)− Ex∼ρπrθ(x)].

In this part, we prove

Theorem 1
0.25DTV (ρ

E ||ρπ) ≤ Dcont(ρ
E ||ρπ) ≤ 2.0DTV (ρ

E ||ρπ).
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Figure 5. Comparisons of algorithms on the other 4 tasks.

Here, DTV (ρ
E ||ρπ) = 1

2

∫
X |ρE(x)− ρπ(x)|dx is the total variation divergence.

Proof of Theorem 1

Step 1 We first turn the inner optimization to a simple form. Let vθ = Ex′∼DΦθ(x
′), then we find a correspond-

ing orthonormal matrix Mθ such that Mθvθ = [∥vθ∥, 0, 0, 0, ..., 0]T . As a result,

rθ = (Ex′∼DΦθ(x
′))TΦθ(x) = (MθEx′∼DΦθ(x

′))TMθΦθ(x) = ∥vθ∥[MθΦθ(x)]1.

If we define gθ = [MθΦθ(x)]1 : X → [−1, 1], then the inner objective can be written as:

InnerOPT Maximize (w.r.t. θ, α)

α

∫
X
gθ(x)[ρ

E(x)− ρπ(x)]dx,

subject to

α =

∣∣∣∣∫
X
gθ(x)ρ

E(x)dx

∣∣∣∣ .
Note that the constraint is derived from the following fact:

α = ∥vθ∥ = ∥Mθvθ∥ = ∥Ex′∼ρEMθΦθ(x
′)∥ =

∣∣∣∣∫
X
gθ(x)ρ

E(x)dx

∣∣∣∣ .
Step 2 In this step, we show that 0.5DTV (ρ

E ||ρπ) ≤ Dcont(ρ
E ||ρπ). We do this by constructing a gθ, and eval-

uate the corresponding objective function. First, let S = {x ∈ X : ρE(x) ≥ ρπ(x)}. Then, we split the discussion into two
cases.

Case 1 If µE(S) ≥ µE(Sc).
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we define

gθ(x) =

{
1 x ∈ S,

−β x ∈ Sc
.

where β ∈ [0, µE(S)] is a scalar. Then, we know that

α = |µE(S)− βµE(Sc)| = |µE(S)− β(1− µE(S))| = |(1 + β)µE(S)− β| = (1 + β)µE(S)− β.

Meanwhile, we know∫
X
gθ(x)[ρ

E(x)− ρπ(x)]dx =

∫
S

gθ(x)[ρ
E(x)− ρπ(x)]dx+

∫
Sc

gθ(x)[ρ
E(x)− ρπ(x)]dx

and
RHS =

∫
S

|ρE(x)− ρπ(x)|dx+ β

∫
Sc

|ρE(x)− ρπ(x)|dx ≥ β

∫
X
|ρE(x)− ρπ(x)|dx

Therefore, we have

Dcont(ρ
E ||ρπ) ≥ α

∫
X
gθ(x)[ρ

E(x)− ρπ(x)]dx ≥ ((1 + β)µE(S)− β)β

∫
X
|ρE(x)− ρπ(x)|dx

= 2((1 + β)µE(S)− β)βDTV (ρ
E ||ρπ).

Since µE(S) ≥ µE(Sc) and µE(S) + µE(Sc) = 1, we have µE(S) ≥ 0.5. Then,

RHS = 2((1 + β)µE(S)− β)βDTV (ρ
E ||ρπ) ≥ (1− β)βDTV (ρ

E ||ρπ).

In particular, if we pick β = 0.5, then the right hand side is 0.25DTV (ρ
E ||ρπ), so in this case,

Dcont(ρ
E ||ρπ) ≥ 0.25DTV (ρ

E ||ρπ).

Case 2 If µE(S) < µE(Sc). This can be done in a similar way.

We define

gθ(x) =

{
β x ∈ S,

−1 x ∈ Sc
.

where β ∈ [0, 0.5] is a scalar. Then, we know that

α = |βµE(S)− µE(Sc)| = |βµE(S)− (1− µE(S))| = |(1 + β)µE(S)− 1| = 1− (1 + β)µE(S).

Meanwhile, we know∫
X
gθ(x)[ρ

E(x)− ρπ(x)]dx =

∫
S

gθ(x)[ρ
E(x)− ρπ(x)]dx+

∫
Sc

gθ(x)[ρ
E(x)− ρπ(x)]dx

and
RHS = β

∫
S

|ρE(x)− ρπ(x)|dx+

∫
Sc

|ρE(x)− ρπ(x)|dx ≥ β

∫
X
|ρE(x)− ρπ(x)|dx

Therefore, we have

Dcont(ρ
E ||ρπ) ≥ α

∫
X
gθ(x)[ρ

E(x)− ρπ(x)]dx ≥ (1− (1 + β)µE(S))β

∫
X
|ρE(x)− ρπ(x)|dx

= 2(1− (1 + β)µE(S))βDTV (ρ
E ||ρπ).

Since µE(Sc) > µE(S) and µE(S) + µE(Sc) = 1, we have µE(S) < 0.5. Then,

RHS = 2(1− (1 + β)µE(S))βDTV (ρ
E ||ρπ) ≥ (1− β)βDTV (ρ

E ||ρπ).
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In particular, if we pick β = 0.5, then the right hand side is 0.25DTV (ρ
E ||ρπ), so in this case,

Dcont(ρ
E ||ρπ) ≥ 0.25DTV (ρ

E ||ρπ).

Putting Case 1 and 2 together, we can conclude that

Dcont(ρ
E ||ρπ) ≥ 0.25DTV (ρ

E ||ρπ).

Step 3 Finally, we show that
Dcont(ρ

E ||ρπ) < 2.0DTV (ρ
E ||ρπ).

This is actually quite straightforward. Noting that

α =

∣∣∣∣∫
X
gθ(x)ρ

E(x)dx

∣∣∣∣ ≤ ∫
X
|gθ(x)ρE(x)|dx =

∫
X
|gθ(x)|ρE(x)dx ≤

∫
X
ρE(x)dx = 1,

we have

α

∫
X
gθ(x)[ρ

E(x)− ρπ(x)]dx ≤ |α||
∫
X
gθ(x)[ρ

E(x)− ρπ(x)]dx| ≤ |
∫
X
gθ(x)[ρ

E(x)− ρπ(x)]dx|

≤
∫
X
|gθ(x)||ρE(x)− ρπ(x)|dx ≤

∫
X
|ρE(x)− ρπ(x)|dx = 2DTV (ρ

E ||ρπ).

This then completes the proof.
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