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Abstract
Federated bilevel learning has received increasing
attention in various emerging machine learning
and communication applications. Recently, sev-
eral Hessian-vector-based algorithms have been
proposed to solve the federated bilevel optimiza-
tion problem. However, several important proper-
ties in federated learning such as the partial client
participation and the linear speedup for conver-
gence (i.e., the convergence rate and complexity
are improved linearly with respect to the num-
ber of sampled clients) in the presence of non-
i.i.d. datasets, still remain open. In this paper,
we fill these gaps by proposing a new federated
bilevel algorithm named FedMBO with a novel
client sampling scheme in the federated hypergra-
dient estimation. We show that FedMBO achieves
a convergence rate of O

(
1√
nK

+ 1
K +

√
n

K3/2

)
on

non-i.i.d. datasets, where n is the number of par-
ticipating clients in each round, and K is the total
number of iteration. This is the first theoretical lin-
ear speedup result for non-i.i.d. federated bilevel
optimization. Extensive experiments validate our
theoretical results and demonstrate the effective-
ness of our proposed method.

1. Introduction
Federated learning is a privacy-preserving training paradigm
over distributed networks that are designed for edge comput-
ing (McMahan et al., 2017). In federated learning, multiple
edge devices (or clients) work together to learn a global
model under the coordination of a central server. Instead of
transmitting user data directly to the central server, each
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client stores data and computes locally and only trans-
mits the privacy-preserving information. This paradigm
is increasingly attractive due to the growing computational
power of edge devices and the increasing demand for privacy
protection. Federated learning is facing more challenges
than traditional distributed optimization due to the high com-
munication cost, data and system heterogeneity, and privacy
concerns. Recent years have witnessed great progress in the
algorithmic design and system deployment to address such
challenges (Wang & Joshi, 2021; Karimireddy et al., 2019;
Stich & Karimireddy, 2020).

Recently, federated bilevel learning has received increasing
attention (Chen et al., 2018; Fallah et al., 2020; Zeng et al.,
2021) because many modern machine learning problems
naturally exhibit a bilevel optimization structure. For exam-
ple, Chen et al. 2018; Fallah et al. 2020 studied the federated
meta-learning problems, Khodak et al. 2021 proposed fed-
erated hyperparameter optimization approaches, and Zeng
et al. 2021 improved the fairness in federated learning using
a bilevel method. This motivates us to study the following
federated bilevel optimization problem.

min
x∈Rp

Φ(x) = f(x, y∗(x)) :=
1

m

m∑
i=1

fi(x, y
∗(x)) (1a)

s.t. y∗(x) ∈ argmin
y∈Rq

g(x, y) :=
1

m

m∑
i=1

gi(x, y), (1b)

where fi(x, y) = Efi(x, y; ξi), gi(x, y) = Egi(x, y; ζi)
are stochastic upper- and lower-level loss functions of client
i, and m is the total number of clients. Existing federated
learning algorithms like FedAvg and its variants (McMa-
han et al., 2017) cannot be applied to solve the federated
bilevel problem Equation (1) due to the nested optimiza-
tion structure, the global Hessian inverse estimation in the
hypergradient (i.e., ∇Φ(x)) computation, and the data het-
erogeneity in both the upper- and lower-level problems.

Recently, several approaches (Tarzanagh et al., 2022; Gao,
2022; Li et al., 2022) have been proposed to efficiently solve
Equation (1). Gao 2022; Li et al. 2022 focused on the homo-
geneous setting and proposed momentum-based distributed
bilevel algorithms. In the more practical but challenging het-
erogeneous setting, Tarzanagh et al. 2022 proposed FedNest
based on an implicit differentiation based federated hyper-
gradient estimator. In the inner loop, FedNest calls T times
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Table 1. Comparison of FedMBO with existing federated bilevel algorithms. m is the total number of clients, n is the size of sampled
clients, and ϵ is the required accuracy. The dependence on κ in LocalBSGVR and AdaFBiO are missing in their papers.

Algorithm Sample Complexity Partial Client Participation Linear Speedup Data Heterogeneity

LocalBSGVR (Gao, 2022) O(ϵ−3/2m−1) ✗ ✓ ✗

AdaFBiO (Huang, 2022) O(ϵ−3/2) ✗ ✗ ✓
FedNest (Tarzanagh et al., 2022) O(κ9ϵ−2) ✗ ✗ ✓
FedMBO O(κ9ϵ−2n−1) ✓ ✓ ✓

of FedInn, which is a federated stochastic variance reduced
gradient (FedSVRG) algorithm, to solve the lower-level
problem. Then FedNest calls FedOut, which constructs a
federated hypergradient estimator, to optimize the upper-
level problem. However, FedNest fails to achieve a linear
speedup for convergence in training due to the high corre-
lation among the individual hypergradient estimators com-
puted by all clients. In addition, FedNest is restricted to
the full client participation. Then, an important question
remains:

• Can we develop an easy-to-implement federated method,
which achieves a linear speedup for convergence in
the general heterogeneous setting, and allows flexible
partial client participation?

Our contributions. In this paper, we provide an affirmative
answer to the above question by proposing a novel federated
algorithm called Federated Minibatch Bilevel Optimization
(FedMBO). Our contributions are summarized as follows.

• The proposed FedMBO follows a double-loop scheme
in bilevel optimization and consists of two important
components. For the inner loop, FedMBO adopts a sim-
ple Minibatch Stochastic Gradient Descent (SGD) algo-
rithm. Compared with FedAvg and FedSVRG, the mini-
batch SGD and its accelerated variant are more immune
to the heterogeneity of the problem (Woodworth et al.,
2020b), which is critical in achieving the linear speedup
for convergence under the bilevel optimization structure.
For the outer loop, FedMBO features a Parallel Hy-
pergradient Estimator (PHE) with a novel multi-round
client sampling scheme. Compared to IHGP (Tarzanagh
et al., 2022), our PHE procedure allows either full or par-
tial client participation, and more importantly, achieves
a variance bound linearly decreasing w.r.t. the number
of participating clients. We anticipate that PHE can be
of independent interest to other settings such as decen-
tralized or asynchronous bilevel optimization.

• We show that FedMBO achieves a convergence rate
of O

(
1√
nK

+ 1
K +

√
n

K3/2

)
and a sample complex-

ity (i.e., the number of samples to achieve an ϵ-
stationary point) of O(ϵ−2n−1), which outperforms that
of FedNest (Tarzanagh et al., 2022) by an order of n due
to the linear speedup. As shown in Table 1, compared

to the momentum-based LocalBSGVR (Gao, 2022) and
AdaFBiO (Huang, 2022), our FedMBO is more flexible
with partial client participation, and more importantly,
achieves the linear speedup for convergence even in the
presence of data heterogeneity.

• We conduct extensive experiments to validate our theo-
retical results, and further demonstrate the effectiveness
of our proposed federated hypergradient estimator and
the FedMBO algorithm.

1.1. Related Work

Bilevel optimization approaches: Bilevel optimization
was first introduced in 1970’s (Bracken & McGill, 1973)
and has been being studied in the past decades. Since
then, tremendous efforts have been made to reformulate the
bilevel problem as a single-level optimization problem and
develop efficient algorithms to solve it(Aiyoshi & Shimizu,
1984; Edmunds & Bard, 1991; Hansen et al., 1992; Shi
et al., 2005). Recently, several prevailing machine learn-
ing applications can be naturally formulated as a bilevel
programming problem (Maclaurin et al., 2015; Pedregosa,
2016; Finn et al., 2017; Franceschi et al., 2017; 2018; Ji
et al., 2020), which brings a lot of attention to the bilevel
programming in the machine learning community. On the
theoretical side, there are many existing works deriving both
asymptotic (Franceschi et al., 2018; Shaban et al., 2019; Liu
et al., 2021) and non-asymptotic (Ghadimi & Wang, 2018;
Ji et al., 2021; Hong et al., 2020; Chen et al., 2021a; Guo
& Yang, 2021; Huang et al., 2022) convergence analysis
for the deterministic or stochastic bilevel optimization. For
example, Ghadimi & Wang 2018; Hong et al. 2020; Ji et al.
2021; Arbel & Mairal 2022 proved the convergence for
SGD type of bilevel methods via the approximate implicit
differentiation (AID) approach. Yang et al. 2021; Chen et al.
2021b; Khanduri et al. 2021; Guo & Yang 2021; Dagréou
et al. 2022 adopted the variance reduction and momentum
techniques into stochastic bilevel programming to achieve
better complexity results.

Federated learning: At the core of federated learning is
the prevailing FedAvg algorithm and its variants (McMahan
et al., 2017; Li et al., 2020; Karimireddy et al., 2019; Mitra
et al., 2021; Acar et al., 2021; Stich, 2018; Yu et al., 2019;
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Yang et al., 2020; Qu et al., 2020) to address the communi-
cation efficiency and the data privacy concerns. We review
literature with a focus on the analysis of the linear speedup
for convergence. In the homogeneous setting, two variants
of FedAvg were proposed to achieve linear speedup (Stich,
2018; Yu et al., 2019) under the assumptions of bounded
gradient and full client participation. Later, Wang & Joshi
2021; Stich & Karimireddy 2020 removed the bounded
gradient assumption and established a convergence rate of
O(ϵ−2m−1). In the heterogeneous setting, the SCAFFOLD
algorithm (Karimireddy et al., 2019) achieves the first lin-
ear speedup convergence rate using a variance reduction
framework and is independent of the level of heterogeneity.
After that, several variants of FedAvg (Yang et al., 2020;
Qu et al., 2020) have also been proved to achieve linear
speedup. Another interesting line of work focuses on the
comparison between FedAvg and minibatch SGD (Wood-
worth et al., 2020a;b). In the homogeneous case, FedAvg
provably outperforms minibatch SGD and its accelerated
versions (Woodworth et al., 2020a). However, when the
heterogeneity level is high, FedAvg is shown to be worse
than minibatch SGD.

Distributed bilevel optimization: For the decentralized
stochastic bilevel optimization (DSBO) problem, Lu et al.
2022; Terashita & Hara 2022 studied the setting where the
clients have their own local lower problems and thus the
communication for the lower-level part can be saved, and
Yang et al. 2022; Chen et al. 2022a;b considered a more
general global setup, in which all the clients target solv-
ing a global lower-level problem together. Ji & Ying 2023
proposed a distributed bilevel method for learning the best
utility surrogate functions for network utility maximization.
The most related works to this paper is the FedNest algo-
rithm (Tarzanagh et al., 2022), which achieves a sample
complexity of O(ϵ−2). This result was further improved by
the momentum-based federated bilevel algorithms in Gao
2022; Huang 2022. A concurrent work (Xiao & Ji, 2023)
proposed an iterative differentiation-based federated bilevel
method named FBO-AggITD, which achieves the same
sampling complexity as FedNest. Our proposed FedMBO
achieves the first linear speedup result in the heterogeneous
setting.

2. Definitions and Assumptions
Throughout this paper, we make the following standard
assumptions, as typically adopted in bilevel optimization.
Definition 1. A function h : Rn1 7→ Rn2×n3 is Lipschitz
continuous with constant L if

∥h(z1)− h(z2)∥ ≤ L ∥z1 − z2∥ ∀z1, z2 ∈ Rn1 ,

where ∥·∥ denotes the Euclidean norm of a vector or matrix
depending on the value of n3.

Definition 2. A solution x is ϵ-accurate stationary point if
E ∥∇Φ(x)∥2 ≤ ϵ, where x is the output of an algorithm.

Let z = (x, y) ∈ Rp+q denotes all parameters.

Assumption 1. (Lipschitz properties). For all i ∈ [m] :
fi(z), ∇fi(z), ∇gi(z), ∇2gi(z) are ℓf,0, ℓf,1, ℓg,1, ℓg,2-
Lipshitz continuous, respectively.

Assumption 2. (Strong convexity) For all i ∈ [m] : gi(x, y)
is µg-strongly convex in y for any fixed x ∈ Rq .

Assumption 3. (Unbiased estimators). For all i ∈ [m] :
∇fi(z; ξ), ∇gi(z; ζ), ∇2gi(z; ζ) are unbiased estimators
of ∇fi(z), ∇gi(z), ∇2gi(z), respectively.

Assumption 4. (Bounded variances). For all i ∈ [m] :
there exist constants σ2

f , σ2
g,1, and σ2

g,2, such that

Eξ ∥∇fi(z; ξ)−∇fi(z)∥2] ≤ σ2
f ,

Eζ ∥∇gi(z; ζ)−∇gi(z)∥2 ≤ σ2
g,1,

Eζ

∥∥∇2gi(z; ζ)−∇2gi(z)
∥∥2 ≤ σ2

g,2.

Assumption 5. There exists a constant σg, such that
E ∥∇gi(z)−∇g(z)∥2 ≤ σ2

g , where the expectation E is
taken over the client index i.

Remark 1. The assumptions outlined above are quite com-
mon and have been broadly adopted in the existing literature.
Assumption 1 imposes certain levels of Lipschitz smoothness,
which is a standard condition to derive the non-asymptotic
convergence in nonconvex optimization. In addition, the
Lipshitz continuity of ∇2gi(z) enables us to control the
error between the inverse of the Hessian matrix and its
Neumann series-based approximation, as also adopted by
other non-asymptotic studies (e.g, Ji et al. 2021; Chen et al.
2021b). Assumption 2 supposes the strong convexity of the
lower-level objective g, which triggers the implicit func-
tion theorem to guarantee the hypergradient ∇Φ(x) to exist
and enjoy an explicit form. Assumptions 3 and 4 require the
stochastic estimators to be unbiased with bounded variances,
and such conditions are widely adopted in the stochastic
optimization. Assumption 5, often employed in the analysis
for partial client participation in federated learning, con-
trols the disparity between the local gradient ∇gi(z) and
the global gradient ∇g(z).

3. Algorithms
To solve the bilevel problem in Equation (1), the biggest
challenge lies in computing the federated hypergradient
∇Φ(x) = (1/m)

∑m
i=1 ∇fi(x, y

∗(x)), whose explicit
form can be obtained as follows via implicit differentiation.

Lemma 1. Under Assumptions 1 and 2, we have

∇f(x, y∗(x)) = ∇xf(x, y
∗(x))−∇2

xyg(x, y
∗(x))

×
[
∇2

yyg(x, y
∗(x))

]−1 ∇yf(x, y
∗(x)), (2)
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where ∇2
yyg(x, y) is defined as the Hessian matrix of g with

respect to y and ∇2
xyg(x, y) is defined as

∇2
xyg(x, y) :=


∂2

∂x1∂y1
g(x, y) . . . ∂2

∂x1∂yq
g(x, y)

. . .
∂2

∂xp∂y1
g(x, y) . . . ∂2

∂xp∂yq
g(x, y)

 .

To employ the above lemma, several challenges arise. First,
the evaluation of the federated hypergradient in Equation (2)
requires the approximation of the minimizer y∗(x) of the
lower-level problem, which may introduce a big bias due
to the client drift. We propose to use the simple minibatch
SGD as the lower-level optimizer, as elaborated in Sec-
tion 3.1, to mitigate the impact of the lower-level client
drift on the final convergence rate. Second, the stochas-
tic approximation of the infeasible Hessian inverse matrix[
∇2

yyg(x, y
∗(x))

]−1 ∇yf(x, y
∗(x)) in Lemma 1 often in-

volves the computation of a series of global Hessian-vector
products in a nonlinear manner, which complicates the im-
plementation and may introduce a large estimation variance.
Third, the federated hypergradient estimation may suffer
from a large bias due to both the upper- and lower-level
client drifts. In this paper, we propose a new algorithm
FedMBO, which contains two main components, i.e., a
minibatch SGD based lower-level optimizer and a novel
federated hypergradient estimator, to address the above chal-
lenges, respectively.

Algorithm 1 Heterogeneous Distributed Minibatch Bilevel
Optimization with Partial Clients Participation

1: Input: full client index set [m], partial clients n partici-
pation, batch size S of local SGD at inner loop, initial
point (x0, y0), N ∈ N+

2: for k = 0, 1, . . .K − 1 do
3: yk,0 = yk

4: for t = 0, 1, . . . T − 1 do
5: Sample client index subset Ck,t =

{
ck,t1 , ..., ck,tn

}
with

∣∣Ck,t
∣∣ = n

6: for i ∈ [n] in parallel do
7: Sample batch Sk,t

i = {ξk,ti,0 , ξ
k,t
i,1 , . . . , ξ

k,t
i,S−1}

8: Compute Gk,t
i = 1

S

∑S−1
j=0 ∇g

c
k,t
i

(xk, yk,t; ξk,ti,j )

9: end for
10: Gk,t = 1

n

∑n
i=1 G

k,t
i

11: yk,t+1 = yk,t − βk,tG
k,t

12: end for
13: yk+1 = yk,T

14: {Hi} = PHE(xk, yk+1, N, n)
15: h = 1

n

∑n
i=1 Hi

16: xk+1 = xk − αkh
17: end for

3.1. Minibatch SGD for Lower-level Updates

To efficiently solve the lower-level problem, one popular
approach is FedAvg. Starting from a common initialization,
the clients in FedAvg run multiple local SGD updates on its
own objective, which are then aggregated to update the inner
variable y. However, it has been shown in Tarzanagh et al.
2022 that FedAvg introduces an undesirable hypergradient
estimation bias due to the large client drift. This is typically
caused by the multiple local updates under the data hetero-
geneity, where the local iterates of each client can drift away
from the global minimum and converge to the minimum of
their own local objectives. Thus, they proposed FedLin, as
a variant of the variance reduction method FedSVRG (Mi-
tra et al., 2021), to mitigate the impact of the client drift.
However, FedLin has a more complex implementation due
to the nest SVRG loop, and more importantly, as shown in
Tarzanagh et al. 2022, its convergence error induced by the
client drift is not linearly decreasing w.r.t. the number of
sampled clients, which is one crucial factor in missing the
linear speedup in the convergence rate.

Inspired by a recent work (Woodworth et al., 2020b), we
use the minibatch SGD as the lower-level solver, where the
clients compute their local minibatch stochastic gradients,
which are further aggregated for a one-step update on y. In
specific, we first sample a subset Ck,t =

{
ck,t1 , ..., ck,tn

}
of

clients, and each of them draws a local data batch Sk,t
i =

{ξk,ti,0 , ξ
k,t
i,1 , . . . , ξ

k,t
i,S−1} with

∣∣Sk,t
i

∣∣ = S and computes the
local stochastic gradient ∇gck,t

i
(xk, yk,t; ξk,ti,j ). Then, the

server aggregates the gradients as

Gk,t =
1

nS

n∑
i=1

S−1∑
j=0

∇gck,t
i
(xk, yk,t; ξk,ti,j ),

and further run one-step SGD to update yk,t as

yk,t+1 = yk,t − βk,tG
k,t.

Compared with FedAvg and FedLin, the minibatch SGD
admits a simpler implementation, and more importantly, is
more resilient to the data heterogeneity by a more aggressive
single update at all clients. As will be seen later, minibatch
SGD provides a more accurate estimation of the lower-level
solution, which is necessary in achieving the linear speedup.
Remark 2. In the minibatch SGD implementation, we set
the batch size to be larger than FedAvg, and hence more
aggressive per-iteration progress is made. Thus, the com-
putational cost of minibatch SGD is comparable to FedAvg.
More importantly, minibatch SGD admits a much smaller
client drift, which is critical in achieving the linear speedup.
Remark 3. In the experiments (see Section 5), we demon-
strate the great advantages of minibatch SGD over FedAvg
in mitigating the client drift during the bilevel training, and
in improving the overall communication efficiency.
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3.2. Federated Hypergradient Procedure

In the non-federated setting, one often defines the surrogate

∇f(x, y) = ∇xf(x, y)

−∇2
xyg(x, y)[∇2

yyg(x, y)]
−1∇yf(x, y) (3)

to efficiently approximate the hypergradient ∇f(x, y∗(x))
in Equation (2). Compared with Equation (2), the surrogate
simply replaces y∗(x) by its approximation y. A typical
approach for efficiently approximating the surrogate is to
use the Neumann series-based stochastic estimator.

∇f(x, y) ≈ ∇xf(x, y; ξ)−∇2
xyg
(
x, y, ; ζN

′
+1
)

× N

lg,1

N
′∏

n=1

(
I − 1

lg,1
∇2

yyg(x, y; ζ
n)
)
∇yf(x, y; ξ) (4)

where N
′

is chosen from {0, ..., N − 1} uniformly at
random and {ξ, ζ1, ..., ζN

′
+1} are i.i.d. samples. Partic-

ularly, Ghadimi & Wang 2018; Hong et al. 2020 show that
the inverse Hessian estimation bias exponentially decreases
with the number of samples N , i.e.,

∥∥∥[∇2
yyg(x, y)

]−1

− E
[ N

ℓg,1

N
′∏

n=1

(
I − 1

ℓg,1
∇2

yyg(x, y; ζ
n)
)]∥∥∥

≤ 1

µg

(
1− µg

ℓg

)N

(5)

where the expectation is taken with respect to both N ′ and
ζ. However, in the federated setting, the computation of
the hypergradient is challenging due to client drift by the
data heterogeneity, and the computation of a series of global
Hessian matrices in a nonlinear manner, as shown in Equa-
tion (4). To address such challenges, Tarzanagh et al. 2022
proposed the following federated hypergradient estimator:

hi := ∇xfi(x, y; ξ)−∇2
xygi(x, y; ζ

N
′
+1)pN ′

where the global estimator pN ′ of the Hessian-inverse-vector
product [∇2

yyg(x, y)]
−1∇yf(x, y) takes the form of

pN ′ =
N

ℓg,1

N ′∏
n=1

(
I − 1

ℓg,1 |Sn|

|Sn|∑
i=1

∇2
yygi(x, y; ζi,n)

)
× 1

|S0|
∑
i∈S0

∇yfi(x, y; ξi,0),

which is constructed by computing and aggregating local
Hessian-vector products in N

′
communication rounds.

However, there are two main limitations of the above feder-
ated hypergradient estimator. First, the estimator requires
full client participation because each client i needs to com-
pute an hi. Second, the h′

is are highly correlated due to the

Algorithm 2 Parallel Hypergradient Estimator with n
Clients Participation (PHE)

1: Sample clients C0 = {c01, ..., c0n}
2: for i ∈ [n] in parallel do
3: Sample data points θi, ϕi

4: di = ∇yfc0i (x
k, yk+1;ϕi)

5: pi,0 = N
lg,1

∇yfc0i (x
k, yk+1; θi)

6: Generate Ni ∈ {0, 1, ..., N − 1} UAR
7: end for
8: for l = 1, . . . ,max {Ni, i ∈ [n]} do
9: Sample Cl = {cl1, ..., cln}

10: for i ∈ [n] in parallel do
11: Sample a data point ζi,l

12: if l ≤ Ni then
13: pi,l =

(
I − 1

ℓg,1
∇2

yygcli(x
k, yk+1; ζi,l)

)
pi,l−1

14: else
15: pi,l = pi,l−1

16: end if
17: end for
18: end for
19: Sample Cmax{Ni}+1 = {cmax{Ni}+1

1 , ..., c
max{Ni}+1
n }

20: for i ∈ [n] in parallel do
21: Sample a data point ωi

22: Hi = di−∇2
xygcmax{Ni}+1

i

(xk, yk+1;ωi)pi,max{Ni}

23: end for
24: Return H = {Hi}i∈[n]

shared global estimation pN ′ . As a result, the variance of
1
m

∑m
i=1 hi cannot be shown to decay w.r.t. m, which turns

out to be the bottleneck for achieving the linear speedup.

To this end, we propose a new federated hypergradi-
ent estimator with a novel client sampling and commu-
nication scheme. As shown by Algorithm 2 and illus-
trated by Figure 1, each communication round l (high-
lighted by the yellow shallow in Figure 1) samples n
clients (n ≤ m) indexed by {cl0, ..., cln}, and then the
sampled clients compute the Hessian-vector product (I −
1

ℓg,1
∇2

yygcli(x
k, yk+1; ζi,l))pi,l−1, which are used for the

Hessian-vector construction in the next communication
round. In the vertical direction of Figure 1 (i.e., from line
8 to line 18 in Algorithm 2), the clients in each column are
involved to construct an individual component Hi of the
federated hypergradient estimator. The proposed estimators
{Hi} take the form of

Hi(x
k, yk+1)

=∇xfc0i (x
k, yk+1;ϕi)−∇2

xygcmax{Ni}+1

i

(xk, yk+1;ωi)

×
[
N

lg,1

Ni∏
l=1

(
I − 1

ℓg,1
∇2

yygCl
i
(xk, yk+1; ζi,l)

)]
×∇yfc0i (x

k, yk+1; θi). (6)
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Figure 1. Illustration diagram of client sampling for the federated hypergradient estimation in Algorithm 2.

3.3. Entire Procedure

The previous two sections describe the lower-level updating
procedure on y and the federated hypergradient estimator of
the proposed FedMBO method. In this section, we briefly
summarize the whole algorithm, which is formally described
in Algorithm 1. At the beginning of FedMBO, we specify
the number of participating clients n ≤ m, the batch size S
for the minibatch SGD implemented at the inner loop, and
the constant N controlling the Hessian inverse approxima-
tion accuracy. At each round k = 0, 1, ...,K − 1, FedMBO
first runs minibatch SGD to update y, then constructs the
federated hypergraident estimator using Algorithm 2, and
finally updates the outer variable x based on the hypergradi-
ent estimator. We do not run multiple local updates in the
updates of x because the federated hypergradient estimator
h requires the global information, which is unavailable for
local updates of each client.

4. Main Results
As discussed in the previous section, Algorithm 2 gener-
ates the federated hypergradient estimators {Hi} for esti-
mating ∇f(x, y∗(x)). With slight abuse of notation, we
define Hi(x

k, yk+1) to be the output of Algorithm 2 at
the k-th round of Algorithm 1. For different i, j, we have
E
[
Hi(x

k, yk+1)
]
= E

[
Hj(x

k, yk+1)
]

and

E
[
Hi(x

k, yk+1)|Fk
]
= E

[
Hj(x

k, yk+1)|Fk
]
,

where Fk := σ
{
y0, x0, ..., yk, xk, yk+1

}
denotes the filtra-

tion that captures all the randomness up to the k-th outer
loop. We denote H(x, y) := E

[
Hi(x

k, yk+1)|Fk
]
. Re-

ferring to Section 3.2, the resulted H(x, y) is “close” to

the surrogate function ∇f defined in Equation (3), except
for its matrix inverse approximation. Indeed, the follow-
ing Proposition 1 shows that the bias between H(x, y) and
∇f decreases exponentially with respect to N .

Proposition 1. Under Assumptions 1 to 4, we have∥∥H(xk, yk+1)−∇f(xk, yk+1))
∥∥ ≤ b,

where b = κgℓf,1 ((κg − 1) /κg)
N and N is the input pa-

rameter to Algorithm 1.

The following two propositions explore the bounded vari-
ances of Hi. Particularly, the O(1/n) factor of the bounded
variance of the average of {Hi}i∈[n] is presented in Propo-
sition 3. Such a property highly relies on the independence
among all the hypergradient estimators and plays an es-
sential role in establishing the linear speedup. This is a
key property that can be achieved by our proposed mini-
batch SGD and PHE algorithms and is missing in FedNest
(Tarzanagh et al., 2022) in the non-i.i.d setting.

Proposition 2. Suppose Assumptions 1 to 4 hold for all
i ∈ [n]. Then, we have

E
[
||Hi(x

k, yk+1)−H(xk, yk+1)||2
]
≤ σ̃2

f ,

E
[
||Hi(x

k, yk+1)||2|Fk
]
≤ D̃2

f ,

where the constants σ̃2
f and D̃2

f are given by

σ̃2
f :=σ2

f +
3

µ2
g

[
(σ2

f + ℓ2f,0)(σ
2
g,2 + 2ℓ2g,1) + σ2

f ℓ
2
g,1

]
=O(κ2

g),

D̃2
f :=

(
ℓf,0 +

ℓf,0ℓg,1
µg

+
ℓf,1ℓg,1
µg

)2
+ σ̃2

f = O(κ2
g).
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Figure 2. Left column: Comparison among different levels of heterogeneity. Middle column: Comparison between different numbers of
total clients. Right column: Comparison among different sampling rates. The first row plots the test accuracy against the epoch. The
second plots the test accuracy against the number of communication rounds.

Proposition 3. Under Assumptions 1 to 4, we have

E

∥∥∥∥∥ 1n
n∑

i=1

(Hi(x
k, yk+1)−H(xk, yk+1))

∥∥∥∥∥
2
 ≤

σ̃2
f

n
,

where σ̃f := σ2
f + 3

µ2
g

(
(σ2

f + ℓ2f,0)(σ
2
g,2 + 2ℓ2g,1) + σ2

f ℓ
2
g,1

)
.

We next characterize the convergence and complexity per-
formance of the proposed algorithm.

Theorem 1. Suppose Assumptions 1 to 5 hold and set

αk = min

{
α̂1, α̂2,

√
n

K
α̂3

}
βk,t =

(5MfLy

µg
+

ηLyxD̃
2
f α̂1

2nµg

)αk

T

for some positive constants α̂i, i = 1, 2, 3 independent
of K, where the definition of the constant parameters
Mf , Ly, η, Lyx, D̃

2
f can be found in the appendix. Then,

for any K ≥ 1, the iterates
{
(xk, yk)

}
k≥0

generated by Al-
gorithm 1 satisfy

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2] =
O
( α̂3 + α̂−1

3√
nK

+
1

min(α̂1, α̂2)K
+ b2

)
.

where b = κglf,1 ((κg − 1) /κg)
N and N is the controlling

input parameter to Algorithm 2,

Theorem 1 shows that for any given inner loop T , with a
proper choice of the step sizes αk, βk,t and hyperparameters,
the proposed FedMBO algorithm converges with a sub-
linear rate. Moreover, the major term in the error bound
O
(

1√
nK

) has a linear speedup w.r.t. the number n of the
participating clients.

Remark 4. Our theoretical analysis is mainly conducted on
the case of partial client participation, i.e. n < m. For the
full clients participation scenario, the analysis is easier and
similar results (constants slightly different) can be obtained
by following the proof steps in Appendix C.

Corollary 1. Under the same conditions as in Theorem 1,
if we set N = Ω(κg logK) and ST = Ω(κ4

g), then

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2] = O

(
κ
5/2
g√
nK

+
κ3
g

K
+

κ
7/2
g

√
n

K3/2

)
.

In addition, we need K = O(κ5
gϵ

−2/n) to achieve an ϵ-
accurate stationary point.

To achieve ϵ-optimal solution, the samples we require in ξ
and θ are O(κ9

gϵ
−2) and O(κ5

gϵ
−2) respectively. Compared

with FedNest (Tarzanagh et al., 2022) in the non-i.i.d. set-
ting, our complexity has the same dependence on κ and ϵ,
but a better dependence on n due to the linear speedup. As
far as we know, this is the first linear speedup result for
non-i.i.d. federated bilevel optimization.
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Figure 3. Comparison between our PHE with IHGP (Tarzanagh et al., 2022) under different lower-level optimizers.
.

5. Experiments
In this section, we conduct experiments on hyper-
representation, which is an important problem in multi-task
machine learning, to validate our theoretical results. We
focus on the hyper-representation problem in the federated
setting, which can be formulated as

min
ϕ

LDv
(ϕ, ω∗) =

1

m

m∑
i=1

1

|Di
v|
∑
ξ∈Di

v

L(ϕ, ω∗; ξ)

s.t. ω∗ = argmin
ω

1

m

m∑
i=1

1

|Di
t|
∑
ζ∈Di

t

L(ϕ, ω; ζ),

where Di
t and Di

v are the training and the validation datasets
respectively. Specifically, the upper-level problem learns
the shared hyper feature representations using the validation
data, and the lower-level objective learns the prediction head
for each client on the training data. In all experiments, we
use a multi-layer perceptron (MLP) with 2 linear layers and
1 ReLU activation layer as our model architecture and focus
on the heterogeneous case with non-i.i.d. datasets. All ex-
periments are implemented in Python 3.7 on a Linux server
with an Nvidia GeForce RTX 2080ti GPU. Note that our
current experiments and the results in other related works
are all simulations on a single machine. The linear speedup
improvement can be shown by implementing the model
and the algorithms on a distributed setting with multiple
machines.

5.1. Case Study

In this section, we conduct experiments on several case
study to demonstrate the efficiency of our proposed algo-
rithm. We first study the impact of heterogeneity in each
client’s dataset. We fix the client sampling ratio to 10%, and
the number of clients to be 100 and sample the dataset in a
digit-based manner. In particular, the whole MNIST dataset
is split into 10 subsets, where each subset contains all im-
ages with the same digit. The data in each client is sampled
from a certain number of subsets. In a 2-digit case, for each
client, we first randomly pick 2 digits, and then sample data

from the images with these two digits. Note that the 10-digit
case is equivalent to the homogeneous case. In this way, the
number of digits measures the degree of heterogeneity. The
result is summarized in the left column of Figure 2. The
proposed algorithm performs the worst in the 1-digit case
with the highest data heterogeneity, and the performance
is improved as we increase the number of digits due to the
reduced data heterogeneity. This demonstrates the negative
impact of data heterogeneity on convergence performance.

Second, we study the impact of different client sampling
ratios. We fix the 2-digit sampling strategy for each client
and the total number of clients to be 100. From the middle
column of Figure 2, it is seen that the case of 50% client
sampling ratio performs the best. Therefore, increasing the
sampling ratio helps the performance of our algorithm.

Finally, we test the impact of different numbers of total
clients. We fix a 2-digit sampling strategy for each client
and the client sampling ratio to be 10%. We select n ∈
{50, 100, 500} for the test. As shown in the right column
of Figure 2, the performance of our proposed algorithm
becomes better as we increase the number of clients.

5.2. Comparison with FedNest

We compare our approaches with FedNest (Tarzanagh et al.,
2022) in the non-i.i.d. setting. We notice that Tarzanagh et al.
2022 also proposed a Lite FedNest (LFedNest) to reduce
the communication rounds. However, LFedNest diverges in
some of our non-i.i.d experiments and performs worse than
the FedNest. So we focus on the comparison of FedNest and
our proposed algorithm only. Two major components of the
FedNest algorithm are IHGP for estimating the hypergradi-
ent and FedSVRG (or FedLin) for solving the lower-level
problem. We compare the performance among different
pairs of PHE, IHGP, and MinibatchSGD, FedSVRG, Fe-
dAvg. In this case, we set the number of total clients to
100 and the sampling ratio to be 10%. For the dataset of
each client, we first sort the MNIST dataset according to
their labels and then equally split it into 100 subsets and
assign one subset to each client. In this way, we guarantee
a high-level heterogeneity among all the clients. We set

8
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T = 5 for all cases and fine-tune the step sizes so that each
setting achieves its best performance.

In Figure 3, we plot the loss and test accuracy against epoch
and communication round respectively. The left figure plots
the loss against the communication round. From the left
figure, we conclude that among all the settings, the proposed
PHE + MinibatchSGD converges the fastest. The middle
figure plots the loss against data epochs and shows that
the MinibatchSGD for the lower-level problem achieves
similar performance to FedSVRG and both are better than
the FedAvg Algorithm. The right figure shows that PHE +
MinibatchSGD achieves the best test accuracy among all
algorithms.

6. Conclusion
This paper studies the federated bilevel optimization prob-
lem in the presence of data heterogeneity, and proposes a
novel federated bilevel algorithm named FedMBO. We show
that FedMBO is flexible with partial client participation and
achieves a linear speedup for convergence. Numerical ex-
periments are conducted to demonstrate the advantages of
our proposed algorithms. We anticipate that our theoreti-
cal results and the proposed hypergradient estimator can be
applied to other distributed scenarios such as decentralized
bilevel optimization.
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Supplementary Materials

A. Supporting Lemmas
The following two lemmas are commonly used in the previous literature on (federated) bilevel optimization. We refer to the
corresponding works for detailed proofs.

Lemma 2. ([Ghadimi & Wang 2018, Lemma 2.2]) Under Assumptions 1 and 2, we have

||∇Φ(x1)−∇Φ(x2)|| ≤ Lf ||x1 − x2||,
||y∗(x1)− y∗(x2)|| ≤ Ly||x1 − x2||,

where

Lf :=lf,1 +
lg,1(lf,1 +Mf )

µg
+

lf,0
µg

(lg,2 +
lg,1lg,2
µg

) = O(κ3
g),

Ly :=
lg,1
µg

= O(κg).

For all i ∈ [m], we have

||∇fi(x1, y)−∇fi(x1, y
∗(x1))|| ≤ Mf ||y − y∗(x1)||,

||∇fi(x1, y)−∇fi(x2, y)|| ≤ Mf ||x1 − x2||,

where the constant Mf is given by

Mf := lf,1 +
lg,1lf,1
µg

+
lf,0
µg

(lg,2 +
lg,1lg,2
µg

) = O(κ2
g)

and ∇fi is defined as
∇fi(x, y) := ∇xfi(x, y)−∇2

xyg(x, y)[∇2
yyg(x, y)]

−1∇yfi(x, y).

Proof of Lemma 2. The proof is similar to Lemma 2.2 in Ghadimi & Wang 2018.

Lemma 3. ([Chen et al. 2021a, Lemma 2]) Under Assumptions 1 to 3, we have

||∇y∗(x1)−∇y∗(x2)|| ≤ Lyx||x1 − x2||,

where the constant Lyx is given by

Lyx :=
lg,2 + lg,2Ly

µg
+

lg,1
µ2
g

(lg,2 + lg,2Ly) = O(κ3
g).

Proof of Lemma 3. The proof is similar to Lemma 2 in Chen et al. 2021a.

B. Proof of Proposition in Section 4

Proof of Proposition 1. The independency of c0i , cmax{Ni}+1
i , cℓi , ℓ = 1, ..., n, Ni and their data points sample is guaranteed

based on the algorithmic design in Algorithm 2. Therefore, we have

H(xk, yk+1) := E
[
Hi(x

k, yk+1)|Fk
]

=∇xf(x
k, yk+1)−∇2

xyg(x
k, yk+1)E

[
N

lg,1

Ni∏
l=1

(
I − 1

ℓg,1
∇2

yygCl
i
(xk, yk+1; ζi,l)

)∣∣∣Fk

]
∇yf(x

k, yk+1).

From the definition of ∇f , we have∥∥H(xk, yk+1)−∇f(xk, yk+1))
∥∥
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≤
∥∥∇2

xyg(x
k, yk+1)

∥∥ · ∥∥∥∥∥E
[
N

lg,1

Ni∏
l=1

(
I − 1

ℓg,1
∇2

yygCl
i
(xk, yk+1; ζi,l)

)∣∣∣Fk

]
−
[
∇2

yyg(x, y)
]−1

∥∥∥∥∥ · ∥∥∇yf(x
k, yk+1)

∥∥
≤ ℓf,0ℓg,1

µg

(
1− µg

ℓg

)N
,

where we have applied the Assumption 1 and Equation (5) to the last inequality.

Then, the proof is complete.

Proof of Proposition 2. Following Hong et al. 2020, Lemma 1, we can derive

E
[
||Hi(x

k, yk+1)−H(xk, yk+1)||2
]
≤ σ̃f , (7)

where σ̃2
f := σ2

f + 3
µ2
g

[
(σ2

f + ℓ2f,0)(σ
2
g,2 + 2ℓ2g,1) + σ2

f ℓ
2
g,1

]
.

From the definition in Equation (3), we have∥∥∇f(x, y)
∥∥ =

∥∥∇xf(x, y)−∇2
xyg(x, y)[∇2

yyg(x, y)]
−1∇yf(x, y)

∥∥
≤ ∥∇xf(x, y)∥+

∥∥∇2
xyg(x, y)

∥∥∥∥[∇2
yyg(x, y)]

−1
∥∥ ∥∇yf(x, y)∥

≤ ℓf,0 +
ℓf,0ℓg,1
µg

, (8)

where the last inequality comes from Assumptions 1 and 2.

Now we derive the bound of Hi(x
k, yk+1) as follows,

E
[
||Hi(x

k, yk+1)||2|Fk
]
=
∥∥H(xk, yk+1)

∥∥2 + E
[
||Hi(x

k, yk+1)−H(xk, yk+1)||2|Fk
]

≤
(∥∥H(xk, yk+1)−∇f(x, y)

∥∥+ ∥∥∇f(x, y)
∥∥)2 + σ̃2

f

≤
(
κgℓf,1 ((κg − 1) /κg)

N
+ ℓf,0 + ℓg,1

1

µg
ℓf,0
)2

+ σ̃2
f

≤
(
ℓf,0 +

ℓf,0ℓg,1
µg

+
ℓf,1ℓg,1
µg

)2
+ σ̃2

f ,

where the first inequality is based on the result of Equation (7) and the second inequality is based on Proposition 1
and Equation (8).

Then, the proof is complete.

Proof of Proposition 3. Note that if we choose to sample the clients with replacement in Algorithm 2, then apparently {Hi}
are pairwise independent random variables (refer to Figure 1). From Proposition 2, we have the variances of {Hi}i=1,...,n

are bounded by a constant σ̃2
f . Therefore, we have

E
∥∥∥ 1
n

n∑
i=1

(Hi(x
k, yk+1)−H(xk, yk+1))

∥∥∥2
=

1

n2

n∑
i=1

E
∥∥Hi(x

k, yk+1)−H(xk, yk+1)
∥∥2

+
1

n2

∑
1≤i ̸=j≤n

E
[
E
〈
Hi(x

k, yk+1)−H(xk, yk+1),Hj(x
k, yk+1)−H(xk, yk+1)

〉
|Fk

]
≤

σ̃2
f

n
,

where the last inequality follows because Hi −H and Hj −H are independent conditioning on Fk.

Then, the proof is complete.

13
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C. Convergence Proofs
Proof of Lemma 1. This result has been well-known in the literature on bilevel optimization. See, e.g., Ghadimi & Wang
2018 for its proof.

Lemma 4. Suppose Assumptions 1 to 4 hold, Algorithm 1 guarantees:

E
[
f(xk+1)

]
− E[f(xk)] ≤ αkM

2
fE
[∥∥yk+1 − y∗(xk)

∥∥2]+ (α2
kLf − αk

2
)E
[∥∥H(xk, yk+1)

∥∥2]
− αk

2
E
[∥∥∇f(xk)

∥∥2]+ αkb
2 +

α2
kLf σ̃

2
f

n
.

Proof of Lemma 4. Based on the smoothness property of the objective function Φ established in Lemma 2, we have

E
[
f(xk+1)

]
− E

[
f(xk)

]
≤E

[〈
xk+1 − xk,∇f(xk)

〉]
+

Lf

2
E
[∥∥xk+1 − xk

∥∥2]
=− E

[〈
1

n

n∑
i=1

αkHi(x
k, yk+1),∇f(xk)

〉]
+

Lf

2
E

∥∥∥∥∥ 1n
n∑

i=1

αkHi(x
k, yk+1)

∥∥∥∥∥
2
 . (10)

To bound the first term of Equation (10), we have

− E
[〈 1

n

n∑
i=1

αkHi(x
k, yk+1),∇f(xk)

〉]

=− E

[
1

n

n∑
i=1

αkE
[
⟨Hi(x

k, yk+1),∇f(xk)⟩|Fk
]]

=− E
[〈
αkH(xk, yk+1),∇f(xk)

〉]
=− αk

2
E
[∥∥H(xk, yk+1)

∥∥2]− αk

2
E
[∥∥∇f(xk)

∥∥2]+ αk

2
E
[∥∥H(xk, yk+1)−∇f(xk)

∥∥2]
=− αk

2
E
[∥∥H(xk, yk+1)

∥∥2]− αk

2
E
[∥∥∇f(xk)

∥∥2]
+

αk

2
E
[∥∥H(xk, yk+1)−∇f(xk, yk+1) +∇f(x, yk+1)−∇f(xk)

∥∥2]
≤− αk

2
E
[∥∥H(xk, yk+1)

∥∥2]− αk

2
E
[∥∥∇f(xk)

∥∥2]
+ αkE

[∥∥H(xk, yk+1)−∇f(xk, yk+1))
∥∥2]+ αkE

[∥∥∇f(xk, yk+1)−∇f(xk)
∥∥2]

≤− αk

2
E
[∥∥H(xk, yk+1)

∥∥2]− αk

2
E
[∥∥∇f(xk)

∥∥2]+ αkb
2 + αkM

2
fE
[∥∥yk+1 − y∗(xk)

∥∥2] ,
where the last inequality is due to Lemma 2 and Proposition 1. The second term of Equation (10) can be bounded as

Lf

2
E

∥∥∥∥∥ 1n
n∑

i=1

αkHi(x
k, yk+1)

∥∥∥∥∥
2


=
α2
kLf

2
E

∥∥∥∥∥ 1n
n∑

i=1

(Hi(x
k, yk+1)−H(xk, yk+1) +H(xk, yk+1))

∥∥∥∥∥
2


≤α2
kLfE

∥∥∥∥∥ 1n
n∑

i=1

(Hi(x
k, yk+1)−H(xk, yk+1))

∥∥∥∥∥
2
+ α2

kLfE
[∥∥H(xk, yk+1)

∥∥2]

=
α2
kLf σ̃

2
f

n
+ α2

kLfE
[∥∥H(xk, yk+1)

∥∥2] ,
14
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where we use Proposition 3 in the last equality. Combining the above inequalities yields

E[f(xk+1)]− E[f(xk)] ≤ αkM
2
fE
[∥∥yk+1 − y∗(xk)

∥∥2]+ (α2
kLf − αk

2
)E
[∥∥H(xk, yk+1)

∥∥2]
− αk

2
E
[∥∥∇f(xk)

∥∥2]+ αkb
2 +

α2
kLf σ̃

2
f

n
.

Then, the proof is complete.

Lemma 5. Suppose Assumptions 1 to 5 hold and 0 < βk,t ≤ 1
2lg,1

, the iterates of Algorithm 1 guarantees:

E
[∥∥yk+1 − y∗(xk)

∥∥2] ≤ (T−1∏
t=0

(1− βk,tµg)

)
E
[∥∥yk − y∗(xk)

∥∥2]+ 4(σ2
g,1 + σ2

g)

nS

T−1∑
t=0

β2
k,t.

Proof of Lemma 5. We first show

E

∥∥∥∥∥ 1

nS

n∑
i=1

S−1∑
s=0

∇ygck,t
i

(
xk, y∗(xk); ξk,ti,s

)∥∥∥∥∥
2

≤
2(σ2

g,1 + σ2
g)

nS
. (11)

By the algorithm update, we have

E

∥∥∥∥∥ 1

nS

n∑
i=1

S−1∑
s=0

∇ygck,t
i

(
xk, y∗(xk); ξk,ti,s

)∥∥∥∥∥
2

=
1

n2

n∑
i=1

E

∥∥∥∥∥ 1S
S−1∑
s=0

∇ygck,t
i

(
xk, y∗(xk); ξk,ti,s

)∥∥∥∥∥
2

+
1

n2

∑
1≤i ̸=j≤n

E

〈
1

S

S−1∑
s=0

∇ygck,t
i

(
xk, y∗(xk); ξk,ti,s

)
,
1

S

S−1∑
s=0

∇ygck,t
j

(
xk, y∗(xk); ξk,tj,s

)〉

=
1

n2S2

n∑
i=1

S−1∑
s=0

E
∥∥∥∇ygck,t

i

(
xk, y∗(xk); ξk,ti,s

)∥∥∥2
+

1

n2

∑
1≤i ̸=j≤n

E

〈
1

S

S−1∑
s=0

∇ygck,t
i

(
xk, y∗(xk); ξk,ti,s

)
,
1

S

S−1∑
s=0

∇ygck,t
j

(
xk, y∗(xk); ξk,tj,s

)〉

≤ 2

n2S2

n∑
i=1

S−1∑
s=0

E
∥∥∥∇ygck,t

i

(
xk, y∗(xk); ξk,ti,s

)
−∇ygck,t

i

(
xk, y∗(xk)

)∥∥∥2
+

2

n2S2

n∑
i=1

S−1∑
s=0

E
∥∥∥∇ygck,t

i

(
xk, y∗(xk)

)
−∇yg

(
xk, y∗(xk)

)∥∥∥2
+

1

n2

∑
1≤i ̸=j≤n

E

〈
1

S

S−1∑
s=0

∇ygck,t
i

(
xk, y∗(xk); ξk,ti,s

)
,
1

S

S−1∑
s=0

∇ygck,t
j

(
xk, y∗(xk); ξk,tj,s

)〉

≤
2(σ2

g,1 + σ2
g)

nS

+
1

n2

∑
1≤i ̸=j≤n

E

〈
1

S

S−1∑
s=0

∇ygck,t
i

(
xk, y∗(xk); ξk,ti,s

)
,
1

S

S−1∑
s=0

∇ygck,t
j

(
xk, y∗(xk); ξk,tj,s

)〉
, (12)

where the second equality comes from the pairwise independence between ξ, and the last inequality is due to Assumptions 4
and 5. We next show the second term in Equation (12) equal to zero:

∑
1≤i ̸=j≤n

E

〈
1

S

S−1∑
s=0

∇ygck,t
i

(
xk, y∗(xk); ξk,ti,s

)
,
1

S

S−1∑
s=0

∇ygck,t
j

(
xk, y∗(xk); ξk,tj,s

)〉

15
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=
∑

1≤i ̸=j≤n

E
〈
∇ygck,t

i

(
xk, y∗(xk)

)
,∇ygck,t

j

(
xk, y∗(xk)

)〉
=

∑
1≤i ̸=j≤n

∑
1≤p ̸=q≤m

E
[〈

∇ygck,t
i

(
xk, y∗(xk)

)
,∇ygck,t

j

(
xk, y∗(xk)

)〉
|ck,ti = p, ck,tj = q

]
· P(ck,ti = p, ck,tj = q)

=
∑

1≤p ̸=q≤m

E
[〈
∇ygp

(
xk, y∗(xk)

)
,∇ygq

(
xk, y∗(xk)

)〉] ∑
1≤i̸=j≤n

P(ck,ti = p, ck,tj = q)

=
∑

1≤i ̸=j≤n

P(ck,ti = 1, ck,tj = 2)
∑

1≤p̸=q≤m

E
[〈
∇ygp

(
xk, y∗(xk)

)
,∇ygq

(
xk, y∗(xk)

)〉]
≤

∑
1≤i ̸=j≤n

P(ck,ti = 1, ck,tj = 2)E

∥∥∥∥∥
m∑

p=1

∇gp(x
k, y∗(xk))

∥∥∥∥∥
2

= 0,

where the third equality is based on the fact that P(ck,ti = p, ck,tj = q) is constant cross different combination (p, q) and the
last equality is due the optimality condition of the lower level problem. Next we show that for any t ∈ {0, ..., T − 1},

E
[∥∥yk,t+1 − y∗(xk)

∥∥2] ≤ (1− βk,tµg)E
[∥∥yk,t − y∗(xk)

∥∥2]+ 4β2
k,t(σ

2
g,1 + σ2

g)

nS
.

Note that

E
∥∥yk,t+1 − y∗(xk)

∥∥2
=E

∥∥∥∥∥yk,t − βk,t

n

n∑
i=1

Gk,t
i − y∗(xk)

∥∥∥∥∥
2

=E
∥∥yk,t − y∗(xk)

∥∥2 − 2βk,tE

〈
1

n

n∑
i=1

Gk,t
i , yk,t − y∗(xk)

〉
+ β2

k,tE

∥∥∥∥∥ 1n
n∑

i=1

Gk,t
i

∥∥∥∥∥
2

=E
∥∥yk,t − y∗(xk)

∥∥2 − 2βk,tE
〈
∇yg(x

k, yk,t), yk,t − y∗(xk)
〉
+ β2

k,tE

∥∥∥∥∥ 1n
n∑

i=1

Gk,t
i

∥∥∥∥∥
2

≤(1− βk,tµg)
∥∥yk,t − y∗(xk)

∥∥2 − 2βk,tE
[
g(xk, yk,t)− g(xk, y∗(xk))

]
+ β2

k,tE

∥∥∥∥∥ 1n
n∑

i=1

Gk,t
i

∥∥∥∥∥
2

, (13)

where Gk,t
i = 1

S

∑S−1
s=0 ∇ygck,t

i
(xk, yk,t; ξk,ti,s ) as defined in Algorithm 1. We use the fact that Gk,t

i is an unbiased gradient
estimator in the third equality and employ the µg-strong convexity of g(x, y) with respect to y in the last inequality. To
bound the last term in Equation (13), we have

E

∥∥∥∥∥ 1n
n∑

i=1

Gk,t
i

∥∥∥∥∥
2

=E

∥∥∥∥∥ 1

nS

n∑
i=1

S−1∑
s=0

[
∇ygck,t

i
(xk, yk,t; ξk,ti,s )−∇ygck,t

i
(xk, y∗(xk); ξk,ti,s ) +∇ygck,t

i
(xk, y∗(xk); ξk,ti,s )

]∥∥∥∥∥
2

≤2E

∥∥∥∥∥ 1

nS

n∑
i=1

S−1∑
s=0

[
∇ygck,t

i
(xk, yk,t; ξk,ti,s )−∇ygck,t

i
(xk, y∗(xk); ξk,ti,s )

]∥∥∥∥∥
2

+ 2E

∥∥∥∥∥ 1

nS

n∑
i=1

S−1∑
s=0

[
∇ygck,t

i
(xk, y∗(xk); ξk,ti,s )

]∥∥∥∥∥
2

≤ 2

nS

n∑
i=1

S−1∑
s=0

E
∥∥∥∇ygck,t

i
(xk, yk,t; ξk,ti,s )−∇ygck,t

i
(xk, y∗(xk); ξk,ti,s )

∥∥∥2 + 4(σ2
g,1 + σ2

g)

nS
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≤4lg,1
nS

n∑
i=1

S−1∑
s=0

E
[
gck,t

i
(xk, yk,t; ξk,ti,s )− gck,t

i
(xk, y∗(xk); ξk,ti,s )−

〈
∇ygck,t

i
(xk, y∗(xk); ξk,ti,s ), y

k,t − y∗(xk)
〉]

+
4(σ2

g,1 + σ2
g)

nS

=4lg,1E
[
g
(
xk, yk,t

)
− g

(
xk, y∗(xk)

)]
+

4(σ2
g,1 + σ2

g)

nS
,

where the second inequality uses the previous result of Equation (11) and the third inequality uses Lemma 1 in (Woodworth
et al., 2020b). Plugging this into Equation (13) and enforcing βk,t ≤ 1

2lg,1
yield

E
∥∥yk,t+1 − y∗(xk)

∥∥2
≤(1− βk,tµg)

∥∥yk,t − y∗(xk)
∥∥2 + 2βk,t(2βk,tlg,1 − 1)E

[
g(xk, yk,t)− g(xk, y∗(xk))

]
+

4β2
k,t(σ

2
g,1 + σ2

g)

nS

≤(1− βk,tµg)
∥∥yk,t − y∗(xk)

∥∥2 + 4β2
k,t(σ

2
g,1 + σ2

g)

nS
. (14)

Applying recursion on Equation (14), we obtain

E
[∥∥yk,T − y∗(xk)

∥∥2] ≤ (T−1∏
t=0

(1− βk,tµg)

)
E
[∥∥yk,0 − y∗(xk)

∥∥2]+ 4(σ2
g,1 + σ2

g)

nS

T−1∑
t=0

β2
k,t,

which completes the proof.

Remark 5. In the case of full client participation and the clients are sampled without replacement, from the similar analysis
above, we have

E
[∥∥yk+1 − y∗(xk)

∥∥2] ≤ (T−1∏
t=0

(1− βk,tµg)

)
E
[∥∥yk − y∗(xk)

∥∥2]+ 4σ2
g,1

nS

T−1∑
t=0

β2
k,t.

Especially Assumption 5 is released for this scenario.

Lemma 6. Suppose Assumptions 1 to 4 hold, Algorithm 1 guarantees:

E
[∥∥yk+1 − y∗(xk+1)

∥∥2] ≤a1(αk)E
[∥∥H(xk, yk+1)

∥∥2]
+ a2(αk, n)E

[∥∥yk+1 − y∗(xk)
∥∥2]+ a3(αk, n)σ̃

2
f ,

where

a1(αk) := L2
yα

2
k +

Lyαk

4Mf
+

Lyxα
2
k

2η
,

a2(αk, n) := 1 + 4MfLyαk +
ηLyxD̃

2
fα

2
k

2
,

a3(αk, n) :=
α2
kL

2
y

n
+

Lyxα
2
k

2ηn
,

for any η > 0.

Proof of Lemma 6. Note that

E
[∥∥yk+1 − y∗(xk+1)

∥∥2] = E
[∥∥yk+1 − y∗(xk)

∥∥2]+ E
[∥∥y∗(xk+1)− y∗(xk)

∥∥2] (15a)

+ 2E
[
⟨yk+1 − y∗(xk), y∗(xk)− y∗(xk+1)⟩

]
. (15b)

17
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To bound the second term of Equation (15a), we have

E
[∥∥y∗(xk+1)− y∗(xk)

∥∥2] ≤L2
yE
[∥∥xk+1 − xk

∥∥2]
≤L2

yE
[∥∥αkH(xk, yk+1)

∥∥2]+ α2
kL

2
yσ̃

2
f

n
.

To bound Equation (15b), we have

E
[
⟨yk+1 − y∗(xk), y∗(xk)− y∗(xk+1)⟩

]
= −E[⟨yk+1 − y∗(xk),∇y∗(xk)(xk+1 − xk)⟩] (16a)

− E
[
⟨yk+1 − y∗(xk), y∗(xk+1)− y∗(xk)−∇y∗(xk)(xk+1 − xk)⟩

]
. (16b)

After plugging the updating step of xk into Equation (16a), we have

− E
[〈
yk+1 − y∗(xk),∇y∗(xk)(xk+1 − xk)

〉]
= −E

[〈
yk+1 − y∗(xk), αk∇y∗(xk)H(xk, yk+1)

〉]
≤ E

[∥∥yk+1 − y∗(xk)
∥∥∥∥αk∇y∗(xk)H(xk, yk+1)

∥∥]
≤ LyE

[∥∥yk+1 − y∗(xk)
∥∥∥∥αkH(xk, yk+1)

∥∥]
(a)

≤ 2γE
[∥∥yk+1 − y∗(xk)

∥∥2]+ L2
yα

2
k

8γ
E
[∥∥H(xk, yk+1)

∥∥2]
≤ 2MfLyαkE

[∥∥yk+1 − y∗(xk)
∥∥2]+ Lyαk

8Mf
E
[∥∥H(xk, yk+1)

∥∥2],
where Young’s inequality is applied in the inequality (a), and the last inequality comes from setting γ = MfLyαk.
Equation (16b) can be further bounded as follows,

− E
[〈
yk+1 − y∗(xk), y∗(xk+1)− y∗(xk)−∇y∗(xk)(xk+1 − xk)

〉]
≤ E

[∥∥yk+1 − y∗(xk)
∥∥∥∥y∗(xk+1)− y∗(xk)−∇y∗(xk)(xk+1 − xk)

∥∥]
≤ Lyx

2
E
[∥∥yk+1 − y∗(xk)

∥∥∥∥xk+1 − xk
∥∥2]

≤ ηLyx

4
E
[∥∥yk+1 − y∗(xk)

∥∥2 ∥∥xk+1 − xk
∥∥2]+ Lyx

4η
E
[∥∥xk+1 − xk

∥∥2]
≤

ηLyxD̃
2
fα

2
k

4
E
[∥∥yk+1 − y∗(xk)

∥∥2]+ Lyxα
2
k

4η
E
[∥∥H(xk, yk+1)

∥∥2]+ Lyxα
2
kσ̃

2
f

4ηn
,

where Proposition 2 is applied in the last inequality.

Combining and rearranging the above inequalities complete the proof.

Proof of Theorem 1. Motivated by Chen et al. 2021a; Tarzanagh et al. 2022, we define the following Lyapunov function

W k := f(xk) +
Mf

Ly

∥∥yk − y∗(xk)
∥∥2 .

The difference between the two Lyapunov functions is bounded as

W k+1 −W k = f(xk+1)− f(xk) +
Mf

Ly
(
∥∥yk+1 − y∗(xk+1)

∥∥2 − ∥∥yk − y∗(xk)
∥∥2).

From Lemma 4 and Lemma 6, we obtain

E
[
W k+1

]
− E

[
W k
]
≤αkb

2 +
α2
kLf σ̃

2
f

n
+ αkM

2
fE[
∥∥yk+1 − y∗(xk)

∥∥2]
18
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+ (α2
kLf − αk

2
)E
[∥∥H(xk, yk+1)

∥∥2]− αk

2
E
[∥∥∇f(xk)

∥∥2]
+

a1(αk)Mf

Ly
E
[∥∥H(xk, yk+1)

∥∥2]
+

a2(αk, n)Mf

Ly
E
[∥∥yk+1 − y∗(xk)

∥∥2]+ a3(αk, n)Mf σ̃
2
f

Ly

− Mf

Ly
E
[∥∥yk − y∗(xk)

∥∥]
=αkb

2 + (
α2
kLf

n
+

a3(αk, n)Mf

Ly
)σ̃2

f − αk

2
E
[∥∥∇f(xk)

∥∥2]
+ (α2

kLf − αk

2
+

a1(αk)Mf

Ly
)E
[∥∥H(xk, yk+1)

∥∥2] (17a)

+ (αkM
2
f +

a2(αk, n)Mf

Ly
)E
[∥∥yk+1 − y∗(xk)

∥∥2]− Mf

Ly
E
[∥∥yk − y∗(xk)

∥∥] . (17b)

Note that Equation (17a) ≤ 0 if

αk ≤ α̂1 :=
1

2Lf + 4MfLy +
2MfLyx

Lyη

(18)

We enforce αk ≤ α̂1 in the following context.

Based on Lemma 5, Equation (17b) can be further bounded as

Equation (17b) ≤4(αkM
2
f +

a2(αk, n)Mf

Ly
)
Tβ2

k,t(σ
2
g,1 + σ2

g)

nS

+
Mf

Ly

(
(MfLyαk + a2(αk, n)) (1− βk,tµg)

T − 1
)
E
[∥∥yk − y∗(xk)

∥∥] . (19)

If βk,t ≤ 1
µg

, Equation (19) is nonpositive if

(1 + 5MfLyαk +
ηLyxD̃

2
fα

2
k

2
)(1− βk,tµg)

T − 1 ≤ 0

⇐ 5MfLyαk +
ηLyxD̃

2
fα

2
k

2
≤ Tβk,tµg

⇐ βk,t ≥

(
5MfLy

µg
+

ηLyxD̃
2
fαk

2µg

)
αk

T

For simplicity, we remove the subscript t from βk,t and enforce

βk = β̄
αk

T

where

β̄ :=
5MfLy

µg
+

ηLyxD̃
2
f α̂1

2µg
, (20)

which will imply another requirement on αk since βk should be less than 1
2lg,1

as a condition of Lemma 5, i.e.,

αk ≤ α̂2 :=
T

2lg,1β̄
. (21)

After rearranging, we obtain

E
[
W k+1

]
− E

[
W k
]
≤αkb

2 +

(
α2
kLf

n
+

a3(αk, n)Mf

Ly

)
σ̃2
f − αk

2
E
[∥∥∇f(xk)

∥∥2]
19
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+ 4

(
αkM

2
f +

a2(αk, n)Mf

Ly

)
Tβ2

k(σ
2
g,1 + σ2

g)

nS
.

Then telescoping gives

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2] ≤ 2∑K−1
k=0 αk

(△w) + 2b2 +
2∑K−1

k=0 αk

K−1∑
k=0

(
α2
kLf

n
+

a3(αk, n)Mf

Ly

)
σ̃2
f

+
8∑K−1

k=0 αk

K−1∑
k=0

(
αkM

2
f +

a2(αk, n)Mf

Ly

)
Tβ2

k(σ
2
g,1 + σ2

g)

nS
,

where △w := W 0 − E
[
WK

]
. We enforce αk ≤

√
n
K α̂3 for some positive constant α̂3, which implies

2∑K−1
k=0 αk

(△w) = O
(

1

min(α̂1, α̂2)K
+

1

α̂3

√
nK

)
(22a)

2∑K−1
k=0 αk

·
K−1∑
k=0

(
α2
kLf

n
+

a3(αk, n)Mf

Ly
)σ̃2

f = O

(
2∑K−1

k=0 αk

·
K−1∑
k=0

α2
k

n

)

= O
(

α̂3√
nK

)
(22b)

8∑K−1
k=0 αk

·
K−1∑
k=0

(αkM
2
f +

a2(αk, n)Mf

Ly
)
Tβ2

k(σ
2
g,1 + σ2

g)

nS
= O

(
4∑K−1

k=0 αk

K−1∑
k=0

α2
k

STn
+

α3
k

STn
+

α4
k

STn

)

= O
(

α̂3

ST
√
nK

+
α̂2
3

STK
+

√
nα̂3

3

STK3/2

)
(22c)

Therefore, we obtain
1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2] = O
(
α̂3 + α̂−1

3√
nK

+
1

min(α̂1, α̂2)K
+ b2

)
.

Then, the proof is complete.

Proof of Corollary 1. Enforcing η =
Mf

Ly
in Equation (18), Equation (21) and Equation (20), yields α̂1 = O(κ−3

g ),
α̂2 = O(Tκ−3

g ) and β̄ = O(κ4).

Expanding Equation (22), we have

2∑K−1
k=0 αk

(△w) = O(
1

min(α̂1, α̂2)K
+

1

α̂3

√
nK

)

2∑K−1
k=0 αk

·
K−1∑
k=0

(
α2
kLf

n
+

a3(αk, n)Mf

Ly
)σ̃2

f

= O

(
2∑K−1

k=0 αk

·
K−1∑
k=0

κ3
gα

2
k

n
+

κ5
gα

2
k

n

)
= O

(
κ5
gα̂3√
nK

)
8∑K−1

k=0 αk

·
K−1∑
k=0

(αkM
2
f +

a2(αk, n)Mf

Ly
)
Tβ2

k(σ
2
g,1 + σ2

g)

nS

= O

(
4∑K−1

k=0 αk

·
K−1∑
k=0

ηβ̄2

nST
α2
k +

(
M2

f β̄
2

nST
+

ηMfLyβ̄
2

nST

)
α3
k +

η2β̄2LyzD̃
2
f

nST
α4
k

)

= O

(
4∑K−1

k=0 αk

·
K−1∑
k=0

κ9
g

nST
α2
k +

κ12
g

nST
α3
k +

κ15
g

nST
α4
k

)
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= O

(
κ9
g

ST
√
nK

α̂3 +
κ12
g

STK
α̂2
3 +

κ15
g

√
n

STK3/2
α̂3
3

)

After enforcing ST = Ω(κ4), α̂3 = O
(
κ
−5/2
g

)
, and N = Ω(κg logK), which implies b = 1

K1/4 , we have

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2] = O

(
κ
5/2
g√
nK

+
κ3
g

K
+

κ
7/2
g

√
n

K3/2

)
.

Then, the proof is complete.
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