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Abstract
Understanding the impact of exploration on the
behaviour of multi-agent learning has, so far, ben-
efited from the restriction to potential, or network
zero-sum games in which convergence to an equi-
librium can be shown. Outside of these classes,
learning dynamics rarely converge and little is
known about the effect of exploration in the face
of non-convergence. To progress this front, we
study the smooth Q-Learning dynamics. We show
that, in any network game, exploration by agents
results in the convergence of Q-Learning to a
neighbourhood of an equilibrium. This holds inde-
pendently of whether the dynamics reach the equi-
librium or display complex behaviours. We show
that increasing the exploration rate decreases the
size of this neighbourhood and also decreases the
ability of all agents to improve their payoffs. Fur-
thermore, in a broad class of games, the payoff
performance of Q-Learning dynamics, measured
by Social Welfare, decreases when the exploration
rate increases. Our experiments show this to be
a general phenomenon, namely that exploration
leads to improved convergence of Q-Learning, at
the cost of payoff performance.

1. Introduction
Learning in games requires agents to explore their state
space. Whilst it is known that the rate of exploration im-
pacts the behaviour of the learning dynamic (Tuyls et al.,
2006), understanding precisely this impact often relies on
placing restrictions on the structure of the interaction. A
primary example of this are network zero-sum games, which
model perfect competition between agents. Here it is known
that, without exploration, agents cannot reach an equilib-
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rium (Mertikopoulos et al., 2018; Ganesh Nagarajan et al.,
2020), whilst arbitrarily small exploration leads to conver-
gence (Leonardos et al., 2021). Similarly studied classes
of games include potential games (Leonardos & Piliouras,
2022) and games with two players and two actions (Kian-
ercy & Galstyan, 2012).

Beyond these restrictive classes however, the picture is
much less clear. Whilst recent work has shown that high
exploration rates always lead to convergence (Hussain et al.,
2023), it is also well known that learning dynamics often
display complex behaviours, including limit cycles (Mer-
tikopoulos et al., 2018; Galla, 2011) and chaos (Bielawski
et al., 2021; Galla & Farmer, 2013; Sanders et al., 2018;
Mukhopadhyay & Chakraborty, 2020; Sato et al., 2002).
The latter case represents a particularly strong barrier to-
wards understanding the asymptotic behaviour of learning.
In short, the prospect of convergence to an equilibrium can-
not be taken for granted. Unfortunately, little is known about
the impact of exploration in the face of non-convergent dy-
namics.

Yet understanding exploration remains an important endeav-
our as it allows agents to avoid suboptimal, or potentially
unsafe areas of their state space (Leonardos & Piliouras,
2022; Bura et al., 2022; Bai et al., 2021). In addition, it is
empirically known that the choice of exploration rate im-
pacts the expected total reward (Cai et al., 2020). This has
lead to an increased interest in studying the influence of ex-
ploration on learning in single-agent settings (Schäfer et al.,
2021; Piliouras, 2020). It is then paramount to understand
the effect of exploration also in multi-agent environments
outside the restrictions of potential, or network zero-sum
settings. This leads us to our central question:

How does exploration affect reinforcement learning
dynamics in arbitrary games, even if convergence to an

equilibrium cannot be guaranteed?

Main Contributions To answer this question, we consider
the smooth Q-Learning (SQL) dynamic, a learning dynamic
which quantifies the tendency for agents to explore their
state space whilst also seeking to maximise their payoffs.

We then lift the assumption of convergence to an equilib-
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rium. In doing so, we show that, in network games with
unique Nash Equilibria, SQL remains contained in a neigh-
bourhood of an equilibrium for any positive exploration rate.
The effect of increased exploration is to decrease the size
of this neighbourhood. As such, exploration rates can be
tuned to control the ‘degree’ of convergence of SQL. By
considering convergence to a set, we are able to include sev-
eral dynamical behaviours, including convergence to a fixed
point, but also to a cycle or chaotic behaviour. In addition,
this greatly widens the class of games in which the effect of
exploration can be understood.

Next, we analyse the effect of exploration on system perfor-
mance. Namely, we show that, by increasing exploration,
the ability for agents to improve their payoffs whilst fol-
lowing SQL decreases. We exemplify this by considering a
class of games in which Q-Learning does not converge for
low exploration rates, but non-convergent SQL dynamics
outperform the equilibrium, in terms of the sum of payoffs
of all agents. Therefore, whilst increasing exploration drives
the system towards convergence, the payoff performance
of SQL suffers. Our experiments show this to be a gen-
eral property of SQL dynamics. As a result, when system
performance is desirable, it may be beneficial to restrict
exploration, even if the dynamics do not converge to an
equilibrium.

Related Work Since its conception, the smooth Q-
Learning dynamic (Tuyls et al., 2006; Sato & Crutchfield,
2003) has received significant attention as it provides a fun-
damental model of exploration in multi-agent learning and
is closely related to the well-studied replicator dynamics
(Maynard Smith, 1974; Hofbauer & Sigmund, 1998; Leonar-
dos & Piliouras, 2022), as well as the popular Q-Learning
algorithm (Sutton & Barto, 2018; Schwartz, 2014). Inter-
estingly, a number of studies have shown that, for various
choices of exploration rates, the Q-Learning dynamic can
display a number of complex behaviours, such as limit cy-
cles (Mertikopoulos et al., 2018; Kleinberg et al., 2011;
Hofbauer, 1996) or even chaos (Galla & Farmer, 2013; Sato
et al., 2002; Ganesh Nagarajan et al., 2020). To make mat-
ters worse, as the number of players increases the likelihood
of these complex behaviours increases (Sanders et al., 2018).
In fact, when there is no exploration on the part of every
agents, the Q-Learning dynamics cannot converge to an
interior equilibrium (Vlatakis-Gkaragkounis et al., 2020).
This behaviour is not limited to the Q-Learning dynamics;
a wide array of online learning algorithms are known to
exhibit chaos, including Fictitious Play (van Strien & Spar-
row, 2011; Ewerhart & Valkanova, 2020) and Follow the
Regularised Leader (Bielawski et al., 2021; Andrade et al.,
2021; Anagnostides et al., 2022; Cheung & Tao, 2021).

The presence of these non-convergent behaviours result in
an inherent challenge in understanding the effect of explo-

ration on multi-agent learning (Klos et al., 2010). As a result
studies considering this topic from a theoretical standpoint
are often limited to understanding equilibrium behaviours.
For instance, (Leonardos & Piliouras, 2022) shows that
different exploration rates can result in different stability
properties, which can lead to potentially unbounded gains
and losses in system performance. Similar phase transi-
tions are also found in (Kaisers & Tuyls, 2011; Kianercy
& Galstyan, 2012; Piliouras, 2020). By contrast, (Hussain
et al., 2023) shows that sufficiently high exploration rates
yields convergence of the Q-Learning dynamic to a unique
equilibrium, regardless of the number or stability of Nash
Equilibria in the game. To our knowledge ours is the first
study to analyse, theoretically and empirically, the effect
of exploration in arbitrary multi-agent settings in terms of
dynamics and system performance, without assuming con-
vergence to an equilibrium.

2. Preliminaries
In this paper we study a network game Γ =
(N , E , (Sk)k∈N , (Akl, Alk)(k,l)∈E), where N denotes a fi-
nite set of agents. Each agent k ∈ N has a finite set Sk of
actions which are indexed by i = 1, . . . , nk, and can play
a mixed strategy xk, i.e. a discrete probability distribution
over its set of actions. The set of all such mixed strate-
gies is the unit simplex in Rnk , i.e. ∆k = {xk ∈ Rnk |∑

i∈Sk
xki = 1, and xki ≥ 0 for all i ∈ Sk}. We denote

with ∆ = ×k∈N∆k the joint simplex over all agents, with
x = (xk)k∈N the joint mixed strategy of all agents and, for
any k, with x−k = (xl)l∈N\{k} ∈ ∆−k the joint strategy
of all agents other than k.

Agents in a network game interact according to an edgeset
E ⊂ N × N . Each edge corresponds to a bimatrix game
(Akl, Alk). The expected payoff for each agent k ∈ N who
plays mixed strategy xk against joint mixed strategy x−k is
given by

uk(xk,x−k) =
∑

(k,l)∈E

x⊤
k A

klxl

For any x ∈ ∆, the reward to agent k when they play action
i ∈ Sk as rki(x) := ∂uki(x)/∂xki. With this, we can write
rk(x) = (rki(x))k∈N as the concatenation of all rewards
to agent k. In this notation, uk(x) = x⊤

k rk(x). Using this
notation, we can define the equilibrium of the game.
Definition 2.1 (Quantal Response Equilibrium (QRE)). A
joint mixed strategy x̄ ∈ ∆ is a Quantal Response Equilib-
rium (QRE) if, for all agents k and all actions i ∈ Sk,

x̄ki =
exp(rki(x̄−k)/Tk)∑

j∈Sk
exp(rkj(x̄−k)/Tk)

In the definition of the QRE, Tk denotes the exploration rate
of the agent. Note that as Tk → ∞, the QRE is unique and
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is given by x̄ = ( 1
nk

1)k∈N . This equilibrium corresponds
to the case in which each agent plays each action with the
same probability, regardless of the payoff received. In the
other limit, Tk → 0, the QRE corresponds to the Nash
Equilbrium, which we now define.

Definition 2.2 (Nash Equilibrium (NE)). A joint mixed
strategy x̄ ∈ ∆ is an Nash Equilibrium if, for all agents k
and all xk ∈ ∆k,

⟨xk, rk(x̄−k)⟩ ≤ ⟨x̄k, rk(x̄−k)⟩ (1)

Informally, at a Nash Equilibrium, no agent can increase
their utility by means of unilateral deviations, i.e. agents are
considered perfectly rational. With this in mind, the QRE
can be thought of as an equilibrium notion for agents with
bounded rationality.

In this work, we will be making the following assumption
which will allow for a comparative analysis between non-
convergent behaviours and a unique equilibrium.

Assumption 2.3. The network game Γ =
(N , E , (Sk)k∈N , (Akl, Alk)(k,l)∈E) has a unique, inte-
rior Nash Equilibrium

We can extend this assumption towards the QRE of the game
using the following result.

Proposition 2.4. If a game Γ has a unique Nash Equilib-
rium then, for any T1, . . . , TN > 0, there exists a unique
interior QRE.

Influence Bound Our convergence results on Q-Learning
will depend on a suitable notion of size of the game. To
define this formally, we introduce the influence bound (Melo,
2021) of the game which is defined as

Definition 2.5 (Influence Bound). A game Γ has the influ-
ence bound δ given by

δ = max
k∈N ,i∈Sk,s−k,s̃−k∈S−k

{|rki(s−k)− rki(s̃−k)|}

where the pure strategies s−k, s̃−k ∈ S−k differ only in the
strategies of one agent l ̸= k.

Since |rki(s−k)− rki(s̃−k)| measures the change in reward
to agent k for playing action i due to a change the other
players’ actions, the influence bound δ defines the maximum
influence (in terms of reward) that any agent could receive
from their opponents.
Remark 2.6. In the case of a network game, the influence
bound of the game is simply

max
k∈N ,i∈Sk,s−k,s̃−k∈S−k

|
(
Ak
)
i,s−k

−
(
Ak
)
i,s̃−k

|.

In other words, it is the maximum difference between any
row elements across the payoff matrices for all agents.

When considering performance, we use two closely related
measures. The first is the total exploitability. Informally,
exploitability measures an agent’s ability to improve their
current payoff by deviating to another strategy. More for-
mally, we define exploitability of a strategy x with respect
to a set S = ×kSk as

ΦS(x) =
∑
k

max
yk∈Sk

uk(yk,x−k)− uk(xk,x−k). (2)

Our second metric for performance is Social Welfare, which
measures the total payoff received by all agents. Formally,
the Social Welfare of a mixed strategy x ∈ ∆ is given by

SW (x) =
∑
k

uk(xk,x−k) (3)

Social Welfare is a stronger measure of performance than
Exploitability as the latter considers an agent’s ability to im-
prove their payoff, whereas the former measures the realised
payoff that each agent receives.

Learning Model We study a smooth variant of Q-
Learning with Boltzmann exploration, called smooth Q-
Learning (SQL) (Tuyls et al., 2006). This requires that each
agent k updates their mixed strategy xk according to the
dynamic

ẋki

xki
= rki (x−k)− ⟨xk, rk(x)⟩+ Tk

∑
j∈Sk

xkj ln
xkj

xki

(SQL)
in which Tk ∈ [0,∞) denotes the exploration rate of agent
k. At the limit of zero exploration rates we recover the
replicator dynamic in which agents maximise their payoff
at every time step (Sato & Crutchfield, 2003). At the other
limit, Tk → ∞, we recover an entropy maximising dynamic
in which the unique fixed point x̄ = ( 1

nk
1)k∈N is globally

asymptotically stable. This allows us to capture, with the
parameter Tk, how the exploration rate affects the dynamics.

3. Convergence and Performance
In this section, we first show how the imposition of explo-
ration by all agents forces the learning dynamics to converge
to a neighbourhood of the QRE x. Using this, we define a
lower bound on each xki, independently of whether the dy-
namics converge to an equilibrium or display more complex
behaviour.

Convergence To define convergence, we require a mea-
sure of distance. To this end, we employ the Kullback-
Leibler (KL) Divergence.

Definition 3.1 (Kullback-Leibler Divergence). The KL Di-
vergence between a set of joint mixed strategies x,y ∈ ∆
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is given by

DKL(y||x) =
∑
k

DKL(yk||xk) =
∑
ki

yki ln
yki
xki

(4)

Notice that the KL-Divergence does not formally define a
metric as it is not symmetric (i.e. in general DKL(y||x) ̸=
DKL(x||y)). Rather, the KL-Divergence can be thought of
as measuring the overlap between probability distributions
y and x. The key point which we will use in our main
theorem is that DKL(y||x) is zero if and only if x = y and
is positive everywhere else.

Theorem 3.2. Let δ be influence bound of the game Γ
and let x̄ ∈ int∆ denote the QRE of the game for some
T1, . . . , TN . Then, the Q-Learning dynamics remain asymp-
totically within the set

ST = {x ∈ ∆ |DKL(x̄||x(t)) ≤
δ

Tmin

∑
k

nk}

Here, we provide a sketch of the proof of Theorem B.2
whilst deferring the full proof to the supplementary material.
We first show that, close to the boundary of the simplex,
Q-Learning strictly minimises the KL-Divergence between
the current mixed strategy x(t) and the unique QRE x̄. This
is formalised in the following Lemma

Lemma 3.3. Consider a game Γ with influence bound δ. Let
x(t) denote the joint strategy generated by (SQL) at some
time t for some initial condition x(0). Also let x̄ denote the
QRE for the game for some Tk. Then DKL(x̄||x(t)) is a
decreasing function along trajectories of the Q-Learning
dynamic (SQL) for all t ∈ [0,∞) such that

DKL(x̄||x(t)) +DKL(x(t)||x̄) >
δ

Tmin

∑
k

nk (5)

We apply this Lemma to prove Theorem B.2 in the fol-
lowing manner. Since DKL(x̄||x(t)) is also bounded be-
low, it immediately follows that DKL(x̄||x(t)) must de-
crease until x(t) reaches a region where DKL(x̄||x(t)) +
DKL(x(t)||x̄) ≤ δ

Tmin

∑
k nk. Let us denote this region

as S. Once x(t) enters S, which occurs in finite time,
the KL-Divergence is no longer guaranteed to be a de-
creasing function. Therefore, the dynamics can leave S.
Regardless of whether x(t) remains in S or ultimately
leaves it, the decreasing property shown by Lemma 3.3
enforces that DKL(x̄||x(t)) cannot increase further than
supx∈S DKL(x̄||x) =: DS . Using also that DS ≤

δ
Tmin

∑
k nk, it follows that

lim
t→∞

x(t) ∈ ST

Remark 3.4. At first glance, it appears that the size of the
set defined by Theorem B.2 increases with the number of

players and number of actions due to the presence of the
term

∑
k nk. On closer inspection, however, we see that the

KL-Divergence itself is given by a summation over agents
and actions. Therefore, both sides of the inequality which
define ST grow at the same rate.

Theorem B.2 determines the convergence structure of Q-
Learning in arbitrary games. In particular, it finds a set in
which Q-Learning remains asymptotically trapped, inde-
pendently of whether the dynamics are ultimately chaotic,
cyclic or converge to an equilibrium. As Tk increases, the
size of this set decreases, tightening the convergence bound.
On the other hand, the size of the set increases with the size
of the game, as measured by the influence bound. Indeed,
in the limit Tk → ∞ for all k, the set defined by Theorem
B.2 is a singleton, so that Q-Learning must converge to the
QRE.

Another implication of Theorem B.2 is that, for any
T1, . . . , TN > 0 the Q-Learning dynamics must remain
bounded away from the boundary of the simplex ∂∆ for all
t > 0. In addition, this bound increases with Tk, resulting
in the dynamics being forced further in the interior of ∆.

Corollary 3.5. In the setting of Theorem B.2, when each
agent k has exploration rate Tk ≥ 0 and follows the Q-
Learning dynamic, there exists an ϵT ∈ [0, 1/(mink nk)]
which grows with Tmin = mink Tk such that for any k ∈ N ,
i ∈ Sk

lim inf
t→∞

xki(t) ≥ ϵT

Performance Next, we examine an important implication
of Theorem B.2, namely that, as the learning dynamics
remain asymptotically bounded within the interior of the
simplex, the exploitability of the system decreases. We
go further by placing an upper bound on this reduction
of exploitability in terms of the lower bound defined by
Corollary B.5.

As all results depend on Tmin, we ease notation by assuming
the exploration rates Tk for all agents are equal. Then we
drop the min notation and just write T . Next, we define ϵT
as the lower bound in Corollary B.5 for some choice of T ,

Now, for any T define Ωk = ×i∈Sk
[ϵT , 1 − ϵT ] and Ω =

×kΩk. Then it is clear that ST ⊂ Ω and, as T → 0,
Ω → ∆.

With this, we can apply the definition of exploitation (9)
with respect to Ω.

ΦΩ(x) =
∑
k

max
yk∈Ωk

uk(yk,x−k)− uk(xk,x−k) (6)

The motivation for defining this metric is as follows: the
definition of exploitability which is most widely applied in
the context of online learning corresponds to Φ∆ (Perrin
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et al., 2020; Gemp et al., 2022), which measures the best
payoff any agent could receive by deviating to any other
strategy in the simplex, assuming that all other agents keep
their strategies fixed. However, if agents are following the
Q-Learning dynamic, with some positive exploration rates,
the whole simplex becomes unavailable. Rather agents can
only improve their strategy from within the set ST . We
can compare ΦΩ against the case of zero exploration using
∆Φ(x) = ΦΩ(x) − Φ∆(x). As such, ∆Φ measures the
change in exploitability as exploration is introduced.

Theorem 3.6. Let Γ be a game with a unique, interior Nash
Equilibrum. Then, for any T ≥ 0, ∆Φ(x) ≤ 0 with equality
holding iff x is the NE of the game, denoted x̄. In addition,
for all x ̸= x̄, ∆Φ(x) ≤ −αϵT < 0, for some α > 0 i.e.
exploitability decreases as T increases.

Discussion. Theorem B.7 shows that the ability of an
agent to improve their payoffs strictly decreases as explo-
ration increases. As a caveat, Theorem B.2 shows that
higher exploration rates leads to a greater certainty in con-
vergence of Q-Learning. In summary, we show that stronger
guarantees on the convergence due to exploration may come
at the price of decreased system performance.

Whilst Theorems B.2 and B.7 paint a broad stroke on con-
vergence and performance, a limitation is that Theorem B.2
does not have anything to say about the behaviour of Q-
Learning within the defined set. Indeed it may be the case,
as it is for network zero-sum games, that Q-Learning con-
verges to a QRE for all Tk > 0. Similarly, whilst Lemma
B.7 shows that agents cannot improve their payoffs as explo-
ration increases, it does not show that their payoffs decrease
as the agents move from non-convergent to convergent be-
haviours.

4. Exploration Reduces Payoff Performance
In the previous sections, we showed that exploration leads
to a decreased ability of each agent to improve their payoff.
In this section we tackle the limitations discussed in the
previous section. To do this we focus a specific class of
games for which we show that non-convergent behaviours
strictly outperform convergence. In this case, performance is
measured through social welfare so that the agents’ realised
payoffs are considered, rather than their ability to improve
their payoffs.

Shapley Network Game In the first example we examine
a network of agents, where each edge is equipped with a
Shapley game. In particular, the payoff to each agent k is

given by

uk = uk(xk,x−k) = xkAxk−1 + xkB
⊤xk+1

A =

 1 0 β
β 1 0
0 β 1

 , B =

 −β 1 0
0 −β 1
1 0 −β

 ,

where β ∈ (0, 1).

In the two agent case, (Shapley, 2016) showed that the
popular Fictitious Play dynamics (Brown P, 1949; Hofbauer
& Sigmund, 2003) do not converge to an NE, but rather
reach a limit cycle. In (Ostrovski & van Strien, 2014), the
authors show that the non-convergent cycle outperforms
the Nash Equilibrium. In (Hussain et al., 2023), the multi-
agent extension was experimentally examined and it was
suggested that the performance of Q-Learning decreases as
the system moves from a limit cycle to an equilibrium. We
make this statement rigorous by showing that the dynamics,
whilst initially non-convergent, can be made convergent
through a sufficiently high exploration rate. However, we
find that the result is accompanied by a strict decrease in the
social welfare along trajectories.

Lemma 4.1. For any β ∈ (0, 1) and Tk ≥ 0, the Network
Shapley game has a QRE at the uniform distribution x̄ =
( 13 )k∈N ,i∈Sk

which is globally repelling under (SQL) at
Tk = 0 and locally attracting if, for all k ∈ N , Tk > 1+ β

3 .
The QRE is globally asymptotically stable if Tk > (N −
1)(1 + β).

We report the proof of Lemma C.1 in the supplementary
material. The main takeaway is that (SQL) does not reach
the QRE in the case of zero exploration, whilst for suffi-
ciently high exploration rates the QRE is globally attracting.
As a result, exploration drives the Q-Learning dynamics
from initially non-convergent behaviour to globally conver-
gent. Whilst, at first this seems like a positive result, in
the following theorem, we show that the non-convergent
behaviours strictly outperform the equilibrium in terms of
Social Welfare.

In Network Shapley Games, let the time-average social
welfare (TSW) along Q-Learning trajectories be defined as

TSW = lim
t→∞

1

t

∫ t

0

SW (x(s)) ds

where x(t) is a trajectory of mixed strategies generated
according to the Q-Learning dynamic for some initial con-
dition x0 ∈ ∆.

Theorem 4.2. Non-convergent trajectories of Q-Learning
strictly outperform the social welfare of the unique QRE
x̄ ∈ ∆ . In particular, TSW ≥ SW (x̄) with equality
holding if and only if the trajectory converges to the QRE.
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T = 0.1, TSW = 3.22 T = 0.2, TSW = 2.71 T = 0.25, TSW = 2.34 T = 0.3, TSW = 2.0

Figure 1. Trajectories of Q-Learning in the Network Shapley Game, for β = 0.2 with five agents alongside experimentally obtained TSW.
Axes the probability with which three agents play their first action. For low values of T , the system reaches a limit cycle whose size of
this limit cycle decreases as exploration forces the dynamics into the interior of the simplex. Eventually, the system equilibriates at the
uniform distribution. All non convergent dynamics strictly outperform the QRE.

T = 1.5 T = 2.5

T = 3.5 T = 4.5

Figure 2. Asymptotic Behaviour and Performance of Q-Learning in the Network Chakraborty Game, for U = 7.0, V = 8.5 with 15
agents. Boxplots show the spread of probabilities with which agents play their first action in the final 25% of 1× 105 iterations of learning.
The red plot shows the TSW asymptotically achieved. For low values of T , the asymptotic dynamics are spread across the entire simplex,
whilst achieving a high TSW. As T increases, the dynamics eventually reach a fixed point, but consistently decrease TSW as a result.

5. Experiments on Exploration
Our experiments further analyse the phenomenon that we
observe in our results - namely that increased exploration
results in Q-Learning dynamics asymptotically reaching a
set in the interior of the simplex, whose size decreases with
T . We also analyse the effect on Social Welfare, to test
whether the phenomenon shown for the Network Shapley
Game, namely that exploration leads to a decrease in payoff
performance, holds more generally.

Network Shapley Game In Figure 5 we visualise the ef-
fect of exploration on the Network Shapley game, examined
in Section C. We generate a network game with five players
and run Q-Learning on the game. To be able to visualise the
trajectory, we select three agents and plot their first action on
the space [0, 1]3. In Figure 5, we keep β fixed at 0.2, which
yields a fixed δ = 1 + β = 1.2. This process is repeated
for increasing choices of T . TSW is calculated as the final
time averaged social welfare after running Q-Learning for
1× 105 iterations.
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T = 0.5 T = 1.5 T = 2.0

Figure 3. Trajectories of Q-Learning dynamics in the Network Chakraborty Game for U = 7.0, V = 8.5 and three agents. Trajectories
show the probability with which the first action is selected. For low T , the dynamics cycle on the boundary of the simplex, leading to a
large variation in each strategy component in the asymptotic limit cycle. As T increases, the size of this cycle decreases, resulting in a
smaller variation of strategy components.

N = 5, nk = 3 N = 7, nk = 5

N = 15, nk = 5 N = 20, nk = 8

Figure 4. Convergence and Performance of Q-Learning in Randomly Generated Games with payoff elements in [0, 5]. Convergence
is measured by maximum variation in mixed strategies, given by (21). The black line depicts the average taken over all 50 games and
initial conditions, whilst the confidence interval depicts the maximum and minimum variation. The red line shows the TSW achieved by
Q-Learning, averaged over all games.

It can be seen that, for small values of T , Q-Learning does
not converge, but rather reaches a limit cycle. As predicted
by Theorem B.2, the size of this limit cycle decreases as T
increases, until eventually Q-Learning converges asymptoti-
cally to the QRE at the uniform distribution. Furthermore,
as predicted by Theorem C.3, all non-convergent behaviours
strictly outperform the Social Welfare of the uniform distri-
bution which, for our choice of β, is 2.

Network Chakraborty Game. Next, we consider a class
of two-action network games which we call the Network

Chakraborty game. In this game, each agent responds only
to the ‘previous’ agent in a circular chain. More formally,
the payoff to each agent k is

uk(xk,x−k) = x⊤
k Axl, l = k − 1 mod N

A =

(
1 U
V 0

)
, U, V ∈ R

This game was analysed in (Pandit et al., 2018) under the
context of an infinitely large population of agents with iden-
tical payoffs. It was shown that, for certain combinations of
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U, V , a discrete time analog of replicator dynamics shows
chaotic behaviour. Here, we extend this game to the multi
agent case and analyse it under Q-Learning.

The results of this investigation are presented in Figure 6.
We examine a 15 agent game with U = 7.0, V = 8.5, which
appears in (Pandit et al., 2018) as a case which shows chaos
by discrete replicator. We run Q-Learning, with 100 initial
conditions, on this system for 1× 105 iterations and isolate
the final 25,000 iterations. By examining this window, we
include the possibility of complex asymptotic behaviours.
In fact, we visualise the trajectories in Figure 7 and find
that, in a three agent network, the dynamics reach a limit
cycle. The boxplot depicts, for each agent the probability of
choosing their first action taken across the entire 25,000 final
iterations, and all initial conditions. Beside this, we plot
the TSW achieved by Q-Learning, taken across all initial
conditions.

Once again it is clear that, for small exploration rates, the
dynamics do not converge to an equilibrium. Rather, the
asymptotic behaviour is spread across the entire state space.
As exploration increases, the spread of probability distri-
butions is bounded within the interior of the simplex, un-
til eventually the dynamics equilibriate when T = 4.5.
This process is again accompanied by a decrease in TSW
achieved by Q-Learning, which reaches its minimum when
the dynamics converge to an equilibrium.

Arbitrary Games. Finally, we look to extend our inves-
tigation beyond specific classes of games. To do this, we
analyse the effect of exploration in randomly generated
games, which do not follow any specific payoff or network
structure. In addition, these games are not required to satisfy
Assumption 2.3. To ensure like comparison, we generate
payoffs that are positive and upper bounded. This ensures
that the difference in payoffs between two randomly drawn
games are not so significant as to affect plotting the results.
Neither assumption impacts the generality of the results
as the dynamics of Q-Learning are invariant to additions
and multiplications by positive constants to all elements
of the payoffs. A proof of this statement appears in the
supplementary material.

To generate Figure 8, we run Q-Learning in 50 randomly
generated games, for 5 initial conditions and record the final
25,000 iterations. Then we determine the largest variation
in mixed strategies across all agents and all actions. More
formally, this process estimates

max
ki

lim
t→∞

(
max

t
xki(t)−min

t
xki(t)

)
(7)

Figure 8 shows that the variation decreases as exploration
rates are increased. Taken together, our results present
strong evidence that the relation between convergence and
performance does not just occur in the special cases already

examined, but rather holds in the vast majority of network
games.

6. Conclusion
Understanding the effect of exploration in multi-agent learn-
ing faces a significant challenge due to the fact that, outside
of a restrictive class of games, online learning often does
not display asymptotic convergence to an equilibrium. We
made a first contribution at solving this by showing that,
in all network games with unique Nash Equilibrium (NE),
smooth Q-Learning converges to a neighbourhood of the
equilibrium. This occurs independently of the behaviour of
the learning dynamics within this neighbourhood. The size
of this neighbourhood can be decreased by increasing the
exploration rates of the agents. As such, controlling the de-
gree to which Q-Learning converges amounts to parameter
tuning.

The downside of this process is reduced asymptotic perfor-
mance of learning. We show that, in all games, increased
exploration leads naturally to a reduced ability for agents
to improve their payoff through learning. As our results
place upper bounds on this phenomena, they give a manner
in which exploration rates can be tuned to balance conver-
gence and payoff performance. To take this further, we show
that non convergent Q-Learning dynamics strictly outper-
form convergence in a multi-agent extension of the Shapley
game. As our experiments confirm, this turns out to be a
general phenomena across a large number of games.

The results in this paper brings improves the understanding
of exploration in learning dynamics outside the realm of
potential and network zero sum games. An interesting av-
enue for future work would be to continue developing this
direction by lifting the assumption of network interactions
and by considering the effect of exploration in games with
multiple Nash Equilibria.
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A. Introduction
Learning in games requires agents to explore their state space. Whilst it is known that the rate of exploration impacts the
behaviour of the learning dynamic (Tuyls et al., 2006), understanding precisely this impact often relies on placing restrictions
on the structure of the interaction. A primary example of this are network zero-sum games, which model perfect competition
between agents. Here it is known that, without exploration, agents cannot reach an equilibrium (Mertikopoulos et al., 2018;
Ganesh Nagarajan et al., 2020), whilst arbitrarily small exploration leads to convergence (Leonardos et al., 2021). Similarly
studied classes of games include potential games (Leonardos & Piliouras, 2022) and games with two players and two actions
(Kianercy & Galstyan, 2012).

Beyond these restrictive classes however, the picture is much less clear. Whilst recent work has shown that high exploration
rates always lead to convergence (Hussain et al., 2023), it is also well known that learning dynamics often display complex
behaviours, including limit cycles (Mertikopoulos et al., 2018; Galla, 2011) and chaos (Bielawski et al., 2021; Galla &
Farmer, 2013; Sanders et al., 2018; Mukhopadhyay & Chakraborty, 2020; Sato et al., 2002). The latter case represents a
particularly strong barrier towards understanding the asymptotic behaviour of learning. In short, the prospect of convergence
to an equilibrium cannot be taken for granted. Unfortunately, little is known about the impact of exploration in the face of
non-convergent dynamics.

Yet understanding exploration remains an important endeavour as it allows agents to avoid suboptimal, or potentially unsafe
areas of their state space (Leonardos & Piliouras, 2022; Bura et al., 2022; Bai et al., 2021). In addition, it is empirically
known that the choice of exploration rate impacts the expected total reward (Cai et al., 2020). This has lead to an increased
interest in studying the influence of exploration on learning in single-agent settings (Schäfer et al., 2021; Piliouras, 2020).
It is then paramount to understand the effect of exploration also in multi-agent environments outside the restrictions of
potential, or network zero-sum settings. This leads us to our central question:

How does exploration affect reinforcement learning dynamics in arbitrary games, even if convergence to an equilibrium
cannot be guaranteed?

Main Contributions To answer this question, we consider the smooth Q-Learning (SQL) dynamic, a learning dynamic
which quantifies the tendency for agents to explore their state space whilst also seeking to maximise their payoffs.

We then lift the assumption of convergence to an equilibrium. In doing so, we show that, in network games with unique
Nash Equilibria, SQL remains contained in a neighbourhood of an equilibrium for any positive exploration rate. The effect
of increased exploration is to decrease the size of this neighbourhood. As such, exploration rates can be tuned to control the
‘degree’ of convergence of SQL. By considering convergence to a set, we are able to include several dynamical behaviours,
including convergence to a fixed point, but also to a cycle or chaotic behaviour. In addition, this greatly widens the class of
games in which the effect of exploration can be understood.

Next, we analyse the effect of exploration on system performance. Namely, we show that, by increasing exploration, the
ability for agents to improve their payoffs whilst following SQL decreases. We exemplify this by considering a class of
games in which Q-Learning does not converge for low exploration rates, but non-convergent SQL dynamics outperform the
equilibrium, in terms of the sum of payoffs of all agents. Therefore, whilst increasing exploration drives the system towards
convergence, the payoff performance of SQL suffers. Our experiments show this to be a general property of SQL dynamics.
As a result, when system performance is desirable, it may be beneficial to restrict exploration, even if the dynamics do not
converge to an equilibrium.

Related Work Since its conception, the smooth Q-Learning dynamic (Tuyls et al., 2006; Sato & Crutchfield, 2003) has
received significant attention as it provides a fundamental model of exploration in multi-agent learning and is closely related
to the well-studied replicator dynamics (Maynard Smith, 1974; Hofbauer & Sigmund, 1998; Leonardos & Piliouras, 2022),
as well as the popular Q-Learning algorithm (Sutton & Barto, 2018; Schwartz, 2014). Interestingly, a number of studies have
shown that, for various choices of exploration rates, the Q-Learning dynamic can display a number of complex behaviours,
as limit cycles (Mertikopoulos et al., 2018; Kleinberg et al., 2011; Hofbauer, 1996) or even chaos (Galla & Farmer, 2013;
Sato et al., 2002; Ganesh Nagarajan et al., 2020). To make matters worse, as the number of players increases the likelihood
of these complex behaviours increases (Sanders et al., 2018). In fact, when there is no exploration on the part of every
agents, the Q-Learning dynamics cannot converge to an interior equilibrium (Vlatakis-Gkaragkounis et al., 2020). This
behaviour is not limited to the Q-Learning dynamics; a wide array of online learning algorithms are known to exhibit chaos,
including Fictitious Play (van Strien & Sparrow, 2011; Ewerhart & Valkanova, 2020) and Follow the Regularised Leader
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(Bielawski et al., 2021; Andrade et al., 2021; Anagnostides et al., 2022; Cheung & Tao, 2021).

The presence of these non-convergent behaviours result in an inherent challenge in understanding the effect of exploration
on multi-agent learning (Klos et al., 2010). As a result studies considering this topic from a theoretical standpoint are
often limited to understanding equilibrium behaviours. For instance, (Leonardos & Piliouras, 2022) shows that different
exploration rates can result in different stability properties, which can lead to potentially unbounded gains and losses in
system performance. Similar phase transitions are also found in (Kaisers & Tuyls, 2011; Kianercy & Galstyan, 2012;
Piliouras, 2020). By contrast, (Hussain et al., 2023) shows that sufficiently high exploration rates yields convergence of the
Q-Learning dynamic to a unique equilibrium, regardless of the number or stability of Nash Equilibria in the game. To our
knowledge ours is the first study to analyse, theoretically and empirically, the effect of exploration in arbitrary multi-agent
settings in terms of dynamics and system performance, without assuming convergence to an equilibrium.

In this paper we study a network game Γ = (N , E , (Sk)k∈N , (Akl, Alk)(k,l)∈E), where N denotes a finite set of agents.
Each agent k ∈ N has a finite set Sk of actions which are indexed by i = 1, . . . , nk, and can play a mixed strategy xk, i.e. a
discrete probability distribution over its set of actions. The set of all such mixed strategies is the unit simplex in Rnk , i.e.
∆k = {xk ∈ Rnk |

∑
i∈Sk

xki = 1, and xki ≥ 0 for all i ∈ Sk}. We denote with ∆ = ×k∈N∆k the joint simplex over all
agents, with x = (xk)k∈N the joint mixed strategy of all agents and, for any k, with x−k = (xl)l∈N\{k} ∈ ∆−k the joint
strategy of all agents other than k.

Agents in a network game interact according to an edgeset E ⊂ N × N . Each edge corresponds to a bimatrix game
(Akl, Alk). The expected payoff for each agent k ∈ N who plays mixed strategy xk against joint mixed strategy x−k is
given by

uk(xk,x−k) =
∑

(k,l)∈E

x⊤
k A

klxl

Also associated to each agent k is a payoff function uk : ∆k×∆−k → R. Then, for any x ∈ ∆, the reward to agent k when
they play action i ∈ Sk as rki(x) := ∂uki(x)/∂xki. With this, we can write rk(x) = (rki(x))k∈N as the concatenation of
all rewards to agent k. In this notation, uk(x) = x⊤

k rk(x). Using this notation, we can define the equilibrium of the game.

Definition A.1 (Quantal Response Equilibrium (QRE)). A joint mixed strategy x̄ ∈ ∆ is a Quantal Response Equilibrium
(QRE) if, for all agents k and all actions i ∈ Sk,

x̄ki =
exp(rki(x̄−k)/Tk)∑

j∈Sk
exp(rkj(x̄−k)/Tk)

In the definition of the QRE, Tk denotes the exploration rate of the agent. Note that as Tk → ∞, the QRE is unique and is
given by x̄ = ( 1

nk
1)k∈N . This equilibrium corresponds to the case in which each agent plays each action with the same

probability, regardless of the payoff received. In the other limit, Tk → 0, the QRE corresponds to the Nash Equilbrium,
which we now define.

Definition A.2 (Nash Equilibrium (NE)). A joint mixed strategy x̄ ∈ ∆ is an Nash Equilibrium if, for all agents k and all
xk ∈ ∆k,

⟨xk, rk(x̄−k)⟩ ≤ ⟨x̄k, rk(x̄−k)⟩ (8)

Informally, at a Nash Equilibrium, no agent can increase their utility by means of unilateral deviations, i.e. agents are
considered perfectly rational. With this in mind, the QRE can be thought of as an equilibrium notion for agents with bounded
rationality.

In this work, we will be making the following assumption which will allow for a comparative analysis between non-
convergent behaviours and a unique equilibrium.

Assumption A.3. The network game Γ = (N , E , (Sk)k∈N , (Akl, Alk)(k,l)∈E) has a unique, interior Nash Equilibrium

We can extend this assumption towards the QRE of the game using the following result.

Proposition A.4. If a game Γ has a unique Nash Equilibrium then, for any T1, . . . , TN > 0, there exists a unique interior
QRE.

Proof. Existence of an interior QRE follows from (Leonardos et al., 2021) Theorem 3.2. The fact that the QRE is unique
follows from (McKelvey & Palfrey, 1995) which states that
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1. The limit of the set {x ∈ ∆ : x is a QRE for T1, . . . , TN} as Tk → 0 for all k is the set of Nash Equilibria of the
game.

2. There is a unique path of QRE between the uniform distribution in the limit Tk → ∞ for all k, to a unique Nash
Equilibrium.

If, therefore, the game admits a unique NE, then it must admit unique QRE as, if for some T1, . . . , TN > 0, there are
multiple QRE, then each of these QRE must generate a path which leads to the unique NE. This contradicts the uniqueness
of the path.

Influence Bound Our convergence results on Q-Learning will depend on a suitable notion of size of the game. To define
this formally, we introduce the influence bound (Melo, 2021) of the game which is defined as

Definition A.5 (Influence Bound). A game Γ has the influence bound δ given by

δ = max
k∈N ,i∈Sk,s−k,s̃−k∈S−k

{|rki(s−k)− rki(s̃−k)|}

where the pure strategies s−k, s̃−k ∈ S−k differ only in the strategies of one agent l ̸= k.

Since |rki(s−k)− rki(s̃−k)| measures the change in reward to agent k for playing action i due to a change the other players’
actions, the influence bound δ defines the maximum influence (in terms of reward) that any agent could receive from their
opponents.
Remark A.6. In the case of a network game, the influence bound of the game is simply

max
k∈N ,i∈Sk,s−k,s̃−k∈S−k

|
(
Ak
)
i,s−k

−
(
Ak
)
i,s̃−k

|.

In other words, it is the maximum difference between any row elements across the payoff matrices for all agents.

When considering performance, we use two closely related measures. The first is the total exploitability. Informally,
exploitability measures an agent’s ability to improve their current payoff by deviating to another strategy. More formally, we
define exploitability of a strategy x with respect to a set S = ×kSk as

ΦS(x) =
∑
k

max
yk∈Sk

uk(yk,x−k)− uk(xk,x−k). (9)

Our second metric for performance is Social Welfare, which measures the total payoff received by all agents. Formally, the
Social Welfare of a mixed strategy x ∈ ∆ is given by

SW (x) =
∑
k

uk(xk,x−k) (10)

Social Welfare is a stronger measure of performance than Exploitability as the latter considers an agent’s ability to improve
their payoff, whereas the former measures the realised payoff that each agent receives.

Learning Model We study a smooth variant of Q-Learning with Boltzmann exploration, called smooth Q-Learning (SQL)
(Tuyls et al., 2006). This requires that each agent k updates their mixed strategy xk according to the dynamic

ẋki

xki
= rki (x−k)− ⟨xk, rk(x)⟩+ Tk

∑
j∈Sk

xkj ln
xkj

xki
(SQL)

in which Tk ∈ [0,∞) denotes the exploration rate of agent k. At the limit of zero exploration rates we recover the replicator
dynamic in which agents maximise their payoff at every time step (Sato & Crutchfield, 2003). At the other limit, Tk → ∞,
we recover an entropy maximising dynamic in which the unique fixed point x̄ = ( 1

nk
1)k∈N is globally asymptotically

stable. This allows us to capture, with the parameter Tk, how the exploration rate affects the dynamics.
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B. Convergence and Performance
In this section, we first show how the imposition of exploration by all agents forces the learning dynamics to converge to a
neighbourhood of the QRE x. Using this, we define a lower bound on each xki, independently of whether the dynamics
converge to an equilibrium or display more complex behaviour.

Convergence To define convergence, we require a measure of distance. To this end, we employ the Kullback-Leibler (KL)
Divergence.

Definition B.1 (Kullback-Leibler Divergence). The KL Divergence between a set of joint mixed strategies x,y ∈ ∆ is
given by

DKL(y||x) =
∑
k

DKL(yk||xk) =
∑
ki

yki ln
yki
xki

(11)

Notice that the KL-Divergence does not formally define a metric as it is not symmetric (i.e. in general DKL(y||x) ̸=
DKL(x||y)). Rather, the KL-Divergence can be thought of as measuring the overlap between probability distributions y
and x. The key point which we will use in our main theorem is that DKL(y||x) is zero if and only if x = y and is positive
everywhere else.

Theorem B.2. Let δ be influence bound of the game Γ and let x̄ ∈ int∆ denote the QRE of the game for some T1, . . . , TN .
Then, the Q-Learning dynamics remain asymptotically within the set

ST = {x ∈ ∆ |DKL(x̄||x(t)) ≤
δ

Tmin

∑
k

nk}

To prove this, we begin with the following

Lemma B.3. Consider a game Γ with influence bound δ. Let x(t) denote the joint strategy generated by (SQL) at some time
t for some initial condition x(0). Also let x̄ denote the QRE for the game for some Tk. Then DKL(x̄||x(t)) is a decreasing
function along trajectories of the Q-Learning dynamic (SQL) for all t ∈ [0,∞) such that

DKL(x̄||x(t)) +DKL(x(t)||x̄) >
δ

Tmin

∑
k

nk (12)

Proof. First we have that

(xk − x̄k)
⊤
[rk (x−k)− rk (x̄−k)]

≤| (xk − x̄k)
⊤
[rk (x−k)− rk (x̄−k)] |

≤
∑
i

|xki − x̄ki||rki(x−k)− rki(x̄−k)|

≤nkδ, (13)

where the final inequality holds from the fact that |xki− x̄ki| ∈ [0, 1] and |rki(x−k)−rki(x̄−k)| ≤ δ due to the separability
of payoffs in network games and the definition of the influence bound δ.

Next, it holds (due to (Leonardos et al., 2021) Lemma 4.1) that, for any game, the KL divergence along trajectories of QL
satisfies

d

dt
DKL(x̄k||xk(t)) = (xk(t)− x̄k)

T [rk(x−k)− rk(x̄−k)]− Tk(DKL(x̄k||xk(t)) +DKL(xk(t)||x̄k)) (14)

Combining (13) and (14) we see that d
dtDKL(pk||xk(t)) < 0 when

nkδ − Tk[DKL(x̄k||xk(t)) +DKL(xk(t)||x̄k)] < 0.
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Since DKL(x̄||x(t)) =
∑

k DKL(x̄k||xk(t)), we have that d
dtDKL(x̄||x(t)) is strictly negative when

DKL(x̄||x(t)) +DKL(x(t)||x̄) >
δ

Tmin

∑
k

nk (15)

Proof of Theorem B.2. Let S denote the set

S =

{
x ∈ ∆ |DKL(x̄||x(t)) +DKL(x(t)||x̄) ≤

δ

Tmin

∑
k

nk

}
For any x(t) /∈ S, we know that DKL(x̄||x(t)) is a decreasing function outside of the set S, and is also bounded below
by zero. It follows, then, that x(t) reaches S in finite time, at which point DKL(x̄||x(t)) ≤ supx∈S DKL(x̄||x) =: DS .
Furthermore, the decreasing property of DKL(x̄||x(t)) outside of S implies that, if x(t) leaves S, DKL(x̄||x(t)) cannot
increase further than DS . It follows that x(t) must remain in the set {x ∈ ∆ : DKL(x̄||x) ≤ DS}. Finally, we note that
DS = supx∈S DKL(x̄||x) ≤ supx∈S DKL(x̄||x) +DKL(x||x̄) ≤ δ

Tmin

∑
k nk.

Remark B.4. At first glance, it appears that the size of the set defined by Theorem B.2 increases with the number of players
and number of actions due to the presence of the term

∑
k nk. On closer inspection, however, we see that the KL-Divergence

itself is given by a summation over agents and actions. Therefore, both sides of the inequality which define ST grow at the
same rate.

Theorem B.2 determines the convergence structure of Q-Learning in arbitrary games. In particular, it finds a set in which
Q-Learning remains asymptotically trapped, independently of whether the dynamics are ultimately chaotic, cyclic or
converge to an equilibrium. As Tk increases, the size of this set decreases, tightening the convergence bound. On the other
hand, the size of the set increases with the size of the game, as measured by the influence bound. Indeed, in the limit
Tk → ∞ for all k, the set defined by Theorem B.2 is a singleton, so that Q-Learning must converge to the QRE.

Another implication of Theorem B.2 is that, for any T1, . . . , TN > 0 the Q-Learning dynamics must remain bounded away
from the boundary of the simplex ∂∆ for all t > 0. In addition, this bound increases with Tk, resulting in the dynamics
being forced further in the interior of ∆.

Corollary B.5. In the setting of Theorem B.2, when each agent k has exploration rate Tk ≥ 0 and follows the Q-Learning
dynamic, there exists an ϵT ∈ [0, 1/(mink nk)] which grows with Tmin = mink Tk such that for any k ∈ N , i ∈ Sk

lim inf
t→∞

xki(t) ≥ ϵT

Proof. From Theorem B.2, it holds that the KL-Divergence is bounded by δnk/Tmin in the limit t → ∞. This immediately
yields the existence of an ϵT ≥ such that the result holds. That ϵT ≥ 0 follows from the fact that DKL(p||x) → ∞ as
x → ∂∆. In words the KL Divergence approaches infinity towards the boundary of the simplex. The increase of ϵT with
Tmin holds due to the convexity of the KL-Divergence, and that x̄ki → 1/nk as Tmin → ∞.

Performance Next, we examine an important implication of Theorem B.2, namely that, as the learning dynamics remain
asymptotically bounded within the interior of the simplex, the exploitability of the system decreases. We go further by
placing an upper bound on this reduction of exploitability in terms of the lower bound defined by Corollary B.5.

As all results depend on Tmin, we ease notation by assuming the exploration rates Tk for all agents are equal. Then we drop
the min notation and just write T . Next, we define ϵT as the lower bound in Corollary B.5 for some choice of T ,

Now, for any T define Ωk = ×i∈Sk
[ϵT , 1− ϵT ] and Ω = ×kΩk. Then it is clear that ST ⊂ Ω and, as T → 0, Ω → ∆.

With this, we can apply the definition of exploitation (9) with respect to Ω.

ΦΩ(x) =
∑
k

max
yk∈Ωk

uk(yk,x−k)− uk(xk,x−k) (16)

16



The Impact of Exploration on Convergence and Performance of Multi-Agent Q-Learning Dynamics

The motivation for defining this metric is as follows: the definition of exploitability which is most widely applied in the
context of online learning corresponds to Φ∆ (Perrin et al., 2020; Gemp et al., 2022), which measures the best payoff any
agent could receive by deviating to any other strategy in the simplex, assuming that all other agents keep their strategies fixed.
However, if agents are following the Q-Learning dynamic, with some positive exploration rates, the whole simplex becomes
unavailable. Rather agents can only improve their strategy from within the set ST . We can compare ΦΩ against the case of
zero exploration using ∆Φ(x) = ΦΩ(x)− Φ∆(x). As such, ∆Φ measures the change in exploitability as exploration is
introduced. To show that exploitability decreases, we begin with the following Proposition.

Proposition B.6. Let ϵT ∈ [0, 1/(mink nk)] be such that xki ≥ ϵT for all k ∈ N , i ∈ Sk. Then yk ∈
argmaxyk∈Ωk

uk(yk,x−k) where Ωk = ×i∈Sk
[ϵT , 1− ϵT ] if

yki =

{
1− (nk − 1)ϵT , if i ∈ argmaxi∈Sk

rki(x−k)

ϵT , otherwise.

Proof. The proof begins with the fact that, as ϵT ∈ [0, 1/nk] for all k ∈ N , it follows that 1− (nk − 1)ϵT > ϵT , for all k.
Next, we write the maximisation problem as 

maxyk∈Sk
y⊤
k rk(x−k)

s.t. yki ≥ ϵT for all i ∈ Sk∑
i yki = 1

Which has Lagrangian

L(yk, µk, ρk) =
∑
i∈Sk

ykirki(x−k)− µki(ϵT − yki) + ρk(1−
∑
i

yki)

where µki ≥ 0 is such that µki(ϵT − yki) = 0 for all k, i.

Let j = argmaxj∈Sk
rkj(x−k). From the KKT conditions, and the form of the objective function it holds that a maximiser

satisfies yki = ϵT for all i ̸= j and ykj = 1− (nk − 1)ϵT .

Theorem B.7. Let Γ be a game with a unique, interior Nash Equilibrum. Then, for any T ≥ 0, ∆Φ(x) ≤ 0 with equality
holding iff x is the NE of the game, denoted x̄. In addition, for all x ̸= x̄, ∆Φ(x) ≤ −αϵT < 0, for some α > 0 i.e.
exploitability decreases as T increases.

Proof. Let ȳk be the maximiser of the function uk(yk,x−k) on Ωk, i.e. it is the exploration-induced best response of
agent k to the strategy x−k. Furthermore, as we can write any yk as a convex combination of strategies i, we can write
⟨ȳk, rki(x−k)⟩ =

∑
i∈Sk

λkirki(x−k). Finally, let j ∈ Sk satisfy j = argmaxi∈Sk
rki(x−k).

max
yk∈Ωk

uk(yk,x−k)− max
yk∈∆k

uk(yk,x−k) =

(∑
i∈Sk

λkirki(x−k)

)
− rkj(x−k)

=

∑
i ̸=j

λkirki(x−k)

+

1−
∑
i ̸=j

λki

 rkj(x−k)− rkj(x−k)

=
∑
i̸=j

λki (rki(x−k)− rkj(x−k)) (17)

At the Nash Equilibrium, which we have assumed to be unique and interior, we have that rki(x̄−k)− rkj(x̄−k) = 0 for all
i. At all other points x, we have that rki(x−k)− rkj(x−k) < 0 for all i, except for on a finite number of hyperplanes on
which rki(x−k)− rkj(x−k) = 0 for some i and rkm(x−k)− rkj(x−k) < 0 for all other m ∈ Sk. In addition, due to the
construction of Ωk, λki ≥ ϵT > 0 for all k, i. By taking the sum over all k, i, we have that

∆Φ(x) = ΦΩ(x)− Φ∆(x) < 0
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To show the second part of the Theorem, we use Proposition B.6 which states that, when playing a best response ȳk within
Ωk, each agent places as little weight as possible on suboptimal actions, and all remaining weight on (one of) the best
performing action j. In the case that the argmax is not single valued, ȳk will produce the same reward as any other
exploration induced best response. As such, we can write

∑
i̸=j

λki (rki(x−k)− rkj(x−k)) = ϵT
∑
i ̸=j

(rki(x−k)− rkj(x−k)) =: −αkϵT < 0.

where

αk =
∑
i ̸=j

(rki(x−k)− rkj(x−k)) ≥ 0

Taking the sum over all agents k, and defining α =
∑

k αk we get the final result.

Discussion on Results Theorem B.7 shows that the ability of an agent to improve their payoffs strictly decreases
as exploration increases. By contrast, Theorem B.2 shows that higher exploration rates leads to a greater certainty in
convergence of Q-Learning. In summary, we show that stronger guarantees on the convergence due to exploration come at
the price of decreased system performance.

Whilst Theorems B.2 and B.7 paint a broad stroke on convergence and performance, a limitation is that Theorem B.2 does
not have anything to say about the behaviour of Q-Learning within the defined set. Indeed it may be the case, as it is for
network zero-sum games, that Q-Learning converges to a QRE for all Tk > 0. Similarly, whilst Lemma B.7 shows that
agents cannot improve their payoffs as exploration increases, it does not show that their payoffs decrease as the agents move
from non-convergent to convergent behaviours.

C. Exploration Reduces Payoff Performance
In the previous sections, we showed that exploration leads to a decreased ability of each agent to improve their payoff. This
is a strong statement on the tradeoff between convergence and performance.

In this section we tackle the limitations discussed in the previous section. To do this we focus a specific class of games for
which we show that non-convergent behaviours strictly outperform convergence. In this case, performance is measured
through social welfare so that the agents’ realised payoffs are considered, rather than their ability to improve their payoffs.

Shapley Network Game In the first example we examine a network of agents, where each edge is equipped with a Shapley
game. In particular, the payoff to each agent k is given by

uk = uk(xk,x−k) = xkAxk−1 + xkB
⊤xk+1

A =

 1 0 β
β 1 0
0 β 1

 , B =

 −β 1 0
0 −β 1
1 0 −β

 ,

where β ∈ (0, 1).

In the two agent case, (Shapley, 2016) showed that the popular Fictitious Play dynamics (Brown P, 1949; Hofbauer &
Sigmund, 2003) do not converge to an NE, but rather reach a limit cycle. In (Ostrovski & van Strien, 2014), the authors show
that the non-convergent cycle outperforms the Nash Equilibrium. In (Hussain et al., 2023), the multi-agent extension was
experimentally examined and it was suggested that the performance of Q-Learning decreases as the system moves from a
limit cycle to an equilibrium. We make this statement rigorous by showing that the dynamics, whilst initially non-convergent,
can be made convergent through a sufficiently high exploration rate. However, we find that the result is accompanied by a
strict decrease in the social welfare along trajectories.
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Lemma C.1. For any β ∈ (0, 1) and any Tk ≥ 0, the Network Shapley game has a QRE at the uniform distribution
x̄ = ( 13 )k∈N ,i∈Sk

which is globally repelling under (SQL) at Tk = 0 and locally attracting if, for all k ∈ N , Tk > 1 + β
3 .

The QRE is globally asymptotically stable if Tk > (N − 1)(1 + β).

Proof. For ease of presentation, we break the proof statement into two separate components. First we show that x̄ =
( 13 )k∈N ,i∈Sk

is indeed a QRE, then address its stability.

QRE The rewards to each agent k in the Network Shapley Game are given by

rk(x−k) = Axk−1 +B⊤xk+1

At x̄, for each agent k

rk(x̄−k) =

(1/3)(1 + β) + (1/3)(1− β)
(1/3)(1 + β) + (1/3)(1− β)
(1/3)(1 + β) + (1/3)(1− β)


So that, for all k, x̄k ∈ argmaxxk∈∆k

uk(xk, x̄−k). Therefore, x̄ is a Nash Equilibrium of the Network Shapley Game. To
show that it is also a QRE, we show that it is a fixed point of the Q-Learning dynamics (SQL). Since, by (Leonardos et al.,
2021), fixed points of (SQL) coincide with the QRE of the game, the result follows.

As x̄ is an interior Nash Equilibrium, for all k and all i ∈ Sk, rki(x̄−k) = ⟨x̄k, rk(x̄−k)⟩. Furthermore, for all i, j ∈ Sk,
lnxkj/xki = ln 1 = 0. Therefore, all terms on the right hand side of (SQL) is zero.

Stability To find the local stability, we begin by following (Hofbauer, 1996; Sato & Crutchfield, 2003) which considered
the replicator dynamics and q-learning respectively in two-player games. We make the following transformation of variables.

αki = ln
xk,i+1

xk1
, i = 1, . . . , nk − 1

Note that this α has no relation to that used in Theorem B.7. Applying this transformation to (SQL) on the Network Shapley
Game yields the dynamics

α̇ki =

∑nk−1
j=1 ãije

αk−1,j + ã1j

1 +
∑nk−1

j=1 eαk−1,j

+

∑nk−1
j=1 b̃ije

αk+1,j + b̃1j

1 +
∑nk−1

j=1 eαk+1,j

− Tkαki

in which ãij = (A)i+1,j − (A)1,j and b̃ij = (B⊤)i+1,j − (B⊤)1,j .

As the transformation of variables is a homeomorphism, stability results which hold for the dynamics of α hold also for x.
In the transformed system, the QRE x̄ maps to ᾱki = 0 for all k, i. The Jacobian at the QRE takes the form

J =


T1I2×2 f+ 02×2 . . . 02×2 f−
f− T2I2×2 f+ 02×2 . . . 02×2

...
...

...
...

...
...

f+ 02×2 . . . 02×2 TNI2×2 f+


f− =

∂α̇k

∂αk−1
=

1

9

(
β − 2 4− 2β
−β − 1 2β + 2

)
f+ =

∂α̇k

∂αk+1
=

1

9

(
2β + 1 −4β − 2
β − 1 2− 2β

)
Eigenvalues analysis of J at Tk = 0 yields a positive eigenvalue of (β + 1)/3. Therefore, the system is unstable, i.e.
locally repelling. This result can also be achieved by recognising that, at Tk = 0, (SQL) corresponds to the replicator
dynamics which is a sub-class of the Follow the Regularised Leader dynamics (Mertikopoulos & Sandholm, 2016). In
(Vlatakis-Gkaragkounis et al., 2020), it is shown that interior fixed points for this dynamic are always unstable. The result
follows immediately. To show local stability, we apply Gershgorin’s disc theorem
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Theorem C.2 (Gershgorin). For an n× n matrix A, let

Ri =

n∑
j=1,j ̸=i

|aij |. (18)

Then every eigenvalue λ of A lies in one of the circles

{z : |z − aii| ≤ Ri} (19)

Using this, and the fact that Tk lies on the diagonal of J , it follows that the system has all negative eigenvalues if
Tk > max{(1 + β)/3, 2/3}, where the terms in the max function arise by summing the off diagonal terms in each row
of J . The result then follows. Global asymptotic stability can be shown due to (Hussain et al., 2023) and the fact that the
influence bound of the Shapley game is 1 + β.

Theorem C.3. In Network Shapley Games, let the time-average social welfare (TSW) along Q-Learning trajectories be
defined as

TSW = lim
t→∞

1

t

∫ t

0

SW (x(s)) ds (20)

where x(t) is a trajectory of mixed strategies generated according to the Q-Learning dynamic for some initial condition
x0 ∈ ∆. Then, non-convergent trajectories of Q-Learning strictly outperform the social welfare of the unique QRE x̄ ∈ ∆ .
In particular, TSW ≥ SW (x̄) with equality holding if and only if limt→∞ x(t) = x̄.

Proof. As Q-Learning is an no-regret learning dynamic (Leonardos & Piliouras, 2022), it holds that R = 0 where

R = lim
t→∞

∑
k

1

t
Rk(t) = lim

t→∞

∑
k

1

t

∫ t

0

max
x′
k∈∆k

[uk(x
′
k,x−k(s))− uk(xk(s),x−k(s))] ds

where Rk is the regret of each agent k. Next, we note that the reasoning of (Ostrovski & van Strien, 2014) extends to the
Network Shapley Game. In particular, for all agents k and all x ∈ ∆

max
x′
k∈∆k

uk(x
′
k,x−k) = max

i∈Sk

rki(x−k)

= max{(Axk−1)1 + (x⊤
k+1B)1, (Axk−1)2 + (x⊤

k+1B)2, (Axk−1)3 + (x⊤
k+1B)3}

≥ 1

3
(1 + β) +

1

3
(1− β) = uk(x̄k, x̄−k)

with equality holding if and only if x = x̄. With this it holds that

1

t
Rk(t) =

1

t

∫ t

0

max
x′
k∈∆k

[uk(x
′
k,x−k(s))− uk(xk(s),x−k(s))] ds

≥ 1

t

∫ t

0

[uk(x̄k, x̄−k)− uk(xk(s),x−k(s))] ds

= uk(x̄k, x̄−k)−
1

t

∫ t

0

uk(xk(s),x−k(s))] ds

=⇒ 1

t

∫ t

0

uk(xk(s),x−k(s))] ds ≥ uk(x̄k, x̄−k)−
1

t
Rk(t)

=⇒ lim
t→∞

1

t

∫ t

0

uk(xk(s),x−k(s))] ds ≥ uk(x̄k, x̄−k)− lim
t→∞

1

t
Rk(t)

=⇒ TSW ≥ SW (x̄)

where equality holds if and only if limt→∞ x(t) = x̄, i.e. if the trajectory converges to the QRE.
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D. Experiments on Convergence and Performance
Our experiments further analyse the phenomenon that we observe in our results - namely that increased exploration results
in Q-Learning dynamics asymptotically reaching a set in the interior of the simplex, whose size decreases with T . We also
analyse the effect on Social Welfare, to test whether the phenomenon shown for the Network Shapley Game, namely that
exploration leads to a decrease in payoff performance, holds more generally.

T = 0.1, TSW = 3.22 T = 0.2, TSW = 2.71 T = 0.25, TSW = 2.34 T = 0.3, TSW = 2.0

Figure 5. Trajectories of Q-Learning in the Network Shapley Game, for β = 0.2 considered in Section C with five agents alongside
experimentally obtained TSW. The trajectories plot the probability with which three agents play their first action. For low values of T , the
system reaches a limit cycle. The size of this limit cycle decreases as exploration enforces the dynamics further into the interior of the
simplex. Eventually, at T = 0.3, the system equilibriates at the uniform distribution. All non convergent dynamics strictly outperform the
QRE.

Network Shapley Game In Figure 5 we visualise the effect of exploration on the Network Shapley game, examined in
Section C. We generate a network game with five players and run Q-Learning on the game. To be able to visualise the
trajectory, we select three agents and plot their first action on the space [0, 1]3. In Figure 5, we keep β fixed at 0.2, which
yields a fixed δ = 1 + β = 1.2. This process is repeated for increasing choices of T . TSW is calculated as the final time
averaged social welfare after running Q-Learning for 1× 105 iterations.

It can be seen that, for small values of T , Q-Learning does not converge, but rather reaches a limit cycle. As predicted by
Theorem B.2, the size of this limit cycle decreases as T increases, until eventually Q-Learning converges asymptotically
to the QRE at the uniform distribution. Furthermore, as predicted by Theorem C.3, all non-convergent behaviours strictly
outperform the Social Welfare of the uniform distribution which, for our choice of β, is 2.

Network Chakraborty Game Next, we consider a class of two-action network games which we call the Network
Chakraborty game. In this game, each agent responds only to the ‘previous’ agent in a circular chain. More formally, the
payoff to each agent k is

uk(xk,x−k) = x⊤
k Axl, l = k − 1 mod N

A =

(
1 U
V 0

)
, U, V ∈ R

This game was analysed in (Pandit et al., 2018) under the context of an infinitely large population of agents with identical
payoffs. It was shown that, for certain combinations of U, V , a discrete time analog of replicator dynamics shows chaotic
behaviour. Here, we extend this game to the multi agent case and analyse it under Q-Learning.

The results of this investigation are presented in Figure 6. We examine a 15 agent game with U = 7.0, V = 8.5, which
appears in (Pandit et al., 2018) as a case which shows chaos by discrete replicator. We run Q-Learning, with 100 initial
conditions, on this system for 1 × 105 iterations and isolate the final 25,000 iterations. By examining this window, we
include the possibility of complex asymptotic behaviours. In fact, we visualise the trajectories in Figure 7 and find that, in a
three agent network, the dynamics reach a limit cycle. The boxplot depicts, for each agent the probability of choosing their
first action taken across the entire 25,000 final iterations, and all initial conditions. Beside this, we plot the TSW achieved by
Q-Learning, taken across all initial conditions.

Once again it is clear that, for small exploration rates, the dynamics do not converge to an equilibrium. Rather, the
asymptotic behaviour is spread across the entire state space. As exploration increases, the spread of probability distributions
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T = 1.5 T = 2.5

T = 3.5 T = 4.5

Figure 6. Asymptotic Behaviour and Performance of Q-Learning in the Network Chakraborty Game, for U = 7.0, V = 8.5 with 15
agents. Boxplots show the spread of probabilities with which agents play their first action in the final 25% of 1× 105 iterations of learning.
The red plot shows the TSW asymptotically achieved. For low values of T , the asymptotic dynamics are spread across the entire simplex,
whilst achieving a high TSW. As T increases, the dynamics eventually reach a fixed point, but consistently decrease TSW as a result.

is bounded within the interior of the simplex, until eventually the dynamics equilibriate when T = 4.5. This process is again
accompanied by a decrease in TSW achieved by Q-Learning, which reaches its minimum when the dynamics converge to an
equilibrium.

Arbitrary Games Finally, we look to extend our investigation beyond specific classes of games. To do this, we analyse
the effect of exploration in randomly generated games, which do not follow any specific payoff or network structure. To
ensure like comparison, we generate payoffs that are positive and upper bounded. This ensures that the difference in payoffs
between two randomly drawn games are not so significant as to affect plotting the results. Neither assumption impacts the
generality of the results as the dynamics of Q-Learning are invariant to additions and multiplications by positive constants to
all elements of the payoffs. As such, positivity can be ensured by simply adding the minimum payoff to all matrices so that
the new minimum is at least zero. Similarly, boundedness can be enforced by dividing all payoff elements by a positive
constant. As far as the Q-Learning dynamics are concerned, multiplication by a positive constant is equivalent to a rescaling
of the exploration rate T . Recall, however, that the important factor is the effect of increasing exploration rates, rather than
the absolute value. Finally, since all operations are being applied in the same manner to all payoff matrices, the Social
Welfare is adjusted uniformly across the simplex, and the location of equilibria once again only affected up to a rescaling in
T . We make these statements rigorous through the following propositions, the first of which mirrors a well known result in
the replicator dynamics (Hofbauer & Sigmund, 1998).

Proposition D.1. Consider two network games Γ1 = (N , E , (Sk)k∈N , (Akl, Alk)(k,l)∈E) and Γ2 =

(N , E , (Sk)k∈N , (Ãkl, Ãlk)(k,l)∈E) in which, for all (k, l) ∈ E

(Ãkl)ij = c(Akl)ij + d

where c, d > 0 for all i. Then, for any initial condition x0 ∈ ∆, a trajectory of (SQL) in Γ1 for some T > 0 is equivalent to
a trajectory of (SQL) in Γ2 for cT > 0.
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T = 0.5 T = 1.5 T = 2.0

Figure 7. Trajectories of Q-Learning dynamics in the Network Chakraborty Game for U = 7.0, V = 8.5 and three agents. Trajectories
show the probability with which the first action is selected. For low T , the dynamics cycle on the boundary of the simplex, leading to a
large variation in each strategy component in the asymptotic limit cycle. As T increases, the size of this cycle decreases, resulting in a
smaller variation of strategy components.

Proof. For any k ∈ N and any x ∈ ∆∑
(k,l)∈E

(
Ãklxl

)
i
=

∑
(k,l)∈E

∑
j

(
Ãkl
)
ij
xlj

=
∑

(k,l)∈E

∑
j

(c
(
Akl
)
ij
+ d)xlj

= c
∑

(k,l)∈E

∑
j

(
Akl
)
ij
xlj + d

∑
j

xlj

= c
∑

(k,l)∈E

∑
j

(
Akl
)
ij
xlj .

Similarly, ∑
(k,l)∈E

x⊤
k Ã

klxl =
∑

(k,l)∈E

∑
ij

(
Ãkl
)
ij
xkixlj

=
∑

(k,l)∈E

∑
ij

(c
(
Akl
)
ij
+ d)xkixlj

= c
∑

(k,l)∈E

∑
ij

(
Akl
)
ij
xkixlj + d

∑
i

xki

∑
j

xlj

= c
∑

(k,l)∈E

∑
ij

(
Akl
)
ij
xkixlj .

Let rk denote the rewards in Γ1. Then (SQL) in Γ2 takes the form

ẋki

xki
= c (rki (x−k)− ⟨xk, rk(x)⟩) + Tk

∑
j∈Sk

xkj ln
xkj

xki

Dividing by c yields the desired result, up to a rescaling in time.

Proposition D.2. Let Γ1,Γ2 be network games in the setting of Proposition D.1. Then

1. for any T , x̄ ∈ ∆ is a QRE of Γ1 if and only if it is a QRE of Γ2 for cT .

2. for any x,y ∈ ∆, c(SW1(x) − SW1(y)) = SW2(x) − SW2(y) where SW1 (resp. SW2) is the social welfare
determined in Γ1 (resp. Γ2).
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N = 5, nk = 3 N = 7, nk = 5

N = 15, nk = 5 N = 20, nk = 8

Figure 8. Convergence and Performance of Q-Learning in Randomly Generated Games with payoff elements in [0, 5]. Convergence is
measured by the difference between mixed strategy components, defined by (21) and Performance by TSW. The black line depicts the
average taken over all 50 games and initial conditions, whilst the confidence interval depicts the maximum and minimum differences. The
red line shows the TSW achieved by Q-Learning, averaged over all games.

Proof. 1. It holds from (Melo, 2021) that x̄ is a QRE of Γ1 if and only if it is an NE of the perturbed game ΓH
1 =

(N , (Sk, u
H
k )k∈N ) where

uH
k (xk,x−k) = uk(xk,x−k)− Tk⟨xk, lnxk⟩

Applying the definition of a Nash Equilibrium, it is required that, for all y ∈ ∆,∑
k

⟨yk − x̄k, r
H
k (x̄)⟩ ≤ 0

It follows then, that , for any c > 0 ∑
k

⟨yk − x̄k, cr
H
k (x̄)⟩ ≤ 0

From Proposition D.1, crHk (x̄) are the rewards in Γ2, so that the result follows.

2. Using Proposition D.1 it holds that

SW2(x) =
∑
k

∑
(k,l)∈E

x⊤
k Ã

klxl

= c
∑
k

∑
(k,l)∈E

x⊤
k A

klxl

= cSW1(x)

from which the result follows immediately.

As our interest is in the change in Social Welfare due to an change in exploration, and not on absolute values, our results are,
thereby unaffected by the assumptions of boundedness and positivity.
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To generate Figure 8, we run Q-Learning in 50 randomly generated games, for 25 initial conditions and record the final
25,000 iterations. Then we determine the largest variation in mixed strategies across all agents and all actions. More
formally, this process estimates

max
ki

lim
t→∞

(
max

t
xki(t)−min

t
xki(t)

)
(21)

Figure 8 shows that the variation decreases as exploration rates are increased. Taken together, our results present strong
evidence that the tradeoff between convergence and performance does not just occur in the special cases already examined,
but rather holds in the vast majority of network games.

E. Conclusion
Understanding the effect of exploration in multi-agent learning faces a significant challenge due to the fact that, outside
of a restrictive class of games, online learning often does not display asymptotic convergence to an equilibrium. We
resolve this by showing that, in all network games with unique Nash Equilibrium (NE), smooth Q-Learning converges
to a neighbourhood of the equilibrium. This occurs independently of the complexity the learning dynamics within this
neighbourhood. The size of this neighbourhood can be decreased by increasing the exploration rates of the agents. As such,
controlling the degree to which Q-Learning converges amounts to parameter tuning.

The downside of this process is reduced asymptotic performance of learning. We show that, in all games, increased
exploration leads naturally to a reduced ability for agents to improve their payoff through learning. As our results place upper
bounds on this phenomena, they give a manner in which exploration rates can be tuned to balance convergence and payoff
performance. To take this further, we show that non convergent Q-Learning dynamics strictly outperform convergence in a
multi-agent extension of the Shapley game. As our experiments confirm, this turns out to be a general phenomena across a
large number of games.

The results in this paper brings the understanding of exploration in learning dynamics outside the realm of potential and
network zero sum games. An interesting avenue for future work would be to continue developing this direction by lifting the
assumption of network interactions and by considering the effect of exploration in games with multiple Nash Equilibria.
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