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Abstract
Combinatorial generalization refers to the ability
to collect and assemble various attributes from
diverse data to generate novel unexperienced data.
This ability is considered a necessary passing
point for achieving human-level intelligence. To
achieve this ability, previous unsupervised ap-
proaches mainly focused on learning the disen-
tangled representation, such as the variational au-
toencoder. However, recent studies discovered
that the disentangled representation is insufficient
for combinatorial generalization and is not even
correlated. In this regard, we propose a novel
framework for data generation that can robustly
generalize under these distribution shift situations.
Instead of representing each data, our model dis-
covers the fundamental transformation between
a pair of data by simulating a group action. To
test the combinatorial generalizability, we evalu-
ated our model in two settings: Recombination-
to-Element and Recombination-to-Range. The
experiments demonstrated that our method has
quantitatively and qualitatively superior generaliz-
ability and generates better images than traditional
models.

1. Introduction
Whether a deep learning model can generalize to differ-
ent distributions is a topic that is being researched widely
(Shen et al., 2021). Traditional deep learning methods rely
on the overly ideal assumption that training and test data
are i.i.d. sampled from the same distribution. Although
these models accomplish superior performance in the stan-
dard setting, the models tend to overfit training data and
fail severely in the test dataset with different distributions
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(Montero et al., 2020; Schott et al., 2021). In other words,
they have low generalizability under the distribution shift
situation. Generative models and unsupervised represen-
tation learning (Schott et al., 2021; Montero et al., 2020)
also suffer from the same problem. Especially combinato-
rial generalization (Vankov & Bowers, 2020) is one of the
crucial problems that has drawn attention recently in the
unsupervised representation field. It refers to the model’s
capacity to combinatorially combine the properties of two
different data and create novel data that the model was not
encountered through the learning process. For example, if
a model, that has not experienced an image of a bearded
woman while training, can generate the image by combining
the attributes from an image of a bearded man and an image
of a woman, we can say that the model has the combinato-
rial generalization capability. Because humans are innately
capable of these sorts of tasks (Processing, 1986), the abil-
ity of deep learning models to freely extract and combine
more abstract concepts is essential to achieve human-level
capacities.

A generative model pursuing disentangled representation
has long been regarded as one of the breakthroughs in solv-
ing the problem. A representation is called disentangled if
the underlying generative factors of the data and the axis
of latent representation encoded by the model have a cor-
respondence (Eastwood & Williams, 2018); that is, a data
variation occurred by a change of one generative factor
should affect only one axis of latent representation and vice
versa. Since a perfectly disentangled representation enables
one to change each property independently by definition, it
has been considered that a well-disentangled representation
would accompany good combinatorial generalization capa-
bilities. Unfortunately, as Montero et al. (2020) argued, it
turns out that there is little correlation between the disentan-
glement score and the combinatorial generalization capacity.
The model tended to have a high disentanglement score and
low reconstruction error only on the training data.

On the other hand, various attempts have been made to
disentangle models using the concept of group action (Yang
et al., 2021; Quessard et al., 2020). Higgins et al. (2018)
aim to derive the definition of disentangled representations
using the correspondence relationship of group structures
between data and representations. From this perspective, the
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disentangled model means that a group acting in the latent
space is decomposed as a direct product of subgroups so
that each subgroup acts confined to corresponding axis of
the latent space. However, most models assume the specific
structure in which data are created by selecting one fixed
data point, called a pivot, and applying group actions to
this pivot data. This model structure, encoding individual
data to a latent variable, makes the model vulnerable to the
distribution shift.

In this regard, we propose a novel generative framework
MAGANet (Modeling A Group Action Network) to handle
the Combinatorial generalization problem. Following the
gist of group-based disentanglement (Higgins et al., 2018),
we concentrate on the correspondence between the transfor-
mations and the symmetry groups. Unlike other research
representing each data point to the latent space (Yang et al.,
2021; Quessard et al., 2020), we focus on modeling the
transformation itself between data. To model the transfor-
mation, we jointly train the encoder and the decoder like
ordinary autoencoders and VAEs. The difference is that
our encoder takes a pair of data as input, and encodes a
difference to the latent variable representing an element of a
group. The decoder simulates the group action acting on the
data space. It takes data and an element of a latent group and
transfers the input data to the target data following the group
action learned through training. The decoder structure is de-
signed to simulate the true transformation derived from the
group action and be more flexible to the distribution shift of
the dataset. This ability to simulate group actions is realized
by hard-constraining the equivariance of group actions into
the network structure. We use an invertible network as a
building block to impart group equivariance to the network.
We evaluated our model on two distribution shift settings,
Recombination-to-Element and Recombination-to-Range.
Quantitative and qualitative experiments show that our pro-
posed method performs better combinatorial generalization.
Our contributions are as follows:

• We proposed an approach called MAGANet, simulat-
ing the group structure and the group action. It is a
novel generative framework that models a transforma-
tion between data.

• We proposed a group equivariant network structure
that can learn a sufficiently wide range of nonlinear
group actions. We utilized this network as a decoder
for MAGANet.

• We quantitatively and qualitatively proved that the MA-
GANet achieved a substantially better combinatorial
generalization capacity than VAE-based models in the
experiments.

• We demonstrated that our model is robust in the selec-
tion of the pivot data, which proves the strong general-

izability of the model.

2. Related Works
Disentangled Representation Recently, various attempts
have been made to obtain a disentangled representation. Typ-
ical examples are variational autoencoders (VAE) (Kingma
& Welling, 2013) and their variants. These methods, using
a specific prior and KL-divergence term for the encoded
latent variable, were considered one of the most effective
ways to obtain a disentangled representation for several
years. β-VAE (Higgins et al., 2016) added a coefficient
to the KL divergence term to enhance the disentanglement
effect. FactorVAE (Kim & Mnih, 2018) attempted to ob-
tain better disentanglement by giving direct independence
between latent codes using total correlation. In addition,
several methods for evaluating disentanglement have been
proposed. Eastwood & Williams (2018) proposed a DCI
metric that measures disentanglement based on the degree
to which latent variables explain generative factors. Chen
et al. (2018) presented a disentanglement metric MIG that
measures the gap in the value of mutual information be-
tween latent variables and generative factors with the largest
mutual information and other latent variables.

However, VAE-based methods have limitations in that it is
based on the statistical independence of latent codes. Lo-
catello et al. (2020a) provided the theoretical results that
any prior calculated as the Cartesian product of the function
of each coordinate is not identifiable with respect to the ro-
tation, so it is impossible to get disentangled representation
without some inductive bias. Based on this result, several
studies investigated the condition of weak supervision where
the model can get the disentangled representation. Shu et al.
(2019) showed that restricted labeling, match pairing, and
rank pairing are sufficient conditions for disentangled rep-
resentation. Locatello et al. (2020b) also demonstrated that
the training with paired data whose latent factors differ only
by a few generative factors ensures the identifiability of the
model.

Group Based Disentanglement Higgins et al. (2018) re-
established the definition of disentanglement as a homomor-
phic relationship and correspondence between subgroups
of a group and generative factors of the data. Accordingly,
several follow-up papers were presented. Yang et al. (2021)
presented a general method to grouptify VAE models using
a dihedral group. Quessard et al. (2020) parametrized a
special orthogonal group and utilized it as a structure of the
latent space to model more expansive data space.

Combinatorial Generalization Vankov & Bowers (2020)
first provided a concept of combinatorial generalization.
Here, disentangled representation is considered a critical
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Figure 1. Difference between standard VAE and Our Model. The encoder of the standard VAE encodes the data itself, and the encoder
of our model encodes the difference between the two data, while the vanilla VAE encoder takes a single data as the input. Likewise, the
decoder of the standard VAE decodes the data from the latent variable, and the decoder of our model decodes the transformation from the
input data to the output data, represented by the latent variable.

factor in achieving it. However, Montero et al. (2020) exper-
imentally showed that disentanglement and combinatorial
generalization have low correlation, and the model with even
perfect disentanglement could have poor generalizability.
Similarly, Schott et al. (2021) conducted more extensive ex-
periments and showed that any model could not understand
the underlying mechanism.

The concept of counterfactual synthesis exists as a very
similar task or a task with a different name to combina-
torial generalization. It is a task that generates realistic
data that may not exist in the real world. The Structural
Causal Model (SCM) (Kocaoglu et al., 2017; Thiagarajan
et al., 2021; Sauer & Geiger, 2021) is one proposed way to
achieve the goal using a causal mechanism. However, the
methods suffer from the inflexibility of the prior SCM and
the expensive cost of identifying all the causalities in the
data. To overcome the limitation, Feng et al. (2022) devised
the method using the pre-trained generative model and the
distribution of the target attributes. However, the model still
has limitations in that it requires a pre-trained model and
attribute classifier. To overcome this, we presented a model
that efficiently performs combinatorial generalization in a
fully unsupervised setting.

3. Backgrounds
We will briefly introduce the preliminaries in this section.
From now on, we denote the data space, such as the set of
images as X and its latent representation space as Z . In
this paper, we treat the image space X = RC×W×H and
the Euclidean space Z = Rd.

Variational Autoencoder VAE (Kingma & Welling,
2013) is a representation learning method based on like-
lihood maximization. VAE mainly consists of two parts,
an encoder and a decoder. The encoder takes input x from
the data space X and maps it to a distribution q(z|x) on
the latent space Z . The decoder takes input from z ∈ Z

and matches it to the original data x. The entire process is
trained via maximizing Evidence Lower Bound(ELBO).

Group and Group Action A group is one of the most
fundamental and ubiquitous structures in all areas. Mathe-
matically, a group (G, ·) is a set G equipped with a binary
operation · following three axioms (Lang, 2012).

(Identity) ∃ e ∈ G such that ∀g ∈ G, g · e = e · g = g

(Inverse) ∀g ∈ G,∃ g−1 ∈ G such that g · g−1 = g−1 ·
g = e

(Associativity) ∀g1, g2, g3 ∈ G, (g1 ·g2)·g3 = g1 ·(g2 ·g3)

A group can act on a space X with a function α : G ×
X → X . An action of an element g of the group G on
the set X is the transformation, g · : X → X , defined as
g·x := α(g, x). Group action must satisfy the homomorphic
relation between the group and the group of transformations,
that is,

∀g, h ∈ G, ∀x ∈ X , g · (h · x) = (g · h) · x. (1)

Group action, resembling the transformation properties of
the world, is considered that it has significant importance in
learning disentangled representation (Higgins et al., 2018).
In terms of group and group action, we can interpret the
latent space Z of the standard VAE as a group, and the data
x is generated by the group action g · x0 for some g ∈ Z
and the fixed pivot data point x0 ∈ X . The encoder and the
decoder also can be interpreted as a function that maps data
x to the corresponding group element g and vice versa.

4. Methods
Motivation Previous unsupervised representation learn-
ing methods tend to consider that the latent space has a
one-to-one correspondence to the data space. For example,
autoencoder and VAE encode the data to a latent variable
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and decode it to the same data again. If the latent space
has a certain group structure, it is equivalent to assuming
that the data x is generated as x = g · x0, for some x0

common for all data. However, this approach is structurally
vulnerable to the out-of-distribution data because the model
directly matches the data x to the element g in the under-
lying group structure. If the model could not access the
data, the model has no chance to learn the corresponding
group element; hence the decoder also could not generate
the correct reconstruction.

Transformation Encoding To overcome the problem
and achieve combinatorial generalization, we present the
method which learns the transformation of the data, not
the data itself. Unlike the existing model, we map a pair
of data x, x′ to an element of a latent group g, which
satisfies the group action relation x′ = g · x. We will
call x′ as the template data. And we also let the model
learn how g acts in the data space. For example, con-
sider a dataset with two generative factors A and B, which
can have two values, 0 and 1, respectively. If the model
has access to the training data (FactorA = 0,FactorB = 0),
(FactorA = 0,FactorB = 1), (FactorA = 1,FactorB = 0),
it can acquire the group action to make the first com-
ponent larger by pairing (FactorA = 0,FactorB = 0) and
(FactorA = 1,FactorB = 0). Then, by applying the
group action to (FactorA = 0,FactorB = 1), we can get
(FactorA = 1,FactorB = 1) that the model has not seen be-
fore.

The framework is embodied by combining an encoder and
decoder with a special structure. For data space X and latent
space Z , the encoder E : X × X → Z takes a pair of data
(x1, x2) ∈ X × X and outputs a latent variable z ∈ Z . The
output latent variable z is considered an element of group
structure and is supposed to represent the transformation
that changes x1 to x2:

x2 = z · x1 where z = E (x1, x2) . (2)

We also suppose that data space X is generated by group
action α : G×X → X transitively and freely; in that case,
for an arbitrary pair of a data point (x1, x2), there exists
a unique g ∈ G such that g · x1 = x2 and the encoder
is supposed to finds such an element z corresponding to
g. The decoder D : Z × X → X learns the group action
α : Z × X → X , so it takes a latent variable z ∈ Z and
data x ∈ X as input.

4.1. Model Architecture

Encoder The encoder takes a pair of data as input. For
the ordinary encoder E : X → Z used in the VAE, E
takes an data as input and outputs a sample from a Gaussian
distribution with a mean and a variance parametrized by
the encoder. E(x) = µ + ϵσ where ϵ ∼ N (0, I). For the

Figure 2. Concept of the Recombination-to-Element(Red) and
the Recombination-to-Range(Blue) in dSprites. The test dataset
of the Recombination-to-Range setting contains all square im-
ages on the right side of the image, regardless of other generative
factors(position-y of the sprites in the figure). On the other hand,
the test dataset of the Recombination-to-Element contains images
with a square located in the lower right corner because it contains
only one combination of all generative factors.

x1, x2 ∈ X , let E(x1) = z1 = µ1 + ϵ1σ1 and E(x2) =
z2 = µ2+ϵ2σ2. We define the entire encoder E : X ×X →
Z as E(x1, x2) := z2 − z1. We used the same architecture
in Burgess et al. (2018) for E, but any other model can be
used. Detailed architectures are in Appendix A.

The encoder defined in this way satisfies all axioms of the
group. For example, in the case of inverse axiom, assume
that x2 is equal to g · x1. Then, because g−1 · x2 = x1,
encoded values with input (x1, x2) and (x2, x1) should be
in an inverse relation. As E(x1, x2) = E(x2) − E(x1)=
−
(
E(x1)− E(x2)

)
= −E(x2, x1), the relation is satisfied,

and a similar argument holds for all other axioms.

Decoder The decoder takes data and a latent variable as
input. And, it must satisfies the property (Eq 1) of the group
action. To implement this, we used an invertible neural
network. An invertible neural network is an neural network
which is invertible as a function. In other words, if f is an
invertible neural network, the inverse f−1 exists, so both
f ◦f−1 and f−1 ◦f become the identity function. Typically,
normalizing flow (Rezende & Mohamed, 2015) commonly
uses an invertible neural network to match data distribution

4



MAGANet: Achieving Combinatorial Generalization by Modeling a Group Action

and prior.

For an invertible function f : X → X ′, we let the decoder
D : Z × X → X be as follows:

D (z, x) := f−1 ◦ ρX ′ (z) ◦ f (x) , (3)

where ρX ′(z) is a group action acting on X ′. Then, we can
check that the defined decoder satisfies the homomorphic
property of the group action (Eq 1):

D (z2, D (z1, x)) = D (z2 · z1, x) . (4)

This is because f and f−1 are canceled out, and the follow-
ing equation holds.

D(z2, D (z1, x)) =
(
f−1 ◦ ρX ′(z2) ◦ f

)
(D (z1, x)) (5)

= f−1 ◦ ρX ′ (z2) ◦ f ◦ f−1 ◦ ρX ′ (z1) ◦ f (x) (6)

= f−1 ◦ ρX ′ (z2) ◦ ρX ′ (z1) ◦ f (x) (7)

= f−1 ◦ ρX ′ (z2 · z1) ◦ f (x) = D (z2 · z1, x) . (8)

Because z is in the Euclidean space Z = Rd in our setting,
we implement the group action ρX ′(z) : X ′ → X ′ as an
affine transformation:

ρX ′ (z) (x′) = x′ +Mz, (9)

where M is the matrix Rn×d and Mz is the matrix multi-
plication. Here, n is the dimension of the X and X ′, and
M is set to be trainable. Although we only deal with the
Euclidean space as the group, all groups with parametriz-
able group actions, such as a special orthogonal group with
matrix multiplication, can be utilized.

To train this network, we need to be able to differentiate
the function in both forward and backward directions. We
adapt some network structures of Glow (Kingma & Dhari-
wal, 2018) as the invertible function f described above. It
consists of ActNorms, invertible 1 × 1 convolutions, and
affine coupling layers. Detailed architecture can be found in
Appendix A.

Our decoder D(z, ·) has a group-equivariant structure be-
tween Z and X . In other words, Z acts on Z by · operation
and on X by D(z, ·). There are several previous studies
(Winter et al., 2022) that suggest neural network architec-
tures with group equivariance. However, our model has
advantanges that differentiate it from existing networks. Ex-
isting studies have mainly aimed at constructing an equivari-
ant network for group representation. In these approaches,
the constructed equivariance is limited to the group actions
that act linearly in spaces. On the other hand, the network
using our invertible network can approximate any group
action, guaranteed by the universality of invertible networks
(Teshima et al., 2020).

4.2. Losses

VAE Loss Like an VAE framework, the encoder and the
decoder should be adjusted so that the encoded latent vari-
able should reconstruct the data again. In our framework,
it is interpreted as the encoder E first estimate a group
element g as g ≈ E(x1, x2), and then the decoder D sim-
ulates the group action so as to map g · x1 ≈ D(g, x1) =
D(E(x1, x2), x1) to x2 again. Regarding this, we give the
reconstruction constraint Lrecon as follows:

Lrecon = lX (D (E (x1, x2) , x1) , x2) , (10)

where lX is the loss in the image space. We use the binary
cross entropy loss as lX in this paper. For the encoded mean
and variance, we also calculate the KL-divergence LKL

with the normal isotropic Gaussian prior.

Latent Reconstruction Loss Unlike the ordi-
nary autoencoder framework, the loss Lrecon =
lX (D(E(x1, x2), x1), x2) is insufficient to induce
the autoencoder to learn grouptified representations.
The encoder and the decoder can bypass the grouptified
representation by ignoring x1 and treating only x2 the
way usual autoencoders use it. That is, if the encoder
E′ : X → Z and the decoder D′ : Z → X satisfy the
equation D′(E′(x)) = x, the encoder E(x1, x2) = E′(x2)
and the decoder D(z, x1) = D′(z) also satisfy the equation
D(E(x1, x2), x1) = x2. To prevent this problem and
guarantee the injectivity of the simulated group action, we
impose the following natural restriction Lrecon latent on the
model.

Lrecon latent = dZ (E (x,D (z, x)) , z) , (11)

where dZ denotes the distance for measuring the difference
in the latent space. For an arbitrary latent variable z and data
x, D (z, x) denotes a sample generated by acting z on x.
Then, E (x,D (z, x)) should represent the group element,
which is required to transform x to D (z, x). Therefore,
Lrecon latent should be close to zero naturally. We use the L1

norm as dZ in this paper.

In summary, the final loss becomes

L = Lrecon + βKLLKL + βrecon latentLrecon latent. (12)

Here, βs are the coefficients deciding the strength of regu-
larization.

5. Experiments
5.1. Dataset

We evaluate our model on two datasets, the dSprites dataset
(Matthey et al., 2017) and the 3D Shapes dataset (Burgess
& Kim, 2018). The dSprites dataset consists of gray-scale
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(a) Pivot1 dSprites (b) Pivot2 dSprites (c) Pivot3 dSprites

(d) Pivot1
3DShapes

(e) Pivot2
3DShapes

(f) Pivot3
3DShapes

Figure 3. Pivot images of the datasets. The pivot data from the
dSprites have the generative factors [shape=heart, position-x = α ,
position-y = 0.48, rotation = 180◦ , scale = 0.7], where α is
(a) 0.48, (b) 0.16, and (c) 0.02. The pivot data from the 3D
shapes have generative factors [floor-hue = 0.4, wall-hue = 0.4,
object-hue = α, object-shape= sphere, object-scale= 1, object-
orientation= 0], where α is (d) 0.4, (e) 0.2, and (f) 0.0.

sprite images. Each image is constructed with five gen-
erative factors: shape, scale, orientation, position-x, and
position-y. The dataset has every combination of the five at-
tributes, so the entire number of images is 3×6×40×64×
64 = 737, 280. The 3D Shapes dataset is the dataset of the
color images depicting the three-dimensional arrangement
of the object. Each image is constructed with six genera-
tive factors: floor-hue, wall-hue, object-hue, object-shape,
object-scale, and object-orientation.

5.2. Combinatorial Generalization

To test the combinatorial generalization property of the
model, we measure the reconstruction error while separating
the training and test data. Following the evaluation proto-
col of Montero et al. (2020), we evaluate the combinatorial
generalization under two settings, the Recombination-to-
Element and the Recombination-to-Range. As we can see
in Fig 2, both settings mutually exclusively split the entire
dataset into training and test dataset to conduct the evalua-
tion of specific generalization tasks. A model is trained with
the training dataset and is evaluated with the test dataset.
Because the model did not experience the data of the test
dataset, various generalization abilities can be evaluated
depending on how the data is divided.

The Recombination-to-Element is the setting where all train-
ing data is available to the model while training except
the only one combination of all generative factors. In the

Table 1. BCE Reconstruction Error(↓) on dSprites. Our method
demonstrated a significantly better performance than other models
in the Recombination-to-Range(R2Range) setting and similar or
better performance in the Recombination-to-Element(R2Element)
setting.

Method R2Element R2Range

VAE 8.05 200.35
β-VAE (β = 8) 24.62 215.95
β-VAE (β = 12) 24.91 154.90
Factor-VAE (γ = 20) 24.62 130.56
Factor-VAE (γ = 50) 22.58 153.98
Factor-VAE (γ = 100) 24.88 100.60

MAGANet(Ours) 8.25 49.74

Table 2. BCE Reconstruction Error(↓) on 3D shapes. Our
method demonstrated a significantly better performance than other
models in the Recombination-to-Element(R2Element) and the
Recombination-to-Range(R2Range) setting.

Method R2Element R2Range

VAE 3,923 4,294
β-VAE (β = 8) 3,927 4,482
β-VAE (β = 12) 3,940 5,077
Factor-VAE (γ = 20) 3,935 4,602
Factor-VAE (γ = 50) 3,943 5,275
Factor-VAE (γ = 100) 3,958 5,095

MAGANet(Ours) 3,902 3,582

dSprites case, all data is in the training dataset except the
case [shape=ellipse, position-x ≥ 0.6 , position-y ≥ 0.6,
120◦ ≤ rotation ≤ 240◦ , scale < 0.6]. Recombination-
to-Element is the easiest of the two settings. Next, the
Recombination-to-Range excludes a combination of the
two generative factors regardless of other factors. In
dSprites case, training data is all the data except the case,
[shape=square, position-x> 0.5]. The Recombination-to-
Range is a much more difficult task than the Recombination-
to-Element in the sense that the model can not access the
specific combination of the two generative factors at all.
Performing well in the Recombination-to-Range setting is
essential for combinatorial generalization.

Similar to dSprites, the Recombination-to-Element setting
of 3D shapes has a test dataset with generative factors
[floor-hue > 0.5, wall-hue > 0.5, object-hue > 0.5, object-
shape=cylinder, object-scale= 1, object-orientation= 0],
and the Recombination-to-Range setting has a test dataset
with generative factors [object-hue ≥ 0.5 (cyan), object-
shape = oblong] .
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GT Pivot1 Pivot2 Pivot3 VAE beta8 beta12 Factor20 Factor50 Factor100

Figure 4. Reconstruction images on the Recombination-to-Range setting in dSprites. Ground truth images are sampled from the
test dataset with generative factors [shape=square, position-x> 0.5]. VAE-based models tend to generate blob whenever exposed to
an unseen data situation. On the other hand, our method generates an exact square sprites image located on the right side of the image
regardless of the selection of the pivot data.

GT Pivot1 Pivot2 Pivot3 VAE beta8 beta12 Factor20 Factor50 Factor100

Figure 5. Reconstruction images on the Recombination-to-Range setting in 3D Shapes. Ground truth images are sampled from the
test dataset with generative factors [object-hue ≥ 0.5 (cyan), object-shape = oblong]. Similar to the dSprites dataset, VAE-based models
can not generate the combination of the oblong shape and the object hue that was not provided in the training dataset. On the other hand,
our method generates exact oblong shape images.

Pivot Data Unlike the previous VAE models, our decoder
of the model takes a pair of images as the input. For a
fair evaluation, we need to make a pair of the pivot image
and a test image. The pivot image is the fixed image from
the training dataset and is paired to all data from the test
dataset so that the comparison with the existing method can
be conducted. Because the decoder model always takes
the same input from the pivot image as a template, the
results are can be influenced by the selection of the pivot
data. Therefore, we made the best possible effort to fairly
select pivot data. The generative factors, that show the same
distribution on train and test datasets, are selected near the
median value of the range of values. It includes generative
factors such as position-y in the dSprites and wall hue in the
3D shapes. For the generative factors that serve as criteria
for dividing data, we conducted the ablation study on the
selecting the value for pivot data.

For the dSprites dataset, the pivot image is the image with
the generative factors [shape=heart, position-x = α , po-
sition-y = 0.48, rotation = 180◦ , scale = 0.7]. We se-
lect the generative factors except for the shape and the
position-x as the value near to median because the gen-
eralization tasks are defined according to the combina-
tion of shape and position-x. Position-x is chosen from
α ∈ [0.02, 0.16, 0.48], and unless otherwise noted, α is
0.16. Similarly, the pivot for the 3D Shape is set to [floor-
hue = 0.4, wall-hue = 0.4, object-hue = α, object-shape=
sphere, object-scale= 1, object-orientation= 0]. Object hue
is chosen from α ∈ [0.0, 0.2, 0.4] and unless otherwise
noted α is 0.2. The pivot data for both datasets can be found
in Figure 3.
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5.3. Experiment Settings

We adopted the experiment setting from the one from VAE
for both datasets. The optimizer is Adam, with a learning
rate of 0.0005. The dimension of the latent variable is set to
10 and the batch size is 64. For the regularizing coefficients
β, we set the value to βrecon latent = 300, and βKL = 300.
We trained 100 epochs for both datasets three times and took
the model with the best binary cross entropy loss model.

The results were compared with the six models listed in
Montero et al. (2020), VAE, β-VAE with β = 8, β-VAE
with β = 12, Factor-VAE with γ = 20, Factor-VAE with
γ = 50, and Factor-VAE with γ = 100.

5.4. Results

We conducted the reconstruction evaluations on two datasets
with each three pivot data and measured the binary cross en-
tropy loss for the test dataset. Our results and the results of
comparison group experiments from Montero et al. (2020)
are summarized in Table 1 and Table 2. On dSprites, our
method achieves a similar reconstruction loss to the best-
performing VAE in the Recombination-to-Element, and sig-
nificantly outperforms other models in the Recombination-
to-Range (Table 1). On 3D shapes, our method attains the
best reconstruction loss in both settings (Table 2). The result
implies that the models successfully reconstruct the data in
the test dataset.

For the qualitative result, we plot the reconstruction of the
test dataset of the dSprites dataset in Fig 4 and the 3D shapes
dataset in Fig 5. We observed that VAE-based models tend
to generate blob near the generated image, ignoring rota-
tion, scale, and shape in the dSprites data reconstruction.
On the other hand, our method manages to generate exact
square sprites images with almost the same shape as the
ground truth data. For the 3D shapes dataset, the previous
models severely failed in generating the exact shapes of
the object, leading to a significantly large reconstruction
loss, as opposed to our model restoring both hue and shape
successfully.

5.5. Robustness for the Pivot Data Selection

To test the robustness under the pivot data variation, we
selected three pivot images for each dataset and conducted
the Recombination-to-Element and the Recombination-to-
Range experiments for each pivot. Pivot data are different
in position-x in the dSprites dataset and object-hue in the
3D shapes dataset. These generative factors are criteria for
splitting training and test dataset, respectively. We remark
that it is natural to think that the farther the pivot data is
from the test dataset, the more the reconstruction becomes
difficult. In this respect, reconstructing the test dataset with
pivot3 is more challenging than reconstructing with pivot1.

Table 3. Reconstruction Error(↓) on dSprites for different pivot
images. We can observe that the difference derived from selecting
the pivot image is insignificant.

dSprites

Piovt Recomb2Element Recomb2Range

Pivot1 7.61 47.68
Pivot2 7.11 48.41
Pivot3 8.26 49.74

3D Shapes

Piovt Recomb2Element Recomb2Range

Pivot1 3,900 3,588
Pivot2 3,900 3,573
Pivot3 3,901 3,574

The test dataset has the generative factors of [shape=square,
position-x> 0.5]. Hence, the pivot3 with position-x=0.02
is much farther from the test dataset than the pivot1 with
position-x=0.48. Nevertheless, Table 3 demonstrates that
the overall reconstruction loss is similar for all the pivot data
regardless of the value of position-x. This result implies the
strong generalizability of our model.

5.6. Validity of the Encoder

We conducted the experiment to check whether the encoded
latent variables represent the transformation between data.
If the encoder represents the transformation, then when the
same group action is applied to different data, they should
be encoded into identical latent vector. In other words,
the equation E(x, gx) = E(x′, gx′) should be satisfied for
distinct x and x′.

The experiment settings are as follows. Let x1 be an image
with generative factor [position-x = 0.5 , position-y = 0.5],
and x2 be the image with generative factor [position-x =
0.6 , position-y = 0.5], and all other factors of x2 are the
same as x1. Similarly, x3 is the image with [position-x =
0.7 , position-y = 0.5], and x′

2 is the image with [position-
x = 0.5 , position-y = 0.6]. We encoded pairs of images
to latent variables as z12 = E(x1, x2), z23 = E(x2, x3),
and z′12 = E(x1, x

′
2). Note that while x2 and x3 differ in

position-x from x1, x′
2 has a different position-y from x1.

If E encodes the transformation between a pair of images re-
gardless of the initial image, z12 would be far more different
from z′12 than z23. In this regard, we compared the cosine
similarity of (z12, z

′
12) and (z12, z23). We evaluated the

coherence for all combinations of other generative factors,
i.e., shape, scale, and orientation. Specifically, there are
720 pairs of z12 and z23 representing the same x-translation
from different initial images. We measured the cosine simi-
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larity for each pair of (z12, z23) and computed the average
similarity of all pairs. The overall average cosine similar-
ity between z12 and z23 is 0.921. In contrast, the average
cosine similarity between z12 and z′12 is 0.061, which is
significantly lower than 0.921. This result demonstrates a
strong coherence of latent variables that encodes the same
transformation.

6. Conclusion
In this paper, we proposed the novel generative framework
MAGANet capable of the combinatorial generalization task.
It was confirmed that MAGANet stably showed significantly
better performance than the existing models qualitatively
and quantitatively. While our primary focus in this paper
was not explicitly on the disentanglement property of the
model, we strongly believe that the framework possesses
substantial potential for achieving a robust disentanglement
property. This is because disentanglement is a concept
inherently connected to the transformation of data, rather
than merely the embedding of individual data instances. To
the best of our knowledge, MAGANet is the first attempt
to bridge the gap between combinatorial generalization and
data interpretation by leveraging the group action theory. It
is important to note that our model evaluation is currently
limited to a toy dataset. Nevertheless, we anticipate that our
study will serve as a valuable baseline for future research in
this domain.
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A. Architecture
We use the architecture from Burgess et al. (2018) as the encoder. The structure is as follows.

Table 4. The Encoder Architecture.
4× 4 convolution with 32 channels
ReLU
4× 4 convolution with 32 channels
ReLU
4× 4 convolution with 32 channels
ReLU
4× 4 convolution with 32 channels
ReLU
Fully connected layer with 256 nodes
ReLU
Fully connected layer with 256 nodes
ReLU
Fully connected layer with d nodes

We use the architecture from the Glow (Kingma & Dhariwal, 2018) as the decoder. The structure is as follows. First, the
FlowStep module is defined as the building block. Then, we pile three layers of FlowStep modules with squeeze layer

Table 5. The FlowStep Architecture.

Layers
ActNorm
1× 1 convolution without LU Decomposition
Additive Coupling Layer

attached above to construct the Flow module.

Table 6. The Decoder Architecture.

Flow module
Squeeze Layer with factor 2
FlowStep
FlowStep
FlowStep

Finally, three Flow modules are build to make the entire invertible network.
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Table 7. The FlowNet Architecture.

FlowNet
Flow module
Flow module
Flow module
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