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Abstract

In this paper, we introduce neural network accel-
erated implicit filtering (NNAIF), a novel family
of methods for solving noisy derivative free (i.e.
black box, zeroth order) optimization problems.
NNAIF intelligently combines the established
literature on implicit filtering (IF) optimization
methods with a neural network (NN) surrogate
model of the objective function, resulting in accel-
erated derivative free methods for unconstrained
optimization problems. The NN surrogate model
consists of a fixed number of parameters, which
can be as few as ≈ 1.3× 104, that are updated as
NNAIF progresses. We show that NNAIF directly
inherits the convergence properties of IF optimiza-
tion methods, and thus NNAIF is guaranteed to
converge towards a critical point of the objective
function under appropriate assumptions. Numeri-
cal experiments with 31 noisy problems from the
CUTEst optimization benchmark set demonstrate
the benefits and costs associated with NNAIF.
These benefits include NNAIF’s ability to min-
imize structured functions of several thousand
variables much more rapidly than well-known al-
ternatives, such as Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) and finite differ-
ence based variants of gradient descent (GD) and
BFGS, as well as its namesake IF.

1. Introduction
Derivative free optimization (DFO), also referred to as black
box optimization (BBO) and zeroth order (ZO) optimization,
is an important subfield within numerical optimization with
many important practical applications. These applications
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include many problems arising from business, chemistry,
computer science, economics, engineering design, finance,
mathematics, medicine, operations research, physics, and
transportation (see Rios & Sahinidis (2013), Shan & Wang
(2010), Kelley (2011), Audet & Hare (2017), Conn et al.
(2009), and references within for specific examples). In such
problems, the function f(x) : X 7→ R is often viewed as
a black box with unknown inner workings. Given an input
x ∈ X , the black box produces an output f(x), but does
not produce derivatives of f(x). The output f(x) typically
contains some added noise, and so we express f(x) using
the decomposition (1) where fs(x) is a smooth function

f(x) = fs(x) + φ(x) (1)

and φ(x) is noise. Our goal is to solve the optimization
problem (2) using only samples from the noisy black box
f(x) given in (1) instead of samples from the (inaccessible)

min
x∈X

{
fs(x)

}
(2)

smooth function fs(x).

The nature of the noise φ(x) in (1) may be deterministic or
stochastic. The high frequency periodic function (3) is a

φ(x) = sin
(
ω ‖x‖2

)
, ω � 0 (3)

simple example of deterministic noise. The high frequency
sinusoidal oscillations produce a rough output surface for
f(x) with many local minima that can trap derivative based
optimizers. A more complicated example of deterministic
noise is the truncation error in a numerical simulation, such
as an adaptive ordinary differential equation (ODE) solver.

When the noise φ(x) is stochastic, the value of the noise
φ(x) likely changes each time one samples the output of the
black box f(x), even if the inputs x are unchanged. Draw-
ing independent and identically distributed (IID) samples
from a uniform distribution (4) is a simple example

φ(x) ∼ U(−ε, ε) , ε > 0 (4)

of stochastic noise. A more complicated example of stochas-
tic noise is when the probability density function (PDF) of
the stochastic noise φ(x) is a parametric function with pa-
rameters that depend on x, such as when ε is replaced with
ε(x) in (4).
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1.1. Key Problem Characteristics

In this paper, we consider applications where traditional
derivative based optimization methods are not feasible. In
particular, we focus on problems where:

1. The noise φ(x) in (1) is stochastic.

2. The optimization problem (2) is unconstrained. Mathe-
matically, x ∈ RNx .

3. The noisy black box function f(x) can be sampled at
any point in its domain X ≡ RNx , typically in parallel.

4. Evaluating the black box function f(x) is very expen-
sive in terms of time and/or computational resources.
To illustrate, computing f(x) may take several hours
or even days and require multiple processing units.

1.2. Fundamentals Of Implicit Filtering

While there are a variety of techniques for handling DFO
problems (see the recent review in Larson et al. (2019)), we
explore the use of neural networks to accelerate implicit
filtering (IF) optimization methods (see Kelley (2011) for a
comprehensive reference regarding IF methods). IF methods
are a hybrid of a grid-search method and a gradient-based
local optimization method, and were designed to handle
noisy objective function evaluations. As IF methods only
involve sampling the function f(x) directly, IF methods are
attractive for optimization problems where derivatives are
unavailable. IF methods have been proven to give useful
results in fields that range from automotive engineering
(see Choi et al. (2000)) to hardware verification (see Gal
et al. (2021)) to hydrology (see Battermann et al. (2002)) to
semiconductor design (see Stoneking et al. (1992)).

The grid-search component of IF methods can be viewed as
a trust region based direct search method. At each iteration,
the grid-search looks for a better point by sampling the func-
tion f(x) along the boundary of a trust region. To illustrate,
searching for a better point may consist of sampling f(x)
along the vertices of a grid shaped trust region. When a
point with a better value of f(x) is found, the grid-search
takes that point, and a new trust region centred at the new
point is used for future grid-searches until an even better
point is found. If the grid-search along the boundary of the
trust region fails to find a better point, the method reduces
the trust region size and tries to find a better point along the
boundary of the smaller trust region.

IF methods improve upon the grid-search approach dis-
cussed in the previous paragraph by using the sampled val-
ues of f(x) at each iteration to construct an estimate of
the gradient∇fs(x). The gradient estimate is then used to
perform a gradient descent (GD), Newton, or quasi-Newton

update in order to accelerate convergence. This improve-
ment can work well if the gradient estimate is sufficiently
accurate. However, the estimate of ∇fs(x) is often not suf-
ficiently accurate until relatively late iterations of IF when
the sampled points are close together. This improvement is
thoroughly discussed in Kelley (2011).

A major disadvantage of IF methods is that, apart from
using a quasi-Newton update to estimate curvature, they
ignore evaluations of f(x) from previous iterations. As-
suming storage is relatively cheap compared to evaluating
the noisy black box function f(x), not using the (typically
many) evaluations of f(x) computed during the course of IF
seems wasteful. Previously computed values of f(x), even
in places far from an optimum of fs(x), typically contain
useful information about the structure of the objective func-
tion fs(x). When harnessed appropriately, such information
can reduce the amount of computation required to solve (2)
using only samples from f(x).

1.3. Main Contribution: Neural Network Acceleration

In this work, we show how to use neural network surro-
gate models to leverage previously computed values of f(x)
to accelerate the progress of IF optimization methods. In
particular, we use a neural network (NN) to build an ap-
proximate model of the objective function fs(x) using all
previous samples from the black box f(x). The neural net-
work surrogate model is then used to suggest new sampling
points distinct from the grid-search points of IF, which can
be much better than the grid-search points. We show that
such an approach can at best dramatically accelerate IF op-
timization methods, while at worst having almost the same
speed as standard IF methods.

Building a neural network surrogate model can be an ex-
pensive task on its own, depending on the amount of data
required for the NN surrogate to become sufficiently accu-
rate, and the amount of computation required to train the
NN to fit the samples of f(x). However, for the problems
we focus on in this paper, fitting and evaluating the NN
surrogate model is cheap compared to evaluating the black
box function f(x). In this situation, using a NN to build
a surrogate model of fs(x) with samples from f(x) can
reduce the total number of evaluations of f(x), and thus
translate to a large computational cost reduction overall.

In addition, one may argue that it is possible to not use
implicit filtering at all, and instead simply sample the black
box function f(x), approximate the objective function fs(x)
using a neural network surrogate model trained on samples
from f(x), and then minimize the neural network surrogate
model. However, this approach is not competitive in theory
nor in practice. As training the NN surrogate to fit the
sampled function values may converge slowly, the overall
convergence of this approach may be slow. Furthermore, to
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the authors’ knowledge, there is no proof of convergence
for such an approach. On the other hand, IF optimization
methods have a strong theoretical background, complete
with established convergence properties (see Section 4).

Therefore, improving IF methods by including search points
chosen by a NN surrogate model of the objective function
fs(x) allows one to enjoy both worlds, taking points that
are suggested by the NN surrogate model whenever they
provide sufficient progress, and relying on points obtained
by standard IF methods when the NN surrogate model per-
forms poorly. As evaluating the black box function f(x) is
expensive, we emphasize that for the problems this paper
focuses on, compared to other areas of machine learning,
the number of available data points is relatively small. Thus,
it is unreasonable to assume that the NN surrogate will yield
a very good approximation to the function everywhere.

1.4. Related Works

Conceptually, it is useful to think of building a neural net-
work surrogate model in relation to Newton’s method (see
Nocedal & Wright (2006)) or quasi-Newton methods, such
as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
(see Broyden (1970), Fletcher (1970), Goldfarb (1970), and
Shanno (1970)). Newton-like methods build a quadratic
approximate model of the objective function, while the NN
implements a differentiable nonlinear approximation of the
objective function. A NN model has more expressive power
than a quadratic model, which means a NN can more effec-
tively model the global structure of the objective function.
This increased expressive power compared to a quadratic
model comes with the tradeoffs of the NN being more ex-
pensive to use in practice and more difficult to work with
from a convergence theory perspective. Nonetheless, the
spirit of both Newton-like methods and NN acceleration
is to use a model of the objective function (i.e. surrogate
model) to help choose better points.

With the above in mind, Bayesian optimization (BO) meth-
ods (see Močkus (1975), Močkus (1989), Brochu et al.
(2010), and Frazier (2018)), such as Gaussian Process (GP)
based methods, also build and optimize with a surrogate
model when choosing a new point. Specifically, BO meth-
ods optimize an acquisition function, such as the expected
improvement (EI), obtained from a probabilistic surrogate
(the Bayesian posterior specifically). As BO methods use a
probabilistic surrogate, they naturally incorporate a measure
of uncertainty, unlike Newton-like methods. BO methods
are for problems with bound constrained domains, such as
X ≡ [0, 1]Nx , and not the unconstrained domain X ≡ RNx .

Evolution strategy methods (see Beyer (2001), Beyer &
Schwefel (2002), and Hansen et al. (2015)), such as the Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES)
method of Hansen & Ostermeier (2001), are also popular

for DFO problems. These methods mimic the selection,
variation, and recombination aspects of biological evolution.
Covariance matrix adaptation is an important component of
CMA-ES, as it effectively produces a local quadratic approx-
imation of the objective function, similar to Newton-like
methods. Thus, CMA-ES can be viewed as an evolutionary
technique that employs an adaptable quadratic surrogate of
the objective function.

1.5. Organization Of The Paper

The rest of this paper is organized as follows. Section 2.1
reviews the mathematical background of IF optimization
methods, and Section 2.2 describes the type of residual
neural network surrogate models used in this work. Next,
Section 3 introduces neural network accelerated implicit
filtering (NNAIF), the main contribution of this paper. Sec-
tion 4 presents a convergence result for NNAIF. Section 5
presents the results of numerical experiments comparing
the performance of variants of NNAIF to well-known al-
ternatives, including CMA-ES and finite difference based
variants of gradient descent and BFGS, on a variety of noisy
minimization problems of dimensionNx = 2 toNx = 9000
from the CUTEst optimization benchmark set. Section 6
concludes the paper and provides directions for future work.

2. Mathematical Background
In this section, we review the mathematics of both implicit
filtering optimization methods and the type of residual neu-
ral networks used as surrogate models in the numerical
experiments in Section 5. Throughout the paper, bold up-
percase letters (e.g. I) represent matrices, bold lowercase
letters (e.g. x) represent vectors, and non-bold letters (e.g.
ω) represent scalars.

2.1. Implicit Filtering

As previously mentioned, one attractive way to solve noisy
black box optimization problems is implicit filtering. Below,
we provide an overview of implicit filtering. For more
detail, see Kelley (2011), which introduces IF optimization
methods, applies them to several problems, and reviews
their convergence properties and implementation details.

Given the current point xk at iteration k, a simple way
to find a possible better point is to sample the black box
function f(x) in a trust region around the current point xk.
To this end, we evaluate f(x) at points xk + hkvj for j ∈
{1, . . . , J}, where the vj are unit vectors (i.e. ‖vj‖2 = 1).
The parameter hk represents the trust region (or stencil) size
and defines the resolution of the search. J is the number of
search directions, which determines how many new points
to sample f(x) at.

Traditionally, the matrix V = [v1, . . . ,vJ ] ∈ RNx×J is
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the central difference stencil VCD := [I,−I] ∈ RNx×2Nx .
However, the directions vj can be chosen as points on an-
other grid, such as the asymmetric positive basis (a-PBS)
stencil defined by

Va−PBS :=

[
I,− 1√

Nx

1
]
∈ RNx×(Nx+1) , (5)

where 1 := [1, 1, . . . , 1]T ∈ RNx . At times, it is also desir-
able to draw directions vj randomly from some predefined
distribution, such as the Rademacher distribution or uni-
formly on the surface of the Nx dimensional hypersphere.

Using the matrix of directions V, the vector of sampled
values of the black box fk defined by

fk := [f(xk + hkv1), . . . , f(xk + hkvJ)]T ∈ RJ , (6)

and the difference vector δ(f,x,V, h) ∈ RJ given by

δ(f,x,V, h) :=

 f(x + hv1)− f(x),
...

f(x + hvJ)− f(x)

 , (7)

we define the stencil gradient ∇fS(x,h,V) ∈ RNx as the
solution of the regularized linear least squares problem

arg min
q∈RNx

{
1

2

∥∥hVTq− δ(f,x,V, h)
∥∥2
2

+
β

2
‖q‖22

}
(8)

with β > 0 being a small regularization parameter that
guarantees the solution of (8) exists and is unique.

The stencil size hk of implicit filtering shrinks by a factor
τtr ∈ (0, 1) if either a stencil failure occurs or the stencil
gradient is sufficiently small. A stencil failure occurs when

f(xk) ≤ f(xk + hkvj) , ∀j ∈ {1, . . . , J} . (9)

Algorithm 1 summarizes the general structure of implicit
filtering, which is designed to partially mimic a finite differ-
ence based gradient descent or Newton-like method when
stencil failure does not occur and the stencil gradient is
larger than O(hk). The arguments of Algorithm 1 are the
black box function f(x), initialization point x0, initial sten-
cil size h0 > 0, minimum stencil size hmin ≥ 0, shrinkage
factor τtr ∈ (0, 1), stencil gradient tolerance τgr > 0, regu-
larization parameter β > 0, and number of directions J .

2.2. Residual Neural Network Surrogate Models

Our goal is to build a relatively inexpensive surrogate model
of the function fs(x) such that it can be probed to obtain
an approximate minimizer of fs(x). Neural networks are
a class of function approximators that use decomposition
to approximate a function. In this work, we chiefly use
residual neural networks (see He et al. (2016) and Li et al.

Algorithm 1 Implicit Filtering Minimization Routine
1: procedure IF-MIN(f(x), x0, h0, hmin, τtr, τgr, β, J)
2: Measure f0 ← f(x0)

3: while hk > hmin do
4: Measure f(xk + hkvj) for j ∈ {1, . . . , J}
5: Compute∇fS(xk,hk,V) by solving (8)

6: if (9) is True or
∥∥∇fS(xk,hk,V)

∥∥
2
≤ τgrhk then

7: Set xk+1 ← xk and hk+1 ← τtrhk

8: else
9: Compute f cstry := minj∈{1,...,J}{fk}

10: Update inverse Hessian estimate Hk

11: Compute sk ← −Hk∇fS(xk,hk,V)

12: Use a line search along sk to obtain f lstry, xls
try

13: if f cstry < f lstry then
14: Set xk+1 ← arg minj∈{1,...,J}{fk}
15: else
16: Set xk+1 ← xls

try

17: end if
18: Set hk+1 ← hk

19: end if
20: end while
21: return xk+1 and hk+1

22: end procedure

(2018)), which have proven to be easy to train for difficult
and highly nonlinear tasks. The networks we use have the
following general structure for p ∈ {1, . . . , P − 2}

y0 = x (10)
y1 = G0σ0(K0y0 + b0) (11)

yp+1 = Wpyp + Gpσp(Kpyp + bp) (12)
yP = KP−1yP−1 + bP−1 (13)

From here on, we choose Wp to be the identity matrix I, and
the dimensions of yp and yp+1 are always consistent. The P
sets of parameters θp = {Gp,Kp,bp}, p ∈ {0, . . . , P −2}
and θP−1 = {KP−1,bP−1} are trainable parameters. For
the neural networks used in this work, the Kp are dense
matrices. However, for other applications, one may consider
sparse matrices, such as convolutions or other special struc-
tures. For the experiments in Section 5, we choose Gp = αI
with α > 0, but one could also choose Gp = −αKT

p . We
set the activation functions σp(·) as ReLU(z) := max(0, z).
This type of network is stable and robust as shown in Haber
& Ruthotto (2017), especially when the intrinsic dimension
of the output is smaller than the input. For brevity, we con-
catenate all the trainable neural network parameters into a
single notation Θ = {θ0, . . . , θP−1}.
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By choosing y0 = x, we can forward propagate to obtain
a vector yP (x,Θ) ∈ RNout , where Nout is the dimension
of the neural network output. Using the vector yP (x,Θ),
we now want to obtain a surrogate f̂s(x,Θ) to the smooth
function fs(x). There are many different approaches to
obtain such an approximation. For example, it is possible
to choose a quadratic model f̂s(x,Θ) = 1

2 ‖yP (x,Θ)‖22,
which is bounded from below. One can also simply set
Nout = 1 and choose f̂s(x,Θ) = yP (x,Θ). Choices of
f̂s(x,Θ) that incorporate specific information about the
true function fs(x) can also be used.

Once chosen, the surrogate f̂s(x,Θ) can be used to guide
where to probe the black box function f(x), and fit to sam-
ples of the black box using a loss function Ψ(x,Θ), like

Ψ(x,Θ) =
1

2
r(x,Θ)Tr(x,Θ) (14)

for some residual r(x,Θ). By using a matrix of M points
X = [x1, . . . ,xM ] ∈ RNx×M and corresponding vector
of black box values f(X) := [f(x1), . . . , f(xM )]T ∈ RM ,
we can train the neural network given by (10) - (13) and
assess its parameters Θ by minimizing Ψ(x,Θ) over the
dataset given by X and f(X). In this work, we use a squared
error to estimate the neural network parameters. In (14), this
corresponds to choosing r(x,Θ) = f(x)− f̂s(x,Θ). Once
the neural network is trained, we have an approximation to
the objective function fs(x) that can be used to accelerate
implicit filtering.

3. Accelerating Implicit Filtering
We now combine implicit filtering with the neural network
surrogate model. We start by using a set of initial points X0

and corresponding function evaluations f(X0) to train the
neural network surrogate model f̂s(x,Θ). At each iteration
of Algorithm 1, we obtain J new points Xk := xk1T+hkV
and their corresponding function values fk. These new
points and function values can be added to the set of all
previous points and function values, and used to retrain
the neural network surrogate model by minimizing a loss
function Ψ(x,Θ). This gives an approximately optimal pa-
rameter vector Θk. After the neural network is retrained, we
hold an approximate surrogate model f̂s(x,Θk) of fs(x).

This surrogate model f̂s(x,Θk) can be used to obtain an
approximate minimizer of the objective function fs(x). To
this end, we can apply standard optimization techniques to
the differentiable neural network surrogate model f̂s(x,Θk)
to propose a new point to evaluate f(x) at. At each iteration
k, we use at most a fixed number `max of iterations of a
standard optimization method. Algorithm 2 demonstrates
this surrogate model optimization procedure with gradient
descent. In line 4 of Algorithm 2, the learning rate µ` can

be set using standard techniques, such as a fixed choice,
backtracking line search, or the Adaptive Moment Estima-
tion (ADAM) technique (see Kingma & Ba (2014)). In
line 5, the gradient of the surrogate with respect to only the
function argument x is computed using automatic differ-
entiation (AD). In line 6, we track the size of the update
∆x. For an appropriate norm ‖·‖, the iteration terminates
if ‖∆x‖ > hk, which guarantees that we stay within the
implicit filtering trust region.

Algorithm 2 Surrogate Model Gradient Descent

1: procedure SURR-MIN-GD(f̂s(x,Θk), xk, hk, `max)
2: Set z0 ← xk and `← 0

3: while ` < `max and ‖∆x‖ ≤ hk do
4: Choose the step size µ`

5: Set z`+1 ← z` − µ`∇xf̂s(z`,Θk)

6: Compute ∆x = z`+1 − z0

7: end while
8: return z`+1

9: end procedure

The goal of Algorithm 2 is not to obtain the global minimum
of the surrogate model, as the surrogate model f̂s(x,Θk) is
only an approximation of the objective function fs(x). A
reduction in the value of the black box f(x) is sufficient.
Therefore, we typically use a small number of steps `max

to ensure a reduction in the value of the surrogate model.
The point returned by Algorithm 2 clearly reduces the value
of the surrogate model, and thus we use it as a potential
candidate point for improving upon the current point xk.
This is an intuitive use of the surrogate model f̂s(x,Θk).

However, there is another use of the surrogate model that can
improve performance. Algorithm 1 does not use any form
of filter or quality control when choosing new search points.
Without a filter or some valid assumption, the value of f(x)
at the new search points is basically random. However, we
can use the surrogate model to propose new points that are
more likely to be of good quality and decrease fs(x). Rather
than choosing a point xk + hkvj and computing its value
f(xk + hkvj), we instead first compute its surrogate value
f̂s(xk + hkvj ,Θk) and use this value as part of a filter. If
the filter test

f̂s(xk + hkvj ,Θk) ≤ f(xk) (15)

is true, then we pass the point xk + hkvj to the black box
function f(x) and sample the value of f(xk + hkvj).

Using the surrogate model to filter points can be very effec-
tive when the surrogate model provides a reasonably good
approximation to fs(x). However, this is not always the
case, especially during early iterations of Algorithm 1 when
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only a small number of points are available for training the
surrogate model. As a result, we divide the search direc-
tions into two groups. The first group, called the exploration
group, chooses points on a grid or at random as described
in Section 2.1. The second group, called the exploitation
group, uses the surrogate model to filter points based on
(15). We have found experimentally that starting with a
large number of exploration points, and then reducing them
to about 20% of the total points, can yield good results.

Algorithm 3 combines the surrogate filtering and optimiza-
tion with implicit filtering into a family of methods we call
Neural Network Accelerated Implicit Filtering (NNAIF).
The arguments in Algorithm 3 are the initial stencil size
h0 > 0, a stencil size hsurrmin ≥ 0 below which we no longer
train the surrogate model, a minimum required decrease in
the surrogate model value εsurrdec ≥ 0, the number of explo-
ration directions Jst and exploitation directions Jf , and a
maximum number of iterations ιmax.

Algorithm 3 Neural Network Accelerated Implicit Filtering
1: procedure NNAIF(h0, hsurrmin , εsurrdec , Jst, Jf , ιmax)
2: Set J ← Jst + Jf

3: while ι < ιmax do
4: Choose Jst directions Vst with no filter
5: Choose Jf directions Vf filtered using (15)
6: Combine all directions into V← [Vst,Vf ]

7: Measure f(xk + hkvj) for j ∈ {1, . . . , J}
8: Store the J evaluations of f(x)

9: if hk > hsurrmin then

10: Train f̂s(x,Θk) with stored data
11: end if
12: Set xsurr

try as the output of Algorithm 2
13: Compute f surrtry := f(xsurr

try )

14: if f surrtry < f(xk)− εsurrdec then
15: Set xk+1 ← xsurr

try and hk+1 ← hk

16: else
17: Set xk+1, hk+1 to the outputs of Algorithm 1
18: end if
19: end while
20: return xk+1 and hk+1

21: end procedure

The idea behind Algorithm 3 is to use the surrogate function
f̂s(x,Θk) obtained by training a neural network to guide
the optimization. However, since the amount of data needed
for f̂s(x,Θk) to become sufficiently accurate may be rather
large, Algorithm 3 relies on Algorithm 1 to compensate
whenever f̂s(x,Θk) fails to make sufficient progress. From

experiments, we have observed that when f̂s(x,Θk) is
trained on a sufficient number of points, it significantly aids
convergence initially, and then does not provide a significant
advantage near the end of the optimization process.

Finally, an important point to consider is the overhead time
due to the surrogate model in Algorithm 3. This added time
compared to Algorithm 1 is due to training the surrogate
model and approximately minimizing it. While this may
not be a trivial amount of time, for the problems focused
on in this paper where evaluations of f(x) are expensive
and can require significant computational resources, this
time is relatively insignificant, and well spent in the sense
that it can significantly reduce the total computational time
by avoiding evaluations of f(x). As a concrete example,
in our numerical experiments, the added time introduced
by the surrogate model at each iteration is on the order of
seconds or less, not minutes or hours. Furthermore, the cost
of retraining the surrogate model can be reduced by using
techniques such as warm starting and incremental training.

4. Convergence Of NNAIF
In this section, we outline how Algorithm 3 inherits the
asymptotic convergence properties of implicit filtering. For
in-depth treatments of the convergence properties of im-
plicit filtering, we refer the reader to Gilmore & Kelley
(1995), Bortz & Kelley (1998), Kelley (1999), Choi & Kel-
ley (2000), and Kelley (2011). We assume the function
f(x) is bounded below and can be decomposed as in (1).
Following Chapter 5 of Kelley (2011), the key observation
is that stencil failure (i.e. none of the function values on
the stencil improve upon the base point xk) with a posi-
tive spanning set of directions is sufficient to conclude that
‖∇fs‖2 = O(hk). The unfamiliar reader may refer to Ap-
pendix A for a definition of a positive spanning set, as well
as Conn et al. (2009).

Denote the stencil S defined by the set of directions V as

S(x, h,V) := {z | z = x + hvj , 1 ≤ j ≤ J} (16)

and define the local norm of the noise as

‖φ‖S(x,h,V) := max
z∈{x}∪S(x,h,V)

{
|φ(z)|

}
(17)

and the condition number of the positive spanning set V as

κ(V) :=
√
Nx min

{
‖A‖∞

}
(18)

where ‖A‖∞ := supx6=0

{‖Ax‖∞
‖x‖∞

}
and the 2Nx × J ma-

trix A is constrained such that its entries are nonnegative
and AVT = [U,−U]T for some orthogonal matrix U.
With these definitions in hand, we now state a key theorem.
The proof is originally given on pages 75 and 76 of Kelley
(2011), but we include it in Appendix B for completeness.
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Theorem 5.7 - Kelley, 2011. Let f(x) satisfy (1). Let∇fs
be Lipschitz continuous with Lipschitz constant L. Let V be
a positive spanning set. Then stencil failure implies that

‖∇fs(x)‖2 ≤ κ(V)

(
Lh

2
+
‖φ‖S(x,h,V)

h

)
(19)

Proof. See Appendix B.

As a result of (19), Algorithm 3 is guaranteed to converge
to a critical point of fs(x) when the conditions of Theorem
5.7 are satisfied, hmin = 0, and

lim
k→∞

‖φ‖S(xk,hk,V)

hk
= 0 . (20)

Mathematically,

lim inf
k→∞

‖∇fs(xk)‖2 = 0 . (21)

To see this, observe that an iteration of Algorithm 3 ends
with either a decrease in f(x) or stencil failure, and let
{xki
} be an infinite subsequence of {xk} for which the iter-

ation terminates with stencil failure. As hmin = 0, hki
→ 0

(i.e. h eventually tends to zero), which combines with (19)
and (20) to give (21).

5. Numerical Experiments
In this section, we investigate the empirical behaviour of
NNAIF via numerical experiments with a variety of well-
known optimization test problems. Software for the experi-
ments uses the PyTorch (Paszke et al., 2019) and PyCUTEst
(Fowkes et al., 2022) libraries. All experiments were run on
a desktop computer equipped with an NVIDIA RTX 2080
TI GPU and the Ubuntu 20.04 LTS Linux operating system.

5.1. Visualizing Neural Network Surrogate Models

To build intuition regarding how NN surrogate models be-
have as NNAIF progresses, Figure 1 visualizes the evolution
of a NN surrogate model when NNAIF is used to minimize
the well-known Rosenbrock function (Rosenbrock, 1960).
Here, NNAIF samples from the noisy black box f(x) which
decomposes as in (1) with the smooth objective function
fs(x) being the Rosenbrock function and the noise φ(x)
being stochastic and distributed according to a normal distri-
bution with mean µ = 0 and standard deviation σ = 10 (i.e.
φ(x) ∼ N (0, 100)). Overall, Figure 1 demonstrates that
even a crude NN surrogate can be useful. The initial NN
surrogate shown in the bottom left of Figure 1 resembles a
linear model within the circular trust region, which provides
a reasonable descent direction. The NN surrogate at itera-
tion k = 5 shown in the bottom right of Figure 1 captures
the high-level structure of the Rosenbrock function.

Figure 1. Visualizing the evolution of a NN surrogate model of
the Rosenbrock function as NNAIF progresses. Top left: absolute
values |fs(x)| of the Rosenbrock function without noise added.
Top right: absolute values |f(x)| of the Rosenbrock function
with φ(x) ∼ N (0, 100) stochastic noise added. Bottom left:

absolute values
∣∣∣f̂s(x,Θ0)

∣∣∣ of NN surrogate model fit to 6 initial

evaluations of f(x); the 6 training data points are shown via red x
marks and the initial trust region with radius h0 = 4 is shown via
the black circle. Bottom right: absolute values

∣∣∣f̂s(x,Θ5)
∣∣∣ of NN

surrogate fit to more data at iteration k = 5.

5.2. CUTEst Problems With Additive Uniform Noise

In this subsection, we compare the performance of the meth-
ods shown in Figure 2 on 15 problems from the CUTEst
optimization benchmark set (see Gould et al. (2019), Gould
et al. (2015), and Appendix C). In Appendix D, we do the
same for 16 additional CUTEst problems. As an overview,
some of the selected CUTEst problems can be interpreted
as least squares type problems (e.g. ARGTRIGLS), some of
the problems are ill-conditioned or singular type problems
(e.g. BOXPOWER), some of the problems are well known
nonlinear optimization test problems (e.g. ROSENBR) or
extensions of them (e.g. CHNROSNB, SROSENBR), and
some of the problems come from application scenarios (e.g.
COATING). As shown in Figure 3, Figure 4, and Table 1,
the selected CUTEst problems vary in size from Nx = 2 to
Nx = 9000. Noise φ(x) is added to each CUTEst problem
by sampling from a uniform distribution U(−ε, ε), where
for each problem ε = 10−4 |fs(x0)| to ensure that the noise
φ(x) does not initially dominate the smooth function fs(x).

As f(x) is expensive to evaluate, we set a budget of 2000
evaluations of f(x) in the experiments shown in this sub-
section and Appendix D, and terminate each optimization
method shown in Figure 2 once the 2000 evaluation bud-
get is exceeded. Each optimization method uses one set of
hyperparameters for all 31 CUTEst problems (i.e. we do
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not tune each method for each individual CUTEst problem),
apart from the number of directions J in which to sample
f(x) at per iteration. All the optimization methods, exclud-
ing Estimation of Multivariate Normal Algorithm (EMNA)
and CMA-ES, use the deterministic a-PBS stencil given
by (5) for the low dimensional (0 < Nx ≤ 50) problems,
and randomly sample 30 points uniformly on the surface
of the Nx dimensional hypersphere for all other problems.
EMNA and CMA-ES use population sizes of Nx + 1 for the
low dimensional problems, and 30 for all other problems.
Both CMA-ES and EMNA use an initial standard deviation
σ0 = 10−1. We use the active version of CMA-ES. EMNA
keeps the fittest half of the population at each iteration.

Figure 2. Legend for Figures 3, 4, and 5 in Section 5 and Fig-
ures 6, 7, and 8 in Appendix D. Means and standard deviations are
calculated using 25 independent runs of each method per problem.

With regards to (10) - (13), the NN surrogate used by NNAIF
has K0 ∈ R50×Nx , Kp ∈ R50×50, KP−1 ∈ R1×50, and
P = 7, giving a total of |Θ| = 12851 + 50Nx trainable pa-
rameters. We use the simple choice f̂s(x,Θ) = yP (x,Θ).
We use the ADAM optimizer to train f̂s(x,Θk), and to
approximately minimize f̂s(x,Θk) with respect to x in Al-
gorithm 2. For NNAIF, hsurrmin = 10−2, εsurrdec = 10−3, and
we attempt to set Jst = 20 and Jf = 10, but if the filter
test (15) does not accept Jf points within 20 tries, we ig-
nore it for the remaining points. For both NNAIF and IF,
we set h0 = 10, hmin = 10−8, τtr = 0.5, τgr = 10−2,
and β = 10−5. For the stencil gradient based BFGS and
GD methods, the stencil size is held fixed ∀k at resolution
hk = 10−4. We set the initial step size as 1 for the NNAIF,
IF, and stencil gradient backtracking line searches, and the
backtracking factor τls as 0.1. We allow up to 3 backtracks
for NNAIF and IF, as recommended in Kelley (2011), and
up to 75 backtracks for the stencil gradient based methods.

NNAIF and IF use the Armijo condition with c = 0, while
the stencil gradient based methods use c = 10−4.

Figure 3. Logarithm of optimality gap vs. number of black box
evaluations for low dimensional (0 < Nx ≤ 50, top half) and
medium dimensional (50 < Nx ≤ 200, bottom half) CUTEst
problems with additive uniform random noise. Legend in Figure 2.

Figure 5 shows the evolution of per iteration runtimes for
each optimization method for two low dimensional CUTEst
problems from Appendix D. A single NNAIF iteration takes
about 3 seconds at most (see Appendix E for more analysis).

6. Conclusions
In this paper, we introduced a novel accelerated DFO
method for unconstrained optimization problems called
NNAIF. NNAIF demonstrates how even crude neural net-
work surrogate models of the objective function fs(x) can
be used to improve the performance of IF optimization meth-
ods, while maintaining the established convergence proper-
ties of IF methods. In our numerical experiments, NNAIF
demonstrates a unique ability to reduce high dimensional
structured objective functions by several orders of magni-
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Figure 4. Logarithm of optimality gap vs. number of black box
evaluations for high dimensional (200 < Nx ≤ 3000, top half)
and very high dimensional (3000 < Nx, bottom half) CUTEst
problems with additive uniform random noise. Legend in Figure 2.

tude using only several hundred noisy evaluations of the
objective function. As these experiments use NNAIF with a
relatively small neural network surrogate with ≈ 4.6× 105

parameters or less, and training taking seconds, not minutes,
or less per iteration on a GPU, they suggest NNAIF holds
the potential to significantly accelerate the solution of DFO
problems in diverse areas, such as economics, engineering,
and medicine. Developing variants of NNAIF for bound
constrained optimization problems typically approached via
Bayesian optimization, such as hyperparameter selection,
remains an important direction for future work.

Data And Software Availability
At the time of writing, the CUTEst test problems used in
the numerical experiments are available at https://www.
cuter.rl.ac.uk/Problems/mastsif.shtml.
Code and documentation for performing experiments is
available at https://github.com/0x4249/NNAIF.

Figure 5. Optimization method iteration time measured in seconds
vs. number of black box evaluations for low dimensional (0 <
Nx ≤ 50) CUTEst problems with largest (upper half) and smallest
(lower half) maximum iteration time tmax

k . NNAIF iteration times
increase as the training dataset for the NN surrogate grows, and
decrease when hk ≤ hsurr

min and training stops. Legend in Figure 2.

Table 1. Summary of best NNAIF (red diamond or blue square in
Figure 2) final results vs. best alternative (i.e. non-NNAIF) final
results. The best final mean of log10(fs(x)− fs(x?)) is shown.

CUTEST NNAIF BEST ALTERNATIVE

FIGURE 3 log10(fs(x)− fs(x?)) METHOD

ARGTRIGLS -5.77E0 -9.91E0 CMA-ES
CHNROSNB 1.36E0 8.43E-1 GD
ROSENBR -7.36E0 -1.11E1 CMA-ES

ARGTRIGLS 1.27E0 3.51E-1 GD
COATING 3.08E0 2.91E0 BFGS

GENHUMPS 6.30E0 3.36E0 IF
MANCINO 1.16E1 7.99E0 GD

FIGURE 4 log10(fs(x)− fs(x?)) METHOD

BOXPOWER 7.13E-1 1.60E0 CMA-ES
CHAINWOO 4.20E0 6.05E0 GD
MODBEALE 4.15E0 5.86E0 CMA-ES
SROSENBR 1.39E0 1.16E0 GD

BROYDNBDLS -9.72E0 5.05E0 GD
DIXMAANC -8.77E0 5.33E0 GD

NONDIA -1.86E-8 4.87E0 EMNA
POWELLSG 5.28E0 5.31E0 CMA-ES
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A. Definition Of Positive Spanning Set
A positive spanning set V = [v1, . . . ,vJ ] ∈ RNx×J of
directions is a set of directions such that any vector x ∈ RNx

can be written as

x =

J∑
j=1

ajvj = Va (22)

for some coefficient vector a ∈ RJ where aj ≥ 0,∀j ∈
{1, . . . , J}. Note that the coefficient vector a is not neces-
sarily unique.

B. Proof of Theorem 5.7 - Kelley, 2011
Stencil failure implies that

VT∇fs(x) ≤
(
Lh

2
+
‖φ‖S(x,h,V)

h

)
1 , (23)

where the inequality in (23) is understood componentwise.
Now, let U be an Nx ×Nx orthogonal matrix such that

C = [U,−U]

for which the matrix A with nonnegative entries satisfies
AVT = C and κ(V) =

√
Nx ‖A‖∞. Since A has nonneg-

ative entries, we see that (23) implies that

CT∇fs(x) = AVT∇fs(x) (24)

≤ A1
(
Lh

2
+
‖φ‖S(x,h,V)

h

)
(25)

≤ ‖A‖∞

(
Lh

2
+
‖φ‖S(x,h,V)

h

)
1 . (26)

Since the columns of CT∇fs include both ∂fs/∂uj and
−∂fs/∂uj for 1 ≤ j ≤ Nx, we have

‖∇fs(x)‖2 ≤
√
Nx ‖A‖∞

(
Lh

2
+
‖φ‖S(x,h,V)

h

)
. (27)

C. The CUTEst Optimization Benchmark Set
The Constrained and Unconstrained Testing Environment
(CUTE), introduced by Bongartz et al. (1995), provides a
versatile environment for testing small and large scale non-
linear optimization algorithms. CUTE provides a collection
of optimization test problems, which we refer to as CUTE
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problems. CUTE also provides a problem classification sys-
tem designed to help the user identify CUTE problems from
a particular class of optimization problem. The CUTE prob-
lem classification system takes into account the problem
objective function, the problem constraints, the smoothness
of the problem, and the origin of the problem. At the time of
writing, a specification of the CUTE problem classification
system can be found at https://www.cuter.rl.ac.
uk/Problems/classification.shtml.

The most up to date descendant of CUTE is the Constrained
and Unconstrained Testing Environment with safe threads
(CUTEst), introduced in Gould et al. (2015). CUTEst
uses the same problem classification system as CUTE, and
the same simple input format (SIF) file format for stor-
ing the optimization test problems. At the time of writ-
ing, SIF files and descriptions of all CUTEst problems
can be found at https://www.cuter.rl.ac.uk/
Problems/mastsif.shtml. Many of the CUTEst op-
timization test problems have options defined in their SIF
file that change the number of variables x. Thus, CUTEst
problems can range from dimension Nx = 1 to Nx = 105.

D. Extended Numerical Experiments
Figure 7 presents the results of additional numerical experi-
ments with low and medium dimensional CUTEst problems,
and Figure 8 presents the results of additional numerical
experiments with high and very high dimensional CUTEst
problems. Table 2 summarizes the best final results from
Figures 7 and 8.

E. Optimization Method Empirical Runtimes
Figure 5 in Section 5 and Figure 6 to the right illustrate
how the per iteration runtimes for each optimization method
evolve as each method progresses. Note that an upper bound
on the number of possible iterations of an optimization
method given a fixed budget of black box f(x) evaluations
(denote this fixed budget by Bf ≥ 0) is given by Bf/J ,
where J is the minimum number of f(x) evaluations re-
quired by a single iteration of the optimization method.
Letting tmax

k be the slowest iteration time, a conservative
upper bound on the total running time ttotal is given by

ttotal ≤
(

Bf

J

)
tmax
k . (28)

Using the iteration time data for all low dimensional prob-
lems in Figures 3 and 7, and that J = Nx +1 for low dimen-
sional problems, (28) suggests that all NNAIF computations
should take less than 2 minutes total (i.e. ttotal ≤ 120
seconds). Similarly, for the medium, high, and very high
dimensional problems in Figures 3, 4, 7, and 8, using that
J = 30, (28) suggests that all NNAIF computations should
take less than 4 minutes total (i.e. ttotal ≤ 240 seconds).

Figure 6. Optimization method iteration time measured in seconds
vs. number of black box evaluations for medium dimensional
(50 < Nx ≤ 200, top third), high dimensional (200 < Nx ≤
3000, middle third), and very high dimensional (3000 < Nx,
bottom third) CUTEst problems with largest (upper half of each
third) and smallest (lower half of each third) maximum iteration
time tmax

k . Legend provided in Figure 2.
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Figure 7. Base 10 logarithm of optimality gap vs. number of black
box f(x) evaluations for additional low dimensional (0 < Nx ≤
50, top two thirds) and medium dimensional (50 < Nx ≤ 200,
bottom third) CUTEst problems with uniform random noise added.
Legend provided in Figure 2.

Figure 8. Base 10 logarithm of optimality gap vs. number of black
box f(x) evaluations for additional high dimensional (200 <
Nx ≤ 3000, top half) and very high dimensional (3000 < Nx,
bottom half) CUTEst problems with uniform random noise added.
Legend provided in Figure 2.
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Table 2. Summary of best NNAIF (red diamond or blue square in
Figure 2) final results vs. best alternative (i.e. non-NNAIF) final
results. The best final mean of log10(fs(x)− fs(x?)) is shown.

CUTEST NNAIF BEST ALTERNATIVE

FIGURE 7 log10(fs(x)− fs(x?)) METHOD

BEALE -5.76E0 -1.12E1 CMA-ES
BOX3 -5.74E0 -1.23E1 CMA-ES

BOXPOWER -4.73E0 -6.88E0 IMFIL
BROYDNBDLS -6.05E-1 -4.19E0 GD
COOLHANSLS 2.60E0 -1.75E0 CMA-ES

HEART6LS 1.65E0 -2.84E-1 CMA-ES
METHANB8LS -1.78E0 -1.80E0 IMFIL

VIBRBEAM 3.15E0 1.81E0 CMA-ES

GENROSE 2.55E0 2.23E0 GD
POWELLSG 2.20E0 1.66E0 GD

QUARTC 8.87E0 3.06E0 GD

FIGURE 8 log10(fs(x)− fs(x?)) METHOD

ARWHEAD 2.40E0 1.53E0 GD
EXTROSNB -4.10E-5 4.61E0 GD

CYCLOOCFLS 3.22E0 3.01E0 GD

POWER -1.17E1 1.39E1 GD
SROSENBR 2.40E0 4.42E0 GD
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