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Abstract
We formalize the problem of contextual optimiza-
tion through the lens of Bayesian experimental
design and propose CO-BED—a general, model-
agnostic framework for designing contextual ex-
periments using information-theoretic principles.
After formulating a suitable information-based
objective, we employ black-box variational meth-
ods to simultaneously estimate it and optimize the
designs in a single stochastic gradient scheme. In
addition, to accommodate discrete actions within
our framework, we propose leveraging continuous
relaxation schemes, which can naturally be inte-
grated into our variational objective. As a result,
CO-BED provides a general and automated solu-
tion to a wide range of contextual optimization
problems. We illustrate its effectiveness in a num-
ber of experiments, where CO-BED demonstrates
competitive performance even when compared to
bespoke, model-specific alternatives.

1. Introduction
Contextual optimization (CO) is an important problem that
arises in a wide range of applications, such as drug design
(Krause & Ong, 2011), nuclear fusion (Char et al., 2019;
Chung et al., 2020), and robotics (Deisenroth et al., 2014;
Kupcsik et al., 2017). The goal in such scenarios is to
maximize a context-dependent reward function by assigning
optimal actions to different contexts.

A concrete example of this problem is a personalized mar-
keting campaign. Here different actions, such as sending
marketing materials or discounts for products, are chosen
based on context information such as customers’ demo-
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graphics, preferences, and past engagements with the brand.
The ultimate goal is to maximize revenue, but this first re-
quires us to gather data and learn about customers’ behavior.

We consider a problem setting where we first gather data in
an experimentation stage that consists of performing actions
on a number of different contexts in parallel. At the end
of the experiment, data is collected and used to inform a
strategy that is then deployed (without additional feedback).
The success of the first stage is judged on the performance
of the deployed strategy: better data in the first phase should
lead to better decisions and lower regret at deployment time.

Making best use of resources in the data gathering stage ne-
cessitates experimental design: we want to gather as much
useful information as possible for our downstream decision-
making in the deployment phase. Our first contribution
is to formalize this using an information-theoretic form
of Bayesian experimental design (BED, Lindley, 1956;
Chaloner & Verdinelli, 1995; MacKay, 1992), thereby pro-
viding a highly principled framework for choosing designs
(or actions) to be optimally informative.

Unfortunately, information-theoretic BED approaches have
not previously been applied in the CO setting, or indeed
with contextual information more generally. Moreover,
while substantial recent progress has been made in un-
derlying computational challenges of information-theoretic
BED (Foster et al., 2019; Kleinegesse & Gutmann, 2020;
Foster et al., 2020; Ivanova et al., 2021), this has generally
focused on targeting information gain in model parameters,
rather than the contextual optima we are interested in.

Targeting information gain in optima has separately been
considered in the Bayesian optimization (BO) literature,
where it is commonly referred to as entropy search (ES,
Hennig & Schuler, 2012; Hernández-Lobato et al., 2014;
Wang & Jegelka, 2017). However, these approaches have
not been applied in contextual settings, and their usage
has been heavily dependent on exploiting model-specific
properties to make the required computations tractable; they
cannot be directly applied in more general settings.

In this paper, we propose using an information-theoretic
BED approach to CO and introduce CO-BED—a general,
model-agnostic framework for designing large-scale con-
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textual experiments. We begin by formulating a suitable
information-theoretic objective, the contextual max-value
EIG (CMV-EIG). Importantly, CMV-EIG is transductive: it
measures how much information an observation at one con-
text contains about the optimum at another. As it represents
a mutual information between finite-dimensional random
variables, we can use black-box variational methods to si-
multaneously estimate CMV-EIG and optimize the designs
in a single stochastic gradient scheme.

Gradient-based BED has hitherto been restricted to contin-
uous designs, a significant limitation for contextual opti-
mization where discrete actions are common (e.g. contex-
tual bandits). In CO-BED, we therefore propose using the
Gumbel-Softmax continuous relaxation (Maddison et al.,
2016; Jang et al., 2016) to smoothly handle discrete actions.

By framing CO using BED, CO-BED does not sacrifice
modelling flexibility to attain computational tractability. It
instead offers a general-purpose approach that applies to
a wide range of problems in seemingly disparate fields,
including contextual bandits (Chu et al., 2011; Agrawal
& Goyal, 2013; Langford & Zhang, 2007), contextual BO
(Swersky et al., 2013; Ginsbourger et al., 2014; Pearce &
Branke, 2018; Pearce et al., 2020) and structural equation
models (Pearl, 2009). CO-BED naturally facilitates the
design of large batch parallel experiments, increasingly a
requirement for many applications (Groves et al., 2018;
Kirsch et al., 2019; Zanette et al., 2021; Ruan et al., 2021).

We demonstrate the benefits of CO-BED in a series of ex-
periments. Even when compared against bespoke, model-
specific alternatives, we find it consistently performs on par
or better, highlighting its effectiveness as a highly appli-
cable and efficient solution. We further find it is able to
scale gracefully, with effective performance maintained on a
problem with a 5000 dimensional design space. Our results
showcase the promising potential of CO-BED as an off-the-
shelf tool for contextual optimization in various settings.

2. Background
2.1. BED with Expected Information Gain

Bayesian experimental design (BED, Lindley, 1956) is a
principled model-based framework for designing optimal
experiments. BED considers a Bayesian model with experi-
mental outcomes y, controllable design a and latent parame-
ter ψ with prior p(ψ) and likelihood model p(y | ψ,a). The
expected information gain (EIG) about the parameters ψ is
the expected reduction in entropy from the prior to the pos-
terior distribution of ψ under an experiment with design a:

EIG(a) = Ep(y|a)
[
H[p(ψ)]−H[p(ψ | a, y)]

]
= Ep(ψ)p(y|ψ,a)

[
log

p(y | ψ,a)
p(y | a)

]
,

(1)

where p(y | a) = Ep(ψ)[p(y | ψ,a)] is the Bayesian
marginal distribution of the outcomes and is typically in-
tractable. The EIG is equivalent to I(ψ; y | a)—the mutual
information (MI) between the parameters and the experi-
mental outcome under the design.

A common setting, referred to as batch, static or fixed (Fos-
ter, 2021), is to optimize D designs A = (a1, . . . ,aD)
simultaneously to maximize the joint information objective,
EIG(A). By designing and executing informative actions,
we collect a dataset D = (A,y), which we use to update
the model parameters in a Bayesian fashion by comput-
ing the posterior p(ψ | D). To make inferences about any
other quantity of interest, say ζ, we compute its posterior
predictive distribution, p(ζ | D) = Ep(ψ|D)[p(ζ | D, ψ)].

2.2. Black-box MI Estimation and Optimization

Despite its highly desirable properties, estimating and max-
imizing the EIG (1) is notoriously difficult. This is due to
its doubly intractable (Rainforth et al., 2018; Zheng et al.,
2018) nature, which is characterized by the nested expecta-
tion structure involving a nonlinear function of an intractable
term (for further details see Foster et al., 2019). To tackle
this challenge, we can draw upon recent advances in self-
supervised representation learning (see Poole et al., 2019,
for a review) that have inspired the development of flexible,
model-agnostic approaches for the joint estimation and op-
timization of information objectives. One such method is
based on the InfoNCE lower bound (van den Oord et al.,
2018), which has been successfully applied in a variety of
model-agnostic BED contexts (Foster et al., 2020; Ivanova
et al., 2021; Kleinegesse & Gutmann, 2021), and is given by

EIG(a) ≥ L(a, U ;L) :=

Ep(ψ0:L)p(y|a,ψ0)

[
log

exp(U(y, ψ0))
1

L+1

∑
ℓ exp(U(y, ψℓ))

]
(2)

where ψ0 ∼ p(ψ) is a primary or ‘positive’ sample from the
prior, y ∼ p(y | a, ψ0) is a realisation of the outcome under
it, and ψ1:L ∼

∏L
i=1 p(ψi) are independent ‘contrastive’

samples. The function U : Y × Ψ → R is arbitrary and
commonly referred to as a critic. The bound becomes tight
in the limit as L → ∞ for the optimal critic U∗(y, ψ) =
p(y | ψ,a)+ c(y), where c(y) can be any function that only
depends on the outcome y.

If the likelihood p(y | ψ,a) is analytically available, we
can use it in (2) directly, instead of learning a critic U , thus
recovering the PCE bound from Foster et al. (2020). When
the likelihood is not analytically available, i.e. when we are
dealing with implicit models, we parameterize U by a neural
network with parameters ϕ and optimize the lower bound
L(a, Uϕ;L) jointly with respect to ϕ and A, simultaneously
tightening the bound and optimizing the design.
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Figure 1. A stylized example. The dark (resp. light) shaded area
shows our prior uncertainty about y | a, c arising from uncertainty
in ψ, measured by one (resp. two) st. dev. from the mean. We want
to select actions in experimental contexts c1, c2, c3 (orange dotted
lines) whose outcomes will be most informative about m∗ (red
cross) in the evaluation context c∗ (grey dashed line).

2.3. Max-value Entropy Search (MES)

The goal of (non-contextual) Bayesian optimization is to
find the global maximizer a⋆ = argmaxa∈A f(a) of some
expensive, black-box function f . Max-value Entropy Search
(MES, Wang & Jegelka, 2017) was proposed as a compu-
tationally efficient alternative to earlier methods, such as
Entropy Search (ES, Hennig & Schuler, 2012) and Pre-
dictive Entropy Search (PES, Hernández-Lobato et al.,
2014). Whilst ES and PES aim to maximize I(a⋆; y | a)—
the MI between the outcome under the action queried
and the maximizer, MES instead uses the maximum value,
m = maxa∈A f(a) and maximizes I(m; y | a) w.r.t. a.
The computational efficiency of MES stems from the fact
that both m and y are one-dimensional, which reduces the
complexity of approximations and makes them more robust
and efficient for high-dimensional problems.

Information-theoretic ES methods are popular in large batch
BO, as joint MI objectives naturally handle this case. MES,
like many information-theoretic approaches to BO, focused
on a non-contextual Gaussian process (GP) model (Williams
& Rasmussen, 2006) for the black-box function f , allowing
for the use of closed-form formulae to approximate the MI.

3. Method
We introduce our approach, CO-BED: Contextual Optimiza-
tion via Bayesian Experimental Design. At its core, CO-
BED seeks to design a set of experiments for exploration
purposes, allowing us to gather high-quality data that will
lead to better decisions in the subsequent deployment stage.
Code is available at https://github.com/microsoft/co-bed.

Problem Formulation. We extend the Bayesian model
of Section 2.1 by incorporating a context vector c that is
not under the experimenter’s control, with the likelihood be-
coming p(y | a, c, ψ). Further, we now take y to represent
a reward with y ∈ R. We denote by m(c) = E [y | a⋆, c]
the maximum value achievable in some context c where

a⋆ = argmaxa∈A E [y | a, c] is the action that achieves
it. Similar in spirit to MES, we wish to learn about these
max-values by choosing a large batch of actions to use in
an experiment. Unlike MES, we want to a) accommodate
contextual information these actions are taken under, and b)
make our decisions in a transductive manner that targets the
specific contexts in which our max-values will be evaluated.
Formally, given an externally provided set of experimental
contexts C = (c1, . . . , cD), we seek to design a batch of ac-
tions A = (a1, . . . ,aD) that will be maximally informative
about the max rewards m∗ = (m(c∗1), . . . ,m(c∗D∗)) for a
given set of evaluation contexts C∗ = (c∗1, . . . , c

∗
D∗) which

are representative of contexts seen in deployment.

The contexts C and C∗ are fixed but arbitrary, so they can
be the same, subsets of, or distinct from each other; this
is a strict generalization of the standard contextual setting
C = C∗. This added flexibility can be essential in practical
applications where we know about the contexts we will
encounter at deployment. In the personalized marketing
example, the experimental contexts C could represent the
customers in a given city who will participate in a real-world
experiment, while the evaluation contexts C∗ may represent
the customers in a whole region where the campaign will be
rolled out with the updated model.

We emphasize that the goal of the design process is to obtain
data that will aid in learning about the maximum rewards
in the evaluation contexts, m∗, rather than maximizing the
rewards in the experimental contexts. This is illustrated in
Figure 1, where choosing Action A leads to higher rewards
in the experimental contexts, but these rewards will be unin-
formative about the value of m∗, since this action is a priori
known to be sub-optimal for the context of interest c∗. This
example also demonstrates thatthe typical EIG objective,
which aims to reduce uncertainty uniformly across all model
parameters ψ, is also generally sub-optimal for efficiently
learning about max-values of interest. Specifically, spending
experimental resources to learn the parameters associated
with Action A would be ineffective and wasteful.

3.1. Contextual Max-value EIG

Following the principles of information-theoretic BED, we
formulate a new objective, the contextual max-value ex-
pected information gain (CMV-EIG), for CO. Our objective
focuses on the transductive gain of information about the
maximum values m∗ in the evaluation contexts C∗ when
choosing designs A in the experimental contexts C:

CMV-EIG(A;C,C∗) := E
[
log

p(y | m∗,C,A)

p(y | C,A)

]
= I(m∗;y | C,C∗,A).

(3)

Note that this is equal to the MI between finite-dimensional
random variables (m∗ and y). The expectation is taken over
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Algorithm 1 CO-BED
EXPERIMENTATION PHASE
Input: Model p(ψ)p(y,m∗|ψ, c, c∗,a), initial A and Uϕ,

experimental contexts C, evaluation contexts C∗

Output: A batch of actions A∗ for evaluation contexts C∗

Experimental design of A
while Computational budget not exceeded do

▷ Sample ψ ∼ p(ψ)
▷ Sample y,m∗ ∼ p(y,m∗ | C,C∗,A)
▷ Estimate L(A, Uϕ;L) (4) using samples and up-

date the parameters (A, ϕ) using SGA
end

Execution of experiment, data gathering and model updating
▷ In parallel across i = 1, . . . , D, for each experimental
context ci, apply action ai obtained in previous stage,
receive outcome yi. Set y = {yi}Di=1, D = {y,C,A}
▷ Estimate p(ψ | D), use it to infer optimal actions
A∗ = argmaxA′∈AD∗ Ep(ψ|D)E [y | A′,C∗, ψ]

DEPLOYMENT PHASE
▷ Apply A∗ to obtain outcomes y∗

the joint distribution of outcomes and quantities of interest,
marginalizing out the parameters: p(y,m∗ | C,C∗,A) =
Ep(ψ)

[
p(m∗ | C∗, ψ)p(y | ψ,C,A)

]
. Similarly, the likeli-

hood term is given by p(y | m∗,C,A) = Ep(ψ|m∗)[p(y |
ψ,C,A)], and the marginal outcome in the denominator is
p(y | C,A) = Ep(ψ)

[
p(y | ψ,C,A)

]
.

By incorporating the concept of experimentation and eval-
uation contexts, our new objective enables more flexible
and targeted experimental design by efficiently allocating
resources to learn about the specific contexts of interest.

3.2. Lower bounding CMV-EIG

Our CMV-EIG objective is intractable as none of the like-
lihood terms involved in (3) are available analytically. To
side-step this, we leverage a variational lower bound, which
can be optimized with gradients using samples only. Specif-
ically, utilizing an auxiliary critic function U(y,m∗) ∈ R,
we adapt the InfoNCE mutual information lower bound in-
troduced by (van den Oord et al., 2018) and used in standard
implicit-likelihood BED settings by (Ivanova et al., 2021;
Kleinegesse & Gutmann, 2021) to our CMV-EIG objective:

L(A, U ;L) = E

[
log

exp(U(y,m∗
0))

1
L+1

∑
ℓ exp(U(y,m∗

ℓ ))

]
(4)

≤ CMV-EIG(A;C,C∗), (5)

where the expectation is taken with respect to p(y,m∗
0 |

C,C∗,A)p(m∗
1:L | C∗). The bound holds for any number

of contrastive samples L ≥ 1 and critic U , and becomes
tight as L→ ∞ for the optimal one U∗(y,m∗) = log p(y |
m∗,C,A) + c(y), where c(y) is an arbitrary function of y.

The key technical challenge we now face is to find a way
to approximate the expectation (4) (or more specifically
its gradients) in an unbiased manner. We can do that by
generating joint samples y,m∗ ∼ p(y,m∗ | C,C∗,A) =
Ep(ψ)

[
p(m∗ | ψ,C∗)p(y | ψ,C,A)

]
, and contrastive max-

values m∗
1:L ∼

∏L
ℓ=1 p(m

∗
ℓ | C∗), where p(m∗

ℓ | C∗) =
Ep(ψ)[p(m∗

ℓ | ψ,C∗)]. To obtain a sample from the joint,
we first sample a parameter ψ ∼ p(ψ), then conditionally
sample the outcomes y ∼ p(y | ψ,C,A) from our model.

To sample the corresponding max-rewards m∗ | ψ ∼
p(m∗ | ψ,C∗), we distinguish three cases. First, in cer-
tain situations, we might be able to compute A⋆ analyti-
cally, with many linear and parametric models falling into
this category. For example, if E[y | ψ,a, c] depends lin-
early on a, then computing m∗ amounts to solving a linear
program. Second, if A is discrete, we can determine the opti-
mal actions, A⋆ = argmaxA E [y | ψ,A,C∗] by complete
enumeration. This captures the majority of the contextual
bandit literature. (Note that the expectation here is only over
observation noise, since there is no functional uncertainty.)
Third, when the previous options are not feasible, we choose
a finite grid of possible actions, Ã ⊂ A, and get an estimate
of m∗ | ψ by complete enumeration over Ã.

3.3. InfoNCE lower bound optimization

Having established how to generate joint samples, we now
focus on optimizing L with respect to the designs and the
critic. To do this in practice, we represent the critic as
a neural network, Uϕ, and optimize its parameters ϕ to
improve the tightness of the bound; optimizing with respect
to A improves the quality of the designs. We highlight that,
whilst CMV-EIG resembles the MES objective (outlined
in § 2.3), our approach to determining the optimal designs
is quite distinct. Concretely, in its estimation procedure,
MES first approximates then maximizes the MI directly.
CO-BED never actually computes the MI (3) explicitly,
however, provided a sufficiently flexible architecture for Uϕ,
we expect to obtain tight, high-quality estimates.

We aim to converge to the true MI maximum by jointly opti-
mizing with respect to ϕ and designs A in a single stochastic
gradient scheme. Whilst differentiating with respect to ϕ is
straightforward, taking gradients with respect to A presents
a technical challenge due to two reasons: 1) A affects the
sampling of the expectation in (4); and 2) unlike network
parameters, actions can be continuous or discrete.

Continuous action space. Assuming that the actions are
continuous and that the experimental outcomes y ∼ p(y |
ψ,C,A) are differentiable with respect to A, we can form
a pathwise gradient estimator (Mohamed et al., 2020) for
∇A,ϕL(A, Uϕ;L) and optimise it with standard automatic
differentiation (Baydin et al., 2018; Paszke et al., 2019) and
stochastic gradient schemes (Kingma & Ba, 2014).
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Discrete action space. Previous gradient-based BED meth-
ods that utilize variational bounds on MI have primarily
focused on fully differentiable models (see § 4 for a discus-
sion), and avoided dealing with discrete designs. Here we
propose a simple and practical way to handle discrete actions
through the use of Gumbel-Softmax relaxation (Maddison
et al., 2016; Jang et al., 2016). This allows us to treat the
actions as continuous during the training process and apply
pathwise gradients in this case as well.

Suppose we have K ≥ 2 possible discrete actions, so that
we can represent each action (ad)

D
d=1 as a one-hot vector of

size K and A = (a1, . . . ,aD) as a D ×K matrix. Rather
than learning A directly, we introduce a distribution over
the actions πα, where α ∈ RD×K are trainable parameters,
representing the probabilities of selecting each action in
each of the D contexts. Specifically, during training, the
probability of selecting action k in context d is given by:

πd,k =
exp((logαd,k + gd,k)/τ)∑K
j=1 exp((logαd,j + gd,j)/τ)

, (6)

where gd,k ∼ Gumbel(0, 1) is Gumbel noise and τ > 0 is a
temperature hyper-parameter. We optimize the parameters
α and those of the critic network ϕ jointly with SGA by
sampling A ∼ πα and and estimating ∇α,ϕL(A, Uϕ;L).
At inference time, once the policy is trained, the opti-
mal design for experiment d in the batch is given by
ad = argmaxk{πd,k}Kk=1.

Optimizing πα involves making hyper-parameter choices,
notably determining an appropriate value of the tempera-
ture τ , and deciding on whether or not to anneal it during
training. At high temperatures, the estimates of the gradi-
ents ∇α,ϕL(A, Uϕ;L) tend to be low-variance, providing a
strong learning signal for the policy to find good actions A.
Conversely, at low temperatures, gradients tend to exhibit
higher variance, but πα is closer to the discrete argmax that
we use to select the optimal action at inference time. We
explore these hyper-parameter choices in an ablation study
(see § 5.5), demonstrating the robustness of our framework
to different temperature settings.

4. Related Work
As already discussed, CO-BED draws inspiration from sev-
eral methods across somewhat separate fields to deliver a
more general approach to contextual optimization. Our in-
formation objective (3) is most closely related to the MES
approach to Bayesian optimization (Wang & Jegelka, 2017),
but differs in two key ways: we are focused on CO, instead
of finding a single maximizer, and we do use special proper-
ties of GP models for MI estimation. The InfoNCE lower
bound (4), is rooted in the representation learning literature
(van den Oord et al., 2018; Wu et al., 2018), and has also
been used successful in standard BED for non-contextual

parameter learning (Foster et al., 2020; Ivanova et al., 2021;
Kleinegesse & Gutmann, 2021).

The problem we address with CO-BED relates to contex-
tual Bayesian optimization, where most of the work to date
has focused on iterative acquisition (i.e. batch size 1) that do
not use information-theoretic criteria to choose designs. Ex-
amples of these methods include Profile Expected Improve-
ment (PEI, Ginsbourger et al., 2014), Multi-task Thompson
Sampling (MTS, Char et al., 2019) and knowledge-gradient
based methods, such as LEVI, CLEVI, REVI (Pearce &
Branke, 2018) and ConBO (Pearce et al., 2020). Many tradi-
tional (non-contextual) BO methods have looked at the large
batch setting, using information-based criteria (Hennig &
Schuler, 2012; Wang et al., 2018), and alternatives such as
local penalization (LP, González et al., 2016), Multi-points
Expected Improvement (q-EI, Chevalier & Ginsbourger,
2013), and the parallel knowledge-gradient (Wu & Frazier,
2016). To the best of our knowledge, the method of Groves
et al. (2018), combining LEVI and LP, is the only one that
considers the large batch, contextual setting and is thus
the only one directly comparable to CO-BED. Sussex et al.
(2022) considered BO in a structural equation model, in a
non-contextual case with a known causal graph.

Our method also relates to the broad framework of con-
textual bandits. A significant portion of bandits-related
research has focused on the online, linear case (Auer, 2002;
Abe et al., 2003; Chu et al., 2011; Dani et al., 2008; Abbasi-
Yadkori et al., 2011; Li et al., 2019). Additionally, some
connections with the BO literature have been established
with the introduction of Gaussian process bandit optimiza-
tion methods, such as GP-UCB (Srinivas et al., 2010) and its
contextual version, CGP-UCB (Krause & Ong, 2011). More
recently, there has been an increased interest in the large
batch setting (Han et al., 2020; Ruan et al., 2021; Zhang
et al., 2021), where the goal is to achieve (some notion of)
optimal regret by performing a few rounds of batched ex-
periments. Closest to our problem set-up is the work of
Zanette et al. (2021), who aim to design a single batch to
collect a good dataset that is used to learn a near-optimal
policy to be used at deployment time. Our approach differs
from typical contextual bandits methods in that we focus on
information-based criteria, instead of asymptotic regret, and
do not restrict ourselves to linear models.

Our method is the first to consider contextual information
in the the Bayesian experimental design framework. Us-
ing variational bounds for EIG estimation in BED for non-
contextual parameter learning was first proposed in Foster
et al. (2019). Approaches that use such bounds and optimize
experimental designs using stochastic gradient procedures
at the same time have subsequently been developed (Foster
et al., 2020; Kleinegesse & Gutmann, 2020; 2021; Foster
et al., 2021; Ivanova et al., 2021). All of these methods
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Figure 2. Discrete actions: designs and key metrics (further available in § A.2). The dashed grey lines show the evaluation contexts C∗.

are limited in their ability to deal with discrete designs as
they either assume fully differentiable models, or resort to
gradient-free methods (Kleinegesse & Gutmann, 2020).

Finally, Bayesian active learning (MacKay, 1992; Houlsby
et al., 2011) and Bayesian (active) causal discovery (Mur-
phy, 2001; Tong & Koller, 2001), which can be viewed as
important special cases of BED, often focus on the large
batch setting, which is of particular interest for our method;
notable examples of large-batch methods from the two fields
include BatchBALD (Kirsch et al., 2019) and CBED (Tigas
et al., 2022). Our use of an explicit evaluation context set
C∗ is akin to transductive active learning (MacKay, 1992;
Yu et al., 2006; Reitmaier et al., 2015; Wang et al., 2021), in
which one seeks data that will improve model predictions at
specific inputs. The focus in active learning is to make accu-
rate predictions, whereas CO-BED addresses the problem of
choosing optimal actions, accepting prediction uncertainty
at certain actions once they are known to be sub-optimal.

5. Empirical Evaluation
We compare the performance of CO-BED to a number
of baselines across contextual optimization settings includ-
ing contextual bandits, contextual BO, and causal structure
learning. We examine continuous and discrete contexts and
actions using parametric and GP-based reward models.

The baselines that we consider include model-agnostic ones,
such as random designs, upper-confidence bound (UCB,
Auer, 2002) and Thompson sampling (Thompson, 1933).
We note that MTS (Char et al., 2019) reduces to pure Thomp-
son sampling in our setting since C is not under the experi-
menter’s control. We also consider bespoke, model-specific
baselines: in the experiment with GPs, we compare against
LEVI + LP (Groves et al., 2018). For the experiment in-
volving contextual bandits, we compare CO-BED to the
Sampler-Planner (S-P) algorithm of (Zanette et al., 2021)
and all baselines therein.

Evaluation metrics. Our evaluation metrics include the
CMV-EIG itself, which we estimate by evaluating (4) with

the learnt critic and optimized design. We also consider
three evaluation metrics that are useful for assessing the
performance of the updated model in the deployment phase:
the accuracy of inferring m∗ and A∗, measured by the MSE
between the ground truth and the mean estimate under the
posterior p(ψ | D), and regret from deploying the inferred
optimal actions A∗ in the evaluation contexts C∗. See
Appendix A.1 for exact details on computing metrics.

5.1. Parametric models

We begin our empirical evaluation with two simple paramet-
ric models to ensure that our method aligns with intuition
and the theory presented in the previous section. Both mod-
els have a one-dimensional, continuous context.

The first model we consider has four possible discrete ac-
tions, two of which are a priori known to be sub-optimal,
whilst the other two generate rewards with the same mean,
but different variances. As Figure 2 demonstrates, our
method has automatically identified the intuitive optimal
strategy of A/B testing only the top-performing actions.
Both qualitatively and quantitatively, CO-BED performs on
par with Thompson sampling and significantly outperforms
the other baselines considered: the random strategy wastes
resources by querying sub-optimal treatments, whilst UCB1

only ever queries the action with higher variance.

Next, we apply CO-BED to a problem involving continuous
actions, designing a batch of 40 experiments to learn about
the max-values at 39 evaluation contexts. The Bayesian
model takes the form y = exp(−(a− g(ψ, c))2/h(ψ, c)−
λa2) + ϵ, where g and h are parametric functions and ϵ
is Gaussian observation noise, and we can obtain the max
values in closed form. As Table 1 shows, our method out-
performs the baselines on all metrics.

5.2. Gaussian Processes

We consider modelling the unknown function relating con-
text and treatment to outcomes using a Gaussian Process
(GP; Williams & Rasmussen, 2006). We explore the setting
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Table 1. Continuous actions: 40D design, evenly spaced between -3.5 and 3.5, to learn max-values at 39 evaluation contexts equal to the
midpoints of the grid. Randomσ samples actions from N (0, σ), α in UCBα is the confidence bound considered. Further details in § A.2.

Method CMV-EIG ↑ MSE(m∗) ↓ MSE(A) ↓ Regret ↓
Random0.2 5.407 ± 0.003 0.0041 ± 0.0001 0.544 ± 0.023 0.091 ± 0.002
Random1.0 5.798 ± 0.004 0.0024 ± 0.0002 0.272 ± 0.018 0.060 ± 0.002
Random2.0 4.960 ± 0.004 0.0042 ± 0.0002 0.450 ± 0.021 0.090 ± 0.002
UCB0 5.774 ± 0.003 0.0069 ± 0.0005 0.747 ± 0.055 0.082 ± 0.002
UCB1 5.876 ± 0.003 0.0030 ± 0.0002 0.338 ± 0.024 0.067 ± 0.002
UCB2 5.780 ± 0.004 0.0031 ± 0.0002 0.378 ± 0.031 0.069 ± 0.002
Thompson 6.184 ± 0.004 0.0017 ± 0.0001 0.161 ± 0.007 0.051 ± 0.001

CO-BED 6.527 ± 0.003 0.0014 ± 0.0001 0.143 ± 0.018 0.044 ± 0.001
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Figure 3. Results from the Gaussian Process example. Left: the regret evaluated on C∗ after experimentation (↓ better). Right: the lower
bound on the CMV-EIG at the end of training (↑ better). Plots show the mean ±1 s.e. from 5 seeds. See Appendix A.3 for details.

in which experimental design begins after the acquisition of
initial, observational data. We focus on the challenging case
of confounded observational data (Greenland et al., 1999),
in which the context influences the treatment chosen in the
observational data. Our experimental designs must learn to
counterbalance this bias. This experiment facilitates a com-
parison with bespoke GP methods for experimental design.
We include the method of Groves et al. (2018) that combines
the Local Expected Value of Improvement (LEVI; Pearce
& Branke, 2018) acquisition function with Local Penaliza-
tion (LP; González et al., 2016), as one of the few existing
approach for batch design for contextual optimization.

Concretely, we let c ∈ [−1, 1]2, a ∈ [−1, 1] which are
inputs to ψ : [−1, 1]3 → R, an unknown function modelled
as ψ ∼ GP(0, k). We use a simple Gaussian likelihood
y|c, a, ψ ∼ N(ψ(c, a), σ2) and a radial basis kernel, k.
At design time, we condition ψ on a fraction of the 100
observational data points. At evaluation time, we sample
possible ground truth functions ψ from the GP conditional
on all 100 observational data (to give consistent evaluation).

Our results in Figure 3 show that CO-BED outperforms a
wide range of baselines on this problem, particularly with
more existing data, demonstrating that CO-BED can learn
to deal with a complex prior that is defined by conditioning
on confounded observational data. Baselines using LP do
well, but LP’s heuristic batch design strategy does not reach
the same standard as an information-optimal design.

5.3. Contextual Linear Bandits

Next, we evaluate our method on the contextual linear ban-
dit problem described in Zanette et al. (2021), comparing
CO-BED to their model-specific Sampler-Planner (S-P) al-
gorithm, as well as the baselines considered therein—a
constant strategy (Const), which always chooses action 1,
largest norm strategy (Norm), which chooses the feature
with the largest norm, and a random design strategy. The
reward model is defined by y = ϕ(a, c)Tψ + ϵ, where
ψ = (ψ1, . . . , ψ20), is a 20-dimensional parameter vector,
a = 1, . . . , 10 are the possible actions, c = 1, 2, 3 are the
possible contexts, and ϕ : A× C 7→ R20 is a feature map,
which is assumed to be known. The problem is set up so
that most actions yield zero average rewards. Specifically,
only actions 1, 2, and 3 can lead to non-zero rewards in all
contexts, which can be used to reduce uncertainty in certain
dimensions of the parameter vector, ψ. Actions 6 and 7
give rise to non-zero features in the last dimension; however,
ψ20 is essentially zero. All other actions yield exactly zero
features. Full experiment details are given in Appendix A.4.

Figure 4 presents the results, noting that, for consistency
with Zanette et al. (2021) we report the average reward,
instead of regret. CO-BED outperforms the bespoke S-P al-
gorithm at lower (< 15) design batch sizes and performs on
par with it for larger, both in terms of information as well as
the value of the rewards obtained during deployment. This
outperformance is due to its ability to learn the information-
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Figure 4. Linear contextual bandit results. CO-BED performs on par with the bespoke S-P algorithm both from (a) an information
standpoint (↑ better) and (b) value of the rewards obtained during deployment (↑ better). The black horizontal line in (b) represents
Supervised Learning (SL), an approximate upper bound on performance. Panel (c) shows the marginal distribution over actions of the
designs obtained from each method, excluding Const.

optimal designs, as shown in Figure 4(c), specifically in its
avoidance of querying actions 6 and 7, thanks to the strong
close to 0 prior on ψ20. Since S-P does not take prior in-
formation into account, it spends some of its experimental
resources on those actions, which hurts performance when
the experimental budget is low.

5.4. Unknown Causal Graph

Finally, we explore our method in the context of a struc-
tural equation model (Pearl et al., 2000; Pearl, 2009). We
look at contextual optimization in a business-inspired sce-
nario with an unknown causal graph. We specifically con-
sider a binary context vector c ∈ {0, 1}k which indicates
which business areas a customer is active in, and treatments
a ∈ [0, 1]ℓ representing investment in different promotional
activities. The unobserved variable r ∈ Rk indicates the
revenue generated in each business area. We related these
quantities using a structural equation model with a par-
tially unknown causal graph. The unknown component
of the graph describes which treatments effect which rev-
enue streams, concretely we assume the structural equations
ri = ci

∑ℓ
j=1Gijθijaj where Gij is a binary matrix and

θij are unknown linear coefficients. The total cost of treat-
ments is simply s =

∑ℓ
j=1 aj , and the total observed profit

is y =
∑k
i=1 ri − s + ϵ where ϵ is Gaussian noise. The

whole system is summarized in Figure 5.

This example also allows us to explore the scalability of our
method. We use a fixed number of experimental contexts
D = 200 and vary the number of possible actions ℓ up to
25, yielding designs of up to 5000 dimensions to optimize.
For evaluation, we let C∗ consist of all 2k − 1 non-zero
binary contexts, and estimate the optimal treatments given
observation y by fitting a Lasso (Tibshirani, 1996) due to
the infeasability of Bayesian inference in this case. See
Appendix A.5 for complete details. Our results in Figure 6

c1
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ck
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...
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r1

...

rk

s

y

Figure 5. Causal graph considered in Section 5.4. The existence of
edges from aj to ri is unknown. Unfilled nodes are not observed.
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Figure 6. Results from the Unknown Causal Graph experiment
showing regret on C∗ after experimentation designed with differ-
ent methods (↓ better). Plots show mean ±1 s.e. over 5 seeds.

show that our method is successful on this larger problem
and outperforms a range of baselines. In particular, UCB
baselines struggle here as they do not introduce heterogene-
ity between treatments.

5.5. Robustness of the Gumbel-Softmax relaxation

We perform a series of ablation studies to investigate
the overall robustness of the Gumbel-Softmax relaxation
scheme. We focus particularly on how different choices
surrounding the temperature parameter τ can affect the per-
formance of our framework. All experiments are performed
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Figure 7. Robustness of the Gumbel-Softmax relaxation scheme. Panel (a) shows moving average estimates of CMV-EIG (4) (window
size of 25) against gradient steps for different fixed values of τ (i.e. no annealing). Panel (b) presents CMV-EIG estimates computed at the
end of training across 32 initializations of the training parameters (i.e. different seeds). The mean values are marked by green triangles
and red dots for scenarios with and without temperature annealing, respectively. Annealing is applied every 10K steps with a factor of 0.5.
Error bars indicate ±2 st.dev., computed over the 32 seeds. The black dashed line indicates the CMV-EIG estimate reported in § 5.1
achieved by CO-BED, which was trained with temperature annealing and initial τ = 2.0.

using the simple parametric model from § 5.1.

Figure 7(a) shows the training curves of the CMV-EIG lower
bound (4) for three different temperature values. As an-
ticipated, there are noticeable training instabilities at low
temperature values (τ = 0.1), which stem from the high
variance in the estimates of the gradient ∇α,ϕL(A, Uϕ;L).
In contrast, both moderate and high temperatures (τ = 2.0
and τ = 10.0) yield stable training trajectories. Impor-
tantly, despite these variations, all three settings ultimately
converge towards similar values.

Next, we assess the stability across multiple training runs
by optimizing L(A, Uϕ;L) over 32 different seeds, show-
ing the results in Figure 7(b). As expected, variability is
larger at lower temperature values, which also tend to re-
sult in lower CMV-EIG estimates. Nevertheless, all of the
CMV-EIG mean values fall within a relatively tight range
between 4.7 and 4.9. However, it is worth noting that the
larger CMV-EIG estimates at higher temperatures might be
a byproduct of using soft designs during training, where we
sample A ∼ πα, but use the discrete argmax during de-
ployment. Thus, soft training with high temperature values
can potentially introduce a subtle train-test mismatch and
overestimate CMV-EIG. This issue can be resolved by em-
ploying hard training or by relying on additional evaluation
metrics such as regret and various accuracy metrics (as we
do in the experiments section). Finally, Figure 7(b) also
suggests that temperature annealing does not significantly
affect performance but can help improve training stability,
particularly at low temperatures.

6. Discussion
Limitations. CO-BED offers a high degree of general-
ity as it applies to a wide range of contextual optimization
problems. However, this generality comes at the cost of

increased computational cost, as it involves learning opti-
mal actions by maximizing a lower bound on the CMV-EIG
objective that requires training a (small) neural network. In
many real-world applications, however, this cost is small
relative to the overall cost of the experiment which may
take several months to run, e.g. in marketing or medical
scenario. Additionally, although common in the BO and ban-
dits literature, future work could investigate ways to lift the
assumption that y is continuous and explore more efficient
ways to cheaply compute or approximate the conditional
max-values m∗ | C∗, ψ. Finally, in our experiments, we
considered a scenario close to Zanette et al. (2021) involv-
ing one round of experimentation followed by one round
of deployment, but there is no conceptual reason to prevent
multiple, adaptive rounds.

Conclusions. We introduced CO-BED—the first method
to introduce contextual aspects in the field of BED and
to formally connect it to contextual optimization. By tak-
ing an information-theoretic approach, CO-BED offers a
general-purpose framework that unifies seemingly disparate
fields into a single cohesive framework. Our method can
be end-to-end trained with gradients by employing black-
box variational methods to simultaneously estimate our pro-
posed CMV-EIG objective and optimize the designs in a
single stochastic gradient scheme. Given the importance of
discrete actions in optimization settings, we introduce an
approach using the Gumbel-Softmax trick to handle them
smoothly. We demonstrated the flexibility and effectiveness
of our method across a variety of experiments, performing
on par or outperforming alternative, bespoke strategies.
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A. Experiments
We implement all experiments in Pyro (Bingham et al., 2018), which is a probabilistic programming framework on top of
PyTorch (Paszke et al., 2019). Our code will be open-sourced upon publication.

A.1. Computing evaluation metrics

Once we have an experimental design A, we simulate the deployment phase of our main set-up (Algorithm 1) to evaluate
how well experimental data using A enables us to perform at test time.

We begin by sampling a ground-truth parameter ψtrue. We then sample experimental data y | ψtrue,C,A. The knowledge of
the experimenter at this point is encapsulated in the posterior p(ψ | C,A,y). Under this posterior, we can then estimate
optimal actions and optimal achievable outcomes for the evaluation contexts c∗1, . . . , c

∗
D∗ via

a∗post,i = argmax
a′∈A

Eψ∼p(ψ|,C,A,y) [E[y | a′, c∗i , ψ]] (7)

m∗
post,i = max

a′∈A
Eψ∼p(ψ|,C,A,y) [E[y | a′, c∗i , ψ]] . (8)

These can be compared with their counterparts under ψtrue

a∗true,i = argmax
a′∈A

E[y | a′, c∗i , ψtrue] (9)

m∗
true,i = max

a′∈A
E[y | a′, c∗i , ψtrue]; (10)

giving us the ‘treatment recovery’ and ‘reward recovery’ MSEs, which are

Ltreatment =
1

D∗

D∗∑
i=1

∥a∗post,i − a∗true,i∥2 (11)

Lreward =
1

D∗

D∗∑
i=1

|m∗
post,i −m∗

true,i|2. (12)

Finally, we evaluate the regret under ψtrue from acting with A∗
post as opposed to A∗

true. This is defined as

ri = m∗
true,i − E[y | a∗post,i, c

∗
i , ψtrue] r =

1

D∗

∑
i

ri. (13)

To give a less biased evaluation, this procedure is repeated for several thousand ground truth parameters ψtrue and the results
are averaged. The exact number of true models considered is given in the following sections.

A.2. Parametric models

Training details All experiment baselines ran for 50K gradient steps, using a batch size of 2048. We used the Adam
optimiser (Kingma & Ba, 2014) with an initial learning rate of 0.001 and exponential learning rate annealing with a
coefficient of 0.96 applied every 1000 steps. We used a separable critic architecture (Poole et al., 2019) with simple MLP
encoders with ReLU activations and 32 output units.

For the discrete treatment example: we added batch norm to the critic architecture, which helped to stabilise the optimisation.
We had one hidden layer of size 512. Additionally, for the Gumbel–Softmax policy, we started with a temperature τ = 2.0
and hard=False constraint. We applied temperature annealing every 10K steps with a factor of 0.5. We switch to
hard=True in the last 10K steps of training.

For the continuous treatment example: We used MLPs with hidden layers of sizes [design dimension × 2; 412; 256] and 32
output units.

Note: In order to evaluate the EIG of various baselines, we train a critic network for each one of them with the same
hyperparameters as above.
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Table 2. Discrete treatments: evaluation metrics of 10D design

Method EIG estimate MSE(m∗) Hit rate(A) Regret

UCB0.0 1.735 ± 0.005 2.541 ± 0.104 0.513 ± 0.01 1.170 ± 0.036
UCB1.0 2.514 ± 0.006 1.003 ± 0.043 0.496 ± 0.01 1.119 ± 0.035
UCB2.0 2.504 ± 0.006 0.965 ± 0.045 0.497 ± 0.01 1.169 ± 0.037
Thompson 4.607 ± 0.007 0.620 ± 0.024 0.498 ± 0.01 1.112 ± 0.035
Random 3.573 ± 0.006 1.953 ± 0.070 0.503 ± 0.01 1.150 ± 0.036

Ours 4.729 ± 0.009 0.594 ± 0.025 0.501 ± 0.01 1.152 ± 0.035

Figure 8. Posterior checks

Posterior inference details After completing the training stage of our method
(Algorithm 1), we need to deploy the learnt optimal designs in the real world in
order to obtain rewards y. This experimental data is then used to fit a posterior
p(ψ|D).

There are many ways to do the posterior inference and the quality of the results will
crucially depend on the accuracy of the fitted posteriors. In both of our examples
and for all baselines we use Pyro’s self-normalised importance sampling (SNIS).
Samples from this posterior are used for the evaluation metrics.

We validate the accuracy of estimated posteriors by running various sanity checks,
including diagnostic plots such as Figure 8, showing the standard deviation of our
posterior mean estimate (a measure of uncertainty about the parameter) and L2

error to the true parameter. The red line shows the rolling mean over 200 points
of the latter, and the grey band—the 2 standard deviations. For this plot we used
the example of the continuous action with D = 20 experimental contexts.

Evaluation metrics details As discussed in the main text, we evaluate how well
we can estimate m∗ by sampling a ground truth ψ̃ from the prior and obtaining a corresponding ground truth m̃∗. We
approximate the max-values m∗ empirically using 2000 posterior samples of ψ We similarly estimate ψ using 2000 posterior
samples. We define the optimal action under the posterior model to be the average (with respect to that posterior) optimal
action when actions are continuous or UCB0 when discrete. Finally, the regret is computed as the average difference between
the true max value (from the true environment and the true optimal action) and the one obtained by applying the estimated
optimal action. We used 4000 (resp. 2000) true environment realisation for the continuous (resp. discrete) example.

A.2.1. DISCRETE ACTIONS EXAMPLE

Model We first give details about the toy model we consider in Figure 2. Each of the four treatments a = 1, 2, 3, 4 is a
random function with two parameters ψk = (ψk,1, ψk,2) with the following Gaussian priors (parameterised by mean and
covariance matrix):

ψ1 ∼ N
((

5.00
15.0

)
,

(
9.00 0
0 9.00

))
ψ2 ∼ N

((
5.00
15.0

)
,

(
2.25 0
0 2.25

))
(14)

ψ3 ∼ N
((

−2.0
−1.0

)
,

(
1.21 0
0 1.21

))
ψ4 ∼ N

((
−7.0
3.0

)
,

(
1.21 0
0 1.21

))
(15)

and reward (outcome) likelihoods:

y|c,a, ψ ∼ N (f(c,a, ψ), 0.1) (16)

f(c,a, ψ) = −c2 + β(a, ψ)c+ γ(a, ψ) (17)
γ = (ψa,1 + ψa,2 + 18)/2 (18)
β = (ψa,2 − γ + 9)/3 (19)

Intuition about the parameterisation: The first component of each ψi defines the mean reward at context c = −3, while the
second one defines the mean reward at context c = 3. The reward is then the quadratic equation that passes through those

14



CO-BED: Information-Theoretic Contextual Optimization via Bayesian Experimental Design

Table 3. Discrete treatments example: 10D design, stability across training seeds

Method EIG estimate MSE(m∗) Hit rate(A) Regret

UCB0.0 1.740 ± 0.003 2.709 ± 0.058 0.500 ± 0.005 1.150 ± 0.017
UCB1.0 2.508 ± 0.002 0.993 ± 0.016 0.498 ± 0.004 1.140 ± 0.007
UCB2.0 2.505 ± 0.006 0.991 ± 0.023 0.497 ± 0.003 1.145 ± 0.015
Thompson 4.536 ± 0.173 0.773 ± 0.127 0.500 ± 0.003 1.148 ± 0.018
Random 3.573 ± 0.333 2.369 ± 0.382 0.502 ± 0.003 1.166 ± 0.008

Ours 4.769 ± 0.048 0.628 ± 0.025 0.502 ± 0.005 1.160 ± 0.021

Table 4. Continuous actions: 40D design training stability. Mean and standard error are reported across 6 different training seeds.

Method EIG estimate MSE(m∗) MSE(A) Regret

Random0.2 5.548 ± 0.044 0.0037 ± 0.0002 0.451 ± 0.033 0.083 ± 0.004
Random1.0 5.654 ± 0.128 0.0031 ± 0.0004 0.343 ± 0.044 0.069 ± 0.006
Random2.0 5.118 ± 0.163 0.0045 ± 0.0003 0.498 ± 0.032 0.086 ± 0.004
UCB0.0 5.768 ± 0.002 0.0066 ± 0.0002 0.729 ± 0.022 0.082 ± 0.001
UCB1.0 5.892 ± 0.006 0.0031 ± 0.0001 0.354 ± 0.013 0.068 ± 0.001
UCB2.0 5.797 ± 0.004 0.0030 ± 0.0001 0.343 ± 0.011 0.071 ± 0.001
Thompson 6.184 ± 0.004 0.0017 ± 0.0001 0.161 ± 0.007 0.051 ± 0.001

Ours 6.538 ± 0.008 0.0013 ± 0.0001 0.131 ± 0.006 0.042 ± 0.0001

points and the leading coefficient is equal to −1.

Experimental and evaluation contexts We use experimental and evaluation contexts of the same sizes. The experimental
context, c is an equally spaced grid of size 10 between −3 and −1. We set the evaluation context c∗ = −c. Figure 2 in the
main text visually illustrates this: the x-axis of the points in each plot are the experimental contests, while the dashed gray
lines are the evaluation contexts.

Further results Table 2 shows all the evaluation metrics for the discrete treatment example from the main text. Our
method achieves substantially higher EIG and lower MSE for estimating the max-rewards. On all other metrics, all methods
perform similarly. This is to be expected since Treatments 1 and 2 have exactly the same means and due to the way the
model was parameterised (by the value of the quadratic at contexts 3 and -3), the probability of the optimal treatment being
1 or 2 is exactly 50% (the hit rate all baselines achieve). Note that UCB1 and UCB2 achieve statistically identical results,
which is expected given they select the same designs.

Training stability We perform our method with the same hyperparameters but different training seeds and report the mean
and standard error in Table 3.

A.2.2. CONTINUOUS TREATMENT EXAMPLE

Model For the continuous treatment example we use the following model:

Prior: ψ = (ψ0, ψ1, ψ2, ψ3), ψi ∼ Uniform[0.1, 1.1] iid (20)

Likelihood: y|c,a, ψ ∼ N (f(ψ,a, c), σ2), (21)

where

f(ψ,a, c) = exp

(
−
(
a− g(ψ, c)

)2
h(ψ, c)

− λa2

)
g(ψ, c) = ψ0 + ψ1c+ ψ2c

2 h(ψ, c) = ψ3. (22)

The parameter λ is a cost weight, we set λ = 0.1 in our experiments.
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Table 5. Continuous actions: 20D design to learn about 19 evaluation contexts.

Method EIG estimate MSE(m∗) MSE(A) Regret

Random0.2 4.262 ± 0.004 0.0086 ± 0.0003 1.046 ± 0.041 0.120 ± 0.002
Random1.0 4.264 ± 0.004 0.0068 ± 0.0003 0.799 ± 0.033 0.114 ± 0.002
Random2.0 4.116 ± 0.003 0.0083 ± 0.0003 1.002 ± 0.044 0.127 ± 0.003
UCB0.0 5.093 ± 0.004 0.0074 ± 0.0004 0.800 ± 0.047 0.097 ± 0.002
UCB1.0 5.040 ± 0.004 0.0072 ± 0.0004 0.764 ± 0.041 0.097 ± 0.002
UCB2.0 5.038 ± 0.004 0.0048 ± 0.0003 0.573 ± 0.033 0.086 ± 0.002
Thompson 4.924 ± 0.045 0.0055 ± 0.0004 0.547 ± 0.054 0.093 ± 0.003

Ours 5.642 ± 0.003 0.0034 ± 0.0002 0.065 ± 0.002 0.034 ± 0.027

Table 6. Continuous treatment example: 60D design to learn about 59 evaluation contexts.

Method EIG estimate MSE(m∗) MSE(A) Regret

Random0.2 6.033 ± 0.003 0.0026 ± 0.0001 0.307 ± 0.019 0.068 ± 0.002
Random1.0 5.877 ± 0.004 0.0025 ± 0.0002 0.310 ± 0.023 0.064 ± 0.002
Random2.0 6.153 ± 0.003 0.0022 ± 0.0002 0.226 ± 0.019 0.055 ± 0.002
UCB0.0 6.106 ± 0.003 0.0056 ± 0.0004 0.586 ± 0.045 0.077 ± 0.002
UCB1.0 6.200 ± 0.003 0.0027 ± 0.0003 0.305 ± 0.028 0.063 ± 0.002
UCB2.0 6.234 ± 0.003 0.0024 ± 0.0002 0.252 ± 0.024 0.064 ± 0.002
Thompson 6.656 ± 0.018 0.0012 ± 0.0001 0.105 ± 0.008 0.043 ± 0.001

Ours 6.932 ± 0.003 0.0007 ± 0.0001 0.069 ± 0.009 0.033 ± 0.001

Experimental and evaluation contexts The experimental context, c is an equally spaced grid of size D = 40 (or 20 or
60 in Further Results below) between −3.5 and and 3.5. The evaluation context c∗ is of size D∗ = D − 1 and consists of
the midpoints of the experimental context.

Baselines Since we have a continuous treatment, for the random baseline we consider sampling designs at random from
N (0, 0.2), N (0, 1) or N (0, 2), which we denote by Random0.2, Random1 and Random2, respectively.

Training stability We perform our method with the same hyperparameters but different training seeds and report the mean
and standard error in Table 4.

Further results We report the results of the same experiment, but with a smaller and larger batch sizes of experimental
and evaluation contexts. Table 5 shows results for an experimental batch size of 20 contexts to learn about 19 evaluation
contexts. Finally, Table 6 shows results for an experimental batch size of 60 contexts to learn about 59 evaluation contexts.

A.3. Gaussian Processes

We take c ∈ [−1, 1]2 and a ∈ [−1, 1]. We consider a GP ψ ∼ GP(0, k) where k is a radial basis kernel with length-scale 1
3 .

Observations are sampled as y|c, a, ψ ∼ N(ψ(c, a), σ2).

Formally, the confounding bias in observational data arises from the causal graph in Figure 9. Concretely, we created 100
initial observational data points; this data was then held fixed across all experiment runs and seeds. The data was created by
sampling ci

i.i.d.∼ Unif(−1, 1). To create a confounded dataset with c acting as a confounder, we take a = sign(c1)Unif(0.8, 1).
Finally, we let y = 1+ sin(π(c1 − c2))− (a− sin(π(c1 + c2)))

2. Note, this function is not used for evaluation, instead we
sample possible ground truth functions from the GP conditioned on all 100 observational data points. This allows us to
validate the robustness of our method to different ground truth functions, and is in keeping with our other experiments. For
the purely random existing data, we resample using exactly the same procedure, except a ∼ Unif(−1, 1) in this case.

The experimental context C was an evenly spaced 7× 7 grid with corners at (±1,±1). The evaluation context C∗ was an
evenly spaced 4× 4 grid with corners at (±0.8,±0.8).
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c a

y

Figure 9. The form of the causal graph that generates observational data for Section 5.2.
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Figure 10. Results from the Gaussian Process example with purely random existing data. We show the mean ±1 s.e. from 5 random seeds.

Since it is not possible to sample the infinite dimensional ψ, we instead take joint samples of ψ evaluated at
(ci, ai)

D
i=1, (c

∗
j , gk)

D∗,G
j=1,k=1 where g1, . . . , gG is a uniform grid covering [−1, 1]. From this set of joint samples, we

compute each (m∗
j )
D∗

j=1 by maximising over the grid. Sampling of the multivariate Gaussian admits pathwise derivatives,
which we utilise to optimise the design.

For the random baseline, we sample a ∼ Unif(−1, 1). For LP, we follow Groves et al. (2018) and use a penalization function
of the form 1− k0(a, a′). The kernel k0 is chosen to be a RBF kernel with the same length-scale as the kernel of the GP
model itself. We apply the same penalization scheme for the UCB + LP baseline. Table 7 details all the settings used in this
experiment.

We also performed the same experiment, but with observational c, a sampled independently and uniformly (no confounding
bias). In this case, the benefits of CO-BED are reduced (Figure 10), although it still does on par with the best of the baselines.
Likely, this is because simply ‘spreading out’ designs is a good approach in this case.

A.4. Contextual Linear Bandits

The random features ϕ(a, c) are sampled from N (0,Σa,c), where the covariance matrices are all diagonal and of the form
Σa,c = diag(10−9, . . . , 10−9, 1, 10−9, . . . , 10−9), with the position of 1 specified as follows:

• Case c = 1: (Σ1,1)11 = 1, (Σ2,1)22 = 1, (Σ3,1)33 = 1,

• Case c = 2: (Σ1,2)44 = 1, (Σ2,2)11 = 1, (Σ3,2)55 = 1,

• Case c = 3: (Σ1,3)66 = 1, (Σ2,3)77 = 1, (Σ3,3)11 = 1,

We define the following prior on the parameters ψ: ψ1:19 ∼ N (0, 1.0) iid, and ψ20 ∼ N (0, 0.1).

Experimental and evaluation contexts The experimental contexts C are sampled uniformly from {1, 2, 3}, whilst
C∗ = (1, 2, 3). We varied the design dimension 2, 5, 10, 15, . . . , 60.

Training details All experiments baselines ran for 100K gradient steps, using a batch size of 1024. We used the Adam
optimiser (Kingma & Ba, 2014) with initial learning rate 1e−3 and exponential learning rate annealing with coefficient
0.96 applied every 1000 steps. We used a separable critic architecture (Poole et al., 2019) with simple MLP encoders with
ReLU activations hidden units determined by the size of the design. Concretely, we use MLPs with sizes [input dim,
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Table 7. Parameter settings for the Gaussian Process experiment.

Parameter Value
Intrinsic context dimension 2
Intrinsic treatment dimension 1
Experimental batch size, D 49
Evaluation batch size, D∗ 16
RBF kernel length-scale 1

3
Observation noise σ 0.1
Treatment grid size 128
Number of training steps 50000
Initial learning rate 0.001
Learning rate decay factor 0.96
Training batch size 2048
Critic encoding dimension 32
Critic hidden dimension 256
Number of ground truth evaluation functions 3000

2×input dim, 4×input dim, input dim], where input dim is equal to D (resp. D∗) for encoding the outcomes
y (resp. max-values m∗).

We added batch norm to the critic architecture, which helped to stabilize the optimisation. Additionally, for the Gumbel–
Softmax policy, we started with a temperature τ = 5.0 and hard=False constraint. We applied temperature annealing
every 20K steps with a factor 0.5. We switch to hard=True in the last 20K steps of training.

Note: In order to evaluate the EIG of various baselines, we train a critic network for each one of them with the same
hyperparameters as above.

A.5. Unknown Causal Graph

Structural equation modelling (Pearl et al., 2000; Pearl, 2009) is a mainstay of causal reasoning in statistics. The causal
assumptions of this experiment are captured explicitly in Figure 5. This causal graph captures the intuition that c represents
contexts that cannot be changed in the short run and a represents actions that are directly manipulated.

We consider a binary context vector c ∈ {0, 1}k indicating which business areas a customer is active in, and treatments
a ∈ [0, 1]ℓ representing investment in different promotional activities. The unobserved variable r ∈ Rk indicates the revenue
generated in each business area. The unknown component of the causal graph relates to which treatments effect which
revenue streams, with ri = ci

∑ℓ
j=1Gijθijaj where Gij is a binary causal graph and θij are linear coefficients. The latent

variables of the model are therefore ψ = {G, θ}, each a matrix of shape k× ℓ. In the prior, we sample each component of G
independently from Bernoulli(3/2k) and each component of θ i.i.d.∼ HalfNormal(1). Note that, given our set-up, any sample
of G results in the overall causal graph being acyclic, side-stepping some of the complexities of learning distributions
over causal graphs more generally (Annadani et al., 2021; Geffner et al., 2022). The total cost of treatments is simply
s =

∑ℓ
j=1 aj , and the total profit is y =

∑k
i=1 ri − s+ ϵ where ϵ is sampled ϵ ∼ N(0.252).

At design time, we create a random experimental context C ∈ {0, 1}D×k. We fix D = 200, k = 8 and sample each
component of the context from Bernoulli(0.5). This context is sampled once and fixed across seeds and baselines, to focus
differences on quality of experimental design.

For CO-BED, we represent a in logit space, and use an initialization of N(0, 1). We can compute conditional maximum
rewards m∗ | c∗, G, θ using the formula

uj := −1 +

k∑
i=1

ciGijθij , a∗j =

{
1 if uj > 0,

0 otherwise
, m∗ =

ℓ∑
j=1

(
k∑
i=1

ciGijθija
∗
j

)
− a∗j . (23)

For the random baselines, we restricted ourselves to designs placed at the extrema, i.e. a ∈ {0, 1}ℓ. Since the functional
relationships in the model are linear, using only extreme values is likely to substantially improve the quality of the baseline.
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Table 8. Parameter settings for the Unknown Causal Graph experiment.

Parameter Value
Intrinsic context dimension, k 8
Intrinsic treatment dimension, ℓ 5, 10, 15, 20, 25
Experimental batch size, D 200
Experimental context sampling probability 0.5
Evaluation batch size, D∗ 255
Observation noise scale 0.25
Graph prior probability 3

16
Linear coefficient prior HalfNormal(1)
Random baseline probability p 0.667, 0.75, 0.833
Number of training steps 400000
Initial learning rate (critic) 3× 10−6

Initial learning rate (design) 3× 10−5

Learning rate decay factor 0.998
Training batch size 4096
Critic encoding dimension 256
Critic hidden dimension 512
Number of ground truth evaluation functions 10000

We sampled the baseline design components independently from Bernoulli(p) for various values of p. The UCB designs
were computed by first calculating upper confidence bounds on each entry of G⊙ θ (here, ⊙ indicates the Hadamard, or
element-wise, product).

At evaluation time, we created a systematic evaluation context C ∈ RD∗×k that consists of all D∗ = 2k − 1 non-zero
binary context vectors of length k. This means that our evaluation is ‘comprehensive’ in the sense that it covers all possible
contexts that might be observed. With our choice k = 8 we have D∗ = 255, which is slightly larger than the total number
of experiments D = 200.

Our standard approach for evaluation is to first sample a ground truth ψ∗ from the prior, sample experimental outcomes
c ∼ p(y|C,A, ψ∗), and then compute the posterior p(ψ|y,C,A). However, in this case, computing this posterior
constitutes solving a partial causal discovery problem on an adjacency matrix of size k × ℓ; doing this accurately is an area
of ongoing active research. Instead, we substitute the posterior calculation for a point estimate. We begin by observing that
y + s =

∑
i,j ciGijθijaj + ϵ can be interpreted as a linear model with coefficient equal to the pointwise product G⊙ θ and

covariates given by the outer product of a and c. We therefore estimate G⊙ θ by fitting a Lasso (Tibshirani, 1996) to the
data that was sampled under ψ∗. The Lasso has a long history in causal discovery, and is considered a robust approach to
estimating the causal parents (Friedman et al., 2008; Shortreed & Ertefaie, 2017). We select the Lasso penalty weight α
using cross validation independently for each run. Our results appear to accord very well with the ground truth graphs and
optimal actions, particularly at lower dimensions, indicating that our approach to approximate causal discovery is suitable in
this case.

Figure 11 shows additional metrics from our experiment. Interestingly, we see that CO-BED does not outperform other
methods on the EIG metric, despite this being the objective that is directly optimised. We believe that this finding is related
to the EIG objective for these large scale experiments being near to its maximum value of log(4096) = 8.318. It is not
possible to exceed this bound without increasing the batch size further. Secondly, for the baselines, the critic can fully adapt
to a fixed design throughout 400000 training iterations, whereas for CO-BED, the critic has to adapt to a design that changes
during training, and is therefore likely to improve further with yet longer training. This experiment shows convincingly
that the InfoNCE objective can give good training gradients for experimental designs even when it is close to saturation at
log(batch size). Finally, Table 8 details the settings used in our experiment.
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Figure 11. Additional metrics from the Unknown Causal Graph experiment. Plots show the mean ±1 s.e. from 5 seeds.
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