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Abstract
Medical studies frequently require to extract the
relationship between each covariate and the out-
come with statistical confidence measures. To
do this, simple parametric models are frequently
used (e.g. coefficients of linear regression) but
usually fitted on the whole dataset. However, it is
common that the covariates may not have a uni-
form effect over the whole population and thus a
unified simple model can miss the heterogeneous
signal. For example, a linear model may be able
to explain a subset of the data but fail on the rest
due to the nonlinearity and heterogeneity in the
data. In this paper, we propose DDGroup (data-
driven group discovery), a data-driven method to
effectively identify subgroups in the data with a
uniform linear relationship between the features
and the label. DDGroup outputs an interpretable
region in which the linear model is expected to
hold. It is simple to implement and computation-
ally tractable for use. We show theoretically that,
given a large enough sample, DDGroup recovers
a region where a single linear model with low
variance is well-specified (if one exists), and ex-
periments on real-world medical datasets confirm
that it can discover regions where a local linear
model has improved performance. Our experi-
ments also show that DDGroup can uncover sub-
groups with qualitatively different relationships
which are missed by simply applying parametric
approaches to the whole dataset.

1. Introduction
In scientific and medical analyses, simple parameteric mod-
els are frequently fit to data to draw qualitative or quantita-
tive conclusions about the relationships between different
variables of interest. Typically, a single interpretable model
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is fit on the entire dataset, implicitly assuming that there
are uniform relationships between the covariates and target
variable across the whole population. In practice, the data
may instead come from a heterogeneous population, where
different subgroups of the population may obey qualitatively
different trends.

For example, suppose we fit a linear model with features
including several patient biomarkers, as well as blood con-
centration of a particular drug, to predict blood pressure.
After fitting the model to the whole dataset, we find that
there is a statistically signficant negative coefficient on the
drug concentration. We may be tempted to conclude that
this drug should be administered to a general patient in order
to reduce blood pressure. However, there may be a small
subgroup in the data (say, patients over the age of 80) for
whom the drug actually increases blood pressure. In this
case, naively fitting a single model to the entire dataset not
only reduces our predictive accuracy, it also leads to adverse
outcomes for this subgroup of the population.

Modern high-capacity models such as neural networks can
help to avoid this problem as they represent a much richer
function class. However, these models are often inherently
difficult to interpret, making them unsuitable if the primary
goal is to draw scientific or clinical conclusions about the
data rather than simply having good predictive performance.
This motivates our desire to find interpretable regions in the
data where interpretable models (such as linear regression)
perform well. We call this the subgroup selection problem.

1.1. Our Contributions

In this work, we consider a flexible formalization of the
subgroup selection problem. We propose an general algo-
rithmic framework and a specific instantiation, DDGroup
(data-driven group discovery), for data-driven subgroup se-
lection. We prove that DDGroup has desirable theoretical
properties, and results on synthetic and real data show the
effectiveness of DDGroup in practice.

1.2. Related Work

Subgroup identification is an important topic in biostatistics
(Lipkovich et al., 2017). Here, the main focus is on identi-
fying subsets of the population with a significant beneficial
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treatment effect from a new drug or procedure. Common
approaches include global outcome modeling, in which the
user models the patient response with and without treatment
separately, then reconstructs the treatment effect from these
models; global treatment modeling, in which the user mod-
els the treatment effect directly; and local modeling, where
the user tries to identify a region with a strong positive
treatment effect. Of these approaches, our method is most
closely related to the local modeling approach. However,
existing local modeling methods typically use tree-based
greedy approaches to region selection which do not come
with any guarantees (Lipkovich et al., 2017).

In the knowledge discovery in databases (KDD) community,
the problem of subgroup discovery has been studied more
extensively; see (Atzmueller, 2015) and (Song et al., 2016)
for surveys. In its most general form, subgroup discovery
in this community refers to finding regions of the data with
“interesting” properties, typically quantified by the use of
a score function. For instance, a basic subgroup discovery
method may try to find regions of the data where the mean
or distribution of some target features are markedly different
from the rest of the data. Later work has addressed more
complicated tasks such as finding regions with exceptional
regression models (Duivesteijn et al., 2012) or regions in
which some pre-specified ML model works well (Sutton
et al., 2020). Subgroups in this context are often specified
by a pattern, which in the KDD literature refers to (usually
pre-defined) selector variables. For instance, these could be
some pre-defined thresholds on the features. Selection of
the best subgroup with respect to the chosen score function
then typically proceeds via either an exhaustive or greedy
search over the valid patterns. The existing literature does
not provide theoretical guarantees on the correctness of
the selected subgroup. In contrast, we provide an efficient
algorithm (not requiring exhaustive search) with provable
guarantees and with data-driven (rather than pre-defined)
selection criteria.

Our problem framework also has connections to list-
decodable learning (Charikar et al., 2017), specifically
list-decodable linear regression (Karmalkar et al., 2019;
Raghavendra and Yau, 2020). In the list-decodable set-
ting, we assume that an α fraction of the data come from a
“trusted” source which we are trying to model; this would
correspond to the subset of our data belonging to the region
we are trying to detect. The goal is to output a small list
(polynomial in α−1) which contains a model that will per-
form well on the trusted data. While an algorithm for the
list-decodable linear regression problem will return a model
that performs well for the “good” region, it does not directly
solve the problem of actually finding this region itself.

Piecewise linear regression is another method for adding
flexibility to linear models while preserving interpretability.

Here, the assumption is that the response is a piecewise
linear function of the covariates. Early works focused on the
one-dimensional covariate case (Vieth, 1989), and recently
methods have been proposed for piecewise linear regression
in higher dimensions (Siahkamari et al., 2020; Diakonikolas
et al., 2020). Unlike the piecewise linear setting, we make
no assumptions on the regression function outside of the
“good” region which we are trying to detect.

Our work is also similar in spirit to previous works on con-
ditional linear regression (Juba, 2017; Calderon et al., 2020).
In this setting, the goal is also to find the largest possible
subset of the data for which there is an accurate linear model.
However, similar to many methods from the KDD literature,
the subgroup identification in this case is made in terms of
pre-defined binary features, which are assumed to be pro-
vided with the data in addition to the regressor variables.
While one could instantiate our problem by defining the bi-
nary inclusion variables as indicators of whether or not each
regressor is above or below a certain threshold, doing so
would result in exponentially many possible selection rules
and will therefore be computationally intractable for our
setting. One can also view our work as finding data-driven
binary inclusion labels for the conditional linear regression
problem.

A core element of our problem setting is in selecting a re-
gion which avoids certain “bad” points. Related problems
have been extensively studied in the computational geome-
try community (Dobkin et al., 1988; Backer and Keil, 2010;
Dumitrescu and Jiang, 2013), but even approximate algo-
rithms for solving related problems are not practical for high
dimensions, and indeed even some seemingly simple region
selection problems can be shown to be NP hard (Backurs
et al., 2016). We propose tractable alternatives and show
that they have desirable properties both theoretically and
empirically.

As we seek to learn a subset of the data on which we are
willing to make predictions, our work is connected to the
literature on learning with rejection (Cortes et al., 2016) or
learning to defer (Madras et al., 2018; Mozannar and Sontag,
2020; Keswani et al., 2021), in which a model is given
the option not to make a prediction. These works focus
primarily on classification and decide whether or not to
make a prediction on individual data point via thresholding
model confidence. While this implicitly defines a subgroup
on which we expect the model to perform well—namely, the
points for which the model does not defer—, this subgroup
will typically be uninterpretable (if the model is a neural
network). If logistic regression is used, the subgroup will be
the complement of a slab between two parallel hyperplanes,
which may be considered interpretable but is fairly inflexible
in terms of the region selected. (Wiener and El-Yaniv, 2012)
also considered a similar model in the regression setting,
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where the learner must simultaneously learn a regression
function f and a selection function g which specifies the
group of points on which to make predictions. Similar to
learning with rejection, in this case, the subgroup is defined
implicitly via g and in general will not be interpretable. In
our setting, we focus on the regression problem and on
explicitly defining an interpretable region in which we will
not defer.

2. Problem Setup
The general subgroup selection problem can be formulated
as follows. Let Z = X × Y denote the sample space,
F ⊆ YX denote a class of functions (e.g. linear regression
models), and let ` : Y×Y → R be a loss function measuring
the performance of our model. We will always haveX ⊆ Rd
and Y ⊆ R. Our goal is to find a (interpretable, large as
possible) region R ⊆ X of the feature space where the loss

argmin
f∈F

E[`(y, f(x)) | x ∈ R]

is small. In order to satisfy the interpretability criterion, we
will consider regions R which are axis-aligned boxes. This
corresponds to a subgroup where each feature lies within
a specified range (corresponding to the sides of the axis-
aligned box). The algorithm we develop also easily allows
the user to control the tradeoff between the size of the region
and the loss of the selected model within the region.

For this paper, we will specify the function class F to be
linear models and the loss `(y, ŷ) = (y − ŷ)2 to be the
squared loss. For our theoretical results, we will assume
that there exists a “good” region R∗ ⊆ X where the linear
model is well-specified with low conditional variance of y|x.
In particular, we will assume that when x ∈ R∗, we have
y|x ∼ N (x>β, σ2) for some coefficients β. In this case,
the goal will be to recover R∗.

3. Algorithmic Framework
We introduce an algorithmic framework with three distinct
phases.

• Phase 1: Compute a rough approximation to the re-
gression function in the good region.

• Phase 2: Using the approximate fit, define labels
`i for each point in the training data, where `i ≈
1{xi could not reasonably belong to R∗}.

• Phase 3: Find a large region which contains no re-
jected points.

In this work, we give specific implementations of each phase,
but we note that this general framework is modular and can

likely be modified to work in other settings (e.g. classifica-
tion or survival analysis).

In Phase 1, we find a “core set” of points which should
belong to the good region, then fit a model to these points.
For Phase 2, we reject points by thresholding the residuals
from the model found in Phase 1. For Phase 3, we remark
that even if it is known which points should be included or
excluded from the region, actually computing the largest
region consistent with these points is NP hard, even if we re-
strict ourselves to axis-aligned boxes (Backurs et al., 2016).

Phase 1: We denote a dataset D = (X,Y ) to be a collec-
tion of n feature vectors (collected in X ∈ Rn×d) and corre-
sponding labels (collected in Y ∈ Rn). Here KNN(x, k,D)
denotes the k nearest neighbors of x (and their correspond-
ing labels) in the dataset D, OLS(D) denotes the output
of ordinary least squares on feature matrix X and response
vector Y , and MSE(β̂,D) denotes the mean squared error
of linear model β̂ on the data X,Y .

The pseudocode for selecting the core group is provided
in Algorithm 1. Given a choice of core group size k, for
each datapoint, we fit a local model to that point’s k nearest
neighbors. We then select the group of points with the
lowest training error of its local model as the core group.

Algorithm 1 COREGROUP(k,D)

input Core group size k, dataset D
MSE∗ ←∞
for (x, y) ∈ D do
Dnbhd = (Xnbhd, Ynbhd)← KNN(x, k,D)

β̂ ← OLS(Xnbhd, Ynbhd)

if MSE(β̂,Dnbhd) < MSE∗ then
Dcore ← Dnbhd
MSE∗ ← MSE(β̂,Dnbhd)

end if
end for

output Dcore

Phase 2: For our theoretical results, we use the threshold

ρgrow
σ,n = 2.1σ

√
log n. (1)

Here n is the size of the training set. The inclusion labels
`i are then computed as `i = 1{|yi − β̂>xi| ≥ ρgrow

σ,n }. We
define the set of rejected points Xrej = {xi ∈ X | `i = 1}.
For our empirical results, the threshold will be considered
as a hyperparameter and chosen using a validation set. For
more detail, refer to Section 5.

Phase 3: Let U ⊆ Rd. We define the directed infinity
norm ‖x‖U,∞ by

‖x‖U,∞ = max
u∈U

x>u.
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We note that for many sets U , ‖ · ‖U,∞ may not be a norm,
nor even a seminorm. In what follows, U will initially be
defined as U = {±ei}di=1, in which case ‖ · ‖U,∞ = ‖ · ‖∞
coincides with the usual infinity norm on Rd. We will then
gradually remove directions which are no longer relevant to
consider.

The region will be described in terms of linear constraints.
We will overload notation and use a set R = {(ui, ai)}mi=1

of constraint directions and values to denote the region
R = {x ∈ B : x>ui ≤ ai}.

The pseudocode for the growing box is provided in Algo-
rithm 2. When U = {±ei}di=1, Algorithm 2 begins ex-
panding an `∞ ball centered at x̄ with each side growing
at an equal rate. Whenever one of the sides runs into a re-
jected point, we add the corresponding linear constraint and
continue growing the other sides of the box. (The directed
infinity norm is what we use to measure which point will
collide with the box next. For a discussion on the geometric
intuition for this step, see Appendix A.) This continues until
all sides of the box have a support point, or there are no
points left to constrain the box.

Note that the setU simply specifies the normal vectors to the
sides of the constraint polytope. The lengths of these vec-
tors effectively determine the speed at which the constraint
region will grow in that direction. By changing U , this
method can select polytopes of any desired shape. Since
axis-aligned boxes provide easily interpretable inclusion
criteria, we use such regions for all of our experiments.

Algorithm 2 GROWBOX(x̄, Xrej, U)

input Starting point (center) x̄, rejected points Xrej, normal
vectors defining the shape of the selected region U
Xrej ← Xrej + {−x̄} {Center the points at x̄. + denotes
Minkowski sum.}
R̂← ∅
while Xrej 6= ∅ do
x∗ ← argminx∈Xrej

{‖x‖U,∞}
a∗ ← ‖x∗‖U,∞
u∗ ← argmaxu∈U{u>x∗} {u∗ is the next support
direction for the polytope}
Add (u∗, a∗) to R̂
Remove u∗ from U
Xrej ← {x ∈ Xrej | x>u∗ < a∗}

end while
output R̂+ {x̄} {Undo the centering procedure from the

first part of the algorithm.}

Combining Phases 1-3 gives an algorithm for automatic
subgroup selection. We summarize the entire pipeline in
Algorithm 3. Note that if the variance σ2 is not known, we
can replace it with a standard unbiased estimate computed
on the core group.

We also remark that after R̂ has been selected, rather than
using the coefficients β̂ fit just to the core group, we can
also choose to re-fit β̂ on all of the training points contained
in R̂. We use this additional step in our experiments, but it
does not affect our theoretical results.

Algorithm 3 DDSUBGROUP(k, U,D)

input Core group size k, normal vectors defining the shape
of the selected region U , dataset D

Phase 1: Find a core group and fit a coarse model.
Dcore ← COREGROUP(k,D)

β̂ ← OLS(Dcore)

Phase 2: Label which points should be excluded.
for i = 1, . . . , n do
`i ← 1{|yi − β̂>xi| ≥ ρgrow

σ,n }
end for
Xrej ← {xi ∈ X | `i = 1}

Phase 3: Approximate R∗.
x̄← MEAN(Xcore)
R̂← GROWBOX(x̄, Xrej, U)

output R̂

Runtime The runtime of DDGroup as described by Algo-
rithm 3 isO(kn log n). We treat the dimension as a constant.
After constructing a K-D tree in O(n log n) time, the k-
nearest neighbors of a point can be found in timeO(k log n).
Computing the OLS fit on k points in constant dimension
takes O(k) time, making the runtime for each step of the
core group search O(k log n) since we do not need to re-
compute the K-D tree for each of these steps. This step is
repeated n times, once for each candidate core group. The
box expansion requires onlyO(n) work once the core group
has been determined, thus the overall runtime for the algo-
rithm is O(n log n) +O(kn log n) +O(n) = O(kn log n).
While this is only the cost of a single run of DDGroup, these
runs can easily be parallelized, making DDGroup highly
efficient even for large datasets and large hypeparameter
searches.

4. Theoretical Guarantees
In this section, we examine some of the theoretical proper-
ties of DDGroup. All proofs are deferred to Appendix D.
In what follows, “with high probability” means with proba-
bility approaching 1 as n, k →∞. We make the following
assumptions.

1. The samples (xi, yi)
iid∼ P for a probability distribution

P on Z . We let S = supp(x) denote the support of the
marginal distribution of the features.
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2. The features x are bounded: ‖x‖ ≤ B deterministi-
cally.

3. The marginal distribution of x has a density f with
respect to the Lebesgue measure. Furthermore, the
density is bounded from above and below on the sup-
port of x: 0 < cf ≤ f(x) ≤ Cf < ∞ for all x ∈ S.

4. There is a region R∗ ⊆ S in which the linear model
holds. That is, conditional on x ∈ R∗, y is generated
according to the linear model: x ∈ R∗ ⇒ y|x ∼
N (x>β∗, σ2) for some fixed β∗.

5. The region R∗ is an axis-aligned box with nonempty
interior, i.e. R∗ =

∏d
i=1[ai, bi] for some ai < bi.

6. Conditional on x 6∈ R∗, y is Gaussian with variance at
least σ2

0 , where σ0 ≥ Cσ for some absolute constant
C.

The lower bound in Assumption 3 ensures that the samples
will cover the sample space (so that we can detect R∗).
The upper bound prevents degeneracies, e.g., if the feature
distribution contains atoms with large enough mass, the
KNN of certain points may contain many copies of a single
point. Assumption 4 ensures that our model is well-specified
on R∗. Assumption 6 ensures that R∗ is in fact the “best”
region for us to select, namely, there is no other region where
we can have better predictive power. This condition also
ensures that the random fluctuations in yi are large enough
to be detected by the test. We remark that the absolute
constant C is no greater than 50, but we have made no effort
to optimize this constant in our analysis and it can certainly
be reduced.

Our first result shows that almost all of the group selected
by Algorithm 1 lies in R∗.
Lemma 4.1. The core group selected by Algorithm 1 has
Xcore \R∗ = o(k) with high probability.

The next result states that we will not erroneously reject any
points that actually belong to R∗.
Lemma 4.2. Let Xcore be the core group selected by Al-
gorithm 1 and let β̂ be the OLS estimator fit to Xcore. Let
Xrej be the set of rejected points defined by the thresholding
procedure in Phase 2. With high probability, none of the
points in Xrej belong to R∗.

Combining Lemmas 4.1 and 4.2, we show that DDGroup
precisely recovers R∗ given sufficient data.
Theorem 4.3. As n → ∞, there exist positive scalars
{s±j }dj=1 and a constant c > 0 such that if U =

{s+j ej ,−s
−
j ej}dj=1 and k = Ω(n) with k ≤ cn, Algo-

rithm 3 returns R̂ with R∗ ⊆ R̂ with high probability. Fur-
thermore, vol(R̂ \R∗)→ 0.

We remark that the scalars s±j can depend on the dataset and
the constant c may depend on R∗ and the other parameters
in Assumptions 1-6.

As an immediate corollary to Theorem 4.3, we see that
under slightly modified assumptions, DDGroup can be used
to find multiple subgroups in the data by iteratively applying
Algorithm 3.

Corollary 4.4. Suppose that Assumptions 1-6 hold, but
instead of a single region R∗, there are multiple disjoint
regions Rg, g = 1, . . . , G where for x ∈ Rg, y|x ∼
N (β>g x, σ

2
g). Furthermore, assume that Assumption 6 holds

with σ0 > Cσg whenever the xi 6∈
⋃G
g=1Rg. Let R̂g,

g = 1, . . . , G be the outputs after running Algorithm 3 G
times, removing the training points which are contained in
R̂g after the g-th run. Then under the same conditions as in
Theorem 4.3, we have Rg ⊆ R̂g and vol(R̂g \Rg)→ 0 for
all g.

5. Experiments
In this section, we evaluate the performance of DDGroup
on both synthetic and real-world medical datasets.

Methods for Comparision We compare DDGroup with
several other baselines.

1. Standard linear regression, i.e., a linear model fit to the
whole dataset. It is equivalent to the situation where
the selected region includes all of the data and it is the
method employed by the original medical studies on
the real-world datasets we consider.

2. An unsupervised clustering method. Here we use k-
means clustering and identify the cluster with the small-
est MSE as the most coherent subgroup. We use the
bounding box defined by the selected subgroup as the
interpretable inclusion criteria.

3. Linear model trees. These are decision trees with a
linear regression model in each leaf (Wang and Witten,
1996; Potts and Sammut, 2005). Though LMT is not
designed for subgroup identification, we can still use
its decision path as a way to select cohorts. In order to
identify the most coherent subgroup, we pick the leaf
of the LMT with the smallest MSE.

Experiment Setup For the real-world datasets, we ran-
domly split them into training, test and validation sets, with
ratio 50%, 30% and 20%. In each experiment, we fit the
models on the training set with a grid search over hyperpa-
rameters and select the region with lowest validation MSE.
We then refit the linear model on the training points in the
selected region and evaluate its performance on the test
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set. For DDGroup, we used a more general form of the
threshold ργ1,γ2(xi) = σγ1‖xi‖ + σγ2 and tuned γ1 and
γ2 as additional hyperparameters. Specifically, the algo-
rithm works well by simply setting γ2 = 0 and tuning
γ1 ∈ {2−4, 2−3, . . . , 25}. We also set the size k of the core
group equal to p times the size of the training set, where
p was selected from within {0.01, 0.05, 0.1, 0.15, 0.2}. We
also tried two different “speed” settings for Algorithm 2:
the sides of the box either grow all at the same rate, or each
side grows at a rate proportional to the length of the bound-
ing box B in that dimension. For k-means clustering, the
number of clusters is a critical parameter and is scanned
from 2 to twice the dimension of the data for the best perfor-
mance. For LMT, the tree depth is an important parameter
and is scanned from 1 to the dimension of the data on the
validation set for the best performance.

5.1. Demonstration on Synthetic Data

To visualize our method and test its performance in a well-
specified setting, we construct a synthetic dataset where
the desired region to be selected is known. Let B ⊆ Rd
be the feature space, and let R∗ ⊆ B be the “true” region
that we wish to recover. The data are generated as follows.
We first sample the features x ∼ Unif(B). If x ∈ R∗, set
y = β>x + εin. Else if x 6∈ R∗, set y = εout. Here β 6=
0 ∈ Rd are the fixed true model weights for the region R∗.
The error terms εin and εout follow εin ∼ N (0, σ2

in) and
εout ∼ N (0, σ2

out) with σin < σout. We set the dimension
d = 3 so that the selected region can be easily visualized.
(The third dimension just allows us to incorporate a bias
term, so we will only visualize two dimensions.) We define
the bounding box for the features B = [−1, 1]2 × {1} and
the true region R = [−1/3, 1/3]× [−2/3, 2/3]× {1}, and
we generate n = 1000 data points.

Figure 1a shows the results of running Algorithm 3 on this
synthetic data. The gray shaded region is R∗. The red “x”
(resp. blue “o”) markers denote points that were rejected
(resp. not rejected) by the threshold (1), and the green
rectangle shows the boundary of R̂ returned by DDGroup.
There is a nearly perfect overlap between R∗ and R̂, mean-
ing DDGroup is able to precisely recover the true region.
In contrast, the green rectangles in Figure 1b and Figure 1c
shows the region selected by k-means clustering and LMT.
The k-means clustering method erroneously excludes points
within the correct subgroup, while LMT tends to select
points outside of R∗.

Figure 1d shows the robustness of DDGroup to a misspeci-
fied core group. We replace the output of Algorithm 1 with
a manually supplied set of points. We start by providing
a core group whose center coincides with that of R∗. The
x-axis of the plot denotes the offset of this initial core group:
at position x on the plot, the center of the core group has

been shifted by (x, x). Because we grow the sides of R̂ at
the same speed, it becomes harder to recover the full R∗

when the center of the core group is closer to the edge of
R∗ (larger x value on the plot). We plot three quantitites:

• Precision = vol(R̂ ∩R∗)/ vol(R̂),

• Recall = vol(R̂ ∩R∗)/ vol(R∗), and

• F1 score.

The vertical dashed black line denotes the point at which
the core group starts to include points which do not belong
to R∗. The vertical dashed red line denotes the point at
which the center of the core group (and thus the base point
from which we grow R̂) lies outside of R∗. We see that
DDGroup is quite robust to the location of the core group
within R∗. However, once “bad” points are included in the
core group, the performance (in particular the recall) begins
to drop sharply. The precision is more robust to core group
misspecification, remaining well above the baseline of 0.22
(which is equivalent to selecting the whole region) even
when the core group is more than 50% misspecified.

Table 1 shows the performance of different methods (mea-
sured by F1 score) vs. sample size. DDGroup has a statisti-
cally significant performance improvement compared to the
other methods for all sample sizes. LMT eventually iden-
tifies most of the correct region, but it is much less sample
efficient than DDGroup. Increasing the sample size does
not appear to help for the clustering method.

5.2. Evaluation on Real-World Datasets

We further evaluate our method on five real-world medical
related datasets, where linear coefficients were used for
interpretation in their original publications.

1. Brazil Health Dataset (Cavalcante et al., 2018) is from
a longitudinal ecological study for 645 municipalities
in the state of São Paulo, Brazil. The study uses a
linear model to identify key features for hospitalization
of heart failure (HF) and strokes.

2. China Glucose Dataset (Wang et al., 2017) consists of
5,726 female (F) and 5,457 male (M) Chinese individ-
uals with normal glucose tolerance. The study uses
linear model to describe the relationship between fast-
ing plasma glucose and serum uric acid levels (SUA).

3. China HIV Dataset (Zhang et al., 2016) consists of
2,987 participants living with HIV from Guangxi
province, China. The study uses linear regression to
study how routes of HIV infection affect the HIV inter-
nalized stigma scale, adjusted by patients’ characteris-
tics.
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Figure 1. Demonstration on synthetic dataset. (a-c) The region selected by (a) DDGroup, (b) k-means clustering and (c) linear model tree.
The grey shaded area denotes the correct subgroup and the green box corresponds to the learned boundary. For k-means clustering, the
number of clusters is searched from 2 to 10, and the bounding box for the cluster with smallest MSE is reported in (b). The depth of LMT
is searched from 1 to 10, and the best performance is reported in (c). (d) Robustness of DDGroup to core group misspecification. The
shaded region shows standard error of the mean over 50 trials. The black dashed line denotes the point at which “bad” points are included
in the core region. The red dashed line denotes the point at which the center of the supplied core set is outside of R. The y-axis records
precision, recall, and F1 score (higher is better).

Table 1. Performance on single subgroup identification for k-means clustering, linear model tree, and DDGroup on synthetic datasets of
varying sizes. We report the average F1 score plus or minus the standard error of the mean over 20 trials. DDGroup outperforms the
comparison methods for all sample sizes and finds accurate results even with few samples.

n 200 400 800 1600 3200 6400 12800

DDGroup 0.73 ± 0.03 0.68 ± 0.07 0.93 ± 0.02 0.98 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00

LMT 0.23 ± 0.09 0.32 ± 0.10 0.19 ± 0.09 0.28 ± 0.10 0.48 ± 0.11 0.92 ± 0.05 0.93 ± 0.05

Clustering 0.07 ± 0.04 0.18 ± 0.07 0.02 ± 0.01 0.12 ± 0.05 0.12 ± 0.06 0.14 ± 0.07 0.11 ± 0.06

4. Dutch Drinking dataset (Boelema et al., 2015) con-
sists of the individual life survey data of alcohol use
among 2,230 Dutch adolescents. The study uses linear
regression to analyze how drinking affects adolescents’
inhibition (inh), working memory (wm) and shift atten-
tion (sha).

5. Korea Grip Dataset (Wen et al., 2017) is for the Dong-
gu study of 2,251 Korean adults with osteoarthritis
(OA). The study uses linear regression to explore the
associations between grip strength and individual ra-
diographic feature scores of OA.

Performance Evaluation for a Single Group We first
examine the case in which we try to find a single subgroup
of the data. Table 2 shows the mean test MSE and frac-
tion of test points included in the selected region (both ±
the standard error of the mean) averaged over 10 random
train/validation/test splits. DDGroup correctly identifies a
subgroup on which the linear model has low test error and
consistently outperforms the baseline methods on all five
real-world medical datasets. Across all of the datasets, it
most frequently has the lowest test MSE, and never has a test
MSE which was statistically significantly worse than any
other method. We demonstrate that there exist subgroups
within the real-world population where a linear model is a
good proxy and should be used to enhance interpretability.
Our current method focuses on finding the most coherent

region within the dataset, thus it always identifies small
subgroups with the strongest signal. If a larger subgroup
is desired, one may enforce this by selecting the best re-
gion which includes e.g. at least a certain fraction of the
validation set. In our case, we required that at least 5% of
validation was selected. We also remark that DDGroup is
computationally efficient in practice. The average runtime
for Algorithm 3 across one run of each dataset was 1.98
seconds on an AMD 7502 CPU, and no individual dataset
took longer than 10 seconds.

Performance Evaluation for Multiple Groups Next,
we examine the performance of the competing methods
when selecting multiple subgroups in the data; in this case,
we select three subgroups. We modified the DDGroup proce-
dure according to Corollary 4.4. For the other methods, we
performed a similar iterative procedure, repeatedly remov-
ing the selected subgroups from the training data. Table 3
shows the same statistics as reported in Table 2, but aver-
aged across the three selected subgroups (as well as the
random train/validation/test splits). When selecting multi-
ple subgroups, DDGroup maintains its advantage over the
other methods. As in the single group case, it usually has
the lowest test MSE and is never statistically significantly
worse than any other method.
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Case Study Here we use the China HIV Dataset to illus-
trate how DDGroup can enhance our understanding of the
data. The original study analyzes how different HIV infec-
tion routes affect the internalized stigma by fitting a mul-
tivariate linear regression model with confounders (Zhang
et al., 2016). In their main results, the blood transfusion
route is found to have positive effect on internalized stigma
(coefficient β larger than zero), but in low confidence with
a large p value. In our analysis, we observed similar be-
havior: after data standardization, the linear model fit to
the whole dataset predicts blood transfusion route to have
a positive effect on internalized stigma with β of 0.12, but
low confidence level with a p value of 0.67. On the other
hand, DDGroup identifies a subgroup of 21% of the partici-
pants where blood transfusion route has the opposite effect
on stigma (β = −1.71) with a strong signal (p = 0.006).
The selected subgroup consists of younger participants with
lower self-esteem, lower anxiety level, and less social sup-
port. The result indicates that while blood transfusion route
seems not to associate with internalized stigma in the gen-
eral population living with HIV, it is coherently associated
with lower stigma in a certain subpopulation. This seems
plausible, as the other infection routes include sex with sta-
ble partners, sex with casual partners, sex with commercial
partners, and injecting drug use. Younger participants may
have stronger feelings of shame associated with these ac-
tivities than older participants. In general, interpretation of
the learned selection rules could be of great interest in real
applications.

Before concluding the section, we remark that DDGroup
offers flexibility in choosing between the size of the selected
subgroups and the MSE of the linear model on these sub-
groups. In these experiments, we required that the selected
subgroups contain at least 5% of the validation set in order
to be considered. This threshold can easily be modified, and
in general a higher threshold will encourage the selection
of larger regions at the expense of a higher MSE. See Ap-
pendix B for more details and experiments regarding this
tradeoff.

6. Discussion
In this paper, we considered a flexible formalization of the
cohort selection problem. We proposed a general algorith-
mic framework and a specific instantiation, DDGroup, for
solving the problem, and we proved that DDGroup recovers
the correct subgroup given sufficient data. Experiments on
both synthetic and real data verify our theory and show the
practical usefulness of DDGroup.

6.1. Limitations & Future Work

While the assumption that there is a region in which the
linear model holds exactly may seem strong at first glance,

if the true regression function for the data is differentiable,
then a linear model will always hold locally. Thus, if it is ac-
ceptable to select a small group, DDGroup can still succeed
in nonlinear cases. However, if the true regression function
is highly oscillatory, these locally linear regions may be very
small, and a large amount of data will be required to find
them. Another limitation may arise in situations where there
is not a unique “best” region (or collection of best regions),
i.e., when V(y|x) is roughly the same across the whole data
space. In such cases, the regions discovered by DDGroup
may be unstable across different random splits of the data,
as there is not a strong reason for DDGroup to prefer one
region of the data over another.

There are a number of important open questions which re-
main to be addressed. If a hyperparameter search is used
with DDGroup to train a linear model (as we did with our
real data experiments), further analysis is needed to give
meaningful (but valid) p-values for the resulting model co-
efficients. For any extensive hyperparameter search, a naive
Bonferroni correction is likely to be too conservative. An-
other important question is how to extend our framework to
classification and survival analysis data.

6.2. Societal Impact

In particular if this method is used for medical applications,
safety concerns must always be paramount. Even if we
control some notion of the false discovery rate, it is conceiv-
able that the method will discover a region with a favorable
relationship between the covariates and labels that holds
only by chance, and if such a region is used to make clinical
decisions, it could lead to adverse outcomes for patients.
Thus biological plausibility and medical best practices must
always be kept in mind when applying DDGroup.
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Table 2. Performance on single subgroup identification for baseline (linear regression model on the whole data), k-means clustering, linear
model tree, and DDGroup on the real-world datasets. Here d denotes the dimension of the features, and subgroup size denotes the fraction
of the data included in the selected subgroup. We report the average results (± the standard error of the mean) for 10 runs of different
random splits.

Dataset Task d
Test MSE Subgroup Size

Baseline Clustering LMT DDGroup Clustering LMT DDGroup

Brazil
Health

HF 6 0.80 ± 0.06 0.33 ± 0.03 0.21 ± 0.02 0.04 ± 0.00 18% ± 2% 13% ± 1% 6% ± 0%
stroke 6 1.14 ± 0.22 0.21 ± 0.01 0.16 ± 0.01 0.06 ± 0.00 20% ± 2% 14% ± 1% 6% ± 0%

China
Glucose

SUA-F 11 0.83 ± 0.02 0.69 ± 0.03 0.73 ± 0.04 0.69 ± 0.06 27% ± 2% 24% ± 6% 21% ± 3%
SUA-M 11 0.94 ± 0.01 0.89 ± 0.04 0.80 ± 0.02 0.81 ± 0.04 21% ± 5% 15% ± 1% 8% ± 1%

China HIV stigma 27 0.84 ± 0.01 0.86 ± 0.08 0.83 ± 0.08 0.69 ± 0.04 6% ± 1% 18% ± 4% 21% ± 3%

Dutch
Drinking

inh 16 0.64 ± 0.01 0.56 ± 0.02 0.51 ± 0.03 0.50 ± 0.02 11% ± 1% 24% ± 5% 11% ± 2%
wm 16 0.71 ± 0.01 0.61 ± 0.02 0.56 ± 0.02 0.57 ± 0.02 11% ± 1% 18% ± 3% 9% ± 1%
sha 16 0.64 ± 0.01 0.49 ± 0.02 0.47 ± 0.02 0.42 ± 0.02 14% ± 2% 18% ± 4% 10% ± 1%

Korea Grip strength 11 0.71 ± 0.02 0.84 ± 0.13 0.92 ± 0.10 0.69 ± 0.04 7% ± 1% 33% ± 6% 20% ± 3%

Table 3. Performance on multiple subgroups identification for baseline (linear regression model on the whole data), k-means clustering,
linear model tree, and DDGroup on the real-world datasets. Here we select three subgroups (rather than a single subgroup as in Table 2)
and report the average results for the selected groups. Here d denotes the dimension of the features, and subgroup size denotes the fraction
of the data included in the selected subgroups. We report the average results for 10 runs of different random splits (± the standard error of
the mean).

Dataset Task d
Test MSE Subgroup Size

Baseline Clustering LMT DDGroup Clustering LMT DDGroup

Brazil
Health

HF 6 0.80 ± 0.06 0.42 ± 0.02 0.35 ± 0.01 0.21 ± 0.03 19% ± 1% 14% ± 0% 7% ± 1%
stroke 6 1.14 ± 0.22 0.27 ± 0.00 0.26 ± 0.01 0.15 ± 0.01 23% ± 2% 15% ± 1% 6% ± 1%

China
Glucose

SUA-F 11 0.83 ± 0.02 0.75 ± 0.06 0.82 ± 0.03 0.72 ± 0.03 29% ± 3% 16% ± 1% 14% ± 2%
SUA-M 11 0.94 ± 0.01 0.92 ± 0.02 0.88 ± 0.02 0.88 ± 0.03 15% ± 1% 16% ± 1% 14% ± 4%

China HIV stigma 27 0.84 ± 0.01 0.96 ± 0.04 0.91 ± 0.04 0.80 ± 0.04 38% ± 6% 16% ± 2% 20% ± 2%

Dutch
Drinking

inh 16 0.64 ± 0.01 0.56 ± 0.02 0.55 ± 0.01 0.49 ± 0.02 12% ± 1% 14% ± 1% 10% ± 1%
wm 16 0.71 ± 0.01 0.64 ± 0.01 0.58 ± 0.01 0.59 ± 0.01 13% ± 1% 13% ± 0% 13% ± 3%
sha 16 0.64 ± 0.01 0.52 ± 0.01 0.51 ± 0.01 0.47 ± 0.01 12% ± 1% 14% ± 1% 11% ± 1%

Korea Grip strength 11 0.71 ± 0.02 0.99 ± 0.17 0.86 ± 0.05 0.70 ± 0.07 10% ± 3% 23% ± 2% 23% ± 4%
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A. Geometric Intuition for the Directed Infinity Norm
Here we provide a concrete example of the use of the directed infinity norm in Algorithm 2. For simplicity, take U =
{±ei}di=1, where ei are the standard basis vectors for Rd. For any vector x, we have ‖x‖U,∞ = max{x[i],−x[i]}di=1,
where x[i] is the i-th component of x. Thus we see that ‖x‖U,∞ = ‖x‖∞ coincides with the standard `∞ norm in this case.
We therefore select the point x∗ with the smallest `∞ norm first. If we think of expanding an `∞ ball starting from the
origin, x∗ is the first point the surface of the ball will come into contact with as it expands.

Suppose WLOG that u∗ = e1. This means that the side of the expanding `∞ ball with outward normal in the e1 direction is
the side which “contacted” x∗. Thus any points with e>1 x > e>1 x

∗ lie past this face of the expanding box, and therefore
cannot possibly constrain any of the other sides of the box. Thus, we no longer need to consider such points.

The side of the box which was expanding in the e1 direction is no longer moving outwards. Of the remaining directions
of expansion, our goal is to find the next point that a side will come into contact with. By the same logic as before, with
U = {−e1}∪{±ei}di=2, the argmaxu∈U u

>x tells us which of the remaining faces x lies above. Therefore, argmin ‖x‖U,∞
is the point which supports one of the remaining growing faces closest to the origin, i.e., the next point of contact for the
expanding box.

B. MSE vs. Subgroup Size
As mentioned in Section 2, DDGroup offers a flexible tradeoff between subgroup size and MSE. To implement this tradeoff,
we can simply require that the selected region contains at least a proportion p of the validation set. We then select the region
with the lowest validation MSE among those regions satisfying this requirement. By varying p between 0 and 1, we can
smoothly trade off between the size of the selected subgroup (larger p) and the MSE on the selected subgroup (smaller p).

Figure 2 shows the results of this procedure. The x-axis shows the fraction of test points included in the selected region, and
the y-axis shows the test MSE of the model in that region (normalized by the MSE of the baseline model fit to the entire
dataset; lower is better). We generated these plots by choosing p ∈ {0.05, 0.1, 0.2, 0.3, . . . , 0.9, 1.0} and repeating the
experiment across 10 random train/validation/test splits for each dataset. As expected, there is a general positive correlation
between the size of the selected group (x-axis) and the MSE.

C. More Experiment Details
For the experiment in Table 1, we set R∗ = [−1/3, 1/3]2 and the bounding region B = [−1, 1]2. We also set σin = 0.3 and
σout = 5.0. For DDGroup, we did a hyperparameter search over constant rejection thresholds ρ ∈ {2, 4, 8, 16, 32, 64}. The
core group size was always chosen to be k = n/20. Rather than using the variable box growing speeds, we instead added a
“shrinkage” hyperparameter δ: in Algorithm 2, we only consider points x ∈ Xrej where x>u∗ < a∗ − δ. Geometrically,
after the growing box “collides” with a rejected point, we “shrink” that side back by δ opposite to its normal vector. We did
a hyperparameter search over δ ∈ {0.1, 0.05, 0.025, 0.01}.

For each experiment, we used 20% of the n points as a validation set to select the hyperparameters. For DDGroup, to select
the hyperparameters using the validation set, we used the following procedure. Let R̂ be the region selected by a particular
setting of the hyperparameters. Let σ̂ be an estimate of σ from the core group:

σ̂2 =
1

k − d
∑
(x,y)
x∈Xcore

(β̂>x− y)2.

Let q̂ be the 0.9-quantile of the absolute residuals on the validation set:

q̂ = inf

q :
1

k

∑
(x,y)
x∈Xcore

1{|β̂>x− y| ≤ q} ≥ 0.9

 .

We selected the hyperparameters which produced the largest region R̂ (measured in terms of volume) for which q̂ ≤ 3σ̂.

Lastly, for the LMT method on this experiment, we tuned the tree depth from 1 to twice the dimension.

Code for the experiments can be found at https://github.com/zleizzo/DDGroup.

12

https://github.com/zleizzo/DDGroup


Data-Driven Subgroup Identification for Linear Regression

0.6

0.8

1.0

1.2

Korea_grip

0.6
0.7
0.8
0.9
1.0

Dutch_drinking_inh

0.6
0.7
0.8
0.9
1.0

Dutch_drinking_wm

0.6

0.8

1.0

1.2

Gr
ou

p 
M

SE
 / 

Ba
se

lin
e 

M
SE

Dutch_drinking_sha

0.00

0.25

0.50

0.75

1.00
Brazil_health_heart

0.00

0.25

0.50

0.75

1.00
Brazil_health_stroke

0.00 0.25 0.50 0.75 1.00
0.6

0.8

1.0

1.2
China_glucose_women2

0.00 0.25 0.50 0.75 1.00
Frac. of test points incl.

0.7

0.8

0.9

1.0

China_glucose_men2

0.00 0.25 0.50 0.75 1.00
0.6

0.8

1.0

China_HIV

Figure 2. MSE vs. subgroup size selected by DDGroup. The x-axis shows the fraction of test points included in the selected region. The
y-axis shows the MSE of the model on the test points in the selected region, normalized by the test MSE of the base model on the whole
dataset. (Lower is better.) Different colored points correspond to different random training/validation/test splits on the same dataset. There
are 10 random splits in total for each dataset.
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D. Omitted Proofs
Let n be the total number of points, k the size of the core group. In what follows, ‖ · ‖ denotes the `2 norm. We will also
sometimes use x[i] to refer to the i-th component of the vector x.

X will be used to denote the design matrix of a particular group of points (usually a group of k nearest neighbors as
considered by the first phase of the algorithm), and Y will denote the vector of labels corresponding to X . We also use the
notation X ∩R∗; this refers to the matrix of rows of X which are contained in R∗.

We use the notation B(x, r) to denote the `2 ball of radius r centered at x. Finally, “with high probability” means with
probability approaching 1 as n→∞ or k →∞.

We remark briefly that we select the KNN neighborhood of a point based on the Euclidean norm. This may seem to be a
geometric mismatch with the region R∗; since R∗ is an axis-aligned box, an `∞ neighborhood (which is also an axis-aligned
box) might seem more appropriate. Since the `2 and `∞ norms are equivalent, this distinction will not make any difference
for our theoretical results. Empirically, we also do not notice much change in performance. Thus, we will use the more
familiar `2 norm for selecting the core group.

Lemma D.1. Let Zi be independent random variables with uniformly bounded fourth moments. Then

P

(∣∣∣∣∣ 1n
n∑
i=1

Zi − EZi

∣∣∣∣∣ ≥ n−1/8
)

= O(n−3/2).

Proof. This is just a generalization of the standard Chebyshev inequality, and the proof proceeds in the same way. By
Markov’s inequality, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

Zi − EZi

∣∣∣∣∣ ≥ t
)

= P

( n∑
i=1

Zi − EZi

)4

≥ n4t4
 ≤ E[(

∑n
i=1 Zi − EZi)4]

n4t4
.

Expanding (
∑n
i=1 Zi − EZi)4 and taking expectation, by linearity of expectation and independence of the Zi, the only

terms which do not vanish are of the form (Zi − EZi)4 and (Zi − EZi)2(Zj − EZj)2. There are O(n2) of all of these
terms, each with expectation bounded by O(1), so we obtain

P

(∣∣∣∣∣ 1n
n∑
i=1

Zi − EZi

∣∣∣∣∣ ≥ t
)

= O

(
1

n2t4

)
.

Substituting t = n−1/8 completes the proof.

Lemma D.2. There exists a constant c1 > 0 (which can depend on R∗, c, C,R) such that if k ≤ c1n, there exists a set of k
nearest neighbors of some point in X which is contained in R∗ with high probability.

Proof. By Assumption 5, R∗ has nonempty interior. Thus there exists a point x̄ ∈ R∗ and a radius r > 0 such that
B(x̄, r) ⊆ R∗. Consider B(x̄, r/4) ⊆ R∗. By Assumption 3, P(x ∈ B(x̄, r/4)) ≥ cf · vol(B(x̄, r/4)) ≡ p1 = Ω(1). By
Hoeffding’s inequality, we have

P

(
n∑
i=1

1{xi ∈ B(x̄, r/4)} ≤ p1n− t

)
≤ e−2t

2/n =⇒
n∑
i=1

1{xi ∈ B(x̄, r/4)} ≥ p1n−
√
n log n

2

with probability at least 1− 1/n. In particular, since p1 = Ω(1), for n large enough we have that B(x̄, r/4) contains at least
one point xi∗ with high probability.

Next, consider B(x̄, r/2). Setting p2 = cf · vol(B(x̄, r/2)), the same argument as above shows that

n∑
i=1

1{xi ∈ B(x̄, r/2) ≥ p2n−
√
n log n

2
w.p. ≥ 1− 1/n.
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In particular, if we take c1 = p2/2 = Ω(1), then k ≤ c1n implies that there are at least k points contained in B(x̄, r/2) with
high probability for n large enough. We claim that in this event, the KNN of xi∗ is contained in B(x̄, r) ⊆ R∗. This is
because for x′ 6∈ B(x̄, r), we have

‖x′ − xi∗‖ ≥ ‖x′ − x̄‖ − ‖x̄− xi∗‖ > r − r/4 = 3r/4.

However, for a point x′ ∈ B(x̄, r/2), we have

‖x′ − xi∗‖ ≤ ‖x′ − x̄‖+ ‖x̄− xi∗‖ ≤ r/2 + r/4 = 3r/4.

Thus with probability approaching 1 as n → ∞, there exists a set of k nearest neighbors contained in R∗ provided that
k ≤ c1n.

Henceforth, we will assume that k ≤ c1n.

Lemma D.3. Let u be any unit vector and define Su,r = {x ∈ X : |x>u| ≤ r}. With probability at least 1 − 1/n, we

have |Su,r| ≤ c2rn+
√

n logn
2 for some constant c2.

Proof. Since S is bounded, we have that vol(Su,r ∩ S) ≤ c′2r for some constant c′2 (which depends on the size of S).
By Assumption 3, since the density of x is bounded, this means that P(x ∈ Su,r) ≤ c2r for some constant c2. Thus by
Hoeffding’s inequality, we have that

|{x : |u>x| < r}| ≤ c2nr +

√
n log n

2
w.p. ≥ 1− 1/n

as desired.

Lemma D.4. If k = Ω(n), then with high probability, every group of k points X has σmin( 1
kX
>X) = Ω(1).

Proof. First, consider a fixed ‖u‖ = 1. For any group of k points, let X be the associated data matrix and define
A = 1

kX
>X . By Lemma D.3, we have

u>Au =
1

k

k∑
i=1

(x>i u)2

≥ 1

k

∑
i : |x>i u|≥r

(x>i u)2

≥ 1

k

(
k − c2rn−

√
n log n

2

)
r2.

Let c3 > 0 be a constant such that k ≥ c3n and define r = c3/2c2. We obtain the lower bound

u>Au ≥

1− c2rn

c3n
−

√
n logn

2

c3n

 c23
4c22

= Ω(1)

for n large enough. Let c4 = Ω(1) be a lower bound on this quantity for large n.

Observe that by the fact that the xi are bounded, we trivially have ‖A‖ ≤ B2 :

u>Au =
1

k

k∑
i=1

(u>i x)2 ≤ 1

k

k∑
i=1

‖xi‖2 ≤ B2.
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Next, let E = {ui}Ni=1 be an ε-net for the unit sphere, and note that we can take N ≤ (3/ε)d. By applying a union bound
over E, we have that u>i ( 1

kX
>X)ui ≥ c4 for all i with probability at least 1−N/n. Let ‖u‖ = 1 be arbitrary and choose

ui such that ‖u− ui‖ ≤ ε. Then we have

u>Au = u>i Aui + (u− ui)>Au+ u>i A(u− ui)

≥ c4 − ‖A‖‖u− ui‖‖u‖ − ‖A‖‖ui‖‖u− ui‖

≥ c4 − 2B2ε.

Thus if we take ε = c4/4B
2, we have that u>Au ≥ c4/2 = Ω(1) for all ‖u‖ = 1. This occurs with probability at

least 1 − (3/ε)d/n = 1 − O(1/n), i.e. with high probability. (Note: We only need that |Sui,r| is bounded according to
Lemma D.3 for each ui, then these inequalities hold simultaneously for all groups of k points. In particular, we do not need
to take a union bound over the groups of neighboring points.)

Lemma D.5. Suppose that k ≥ d and X ∈ Rk×d has full rank. Then there exist unit vectors ui ∈ Rn, i = 1, . . . , d such
that H ≡ X(X>X)−1X> =

∑d
i=1 uiu

>
i .

Proof. Let X = UΣV > be the SVD of X , where Σ ∈ Rk×d has diagonal entries σi. Since X has full rank, σi > 0 for all
i = 1, . . . , d. Define Σ−2 = diag(σ−2i ) ∈ Rd×d. We have

H = (UΣV >)(V Σ−2V >)V Σ>U>

= UΣ(Σ−2)Σ>U>

=

d∑
i=1

uiu
>
i ,

where ui ∈ Rk are the columns of U (i.e., the left singular vectors of X).

Lemma D.6. Let Y ∼ N (0,Σ), where Σ ∈ Rm×m has singular values σ1 ≥ · · · ≥ σm. Let µ ∈ Rm be independent of Y .
If σm ≥ σ, then

P
(
‖µ+ Y ‖ ≤ σ

√
m− t

)
≤ P

(
‖Y ‖ ≤ σ

√
m− t

)
≤ 2 exp

(
−Ct2/σ2

)
for some universal constant C.

Proof. This follows directly from Lemmas 9 and 10 in (Izzo et al., 2022).

Lemma 4.1. The core group selected by Algorithm 1 has Xcore \R∗ = o(k) with high probability.

Proof. By Lemma D.2, there exists a group of k points contained in R∗ with high probability. For these points, we have

min
β

1

k

k∑
i=1

(x>i β − yi)2 ≤
1

k

k∑
i=1

(x>i β
∗ − yi)2 (2)

=
1

k

k∑
i=1

(yi − E[yi|xi])2

≤ σ2 + k−1/8 w.p. ≥ 1−O(k−3/2). (3)

On the other hand, let δ > 0 be fixed and consider a group of k points at least m ≥ δk of which are not in R∗. WLOG
assume that the first i = 1, . . . ,m points lie outside R∗ and the remaining k −m points are in R∗. Let µi = E[yi|xi] and
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zi = yi − µi. Then we have

min
β

1

k

k∑
i=1

(x>i β − yi)2 = min
β

1

k

k∑
i=1

(x>i β − (µi + zi))
2

≥ 1

k
min
β

m∑
i=1

(x>i β − (µi + zi))
2 +

1

k
min
β

k∑
i=m+1

(x>i β − (µi + zi))
2

=
1

k
‖(I −H1)(µ1 + Z1)‖2 +

1

k
‖(I −H2)(µ2 + Z2)‖2 , (4)

where we define X1 as the data matrix for the m points not in R∗ and H1 = X1(X>1 X1)−1X>1 . We define µ1 =
(µ1, . . . , µm)> and Z1 = (z1, . . . , zm)>. X2, H2, µ2, and Z2 are defined similarly for the k −m points in R∗.

By Lemma D.5, we can writeH1 =
∑d
i=1 uiu

>
i for some orthonormal ui ∈ Rm. Extend to an orthonormal basis u1, . . . , um

for Rm, and note that I =
∑m
i=1 uiu

>
i . It follows that I −H1 =

∑m
i=d+1 uiu

>
i , and therefore

(I −H1)Z1 = (u>d+1Z1)ud+1 + · · ·+ (u>mZ1)um.

In particular, (I − H1)Z1 ∼ N (0, Im−d). A similar calculation shows that (I − H2)Z2 ∼ N (0, In−m−d). (Here we
assume that m ≤ n− d; if not, we can just use the fact that the second term in (4) is nonnegative.) By applying Lemma D.6,
we obtain

P

min
β

k∑
i=1

(x>i β − yi)2 ≤ σ2
0

(
√
m− d−

√
log k

C

)2

+ σ2

(
√
k −m− d−

√
log k

C

)2


≤ P

[
‖(I −H1)(µ1 + Z1)‖ ≤ σ0

(
√
m− d−

√
log k

C

)]
+ P

[
‖(I −H2)(µ2 + Z2)‖ ≤ σ

(
√
k −m− d−

√
log k

C

)]

≤ 4/k.

The final inequality is obtained by applying Lemma D.6 to each of the two preceding terms. It follows that with high
probability (at least 1− 4/k), we have that

min
β

1

k

k∑
i=1

(x>i β − yi)2 ≥
σ2
0m

k
+
σ2(k −m)

k
− o(1)

≥ σ2 + (σ2
0 − σ2)δ − o(1). (5)

For any constant δ > 0 and k large enough, (5) will be strictly greater than the upper bound in (3). It follows that with high
probability, all but o(k) points in the selected core group will belong to R∗.

Lemma D.7. Let X be the group of k points selected by Algorithm 1, and define X̃ = X ∩ R∗. Then we have that
‖( 1
kX
>X)−1 − ( 1

k X̃
>X̃)−1‖ = o(1) with high probability.

Proof. Let A = 1
kX
>X and B = 1

k X̃
>X̃ . By Lemma D.4, σmin(A) ≥ c4 = Ω(1) with high probability. By Lemma 4.1,

X̃ contains all but o(k) of the selected points. Also recall that by our assumptions, all of the x are bounded. By Weyl’s
inequality, we have

σmin(B) ≥ σmin(A)− σmax

1

k

∑
x∈X\R∗

xx>

 = Ω(1)− o(1) = Ω(1).

In particular, this means that ‖B−1‖ = σmin(B)−1 = O(1). Finally, since A−1 −B−1 = A−1(B −A)B−1, we have

‖A−1 −B−1‖ ≤ ‖A−1‖‖B −A‖‖B−1‖ = O(1) · o(1) · O(1) = o(1).
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Lemma D.8. ‖β̂‖ = O(1) with high probability.

Proof. We know from the proof of Lemma 4.1 that there exists a group of k nearest neighbors contained in R∗, and that for
such a group, the training MSE is at most σ2 + o(1) with high probability. Thus, since the core group has the minimum
training MSE, we must have

σ2 + o(1) ≥ 1

k
‖Xβ̂ − Y ‖2

≥ 1

k
‖X̃β̂ − Ỹ ‖2

≥ 1

k
‖X̃β∗ − Ỹ ‖2 − 2

k
‖X̃β∗ − Ỹ ‖‖X̃(β̂ − β∗)‖+

1

k
‖X̃(β̂ − β∗)‖2

≥ σ2 − o(1) +
1

k

(
‖X̃(β̂ − β∗)‖2 − 2‖X̃β∗ − Ỹ ‖‖X̃(β̂ − β∗)‖

)
. (6)

Inequality (6) holds because X̃, Ỹ contain k − o(k) points and by roughly the same logic used to obtain the upper bound in
(3). It follows that

1

k

(
‖X̃(β̂ − β∗)‖2 − 2‖X̃β∗ − Ỹ ‖‖X̃(β̂ − β∗)‖

)
= o(1). (7)

Again using the logic from (3), we have that ‖X̃β∗ − Ỹ ‖ = σ
√
k + o(

√
k). Combining this with equation (7) therefore

shows that ‖X̃(β̂ − β∗)‖ = O(
√
k) (this follows from a simple application of the quadratic formula), or equivalently

‖X̃(β̂ − β∗)‖2 = O(k).

Finally, observe that
‖X̃(β̂ − β∗)‖2 = (β̂ − β∗)X̃>X̃(β̂ − β∗) ≥ σmin(X̃>X̃)‖β̂ − β∗‖2.

By the proof of Lemma D.7, we know that σmin( 1
k X̃
>X̃) = Ω(1), so σmin(X̃>X̃) = Ω(k). Thus we have

O(k) = ‖X̃(β̂ − β∗)‖2 ≥ Ω(k)‖β̂ − β∗‖2 =⇒ ‖β̂ − β∗‖ = O(1).

Since ‖β∗‖ is a constant, we conclude that ‖β̂‖ = O(1) by the triangle inequality.

Lemma D.9.
∥∥∥ 1
kX
>Y − 1

k X̃
>Ỹ
∥∥∥ = o(1) with high probability.

Proof. We begin with the same observation used to prove Lemma D.8, namely that the training MSE for the core group must
be upper bounded by σ2 + o(1) with high probability. By Assumption 3, ‖x‖ = O(1), and by Lemma D.8, ‖β̂‖ = O(1)

with high probability. Let C be a constant such that ‖x‖‖β̂‖ ≤ C. We then have

1

k
‖Xβ̂ − Y ‖2 ≥ 1

k
‖X̃β̂ − Ỹ ‖2 +

1

k

∑
(x,y) : x 6∈R∗

(x>β̂ − y)2

≥ σ2 − o(1) +
1

k

∑
(x,y):x 6∈R∗
|y|≥2C+1

|y|(|y| − 2‖x‖‖β̂‖)

≥ σ2 − o(1) +
1

k

∑
(x,y):x 6∈R∗
|y|≥2C+1

|y|.

It therefore follows that
1

k

∑
(x,y):x 6∈R∗
|y|≥2C+1

|y| = o(1). (8)
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Since ‖x‖ ≤ B, we now have∥∥∥∥1

k
X>Y − 1

k
X̃>Ỹ

∥∥∥∥ ≤ 1

k

∑
(x,y):x 6∈R∗

‖x‖|y|

≤ 1

k

∑
(x,y):x 6∈R∗
|y|<2C+1

B(2C + 1) +
1

k

∑
(x,y):x 6∈R∗
|y|≥2C+1

B|y|

= o(1).

The final conclusion holds by applying Lemma 4.1 and equation (8) to the two terms in the previous line.

Lemma 4.2. Let Xcore be the core group selected by Algorithm 1 and let β̂ be the OLS estimator fit to Xcore. Let Xrej be
the set of rejected points defined by the thresholding procedure in Phase 2. With high probability, none of the points in Xrej

belong to R∗.

Proof. First, we will show that ‖β∗ − β̂‖ = o(1) with high probability. Let X̃ = X ∩ R∗ denote the data matrix for the
core points which belong to R∗, and let Ỹ denote the response vector corresponding to these points. We use the identity

β̂ − β∗ =

[(
1

k
X>X

)−1
−
(

1

k
X̃>X̃

)−1](
1

k
X>Y

)
︸ ︷︷ ︸

(I)

+

(
1

k
X̃>X̃

)−1 [
1

k
X>Y − 1

k
X̃>Ỹ

]
︸ ︷︷ ︸

(II)

+

(
1

k
X̃>X̃

)−1(
1

k
X̃>Ỹ

)
− β∗︸ ︷︷ ︸

(III)

.

Term (I) By Lemma D.7, ‖( 1
kX
>X)−1 − ( 1

k X̃
>X̃)−1‖ = o(1). By Lemma D.9 and an application of the triangle

inequality, ‖ 1kX
>Y ‖ = O(1), so term (I) is o(1).

Term (II) By the proof of Lemma D.7, ‖( 1
k X̃
>X̃)−1‖ = O(1). By Lemma D.9, ‖ 1kX

>Y − 1
k X̃
>Ỹ ‖ = o(1), so term

(II) is o(1).

Term (III) Let k′ be the number of points in X̃ (so k′ = k− o(k)) and WLOG assume that the points in X̃ are the first k′

points x1, . . . , xk′ . We have Ỹ = X̃β∗ + E, where E = (εi)
k′

i=1 is the vector of error terms and εi ∼ N (0, σ2). Define
β̃ = ( 1

k′ X̃
>X̃)−1( 1

k′ X̃
>Ỹ ) and note that this is still equal to the first term in (III). It follows that

β̃ = β∗ +

(
1

k′
X̃>X̃

)−1 k′∑
i=1

εixi,

This implies that

‖β̂ − β∗‖ ≤

∥∥∥∥∥
(

1

k′
X̃>X̃

)−1∥∥∥∥∥
∥∥∥∥∥ 1

k′

k∑
i=1

εixi

∥∥∥∥∥ = σσ−1min

∥∥∥∥∥∥ 1

k′

k′∑
i=1

gixi

∥∥∥∥∥∥ ,
where gi

iid∼ N (0, 1) and σmin = σmin( 1
k X̃
>X̃). It remains to bound

∥∥∥ 1
k′

∑k′

i=1 gixi

∥∥∥ with high probability. Observe that

P

∥∥∥∥∥∥ 1

k′

k′∑
i=1

gixi

∥∥∥∥∥∥ ≥ t
 ≤ d∑

j=1

P

∣∣∣∣∣∣ 1

k′

k′∑
i=1

gixij

∣∣∣∣∣∣ ≥ t√
d

 .
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Standard Gaussian concentration results (see e.g. (Vershynin, 2018)) show that the RHS is bounded by 2d exp
(
−ck′t2
d

)
for

some universal constant c. Setting this bound equal to 1/k′ and solving for t, we see that ‖β̂ − β∗‖ ≤ Cσσ−1min

√
d log(2dk′)

k′

with probability at least 1− 1/k′, i.e. with high probability. (Here C is another universal constant.) Since σmin = Ω(1), we
have ‖β̂ − β∗‖ = o(1).

Next, we look at |yi−x>i β̂| for a point xi ∈ R∗. In this case, applying the triangle inequality and Cauchy-Schwarz, we have

|yi − x>i β̂| = |x>i β∗ − x>i β̂ + εi| ≤ ‖β∗ − β̂‖‖xi‖+ |εi|.

Since our dataset contains n points, there are at most n points in R∗. Again by standard Gaussian concentration results and

a union bound, we have that |εi| ≤ σ
√

2 log 2n
α for all xi ∈ R∗ simultaneously with probability at least 1− α. Thus we

have that

|yi − x>i β̂| ≤ σ
√

2 log
2n

α
+ o(1)

for all xi ∈ R∗ with probability at least 1− α− o(1). Setting α = 1/n and adjusting the constants slightly to account for
the o(1) term, we see that

|yi − x>i β̂| ≤ 2.1σ
√

log n

with high probability and for large enough n, as desired.

Lemma D.10. With high probability, the average of the core point feature vectors belongs to R∗.

Proof. In this proof, we will use the fact that R∗ is an axis-aligned box, but we note that this is just for ease of exposition
and the results extend readily to the case when R∗ is a general convex body.

Let R∗ =
∏d
i=1[ai, bi] with ai < bi for each i and define ∂R∗ε =

∏d
i=1[ai + ε, bi − ε] for ε < mini(bi − ai)/2. (That is,

∂R∗ε consists of those points in R∗ which are at most ε away from the boundary of R∗.) A direct calculation shows that
vol(∂R∗ε) = O(ε). By the same logic as in Lemma D.3, it follows that there exists an ε = Ω(1) such that ∂R∗ε contains at
most m ≤ c3n/2 points with high probability, where here c3 is a constant such that k ≥ c3n.

Let x̄ be the average of the core group feature vectors. We will show that x̄[i] ≤ bi. A nearly identical argument will show
that all of the components of x̄ satisfy the constraints required to belong to R∗. Observe that

x̄[i] =
1

k

 ∑
x∈R∗\∂R∗ε

x[i] +
∑
x∈∂R∗ε

x[i] +
∑
x6∈R∗

x[i]


≤ 1

k
((k −m− o(k))(bi − ε) +mbi + o(k)) (9)

= bi + (
m

k
− 1)ε+ o(1)

≤ bi − ε/2 + o(1) (10)

≤ bi.

Inequality (9) follows from the fact that the features x (and hence each component x[i]) are bounded, and the fact that at
most o(k) points in the core group are not in R∗ by Lemma 4.1. Inequality (10) holds because m ≤ c3n/2 and k ≥ c3n.
This completes the proof.

Lemma D.11. Suppose that Yi ∼ N (0, σ2
i ) are independent. Then P(max |Yi − ai| ≤ t) = P(max |Yi| ≤ t) and

consequently Emax |Yi − ai| ≥ Emax |Yi| for any constants ai.

Proof. Lemma D.6 implies that P(|Yi − ai| ≤ t) ≤ P(|Yi| ≤ t) for all i, t. Furthermore, we have that

P(max |Yi − ai| ≤ t) =
∏
i

P(|Yi − ai| ≤ t) ≤
∏
i

P(|Yi| ≤ t) = P(max |Yi| ≤ t).
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Integrating by parts shows that

Emax |Yi − ai| =
∫ ∞
0

P(max |Yi − ai| ≥ t) dt ≥
∫ ∞
0

P(max |Yi| ≥ t) dt = Emax |Yi|.

Lemma D.12. Let Yi ∼ N (0, σ2
i ) with σ2

i ≥ σ2 for all i. Then for any constants ai and m large enough, we have the
following inequality:

E
[
m

max
i=1
|Yi − ai|

]
≥ 0.12σ

√
logm.

Furthermore, we have that maxmi=1 |Yi − ai| = Ω(σ
√

logm) with high probability as m→∞.

Proof. Note that by Lemma D.11, it suffices to show the result for ai = 0. Next, observe that since σ2/σ2
i ≤ 1 for all i, we

have

E
[
m

max
i=1
|Yi|
]
≥ E

[
m

max
i=1

σ

σi
|Yi|
]
≥ E

[
m

max
i=1

Zi

]
,

where Zi
iid∼ N (0, σ2). By Theorem 3 of (Orabona and Pál, 2015), E [maxmi=1 Zi] ≥ 0.13σ

√
logm−0.7σ ≥ 0.12σ

√
logm

for large enough m.

Next, we will show that P(max |Yi| ≤ t) is decreasing in σi. We have

P(max |Yi| ≤ t) =

m∏
i=1

P(|σiZi| ≤ t), Zi
iid∼ N (0, 1)

=

m∏
i=1

P(|Zi| ≤ t/σi). (11)

Since {|Zi| ≤ t/σi} ⊆ {|Zi| ≤ t/σ′i} when σi ≥ σ′i, the terms in (11) are decreasing in σi.

Next, suppose that σi = σ for all i. We will show that V (maxmi=1 |Yi − ai|) ≤ σ2. By homogeneity, it suffices to show
this inequality for σ = 1. Define f(Y1, . . . , Ym) = maxmi=1 |Yi|. By the Gaussian Poincaré inequality (see e.g. (Chatterjee,
2014), pg. 47), we have that

V
(

m
max
i=1
|Yi|
)
≤

n∑
i=1

E|∂if(Y )|2.

We have ∂if(Y ) = sign(Yi)1{|Yi| = maxj |Yj |} almost everywhere, so

E|∂if(Y )|2 = P(|Yi| = max
j
|Yj |}) = 1/m

for all i. It follows that V(maxmi=1 |Yi|) ≤ 1. By Chebyshev’s inequality, we therefore have that

P
(

m
max
i=1
|Yi| ≤ 0.12σ

√
logm− σt

)
≤ 1/t2.

In particular, we can take t = 0.06
√

logm, then maxmi=1 |Yi| = Ω(σ
√

logm) with probability at least 1−O(1/ logm) =
1− o(1), i.e. with high probability.

Theorem 4.3. As n→∞, there exist positive scalars {s±j }dj=1 and a constant c > 0 such that if U = {s+j ej ,−s
−
j ej}dj=1

and k = Ω(n) with k ≤ cn, Algorithm 3 returns R̂ with R∗ ⊆ R̂ with high probability. Furthermore, vol(R̂ \R∗)→ 0.

Proof. By Lemma D.10, the average of the core group points x̄ (and therefore the point from which we begin growing the
box in Algorithm 2) lies in the interior of R∗. Let ∂R∗ denote the boundary of R∗. For each j = 1, . . . , d, denote by ∂R∗j,+
the face of ∂R∗ which upper bounds the j-th dimension, and let ∂R∗j,− be the opposite face which lower bounds the j-th
dimension. Let s±j = d(x̄, ∂R∗j,±) be the distance from the center to the appropriate face of R∗. Note that Algorithm 2 with
these speeds and this center is equivalent to running the algorithm from the origin and with uniform speeds, after shifting the
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data so that x̄ lies at the origin and then rescaling each axis by s±j . In this case, R∗ is transformed into a `∞ ball of radius 1
centered at the origin.

By Lemma 4.2, R∗ contains no rejected points with high probability. (Note that the transformations we performed above
preserve this fact.) Since the region returned by Algorithm 2 returns a region which contains the largest centered `∞ ball
with no rejected points in it, and R∗ is a centered `∞ ball with no rejected points, we must have R∗ ⊆ R̂ as desired.

Since we have assumed that R∗ is an axis-aligned box, we can write R∗ = {x | aj < xj < bj}. Fix ε > 0 and let

∂R∗ε,j,+ = {x | bj ≤ xj ≤ bj + ε, `m < xm < um,m 6= j}

∂R∗ε,j,− = {x | aj − ε ≤ xj ≤ aj , `m < xm < um,m 6= j}.

(These are just the sets of points which are at most ε “above” the upper dimension j face of R∗ and “below” the lower
dimension j face of R∗, respectively.)

By the same logic as in the proof of Lemma D.3, there is some constant c6 > 0 (which can depend on R∗) such that at least
c6εn points lie in ∂R∗ε with high probability. Take ε = n−1/2 and apply Lemma D.12 to the c6εn points in ∂R∗ε,j,±. We see
that

max
xi∈∂R∗ε,j,±

|x>i β̂ − yi| ≥ 0.06σ0

√
1

2
log c6n

with high probability. Since σ0 > 50σ, for n large enough we have

max
xi∈∂R∗ε,j,±

|x>i β̂ − yi| ≥ 0.06σ0

√
1

2
log c6n > 2.1σ

√
log εn.

The means that Algorithm 2 will stop growing the (j,±) side of R̂ at some point in ∂R∗ε,j,±. It follows that R̂ ⊆ R∗ε with
ε = n−1/2. This completes the proof.
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