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Abstract

Natural data is redundant yet predominant archi-

tectures tile computation uniformly across their

input and output space. We propose the Recurrent

Interface Network (RIN), an attention-based archi-

tecture that decouples its core computation from

the dimensionality of the data, enabling adaptive

computation for more scalable generation of high-

dimensional data. RINs focus the bulk of com-

putation (i.e. global self-attention) on a set of

latent tokens, using cross-attention to read and

write (i.e. route) information between latent and

data tokens. Stacking RIN blocks allows bottom-

up (data to latent) and top-down (latent to data)

feedback, leading to deeper and more expressive

routing. While this routing introduces challenges,

this is less problematic in recurrent computation

settings where the task (and routing problem)

changes gradually, such as iterative generation

with diffusion models. We show how to leverage

recurrence by conditioning the latent tokens at

each forward pass of the reverse diffusion process

with those from prior computation, i.e. latent self-

conditioning. RINs yield state-of-the-art pixel

diffusion models for image and video generation,

scaling to 1024×1024 images without cascades or

guidance, while being domain-agnostic and up to

10× more efficient than 2D and 3D U-Nets.

1. Introduction

The design of effective neural network architectures has

been crucial to the success of deep learning (Krizhevsky

et al., 2012; He et al., 2016; Vaswani et al., 2017). Influ-

enced by modern accelerator hardware, predominant archi-

tectures, such as convolutional neural networks (Fukushima,

1988; LeCun et al., 1989; He et al., 2016) and Transform-
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Figure 1. RINs outperform U-Nets widely used in state-of-the-art

image and video diffusion models, while being more efficient and

domain-agnostic. Our models are simple pixel-level denoising

diffusion models without cascades as in (CDM (Ho et al., 2022a))

or guidance (as in ADM (Dhariwal & Nichol, 2022) and VD (Ho

et al., 2022b)). ∗: uses input scaling (Chen, 2023).

ers (Vaswani et al., 2017), allocate computation in a fixed,

uniform manner over the input data (e.g., over image pixels,

image patches, or token sequences). Information in natural

data is often distributed unevenly, or exhibits redundancy, so

it is important to ask how to allocate computation in an adap-

tive manner to improve scalability. While prior work has

explored more dynamic and input-decoupled computation,

e.g., networks with auxiliary memory (Dai et al., 2019; Rae

et al., 2019) and global units (Zaheer et al., 2020; Burtsev

et al., 2020; Jaegle et al., 2021b;a), general architectures

that leverage adaptive computation to effectively scale to

tasks with large input and output spaces remain elusive.

In this paper, we consider this issue as it manifests in high-

dimensional generative modeling tasks, such as image and

video generation. When generating an image with a simple

background, an adaptive architecture should ideally be able

to allocate computation to regions with complex objects and

textures, rather than regions with little or no structure (e.g.,

the sky). When generating video, one should exploit tempo-

ral redundancy, allocating less computation to static regions.

While such non-uniform computation becomes more crucial

in higher-dimensional data, achieving it efficiently is chal-

lenging on modern hardware, given the preference for fixed

computation graphs with dense matrix multiplication.
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Recurrent Interface Networks

(As Decoupled Attention)

Block 1 Block 4 Block 5 Block 6

Z init.

X

XZ

Z

<latexit sha1_base64="iM5Gz3Y+USyUGhcO7l6Wjdz7z7Y="></latexit> <latexit sha1_base64="wOMnYYA3qoBEvI34SzdEs8u7V0k="></latexit> <latexit sha1_base64="iM5Gz3Y+USyUGhcO7l6Wjdz7z7Y="></latexit> <latexit sha1_base64="wOMnYYA3qoBEvI34SzdEs8u7V0k="></latexit> <latexit sha1_base64="h1Y36mwxq+lGd6MyPzGWt5N+RJA="></latexit>

X → Z

Z → Z

Z → X

X → X

Read

Compute

Write

None

× K

X

Z

+ mlp

+ attn

+ attn

+ mlp

+ attn

+ mlp

WriteRead

Z

Compute

init.

RIN Block

X

Forward Pass

…

…

Tokenize 
(to patches)

Linear 
ReadoutRead attention reveals which tokens 

 are favored for heavy computation:

Block 4 Block 5 Block 6

Latent 
Self-cond.

(skip)

Input Output

<latexit sha1_base64="cnxHd4/9pQdob080nein1u8ivcA=">AAAB/XicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kEMugjWUE8wHJEfY2m2TJ7t2xOyeGI/gbbLW2E1t/i6X/xE1yhUl8MPB4b4aZeUEshUHX/XZyG5tb2zv53cLe/sHhUfH4pGmiRDPeYJGMdDughksR8gYKlLwda05VIHkrGN/O/NYj10ZE4QNOYu4rOgzFQDCKVmp1A0WeetgrltyyOwdZJ15GSpCh3iv+dPsRSxQPkUlqTMdzY/RTqlEwyaeFbmJ4TNmYDnnH0pAqbvx0fu6UXFilTwaRthUimat/J1KqjJmowHYqiiOz6s3E/7xOgoNrPxVhnCAP2WLRIJEEIzL7nfSF5gzlxBLKtLC3EjaimjK0CS1tCdTUZuKtJrBOmldlr1Ku3ldKtZssnTycwTlcggdVqMEd1KEBDMbwAq/w5jw7786H87lozTnZzCkswfn6BclAlfY=</latexit> <latexit sha1_base64="XNnv0UR/QboZiiLIIgqTmaFThl8=">AAACDnicbVDLSgNBEJz1GeNrVfDiZTAEPIVdCcRj0IvHCOYBSVhmJ5NkyMzsMtMrhjX/4Dd41bM38eovePRPnGxyMIkFDdVV3XRTYSy4Ac/7dtbWNza3tnM7+d29/YND9+i4YaJEU1ankYh0KySGCa5YHTgI1oo1IzIUrBmObqZ+84FpwyN1D+OYdSUZKN7nlICVAve02Aklfgwg3xkSSLNmEniBW/BKXga8Svw5KaA5aoH70+lFNJFMARXEmLbvxdBNiQZOBZvkO4lhMaEjMmBtSxWRzHTT7P8JLlqlh/uRtqUAZ+rfjZRIY8YytJOSwNAse1PxP6+dQP+qm3IVJ8AUnR3qJwJDhKdh4B7XjIIYW0Ko5vZXTIdEEwo2soUroZzYTPzlBFZJ47Lkl0uVu3Khej1PJ4fO0Dm6QD6qoCq6RTVURxQ9oRf0it6cZ+fd+XA+Z6NrznznBC3A+foFscybzw==</latexit>

Figure 2. Overview of Recurrent Interface Networks. The input is tokenized to form the interface X . A stack of blocks route information

between X and latents Z, avoiding quadratic pairwise interactions between tokens in X (bottom left). Note that dim(Z) > dim(X), and

most computation is applied to Z, which allows for scaling to large X. The network’s read attention maps reveals how tokens are favoured

for latent computation (right), when trained for a task like diffusion generative modeling.

To address this challenge, we propose an architecture,

dubbed Recurrent Interface Networks (RINs). In RINs

(Fig. 2), hidden units are partitioned into the interface X

and latents Z. Interface units are locally connected to the in-

put and grow linearly with input size. In contrast, latents are

decoupled from the input space, forming a more compact

representation on which the bulk of computation operates.

The forward pass proceeds as a stack of blocks that read,

compute, and write: in each block, information is routed

from interface tokens (with cross-attention) into the latents

for high-capacity global processing (with self-attention),

and updates are written back to interface tokens (with cross-

attention). Alternating computation between latents and

interface allows for processing at local and global levels,

accumulating context for better routing. As such, RINs

allocate computation more dynamically than uniform mod-

els, scaling better when information is unevenly distributed

across the input and output, as is common in natural data.

This decoupling introduces additional challenges, which

can overshadow benefits if the latents are initialized without

context in each forward pass, leading to shallow and less ex-

pressive routing. We show this cost can be mitigated in sce-

narios involving recurrent computation, where the task and

inputs change gradually and persistent context can be lever-

aged across iterations to in effect form a deeper network.

In particular, we consider iterative generation of images

and video with denoising diffusion models (Sohl-Dickstein

et al., 2015; Ho et al., 2020; Song et al., 2020; 2021). To

leverage recurrence, we propose latent self-conditioning as

a “warm-start” mechanism for latents to amortize the cost

of routing. Instead of reinitializing latents at each forward

pass, we use latents from previous iterations as additional

context, similar to a recurrent network but without requiring

backpropagation through time.

Our experiments with diffusion models show that RINs out-

perform U-Net architectures for image and video generation,

as shown in Figure 1. For class-conditional ImageNet mod-

els, from 64×64 up to 1024×1024, RINs outperform leading

diffusion models that use cascades (Ho et al., 2022a) or

guidance (Dhariwal & Nichol, 2022; Ho & Salimans, 2021),

while consuming up to 10× fewer FLOPs per inference step.

For video prediction, RINs surpass leading approaches (Ho

et al., 2022b) on the Kinetics600 benchmark while reducing

the FLOPs of each step by 10×.

Our contributions are summarized as follows:

• We propose RINs, a domain-agnostic architecture capa-

ble of adaptive computation for scalable generation of

high dimensional data.

• We identify recurrent computation settings in which

RINs thrive and advocate latent self-conditioning to

amortize the challenge of routing.

• Despite reduced inductive bias, this leads to performance

and efficiency gains over U-Net diffusion models for

image and video generation.

2. Method

In RINs, the interface is locally connected to the input space

and initialized via a form of tokenization (e.g., patch em-

beddings), while the latents are decoupled from data and

initialized as learnable embeddings. The basic RIN block

allocates computation by routing information between the

interface and the latents. By stacking multiple blocks, we

can update the interface and latents repeatedly, such that

bottom-up and top-down context can inform routing in the

next block (see Fig. 3). A linear readout function predicts

the network’s output from the final interface representation.

Since the interface is tied to data, it grows linearly with input

size and may be large (e.g., thousands of vectors), while the

number of latent units can be much smaller (e.g., hundreds

of vectors). The computation operating directly on the in-

terface (e.g. tokenization, read, write) is uniform across the

input space, but is designed to be relatively light-weight, for
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Figure 3. The computation graph of RIN Blocks. RINs stack blocks that read, compute, and write. Read operations load information

into latents with cross-attention. Compute operations exchange information across latent tokens with self-attention and across channels

with token-wise MLPs. Write operations update the interface with information from the latents with cross-attention, and mix information

across channels with token-wise MLPs. Latent self-conditioning (gray lines) allows for propagation of latent context between iterations.

minimal uniform computation. The high-capacity process-

ing is reserved for the latents, formed by reading information

from the interface selectively, such that most computation

can be adapted to the structure and content of the input.

Compared to convolutional nets such as U-Nets (Ron-

neberger et al., 2015; Ho et al., 2020), RINs do not rely on

fixed downsampling or upsampling for global computation.

Compared to Transformers (Vaswani et al., 2017), RINs op-

erate on sets of tokens with positional encoding for similar

flexibility across input domains, but avoid pairwise attention

across tokens to reduce compute and memory requirements

per token. Compared to other decoupled architectures such

as PerceiverIO (Jaegle et al., 2021b;a), alternating computa-

tion between interface and latents enables more expressive

routing without a prohibitively large set of latents.

While RINs are versatile, their advantages are more pro-

nounced in recurrent settings, where inputs may change

gradually over time such that it is possible to propagate

persistent context to further prime the routing of informa-

tion. Therefore, here we focus on the application of RINs to

iterative generation with diffusion models.

2.1. Background: Iterative Generation with Diffusion

We first provide a brief overview of diffusion models (Sohl-

Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020;

2021; Kingma et al., 2021; Chen et al., 2022c). Diffusion

models learn a series of state transitions to map noise ǫ

from a known prior distribution to x0 from the data distri-

bution. To learn this (reverse) transition from noise to data,

a forward transition from x0 to xt is first defined:

xt =
√

γ(t) x0 +
√

1− γ(t) ǫ,

where ǫ ∼ N (0, I), t ∼ U(0, 1), and γ(t) is a monotoni-

cally decreasing function from 1 to 0. Instead of directly

learning a neural net to model the transition from xt to

xt−∆, one can learn a neural net f(xt, t) to predict ǫ from

xt, and then estimate xt−∆ from the estimated ǫ̃ and xt.

The objective for f(xt, t) is thus the ℓ2 regression loss:

Et∼U(0,1),ǫ∼N (0,1)‖f(
√

γ(t) x0 +
√

1− γ(t) ǫ, t)− ǫ‖2.

To generate samples from a learned model, we follow a se-

ries of (reverse) state transition x1 → x1−∆ → · · · → x0.

This is done by iteratively applying the denoising function f

on each state xt to estimate ǫ, and hence xt−∆, using tran-

sition rules as in DDPM (Ho et al., 2020) or DDIM (Song

et al., 2020). As we will see, the gradual refinement of x

through repeated application of the denoising function is a

natural fit for RINs. The network takes as input a noisy im-

age xt, a time step t, and an optional conditioning variable

e.g. a class label y, and then outputs the estimated noise ǫ̃.

2.2. Elements of Recurrent Interface Networks

We next describe the major components of RINs (Fig. 3).

Interface Initialization. The interface is initialized from

an input x, such as an image ximage ∈ R
h×w×3, or video

xvideo ∈ R
h×w×l×3 by tokenizing x into a set of n vectors

X ∈ R
n×d. For example, we use a linear patch embedding

similar to (Dosovitskiy et al., 2020) to convert an image into

a set of patch tokens; for video, we use 3-D patches. To

indicate their location, patch embeddings are summed with

(learnable) positional encodings. Beyond tokenization, the

model is domain-agnostic, as X is simply a set of vectors.

Latent Initialization. The latents Z ∈ R
m×d′

are (for

now) initialized as learned embeddings, independent of the

input. Conditioning variables, such as class labels and time

step t of diffusion models, are mapped to embeddings; in

our experiments, we simply concatenate them to the set of

latents, since they only account for two tokens.

Core RIN Block. The RIN blocks routes information be-

tween X and Z with key components of Transformers:

Read: Z = Z + MHA(Z,X)

Z = Z + MLP(Z)

Compute: Z = Z + MHA(Z,Z)

(×K) Z = Z + MLP(Z)

Write: X = X + MHA(X,Z)

X = X + MLP(X)

MLP denotes a multi-layer perceptron, and MHA(Q, K)
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Figure 4. Latent Self-Conditioning for Diffusion Models with RINs. (Left) During training, latents for self-conditioning are first

estimated with a forward pass of the denoising network (with zeros as previous latents); we then condition the denoising network with

these estimated latents by treating them as latents of the previous iteration (without back-propagating through the estimated latents).

(Right) During sampling, we start with zero latents, and use computed latents at each time-step to condition the next time-step.

denotes multi-head attention with queries Q, and keys and

values K.1 Note that we always apply LayerNorm (Ba et al.,

2016) on the queries of MHA operations. The depth of each

block K controls the ratio of computation occurring on the

interface and latents. From the perspective of information

exchange among hidden units, MHA propagates information

across vectors (i.e. between latents, or between latents and

interface), while the MLP (applied vector-wise, with shared

weights) mixes information across their channels. Note that

here computation on the interface is folded into the write

operation, as MHA followed by an MLP.

RIN blocks can be stacked to allow latents to accumulate

context and write incremental updates to the interface. To

produce output predictions, we apply a readout layer (e.g. a

linear projection) to the corresponding interface tokens to

predict local outputs (such as patches of images or videos).

The local outputs are then combined to form the desired

output (e.g., patches are simply reshaped into an image). A

detailed implementation is given in Appendix A (Alg 3).

2.3. Latent Self-Conditioning

RINs rely on routing information to dynamically allocate

compute to parts of the input. Effective routing relies on la-

tents that are specific to the input, and input-specific latents

are built by reading interface information. This iterative

process can incur additional cost that may overshadow the

benefits of adaptive computation, especially if the network

begins without context, i.e. from a “cold-start”. Intuitively,

as humans, we face a similar “cold-start” problem under

changes in the environment, requiring gradual familiariza-

1See (Vaswani et al., 2017) for details about multi-head
attention, which extends single-head attention defined as
Attention(Z,X) = softmax(ZWQW

⊤
KX⊤)XWV . MLP(Z) =

σ(ZW1 + b1)W2 + b2 where σ is the GELU activation function
(Hendrycks & Gimpel, 2016). W are learned linear projections.

tion of new state to enhance our ability to infer relevant

information. If contexts switch rapidly without sufficient

time for “warm-up”, we repeatedly face the cost of adapting

to context. The “warm-up” cost in RINs can be similarly

amortized in recurrent computation settings where inputs

gradually change while global context persists. We posit

that in such settings, there exists useful context in the latents

accumulated in each forward pass.

Warm-starting Latents. With this in mind, we propose to

“warm-start” the latents using latents computed at a previous

step. The initial latents at current time step t are the sum of

the learnable embeddings Zinit (independent of the input),

and a transformation of previous latents computed in the

previous iteration t′:

Zt = Zinit + LayerNorm(Zt′ + MLP(Zt′)) ,

where LayerNorm is initialized with zero scaling and bias,

so that Zt = Zinit early in training.

In principle, this relies on the existence of latents from a

previous time step, Zt′ , and requires unrolling iterations

and learning with backpropagation through time, which can

hamper scalability. A key advantage of diffusion models is

that the chain of transitions decomposes into conditionally

independent steps allowing for highly parallelizable training,

an effect we would like to preserve. To this end, we draw

inspiration from the self-conditioning technique of (Chen

et al., 2022c), which conditions a denoising network at time

t with its own unconditional prediction for time t.

Concretely, consider the conditional denoising network

f(xt, t, Zt′) that takes as input xt and t, as well as context

latents Zt′ . During training, with some probability, we use

f(xt, t,0) to directly compute the prediction ǫ̃t. Otherwise,

we first apply f(xt, t,0) to obtain latents Z̃t as an estimate

of Zt′ , and compute the prediction with f(xt, t, sg(Z̃t)).
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Algorithm 1 Training RINs with Latent Self-Cond.

def train_loss(x, self_cond_rate, latent_shape):
# Add noise.
t = uniform(0, 1)
eps = normal(mean=0, std=1)
x_t = sqrt(gamma(t)) * x + sqrt(1-gamma(t)) * eps

# Compute latent self-cond estimate.
latents = zeros(latent_shape)
if uniform(0, 1) < self_cond_rate:
_, latents = rin((x_t, latents), t)
latents = stop_gradient(latents)

# Predict and compute loss.
eps_pred, _ = rin((x_t, latents), t)
loss = (eps_pred - eps)**2
return loss.mean()

Here, sg is the stop-gradient operation, used to avoid back-

propagating through the latent estimates. At inference time,

we directly use latents from previous time step t′ to initial-

ize the latents at current time step t, i.e., f(xt, t, Zt′), in a

recurrent fashion. This bootstrapping procedure marginally

increases the training time ( < 25% in practice, due to the

stop-gradient), but has a negligible cost at inference time.

In contrast to self-conditioning at the data level (Chen et al.,

2022c), here we condition on the latent activations of the

neural network, so we call it latent self-conditioning.

Figure 4 illustrates the training and sampling process with

the proposed latent self-conditioning. Algorithms 1 and 2

give the proposed modifications to training and sampling of

the standard diffusion process. Details of common functions

used in the algorithms can be found in Appendix B.

3. Experiments

We demonstrate that RINs improve state-of-the-art perfor-

mance on benchmarks for image generation and video pre-

diction with pixel-space diffusion models. In all exper-

iments, we do not use guidance. For each benchmark,

we also compare the number of floating point operations

(GFLOPs) across methods; as we will see, RINs are also

more efficient. Samples and further visualizations are pro-

vided in Appendix D and the supplementary material.

3.1. Implementation Details

Noise Schedule. Similar to (Kingma et al., 2021; Chen

et al., 2022c), we use a continuous-time noise schedule

function γ(t). By default we use a cosine schedule, as in

previous work (Nichol & Dhariwal, 2021) but find it is some-

times unstable for higher resolution images. We therefore

explore schedules based the sigmoid function with differ-

ent temperature, which shifts weight away from the tails

of the noise schedule. We use a default temperature of 0.9,

and its effect is ablated in our experiments. Detailed im-

plementation of noise schedules and ablations are provided

in Appendix B. For larger images, we also report models

trained using input scaling(Chen, 2023; Chen et al., 2022a).

Algorithm 2 Sampling with Latent Self-Cond.

def generate(steps):
x_t = normal(mean=0, std=1)
latents = zeros(latent_shape)

for step in range(steps):
# Get time for current and next states.
t = 1 - step / steps
t_m1 = max(1 - (step + 1) / steps, 0)

# Predict eps.
eps_pred, latents = rin((x_t, latents), t)

# Estimate x at t_m1.
x_t = ddim_or_ddpm_step(x_t, eps_pred, t, t_m1)

return x_t
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Figure 5. Compared to the cosine schedule, sigmoid (with appro-

priate τ ) can place less weight on noise levels on the tails.

Tokenization and Readout. For image generation, we to-

kenize images by extracting non-overlapping patches fol-

lowed by a linear projection. We use a patch size of 4 for

64×64 and 128×128 images, and 8 for larger images. To

produce the output, we apply a linear projection to interface

tokens and unfold each projected token to obtain predicted

patches, which we reshape to form an image.

For video, we tokenize and produce predictions in the same

manner as images; for 16×64×64 inputs, we use 2×4×4

patches, resulting in 2048 tokens. For conditional gener-

ation, during training, the context frames are provided as

part of the input, without noise added. During sampling, the

context frames are held fixed.

Table 1 compares model configuration across tasks; note in

particular the ratio of |Z| and |X|. See Appendix C for de-

tailed model and training hyper-parameters, and Appendix A

for detailed pseudo-code of the full model.

3.2. Experimental Setup

For image generation, we mainly use the ImageNet

dataset (Russakovsky et al., 2015). For data augmentation,

we only use center crops and random left-right flipping. We

also use CIFAR-10 (Krizhevsky et al.) to show the model

can be trained with small datasets. For evaluation, we fol-

low common practice, using FID (Heusel et al., 2017) and

Inception Score (Salimans et al., 2016) as metrics computed

on 50K samples, generated with 1000 steps of DDPM.

5



Recurrent Interface Networks

Figure 6. Visualizing Adaptive Computation. The read attention reveals which information is routed into latents for heavy computation.

We visualize the read attention (averaged across latents) at each block (top) or the last block (bottom), at selected steps of the reverse

process when generating ImageNet 512×512 samples. While it is similar across samples in early iterations, it becomes more sparse and

data-specific, focusing latent computation on more complex regions.
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Table 1. RIN configurations for each task.

128px 256px 512px 1024px Kinetics

|Z| 128 256 256 256 256
dim(Z) 1024 1024 768 768 1024
|X| 1024 1024 4096 16384 2048

dim(X) 512 512 512 512 512
Blocks 6 6 6 6 6

Depth K 4 4 6 8 4
Tokens 4×4 8×8 8×8 8×8 2×4×4

Table 2. Comparison to leading approaches for Class-Conditional

Generation on ImageNet. †: use of class guidance, 1: (Dhariwal &

Nichol, 2022), 2: (Ho & Salimans, 2021), 3: (Ho et al., 2022a).

Method FID ↓ IS ↑ GFLOPs Param(M)

IN 64×64

ADM 1 – 2.07 210 297

CF-guidance 2† 1.55 66.0 – –

CDM 3 1.48 66.0 – –
RIN 1.23 66.5 106 281

IN 128×128

ADM 1 5.91 – 538 386

ADM + guid. 1† 2.97 – >538 >386

CF-guidance 2† 2.43 156.0 – –

CDM 3 3.51 128.0 1268 1058
RIN 2.75 144.1 194 410

IN 256×256

ADM 1 10.94 100.9 2212 553

ADM + guid.1† 4.59 186.7 >2212 >553

CDM3 4.88 158.7 2620 1953
RIN 4.51 161.0 334 410
RIN + inp. scale 3.42 182.0 334 410

IN 512×512

ADM 1 23.2 58.1 4122 559

ADM + guid.1† 7.72 172.7 >4122 >559
RIN + inp. scale 3.95 216.0 415 320

IN 1024×1024

RIN + inp. scale 8.72 163.9 1120 412

For video prediction, we use the Kinetics-600 dataset (Car-

reira et al., 2018) at 16×64×64 resolution. For evalua-

tion, we follow common practice (Ho et al., 2022b) and use

FVD (Unterthiner et al., 2018) and Inception Scores com-

puted on 50K samples, with 400 or 1000 steps of DDPM.

3.3. Comparison to SOTA

Image Generation. Table 2 compares our architectures

against existing state-of-the-art pixel-space diffusion mod-

els on ImageNet. Despite being fully attention-based and

single-scale, our model attains superior generation quality

(in both FID and IS) compared to existing models that rely

on specialized convolutional architectures, cascaded genera-

tion, and/or class-guidance. Both the parameter count and

Table 3. Video Prediction on Kinetics. †: reconstruction guidance.

1: (Clark et al., 2019), 2: (Walker et al., 2021), 3: (Luc et al.,

2020), 4: (Nash et al., 2022), 5: (Ho et al., 2022b).

Method FVD IS GFLOPs Param (M)

DVD-GAN-FP1 69.1 – – –

Video VQ-VAE2 64.3 – – –

TrIVD-GAN-FP3 25.7 12.54 – –

Transframer4 25.4 – – –

Video Diffusion5† 16.6 15.64 4136 1100

RIN – 400 steps 11.5 17.7 386 411
RIN – 1000 steps 10.8 17.7 386 411

FLOPs are significantly reduced in our model compared to

baselines, which is useful for training performant models at

higher resolutions without relying on cascades (see samples

in Appendix Fig. D.1 & D.2). For large images (512 and

1024), we report performance of RINs trained with input

scaling (Chen, 2023). We find that 256 latents are suffi-

cient for strong performance even for 1024×1024 images,

which produce 16384 tokens; this is 2×more efficient than

the 256×256 ADM UNet, despite operating at 4× higher

resolution.

Despite the lack of inductive bias, the model also works well

with small datasets such as CIFAR-10. Compared to state-

of-the-art FID of 1.79 EDM (Karras et al., 2022), we obtain

1.81 FID without using their improved sampling procedure.

We used a model with 31M params (2x smaller) and trained

in 3 hours (10x less) using comparable compute.

Video Generation. Table 3 compares our model to existing

methods on the Kinetics-600 Video Prediction benchmark.

We follow common practice and use 5 conditioning frames.

Despite the architecture’s simplicity, RINs attain superior

quality and are more efficient (up to 10× per step), without

using guidance. Beyond using 3D patches instead of 2D

patches, the architecture is identical to that used in 256×256
image generation; while the number of tokens is 2048, the

model can attain strong performance with 256 latents. The

model is especially suitable for video given the intense

temporal redundancy, and learns to copy information and

dedicate computation to regions of change, as discussed in

Section 3.5. Samples can be found in Appendix Fig. D.5.

3.4. Ablations

For efficiency, we ablate using smaller architectures (latent

dimension of 768 instead of 1024) on the ImageNet 64×64
and 128×128 tasks with higher learning rate (2×10−3) and

fewer updates (150k and 220k, respectively). While this

performs worse than our best models, it is sufficient for

demonstrating the effect of different design choices.

Latent Self-conditioning. We study the effect of the rate

of self-conditioning at training time. A rate of 0 denotes the
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Figure 7. Ablations. (a) Effect of the self-conditioning rate for training: self-conditioning is crucial; a rate of 0 is the special case of no

self-conditioning. (b) Effect of the read-write/routing frequency: multiple rounds of read-writes are important to obtain the best result. (c)

Effect of tokenization: the model can handle a large number (4096, with 1×1 patches in this case) of tokens on the inferface.

special case where no self-conditioning is used (for training

nor inference), while a rate > 0 e.g. 0.9 means that self-

conditioning is used for 90% of each batch of training tasks

(and always used at inference). As demonstrated in Fig-

ure 7a, there is a clear correlation between self-conditioning

rate and sample quality (i.e., FID/IS), validating the impor-

tance using latent self-conditioning to provide context for

enhanced routing. We use a rate of 0.9 for our best results

reported.

Stacking Blocks. An important design choice in our ar-

chitecture is the stacking of read-process-write blocks to

enhance global and local processing. For a fair comparison,

we analyze the effect of model size on generation quality

for a variety of read-write frequencies (Fig. 7b) obtained by

stacking blocks with varying number of processing layers

per block. Note that a single read-write operation without

latent self-conditioning is similar to architectures such as

PerceiverIO (Jaegle et al., 2021a). With a single read-write,

the performance saturates earlier as we increase model size.

With more frequent read-writes, the model saturates later

and with significantly better sample quality, validating the

importance of iterative routing.

Tokenization. Recall that images are split into patches to

form tokens on the interface. Fig. 7c shows that RINs can

handle a wide range of patch sizes. For instance, it can scale

to a large number of tokens (4096, for 1×1). While larger

patch sizes force tokens to represent more information (i.e.,

with 8×8 patches), performance remains reasonable.

Effect of Noise Schedule. We find that the sigmoid sched-

ule with an appropriate temperature is more stable training

than the cosine schedule, particularly for larger images. For

sampling, the noise schedule has less impact and the default

cosine schedule can suffice (see Appendix Figure B.1).

3.5. Visualizing Adaptive Computation

To better understand the network’s emergent adaptive com-

putation, we analyze how information is routed by visu-

alizing the attention distribution of read operations. For

image generation, this reveals which parts of the image are

most attended to for latent computation. Figure 6 shows

the progression of two samples across the reverse process

and the read attention (averaged over latents) through the

blocks of the corresponding forward pass. As the generation

progresses, the first read (guided by latent self-conditioning)

is increasingly adapted to the sample. The read attention

distribution becomes more sparse and favour regions of high

information. Since the read attention loads information into

the latents for high capacity computation, this suggests that

the model learns to dynamically allocate computation on

information as needed. More examples for ImageNet can

be found in Appendix Fig. D.6. Appendix Fig. D.7 further

shows similar phenomena in the video prediction setting,

with the added effect of reading favouring information that

cannot merely be copied from conditioning frames, such as

object motion and panning.

4. Related Work

Neural architectures. Recurrent Interface Networks bear

resemblance to architectures that leverage auxiliary memory

to decouple computation from the input structure such as

Memory Networks (Weston et al., 2014; Sukhbaatar et al.,

2015), Neural Turing Machines (Graves et al., 2014), Stack-

RNN (Joulin & Mikolov, 2015), Set Transformer (Lee et al.,

2019), Memory Transformers (Burtsev et al., 2020), Slot At-

tention (Locatello et al., 2020), BigBird (Zaheer et al., 2020),

and Workspace models (Goyal et al., 2021). While latents

in our work are similar to auxiliary memory in prior work,

we allocate the bulk of computation to latents and iteratively

write back updates to the interface, rather than treating them

simply as auxiliary memory. Recurrent Interface Networks

are perhaps most similar to Set Transformers (Lee et al.,

2018) and Perceivers (Jaegle et al., 2021b;a), which also

leverage a set of latents for input-agnostic computation. Un-

like these approaches, RINs alternate computation between

the interface and latents, which is important for processing

of information at both local and global levels without resort-
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ing to prohibitively many latents. Moreover, in contrast to

existing architectures, latent self-conditioning allows RINs

to leverage recurrence; this allows for propagation of rout-

ing context along very deep computation graphs to amortize

the cost of iterative routing, which is crucial for achieving

strong performance.

Other approaches for adaptive computation have mainly

explored models with dynamic depth with recurrent net-

works (Graves, 2016; Figurnov et al., 2017) or sparse

computation (Yin et al., 2021), facing the challenges non-

differentiability and dynamic or masked computation graphs.

RINs are able to allocate compute non-uniformly despite

having fixed computation graphs and being differentiable.

RINs are closely related to recurrent models with input atten-

tion such as (Gregor et al., 2015), but scale better by lever-

aging piecewise optimization enabled by diffusion models.

Diffusion Models. Common diffusion models for images

and videos can be roughly divided into pixel diffusion mod-

els (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,

2020; Dhariwal & Nichol, 2022; Ho et al., 2022a; Karras

et al., 2022) and latent diffusion models (Rombach et al.,

2022). In this work we focus on pixel diffusion models due

to their relative simplicity. It is known to be challenging to

train pixel diffusion models for high resolution images on

ImageNet without guidance (Dhariwal & Nichol, 2022; Ho

& Salimans, 2021) or cascades (Ho et al., 2022a). We show

how improved architectures can allow for scaling pixel-level

diffusion models to such large inputs without guidance and

cascades, and we expect some insights to transfer to latent

diffusion models (Rombach et al., 2022).

The U-Net (Ronneberger et al., 2015; Ho et al., 2020) is

the predominant architecture for image and video diffu-

sion models (Dhariwal & Nichol, 2022; Ho et al., 2022a;b).

While recent work (Luhman & Luhman, 2022) has explored

pixel-level diffusion with Transformers, they have not been

shown to attain strong performance or scale to large inputs.

Concurrent work (Peebles & Xie, 2022) has shown Trans-

formers may be more tenable when combined with latent

diffusion i.e. by downsampling inputs with large-scale pre-

trained VAEs, but reliance on uniform computation limits

gracefully scaling to larger data. Our model suggests a path

forward for simple performant and scalable iterative genera-

tion of images and video, comparing favourably to U-Nets

in sample quality and efficiency, while based on domain-

agnostic operations such as attention and fully-connected

MLPs, and therefore more universal.

Self-conditioning for diffusion models was originally pro-

posed in (Chen et al., 2022c). It bears similarity to step-

unrolled autoencoders (Savinov et al., 2021) and has been

adopted in several existing work (Strudel et al., 2022; Diele-

man et al., 2022; Chen et al., 2022a). While these works

condition on predictions of data, latent self-conditioning

conditions a neural network on its own hidden activations,

akin to recurrent neural network at inference while training

without backpropagation through time.

5. Conclusion

Recurrent Interface Networks are neural networks that ex-

plicitly partition hidden units into interface and latent tokens.

The interface links the input space to the core computation

units operating on the latents, decoupling computation from

data layout and allowing adaptive allocation of capacity to

different parts of the input. We show how the challenge of

building latents can be amortized in recurrent computation

settings – where the effective network is deep and persistent

context can be leveraged – while still allowing for efficient

training. While RINs are domain-agnostic, we found them

to be performant and efficient for image and video gener-

ation tasks. As we look towards building more powerful

generative models, we hope RINs can serve as a simple

and unified architecture that scales to high-dimensional data

across a range of modalities. To further improve RINs, we

hope to better understand and enhance the effect of latent

self-conditioning. Moreover, we hope to combine the advan-

tages of RINs with orthogonal techniques, such as guidance

and latent diffusion.
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A. Architecture Implementation Pseudo-code

Algorithm 3 provides a more detailed implementation of RINs. Note that for clarity, we only show it for image generation

task, but for other tasks or data modalities, we only need to change the interface initialization, i.e. the tokenization of the

input. We also omit some functions, such as “multihead_attention” and “ffn” (i.e. feed-forward network), which are specified

in Transformers (Vaswani et al., 2017) and available as APIs in major deep learning frameworks, such as Tensorflow (Abadi

et al., 2016) and PyTorch (Paszke et al., 2019).

Algorithm 3 RINs Implementation Pseudo-code.

def block(z, x, num_layers):
"""Core computation block."""
z = z + multihead_attention(q=layer_norm(z), kv=x, n_heads=16)
z = z + ffn(layer_norm(z), expansion=4)

for _ in range(num_layers):
zn = layer_norm(z)
z = z + multihead_attention(q=zn, kv=zn, n_heads=16)
z = z + ffn(layer_norm(z), expansion=4)

x = x + multihead_attention(q=layer_norm(x), kv=z, n_heads=16)
x = x + ffn(layer_norm(x), expansion=4)

return z, x

def rin(x, patch_size, num_latents, latent_dim, interface_dim,
num_blocks, num_layers_per_block, prev_latents=None):

"""Forward pass of Network."""
bsz, image_size, _, _ = x.shape
size = image_size // patch_size

# Initialize interface (with image tokenization as an example)
x = conv(x, kernel_size=patch_size, stride=patch_size, padding=’SAME’)
pos_emb = truncated_normal((1, size, size, dim), scale=0.02)
x = layer_norm(x) + pos_emb

# Initialize latents
z = truncated_normal((num_latents, latent_dim), scale=0.02)

# Latent self-conditioning
if prev_latents is not None:
prev_latents = prev_latents + ffn(stop_grad(prev_latents), expansion=4)
z = z + layer_norm(prev_latents, init_scale=0, init_bias=0)

# Compute
for _ in range(num_blocks):
z, x = block(z, x, num_layers_per_block)

# Readout
x = linear(layer_norm(x), dim=3*patch_size**2)
x = depth_to_space(reshape(x, [bsz, size, size, -1]), patch_size)

return z, x
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B. More Details of Training / Sampling Algorithms, and Noise schedules

Algorithm 4 contains different choices of γ(t), the continuous time noise schedule function.

Algorithm 4 Continuous time noise scheduling function.

def gamma_cosine_schedule(t, ns=0.0002, ds=0.00025):
# A scheduling function based on cosine function.
return numpy.cos(((t + ns) / (1 + ds)) * numpy.pi / 2)**2

def gamma_sigmoid_schedule(t, start=-3, end=3, tau=1.0, clip_min=1e-9):
# A scheduling function based on sigmoid function.
v_start = sigmoid(start / tau)
v_end = sigmoid(end / tau)
output = (-sigmoid((t * (end - start) + start) / tau) + v_end) / (v_end - v_start)
return np.clip(output, clip_min, 1.)

Algorithm 5 contains DDIM (Song et al., 2020) and DDPM (Ho et al., 2020) updating rules, as specified in (Chen et al.,

2022c).

Algorithm 5 xt estimation with DDIM / DDPM updating rules.

def ddim_step(x_t, x_pred, t_now, t_next):
# Estimate x at t_next with DDIM updating rule.
γnow = gamma(t_now)
γnext = gamma(t_next)
x_pred = clip(x_pred, -scale, scale)

eps = 1√
1−γnow

* (x_t -
√
γnow * x_pred)

x_next =
√
γnext * x_pred +

√
1 − γnext * eps

return x_next

def ddpm_step(x_t, x_pred, t_now, t_next):
# Estimate x at t_next with DDPM updating rule.
γnow = gamma(t_now)
αnow = gamma(t_now) / gamma(t_next)
σnow = sqrt(1 - αnow)
z = normal(mean=0, std=1)
x_pred = clip(x_pred, -scale, scale)

eps = 1√
1−γnow

* (x_t -
√
γnow * x_pred)

x_next = 1√
αnow

* (x_t -
1−αnow√
1−γnow

* eps) + σnow * z

return x_next
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Figure B.1. Effect of noise schedule. Comparing noise schedules for training and sampling, with corresponding FID score. The sigmoid

schedule with an appropriate temperature is more stable during training than the widely used cosine schedule, particularly for larger

images. For sampling, the noise schedule has less impact and the default cosine schedule can suffice.
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C. Hyper-parameters and Other Training Details

We train most models on 32 TPUv3 chips with a batch size of 1024. Models for 512×512 and 1024×1024 are trained on 64

TPUv3 chips and 256 TPUv4 chips, respectively. All models are trained with the LAMB optimizer (You et al., 2019).

Table C.1. Model Hyper-parameters.

Task Input/Output Blocks Depth Latents dim(Z) dim(X) Tokens (patch size) Heads Params GFLOPs

IN 64×64×3 4 4 128 1024 256 256 (4×4) 16 280M 106
IN 128×128×3 6 4 128 1024 512 1024 (4×4) 16 410M 194
IN 256×256×3 6 4 256 1024 512 1024 (8×8) 16 410M 334
IN 512×512×3 6 6 256 768 512 4096 (8×8) 16 320M 415
IN 1024×1024×3 6 8 256 768 512 16384 (8×8) 16 415M 1120
K-600 16×64×64×3 6 4 256 1024 512 2048 (2×4×4) 16 411M 386

Table C.2. Training Hyper-parameters.

Task Input/Output Updates Batch Size LR LR-decay Optim β2 Weight Dec. Self-cond. Rate EMA β

IN 64×64×3 300K 1024 1e-3 cosine 0.999 0.01 0.9 0.9999
IN 128×128×3 600K 1024 1e-3 cosine 0.999 0.001 0.9 0.9999
IN 256×256×3 600K 1024 1e-3 cosine 0.999 0.001 0.9 0.9999
IN 512×512×3 1M 1024 1e-3 cosine 0.999 0.01 0.9 0.9999
IN 1024×1024×3 1M 512 1e-3 None 0.999 0.01 0.9 0.9999
K-600 16×64×64×3 500K 1024 1e-3 cosine 0.999 0.001 0.85 0.99
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D. Sample Visualizations

Figure D.1. Selected class-conditional samples from a model trained on ImageNet 256×256. Classes from the top: space shuttle (812),

arctic fox (279), lorikeet (90), giant panda (388), cockatoo (89).
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Figure D.2. Selected class-conditional samples from a model trained on ImageNet 256×256. Classes from the top: go-kart (573), macaw

(88), white wolf (270), lion (291), siberian husky (250).
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Figure D.3. Random class-conditional ImageNet 768×768 samples generated by RINs trained with input scaling (Chen, 2023). Note that

these samples are uncurated but generated using classifier-free guidance. These demonstrate the architecture can scale to higher-resolutions

despite being single-scale and operating directly on pixels.
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Figure D.4. Random class-conditional ImageNet 1024×1024 samples generated by RINs trained with input scaling (Chen, 2023). Note

that these samples are uncurated but generated using classifier-free guidance.
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Figure D.5. Selected samples of video prediction on Kinetics-600 at 16×64×64 showing examples of multi-modality across different

future predictions, with conditioning frames from the test set. For example, the ballerina’s arm and leg movements vary (first); the hand

moves in different ways while sewing (second); the wakeboarder faces different waves (third); the bicyclist takes different turns; the

sky-divers face different fates; the hockey scene (last) is zoomed and panned in different ways.
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Routing across Blocks

Figure D.6. Visualization of emergent adaptive computation for ImageNet 256×256 samples.
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Figure D.7. Visualization of emergent adaptive computation for video prediction on Kinetics-600. The samples are subsampled 2× in

time to align with the attention visualization. In each column of the attention visualization, the first two columns are read attention on

conditioning frames. We observe that read attention and hence computation is focused on regions of motion, that cannot be generated by

simply copying from the conditioning frames.
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