
Graph Ladling: Shockingly Simple Parallel GNN Training
without Intermediate Communication

Ajay Jaiswal 1 Shiwei Liu 1 Tianlong Chen 1 Ying Ding 1 Zhangyang Wang 1

Abstract
Graphs are omnipresent and GNNs are a powerful
family of neural networks for learning over graphs.
Despite their popularity, scaling GNNs either by
deepening or widening suffers from prevalent is-
sues of unhealthy gradients, over-smoothening,
information squashing, which often lead to sub-
standard performance. In this work, we are in-
terested in exploring a principled way to scale
GNNs capacity without deepening or widening,
which can improve its performance across mul-
tiple small and large graphs. Motivated by the
recent intriguing phenomenon of model soups,
which suggest that fine-tuned weights of multiple
large-language pre-trained models can be merged
to a better minima, we argue to exploit the fun-
damentals of model soups to mitigate the afore-
mentioned issues of memory bottleneck and train-
ability during GNNs scaling. More specifically,
we propose not to deepen or widen current GNNs,
but instead present a data-centric perspective
of model soups tailored for GNNs, i.e., to build
powerful GNNs by dividing giant graph data to
build independently and parallelly trained multi-
ple comparatively weaker GNNs without any in-
termediate communication, and combining their
strength using a greedy interpolation soup pro-
cedure to achieve state-of-the-art performance.
Moreover, we provide a wide variety of model
soup preparation techniques by leveraging state-
of-the-art graph sampling and graph partitioning
approaches that can handle large graph data struc-
tures. Our extensive experiments across many
real-world small and large graphs, illustrate the
effectiveness of our approach and point towards
a promising orthogonal direction for GNN scal-
ing. Codes are available at: https://github.
com/VITA-Group/graph_ladling.

*Equal contribution 1University of Texas at Austin. Correspon-
dence to: Ajay Jaiswal <ajayjaiswal@utexas.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction
Graphs are well-known data structures that model pairwise
relationships using a set of vertices and edges and represent
a myriad of real-world data from social networks, knowl-
edge graphs, gene expression networks, etc. Graph neural
networks (GNNs) (Kipf & Welling, 2017; Defferrard et al.,
2016; Veličković et al., 2017; You et al., 2020; Gao et al.,
2018; Chiang et al., 2019; Zheng et al., 2021b; Chen et al.,
2018; Duan et al., 2022; Thekumparampil et al., 2018),
which use message passing (MP) strategy at their core for
aggregating knowledge from neighbors, have been widely
accepted as powerful algorithmic tools for learning over
graphs. Although message passing provides GNNs superior
performance over traditional MLPs, the nature of evolving
massive topological structures prevents MP-based GNNs
from scaling to industrial-grade graph applications, and the
majority of state-of-the-art GNNs are only tested on small
graph datasets. Additionally, due to the prevalent issues
of unhealthy gradients, over-smoothening, and information
squashing (Li et al., 2018; NT & Maehara, 2019; Alon &
Yahav, 2021; Jaiswal et al., 2022; Liu et al., 2021) while
training GNNs, increasing model capacity either by deep-
ening (stacking more layers) or widening (increasing neigh-
borhood coverage) often lead to sub-standard performance.

Previously, conforming to the empirical scaling laws (Ka-
plan et al., 2020), where the final model quality has been
found to have a power-law relationship with the amount
of data, model size, and compute time; several works (Li
et al., 2021; Jaiswal et al., 2022; Zhou et al., 2021b) have
attempted to scale GNNs (up to 1000 layers) assuming that
processing larger graphs would likely benefit from more
parameters. Unlike conventional deep neural networks,
exploiting scale to revamp information absorption is not
straight-forward for GNNs, and numerous existing works
rely on architectural changes, regularization & normaliza-
tion, better initialization (Li et al., 2019; Chen et al., 2020; Li
et al., 2018; Liu et al., 2020; Rong et al., 2020; Huang et al.,
2020; Zhao & Akoglu, 2020; Zhou et al., 2021a; Jaiswal
et al., 2022) for improving the trainability and try to over-
come astonishingly high memory footprints by mini-batch
training, i.e. sampling a smaller set of nodes or partitioning
large graphs (Hamilton et al., 2017; Chen et al., 2018; Zou

1

https://github.com/VITA-Group/graph_ladling
https://github.com/VITA-Group/graph_ladling

Graph Ladling: Shockingly Simple Parallel GNN Training without Intermediate Communication

et al., 2019; Chiang et al., 2019; Zeng et al., 2019). While
these methods are a step in the right direction, they do not
scale well as the models become deeper or wider, since
memory consumption is still dependent on the number of
layers. We are interested in exploring an orthogonal step:
Does there exist a principled way to scale GNNs capac-
ity without deepening or widening, which can improve its
performance across small and large graphs?

Recently, for large pre-trained models with many appli-
cations in computer vision (Han et al., 2020; Li et al.,
2023; Mao et al., 2022; Jaiswal et al., 2021a; Zheng et al.,
2021a) and natural language processing (Talmor et al., 2018;
Jaiswal et al., 2021b; Zheng et al., 2023; Liu et al., 2023;
Chen et al., 2023; Jaiswal et al., 2023), several works (Worts-
man et al., 2022b; Ilharco et al., 2022; Juneja et al., 2022)
investigate the intriguing phenomenon of “model soup”, and
have shown that weights of multiple dense fine-tuned mod-
els (candidate ingredients of soup) can be merged together
into better generalizable solutions lying in low error basins.
Despite enormous attention in NLP, it is unexplored for
GNNs, presumably due to traditional wisdom that unlike
large pre-trained transformers in NLP, current state-of-the-
art GNN’s model capacity is under-parameterized apropos
of gigantic graphs. Despite some recent works (WAN, 2022;
Lin et al., 2022) illustrating the benefits of GNNs ensem-
bling, they exhibit high computational cost during inference
which worsens in the context of large graphs. Motivated by
the mergability of multiple fine-tuned models illustrated by
model soups, in this work, we raise the research question:
Is it possible to leverage the fundamentals of model soups
to handle the aforementioned issues of memory bottleneck
and trainability, during scaling of GNNs?

To this end, we propose not to deepen or widen current
GNNs, but instead explore a data-centric perspective of di-
viding ginormous graph data to build independently and par-
allelly trained multiple comparatively weaker models with-
out any intermediate communication, and merge them to-
gether using greedy interpolation soup procedure to achieve
state-of-the-art performance. Our work draws motivation
from recent advancements in parallel training of pretrained
language models (LMs). For example, Branch-Merge-Train
(BTM) (Li et al., 2022) learns a set of independent expert
LMs specializing in different domains followed by averag-
ing to generalize to multiple domains, and Lo-Fi (Worts-
man et al., 2022a) illustrates the futility of communication
overhead in data-parallel multi-node finetuning of LMs. Al-
though these techniques seem to work for large pre-trained
LMs, it is still unclear and unexplored if they will work
for comparatively much smaller GNNs in the training-
from-scratch regime. Moreover, GNNs deal with graph-
structured relational data unlike independent samples in
LMs and have their own unique set of challenges in their
trainability, which makes it interesting to understand if soup

phenomenon will help or deteriorate GNNs performance.

To our surprise, we found that independently trained GNNs
from scratch can be smoothly aggregated using our greedy
soup interpolation procedure to create a better generaliz-
able GNN that performs exceptionally well. It suggests
that linear scaling of GNNs either by deepening or widen-
ing is not necessarily the right approach towards building
high-quality generalizable GNNs, and model soups can be
an alternative. Note that, unlike the conventional model
soup, we are the first to explore weight averaging for graph
models, and in a well-motivated data-centric perspective
(where it matters the most) considering the exploding size
of real-world graphs. More specifically, in our work, we
firstly illustrate easy adaptability of model soups across mul-
tiple SOTA GNN architectures trained on multiple small
and large graphs (unexplored till now) and secondly present
a novel data-centric perspective of model soups for large
graph-structured relational data within constraints of avail-
able computational resource. Moreover, we extend current
state-of-the-art graph sampling and partitioning techniques
to facilitate the training of candidate soup ingredients which
can be seamlessly combined at end for better generalization.

Our primary contributions can be summarized as:

■ We illustrate the harmonious adaptability of model
soups for graph-structured data and experimentally val-
idate its performance benefits across multiple GNN
architectures and graph scales. Our experiments reveal
orthogonal knowledge stored in the candidate mod-
els which can be surprisingly aggregated during soup
preparation using our greedy interpolation procedure.

■ We present a novel data-centric perspective of model
soups tailored for GNNs and carefully study the ben-
efits of independent and parallel training of candidate
models and their mergability in scenarios without the
luxury of having computation resources to process en-
tire graph, by extending state-of-the-art (SOTA) graph
sampling and partitioning algorithms.

■ Our extensive experiments across multiple large-
scale and small-scale graphs {Cora, Citeseer,
PubMed, Flickr, Reddit, OGBN-ArXiv,
OGBN-products} using multiple GNN architec-
tures {GCN, JKNet, DAGNN, APPNP, SGC,
GraphSAGE, CluterGCN, GraphSAINT}
validates the effectiveness of our approach.

2. Methodology
2.1. Preliminaries

Graph Neural Networks (GNNs) exploit an iterative mes-
sage passing (MP) scheme to capture the structural infor-
mation within nodes’ neighborhoods. Let G = (V, E) be

2

Graph Ladling: Shockingly Simple Parallel GNN Training without Intermediate Communication

a simple and undirected graph with vertex set V , edge set
E and .Let A ∈ RN×N be the associated adjacency matrix,
such that Aij = 1 if (i, j) ∈ E , and Aij = 0 otherwise.
N = |V| is the number of nodes. Let X ∈ RN×P0 be
the node feature matrix, whose i-th row represents a P0-
dimension feature vector for the i-th node. To facilitate
understanding, a unified formulation of MP with K layers is
presented as follows:

X(K) = A(K−1)σ(A(K−2)σ(· · ·σ(A(0)X(0)

W (0))) · ··)W (K−2))W (K−1) (1)

where σ is an activation function (e.g. ReLU), A(l) is the
adjacency matrix at l-th layer, and W (l) is the feature trans-
formation weight matrix at l-th layer which will be learnt
for the downstream tasks.

2 4 8 10 16 32
Layer Count

66
67
68
69
70
71
72
73

Te
st

 A
cc

ur
ac

y

GCN
GCNII
GPRGNN

8 16 256 512 1024 2048
Neighbourhood sample Size

69.0
69.2
69.4
69.6
69.8
70.0
70.2
70.4
70.6

Ac
cu

ra
cy

~51 iter/s

~46 iter/s

~19 iter/s
~17 iter/s

~12 iter/s
~11 iter/s

Figure 1. (Left) Performance comparison of GCN, GCNII, and
GPRGNN on OGBN-arxiv dataset with increasing layer count.
(Right) Performance comparison of 2-layer GraphSAGE on
OGBN-arxiv dataset with increasing neighbor sampling thresh-
old. Results illustrate that deepening and widening the model
capacity doesn’t necessarily help in improved performance.

2.2. GNNs and Issues with Model Explosion

Despite the enormous success of GNNs in learning high-
quality node representations, many state-of-the-art GNNs
are shallow due to notorious challenges in their trainability,
resulting in sub-standard performance. Recently, we have
been observing a massive explosion in the topological struc-
ture of real-world graph data, which raises demand to in-
crease the model capacity to facilitate capturing long-range
dependencies, and relaxing the widely-adopted restrictions
to learn from limited neighbors subjected to resource con-
straints due to the design issues of message passing strategy.

Several works (Li et al., 2021; Jaiswal et al., 2022; Zhou
et al., 2021b) have attempted the empirical scaling law from
NLP, which suggests that over-parametrized models have
better generalization capabilities, and proposed to similarly
scale GNNs by stacking layers citing their increased abil-
ity to capture long-term dependencies. However, scaling
GNNs capacity either by deepening to capture long-range
dependencies or by widening to increase neighborhood ag-
gregation is inhibited by the prevalent issues of unhealthy
gradients during back-propagation leading to poor trainabil-
ity, over-smoothening causing feature collapse, and informa-

tion squashing due to overload and distortion of messages
being propagated from distant nodes.

Figure 1 illustrates the effect of state-of-the-art GNNs scal-
ing from the perspective of deepening and widening on
OGBN-arxiv. It can be clearly observed that vanilla-
GCN, GCNII and GPRGNN, all suffer significant perfor-
mance from drop with increasing model capacity. Note
that this substandard performance still exists in GCNII and
GPRGNN, which are equipped with SOTA architectural
modifications (eg. skip-connections), regularization, and
normalization. Additionally, as shown in Figure 1(right),
increasing the breadth of message passing to capture more
and more neighborhood information for GraphSAGE on
OGBN-arxiv does not necessarily help in improving the
performance rather increases the memory footprints and
reduce throughput (iterations/sec).

To this end, we argue that model explosion is not necessarily
the only solution towards building high-quality generaliz-
able GNNs and propose an orthogonal direction inspired by
the recent distributed and parallel training platform of model
soups. We propose to build independently and parallelly
trained multiple comparatively weaker models without any
intermediate communication, and merge their knowledge
to create a better generalizable GNN. In the next sections,
we will explain how model soups can be easily adapted
for many state-of-the-art GNNs, and how can we smoothly
extend the current graph sampling and partitioning to create
candidate ingredients for the model soup.

Algorithm 1 Greedy Interpolation Soup Procedure
Input: Soup Ingredients M = {M1,M2, ...,MK}
M sorted ← SORTV alAcc(M)
soup←M sorted[0]
for i = 1 to K do

for α in linspace(0, 1, step) do
if ValAcc(interpolate(soup, Mi, α)) ≥
ValAcc(soup) then

soup← interpolate(soup, Mi, α)
end if

end for
end for

2.3. Model Soups and current state-of-the-art GNNs

In this section, we discuss about the harmonious adaptation
of model soups for various state-of-the-art GNNs. Although
model soups have been recently receiving ample attention
for parallel training of large language pre-trained models, it
is still unclear and unexplored if they will work for compar-
atively much smaller GNNs trained from scratch. We for
the first time observed that unlike using a pre-trained ini-
tialization in LLMs, GNNs optimized independently from
the same random initialization organically lie in the same

3

Graph Ladling: Shockingly Simple Parallel GNN Training without Intermediate Communication

basin of the error landscape, and they can be smoothly
aggregated using linear interpolation across their weight
parameters, with significant performance gain.

More specifically, we propose to create K instances (soup
ingredients) of the same GNN architecture of interest, shar-
ing a common random initialization to ensure that the op-
timization trajectory does not deviate significantly during
training facilitating smooth mergability. Subject to resource
availability, GNN instances are trained independently in
isolation across multiple GPUs using the hyperparameter
configuration set {h1, h2, ..., hK} designed with slight vari-
ations in the learning rate, weight decay, seed values, etc.

Once the soup ingredients are ready, we start preparing
the soup using our greedy interpolation soup procedure as
illustrated in Algorithm 1, which in general follows (Worts-
man et al., 2022b). The greedy soup sequentially adds each
model as a potential ingredient in the soup, and only keeps
the model in the soup if it leads to improving performance on
the validation set. For merging two ingredients, we perform
a search for an optimal interpolation ratio α ∈ [0, 1] that
helps in performance gain, else the ingredient is discarded.

In comparison with several state-of-the-art GNNs, we ex-
perimentally illustrate that GNN soups prepared using in-
gredients having exactly the same model configuration,
significantly perform better without any requirement of
increasing model depth or width. For example, a 4-
layer GCNII model soup prepared using 50 candidate in-
gredients, beats GCNII with a similar configuration on
PubMed by 1.12± 0.36. Our experiments across multi-
ple GNN architectures and datasets ranging from small
graphs to large graphs {Cora, Citeseer, PubMed,
OGBN-ArXiv, OGBN-products} strongly validate
the universal effectiveness of model soups for GNNs.

Algorithm 2 Model soup with Graph Sampling
Input: ingredient count: Ic; Graph G, sampling ratio: s;
gpu count: Gc; Hyperparameter Settings: H, Sampling
Criterion: S(node, edge, layer)
candidate queue← {M1,M2, ...,MIc}
soup← None
for i = 1 to range((Ic

Gc
) + 1) do

{M1,M2, ...,MGc} ← Dequeue Gc ingredients and
distribute across available GPUs
Train all distributed Mi in parallel with mini-batch
sampling sample(G, s, S) and setting hi ∈ H
soup← greedy interpolation({M1,M2, ...,

MGc
}∪ soup)

end for
Return soup

2.4. Data-Centric Model soups and Large Graph
Training Paradigms

In this section, we discuss our approach for preparing data-
centric model soups in scenarios when we have resource
constraints to perform message passing with the entire graph
data in memory, by leveraging the SOTA graph sampling
and partitioning mechanisms. As MP requires nodes ag-
gregating information from their neighbors, the integral
graph structures are inevitably preserved during forward
and backward propagation, thus occupying considerable
running memory and time. Following Equation 1, the key
bottleneck relies in A(l)X(l) for vanilla MP, requiring entire
sparse adjacency matrix to be present in one GPU during
training, which becomes challenging with growing topol-
ogy of real-world graphs. Recently, numerous efforts with
regards to graph sampling (Hamilton et al., 2017; Zou et al.,
2019; Chen et al., 2018) and partitioning (Chiang et al.,
2019; Zeng et al., 2019) have been proposed for approxi-
mating the iterative full-batch MP to reduce the memory
consumption for training within one single GPU to mitigate
the aforementioned issue and scale up GNNs.

Provided the formulation of Equation 1; graph sampling and
partitioning paradigms pursue an optimal way to perform
batch training, such that each batch will meet the memory
constraint of a single GPU for message passing. We restate
a unified illustration to elucidate the formulation of graph
sampling and partitioning used for training our model soup
ingredient Mi as follows:

X
(K)
B0

[Mi] = Ã
(K−1)

B1
σ(Ã

(K−2)

B2
σ(···σ(Ã

(0)

BK
X

(0)
BK

[Mi]

W (0)[Mi])) · ··)W (K−2)[Mi])W
(K−1)[Mi] (2)

where Ã
(l)

indicate the adjacency matrix for the l-th layer
sampled from the full graph, Bl is the set of nodes sampled
at l-th layer, Mi and W (l)[Mi] indicate the i-th candidate
ingredient and weight associated with its l-th layer. This
mini-batch training approach combined with a sampling
and partitioning strategy significantly helps in alleviating
time consumption and memory usage which grow expo-
nentially with the GNN depth. It is worth noting that we
have explored extension to scalable infrastructure topics
like distributed training with multiple GPUs to alleviate the
expenses of training ingredients for model soup.

2.4.1. MODEL SOUP WITH GRAPH SAMPLING

Given a large graph G = {V, E}, we explore three categories
of widely-used sampling strategies: node-wise sampling,
edge-wise sampling, and layer-wise sampling; to facilitate
the training of candidates in our data-centric model soup.

Node-wise Sampling : Node-wise sampling approaches
propose to sample nodes from the sampling space N (v),
which is 1-hop neighborhood of v as Bl+1 =

⋃
v∈Bl
{x|x ∼

4

Graph Ladling: Shockingly Simple Parallel GNN Training without Intermediate Communication

Q · PN (v)}, where Q denotes the number of samples, and
P is the sampling distribution. In our work, we have used
GraphSAGE node sampling where P is the uniform distribu-
tion. GraphSAGE sampling strategy fixes the conventional
issue of “node explosion” by clipping the neighborhood
sample count to Q for each node.

Edge-wise Sampling : Edge-wise sampling proposes
to sample edges from the sampling space E(vK) which
is K-hop neighborhood of v as Bl+1 =

⋃
v∈Bl
{x|x ∼

Q · P E(vk)}, where Bl+1 denotes the set of nodes induced
due to edge-sampling and P is the uniform distribution. In
our work, we have used uniform distribution for sampling a
fixed amount of edges for each mini-batch training.

Layer-wise Sampling : Bl+1 = {x|x ∼ Q · PN (Bl)},
where N (Bl) =

⋃
v∈Bl

denotes the 1-hop neighbourhood
of all the nodes in Bl In our work, following FastGCN,
the sampling distribution P is designed using importance
sampling where the probability for node u of being sampled
is p(u) ∝ ||A(u, :)||2. Experimentally, we found that layer-
wise induced adjacency matrix is usually sparser than the
others, which accounts sub-optimal performance in practice.

As shown in Algorithm 2, for our data-centric model soup,
we first initialize our soup ingredients using a common ran-
dom initialization. Depending upon the resource availability,
we dequeue our ingredients across different GPUs, and train
them in parallel with mini-batch sampling defined by a sam-
pling strategy (node, edge, layer) and sampling ratio. Our
model soup is prepared using greedy interpolation proce-
dure (Algorithm 1) in an “available and added” fashion once
the candidate ingredients are ready to be added to the soup.
2.4.2. MODEL SOUP WITH GRAPH PARTITIONING

Despite the success of sampling-based approaches, they still
suffer from the issue of neighborhood explosion even with
restricted node sampling when GNNs go deep leading to
memory bottleneck. It has been observed that the efficiency
of a mini-batch algorithm can be characterized by the notion
of “embedding utilization”, which is proportional to the
number of links between nodes in one batch or within-batch
links (Chiang et al., 2019). Such findings motivated the
design of batches using graph clustering algorithms that aim
to construct partitions of nodes so that there are more graph
links between nodes in the same partition than nodes in
different partitions. More specifically, in graph partitioning,
all the GNN layers share the same subgraph induced from
the entire graph based on a partitioning strategy P G as
BK = BK−1 = ... = B0 = {x|x ∼ Q · P G}, such that the
sampled nodes are confined in the induced subgraph.

In our work, we propose a novel and efficient strategy for
graph partition-based model soup, building upon the Clus-
terGCN and show that it can outperform ClusterGCN by
> 1% on two large graphs OGBN-arxiv and Flickr.
We adopted the multi-clustering framework proposed in

Algorithm 3 Model soup with Graph Partitioning
Input: ingredient count: Ic; Graph G, sampling ratio:
s; gpu count: Gc; Hyperparameter Settings: H, Epoch
Count: E
Partition the graph G into fixed K clusters V =
{V1, V2, ..., VK} using METIS and save.
candidate queue← {M1,M2, ...,MIc}
soup← None
for i = 1 to (range((Ic

Gc
) + 1) do

{M1,M2, ...,MGc
} ← Dequeue Gc ingredients and

distribute across available GPUs
for For All distributed Mi in parallel do

for iter in range(E) do
Randomly choose q clusters {t1, t2, ..., tq} ∈ V
Form a subgraph G̃ with nodes Ṽ =
{Vt1 , Vt2 , ..., Vtk} and edges AṼ,Ṽ
Train Mi with subgraph G̃ setting hi ∈ H

end for
end for
soup← greedy interpolation({M1,M2, ...,

MGc
}∪ soup)

end for
Return soup

ClusterGCN (METIS) to partition the graph G into fixed K
clusters V = {V1, V2, ..., VK} which will be used to train
each candidate ingredient of the model soup. We propose to
save the cluster partition to ensure that there is no overhead
of expensive graph partitioning again and again for improv-
ing the efficiency while training model soup ingredients.
Once the clusters are decided, each candidate ingredient
chooses q (hyperparameter) vertex partitions independently
and forms a subgraph that can be used for training. This
partitioning strategy allows us to train comparatively deeper
GNNs wrt. sampling approaches. Once the candidate in-
gredients are trained using hyperparameter settingsH, we
prepare our model soup in an “available and added” strat-
egy using greedy interpolation procedure (Algorithm 1) as
shown in Algorithm 3.

3. Experiments and Analysis
3.1. Dataset and Experimental Setup

Our experiments are conducted on two GPU servers
equipped with RTX A6000 and RTX 3090 GPUs. The hyper-
parameters for soup ingredients corresponding to different
datasets training are selected via our built-in efficient param-
eter sweeping functionalities from pre-defined ranges nearby
our optimal setting in Appendix B. For our small-scale ex-
periments, we use three standard citation network datasets:
Cora, Citeseer, and Pubmed, while our large-scale
experiments are conducted with four popular large-scale

5

Graph Ladling: Shockingly Simple Parallel GNN Training without Intermediate Communication

0 5 10 15 20 25 30
Ingredient Number

94.0
94.5
95.0
95.5
96.0
96.5
97.0

Te
st

 A
cc

ur
ac

y
Reddit

0 5 10 15 20 25 30
Ingredient Number

67
68
69
70
71
72
73

Te
st

 A
cc

ur
ac

y

OGBN-ArXiv

0 5 10 15 20 25 30
Ingredient Number

76.0
76.5
77.0
77.5
78.0
78.5
79.0
79.5
80.0

Te
st

 A
cc

ur
ac

y

OGBN-products

Figure 2. Plot illustrating individual performance of each participating candidate ingredient of our data-partition soup. Red dashed line
indicates the performance of the model soup generated using our greedy interpolation procedure.

Table 1. Performance comparison of model soups generated using 50 candidate ingredients independently trained on the benchmarking
datasets wrt. vanilla performance of several SOTA GNNs. Note that our ingredients have exactly the same architectural design as their
vanilla counterpart. Results reported for vanilla GNNs are averaged across 30 independent runs.

Dataset GCN GCNII JKNet DAGNN APPNP SGC

Vanilla Our Soup Vanilla Our Soup Vanilla Our Soup Vanilla Our Soup Vanilla Our Soup Vanilla Our Soup

Cora 82.39 83.52 82.19 82.77 79.06 79.89 83.39 83.45 83.64 83.70 79.31 80.22
Citeseer 71.36 72.01 72.97 73.56 66.98 68.01 73.05 73.76 72.13 73.15 72.22 73.53
PubMed 79.56 80.22 78.06 79.44 77.24 77.42 80.58 80.92 80.30 80.62 78.06 78.94
ArXiv 68.53 69.45 72.56 72.92 66.41 67.63 71.22 72.01 66.95 67.37 61.98 63.15

open benchmarks: Flickr, Reddit, OGBN-ArXiv, and
OGBN-products (Appendix A). For our evaluation on
our chosen datasets, we have closely followed the data split
settings and metrics reported by the recent benchmark (Duan
et al., 2022; Chen et al., 2021). We consider variations in the
key hyperparameters {random seed, batch size, learning rate,
weight decay, and dropout rate} for generating the candidate
ingredient models in our model soup. Unless explicitly spec-
ified, we have used 50 candidate ingredients for small-scale
graphs and 30 candidate ingredients for large-scale graphs
experiments and our model soup is prepared using interpo-
lation hyperparameter α ∈ [0− 1] with a step size of 0.01
in Algorithm 1. For comparison with SOTA models, we
have adopted the official implementation (Appendix C) of
JKNet, DAGNN, APPNP, GCNII, SGC, ClusterGCN, and
GraphSAINT. Note that while generating our model soup,
we make sure to use exactly the same architectural design
for our candidate ingredients to ensure a fair comparison.

3.2. Model Soups and SOTA GNNs

In this section, we conduct a systematic and extensive study
to understand the harmonious adaptation of model soups for
state-of-the-art GNNs on popular graph benchmarks Cora,
Citeseer, Pubmed, and OGBN-ArXiv. Note that al-
though model soups have recently attracted significant atten-
tion for large pre-trained language models, it is still unclear
and unexplored if they can work for comparatively much
smaller graph neural networks trained from scratch which
learn from graph-structured data with relational properties

unlike NLP and vision datasets having independent train-
ing samples. Model soups provide an orthogonal way of
increasing model capacity without deepening or widening
GNNs which brings many unwanted trainability issues in
GNNs. Table 1 illustrates the performance summarization
of our model soup generated using 50 candidate ingredients
independently trained on the benchmarking datasets with
respect to the vanilla performance of several SOTA GNNs
following the exact same architectural design (4 layers with
256 hidden dimension) to ensure a fair comparison. The
results reported for vanilla GNNs within Table 1 are aver-
aged across 30 independent runs using different seed values
selected at random from [1− 100] without replacement.
We first observe that across all datasets and GNN archi-
tecture, model soups outputs significantly outperform their
vanilla counterpart. More noticeably, it improves GCN
performance on Cora by 1.13%, GCNII performance on
PubMed by 1.38%, JKNet, DAGNN, and SGC performance
on OGBN-ArXiv by 1.22%,0.79%,1.17% respectively, and
APPNP performance on Citeseer by 1.02%. Moreover, Ta-
ble 2 illustrates the current state of various fancy architec-
tural and regularization modifications recently proposed to
facilitate deepening of GCNs and help in improving their
performance. It can be clearly observed that our model soup
prepared by combining the strength of 50 candidate ingredi-
ents of 2-layer GCNs can significantly outperform all these
fancy methods, bolstering our claim that model explosion by
deepening and widening is necessarily not the only and right
direction for building high-quality generalizable GNNs.

6

Graph Ladling: Shockingly Simple Parallel GNN Training without Intermediate Communication

Table 2. Illustration of the current state of various fancy architectural and regularization modifications recently proposed to facilitate
deepening of GCNs and help in improving their performance. Note that our model soup prepared by combining the strength of 50
candidate ingredients of 2-layer GCNs can significantly outperform all these fancy methods.

Category Settings Cora Citeseer PubMed

2 16 32 2 16 32 2 16 32

Vanilla-GCN - 81.10 21.49 21.22 71.46 19.59 20.29 79.76 39.14 38.77

Skip Residual 74.73 20.05 19.57 66.83 20.77 20.90 75.27 38.84 38.74
Connection Initial 79.00 78.61 78.74 70.15 68.41 68.36 77.92 77.52 78.18

Jumping 80.98 76.04 75.57 69.33 58.38 55.03 77.83 75.62 75.36
Dense 77.86 69.61 67.26 66.18 49.33 41.48 72.53 69.91 62.99
Identity 82.98 67.23 40.57 68.25 56.39 35.28 79.09 79.55 73.74

Normalization BatchNorm 69.91 61.20 29.05 46.27 26.25 21.82 67.15 58.00 55.98
PairNorm 74.43 55.75 17.67 63.26 27.45 20.67 75.67 71.30 61.54
NodeNorm 79.87 21.46 21.48 68.96 18.81 19.03 78.14 40.92 40.93
CombNorm 80.00 55.64 21.44 68.59 18.90 18.53 78.11 40.93 40.90

Random Dropping DropNode 77.10 27.61 27.65 69.38 21.83 22.18 77.39 40.31 40.38
DropEdge 79.16 28.00 27.87 70.26 22.92 22.92 78.58 40.61 40.50

Our Model Soup (2-layer GCN) 83.47 ± 0.32 72.11 ± 0.14 80.30 ± 0.25

Table 3. Performance Comaprison of GradientGCN (Jaiswal et al.,
2022) soup with 50 candidate ingredients on three WebKB datasets
(Texas, Wisconsin, Cornell), and Actor dataset.

Texas Wisconsin Cornell Actors

GCN 60.12±4.22 52.94±3.99 54.05±7.11 25.46±1.43
SGC 56.41±4.25 51.29±6.44 58.57±3.44 26.17±1.15

GCNII 64.28±2.93 59.19±9.07 58.51±1.66 30.95±1.04
JKNet 61.08±6.23 52.76±5.69 57.30±4.95 28.80±0.97

APPNP 60.68±4.50 54.24±5.94 58.43±3.74 28.65±1.28
GradientGCN 69.19±6.56 70.31±4.75 74.16±6.48 34.28±1.12

Ours 70.45 ±2.77 72.01 ±3.89 75.90 ±4.76 34.69 ±0.51

3.3. Data-Centric Model Soup with Graph Sampling
and Graph Partitioning

In this section, we provide experimental results for prepar-
ing data-centric model soup in scenarios when we do not
have the luxury of resources to perform message passing on
the entire graph, by leveraging the SOTA graph sampling
(node, edge, layer) and partitioning mechanisms to prepare
the candidate ingredients of the soup. Table 4 illustrates
the performance comparison of state-of-the-art graph sam-
pling approaches GraphSAGE, FastGCN, and LADIES with
respect to our node, edge, and layer-wise sampled soup pre-
pared using Algorithm 2. Results of GraphSAGE, FastGCN,
and LADIES are reported as mean across 30 independent
runs while our soup results are reported as the mean of 5
independent runs. We additionally report the performance
of graph ensemble prepared using the 30 independent runs
of best-performing baseline (GraphSAGE). It can be clearly
observed that our Node sampled soup performs best and
comfortably outperforms all the baselines along with the
graph ensemble which has a hefty inference cost, by signifi-
cant margins. Similar to the sub-standard performance of
layer-wise sampling approaches FastGCN and LADIES, our
Layer sampled soup has comparatively low (although better
than FastGCN and LADIES) performance, possibly because
layer-wise induced adjacency matrix is usually sparser than
the others, which accounts for its sub-optimal performance.

In Table 6, we attempted to analyze the activation memory
usage of activations and the hardware throughput (higher
is better) of GraphSAGE (neighborhood sample size of 40)
with respect to our data-centric model soup using node sam-
pling equivalent to one-fouth of GraphSAGE (i.e., neigh-
borhood sample size of 10) on OGBN-products. We found
that with comparatively less memory requirement, our ap-
proach can ∼ 1% better performance, eliciting the high
potential in improving GNNs performance by combining
the strength of multiple weak models. Next, Table 5 illus-
trates the performance comparison of our Graph Partition
Soup with respect to two well-known graph partitioning
GNNs: ClusterGCN and GraphSAINT. Results of Clus-
terGCN and GraphSAINT are reported as mean across 30
independent runs while our soup results are reported as mean
of 5 independent runs each generated using 30 candidate
ingredients using Algorithm 3. We also present the perfor-
mance of graph ensemble prepared using the 30 independent
runs of the best-performing baseline (ClusterGCN). Across
all benchmarking datasets (Flicket, Reddit, OGBN-ArXiv,
and OGBN-products), our data partition soup outperforms
both GraphSAINT and ClusterGCN. More noticeably, our
method beats ClusterGCN with a similar architecture design
by > 1% margin on Flickr and OGBN-ArXiv dataset. In
addition, Figure 2 illustrates the individual performance of
each participating candidate ingredient of our data-partition
soup, and it can be clearly observed that there is orthogo-
nal knowledge stored in the learned weights of these net-
works. This gets elucidated by merging candidates and
thereby improving overall performance which demonstrates
the strength of our data-centric model soups.

3.4. Effect of Ingredient Count on Data-Centric Soup

In this section, we try to understand the strength of increas-
ing ingredient count to our final data-centric model soup
performance. Table 7 illustrates the performance compar-
ison of our data partition soup on OGBN-ArXiv dataset,

7

Graph Ladling: Shockingly Simple Parallel GNN Training without Intermediate Communication

Table 4. Performance comparison of state-of-the-art graph sampling approaches GraphSAGE, FastGCN, and LADIES wrt. our node, edge,
and layer-wise sampled soup prepared using Algorithm 3. Results of GraphSAGE, FastGCN, and LADIES are reported as mean across 30
independent runs while our soup results are reported as mean of 5 independent runs, where each run uses 50 candidate ingredients.

Method Flickr Reddit OGBN-ArXiv OGBN-products
N=89,250 E=899,756 N=232,965 E=11,606,919 N=169,343 E=1,166,243 N= 2,449,029 E=61,859,140

GraphSAGE 53.63 ± 0.13% 96.50 ± 0.03% 71.55 ± 0.41% 80.61 ± 0.16%
FastGCN 49.89 ± 0.62% 79.50 ± 1.22% 66.10 ± 1.06% 73.46 ± 0.20%
LADIES 50.04 ± 0.39% 86.96 ± 0.37% 62.78 ± 0.89% 75.31 ± 0.56%

GraphSAGE Ensemble 53.71 96.61 71.58 80.85

Node Sampled Soup 54.47 ± 0.13 % 97.28 ± 0.08 % 72.83 ± 0.21 % 81.34± 0.28 %
Edge Sampled Soup 52.91 ± 0.56 % 92.66± 0.34 % 70.45± 0.29 % 75.58 ± 0.45 %
Layer Sampled Soup 51.08 ± 0.22 % 86.01± 0.17 % 68.30 ± 0.54 % 74.95± 0.38 %

Table 5. Performance comparison of our Graph Partition Soup with respect to two well-known graph partitioning GNNs: ClusterGCN
and GraphSAINT. Results of ClusterGCN and GraphSAINT are reported as mean across 30 independent runs while our soup results are
reported as mean of 5 independent runs, where each run uses 30 candidate ingredients.

Method Flickr Reddit OGBN-ArXiv OGBN-products
N=89,250 E=899,756 N=232,965 E=11,606,919 N=169,343 E=1,166,243 N= 2,449,029 E=61,859,140

ClusterGCN 51.20 ± 0.13% 95.68 ± 0.03% 71.29 ± 0.44% 78.62 ± 0.61%
GraphSAINT 51.81 ± 0.17% 95.62 ± 0.05% 70.55 ± 0.26% 75.36 ± 0.34%

ClusterGCN Ensemble 51.49 95.70 71.43 78.74

Our Data Partition Soup 52.23 ± 0.12 % 96.41± 0.08 % 72.35 ± 0.19 % 79.34 ± 0.28 %

Table 6. The memory usage of activations and the hardware
throughput (higher is better) of GraphSAGE with respect to our
data-centric model soup using node sampling equivalent to one-
fouth of GraphSAGE on OGBN-products.

Act. Memory(MB) Throughput(iter/sec) Accuracy

GraphSAGE 415.94 37.69 79.5 ± 0.36

Ours 369.51 44.30 80.42 ± 0.41

Table 7. Performance comparison of our data partition soup on
OGBN-ArXiv dataset, with varying candidate ingredient counts.

Ingredient Count 10 20 30 50 100

Performance 71.426 71.691 72.353 72.388 72.814

with varying candidate ingredient counts. It can be clearly
observed that increasing candidates generally lead to better
performance, thanks to the greedy interpolation procedure.
However, due to the increase in computational and time cost,
we restrict the number of ingredients to 30 for all experi-
ments related to large graphs, and 50 for small graphs.

3.5. Does intermediate communication benefit soup?

In this section, we attempt to answer another abaltion ques-
tion: How does intermediate communication across candi-
date ingredients (i.e. souping at intervals during training)
benefit the performance of the final model soup? To this
end, we prepared a data partition model soup of GCNs using
OGBN-ArXiv dataset, where we executed souping across
candidate ingredients at regular intervals of 100 epochs
during training. To our surprise, we found that the fi-

nal soup performance is −0.745% less compared to our
communication-free approach presumably due to a lack of
diversity and orthogonal knowledge across the candidate
ingredients. Moreover, intermediate communication incurs
additional soup preparation overhead along with a new com-
munication interval hyperparameter for optimization.

4. Background Work
Model soups (Wortsman et al., 2022b) proposed a greedy
mechanism for averaging weights of multiple fine-tuned
large language models with varying hyperparameters uni-
formly. They found that averaging many fine-tuned vision
models improve out-of-domain generalization. Recently, (Li
et al., 2022) introduced branch-train-merge which is at the
intersection of model combination and distributed training.
They consider the case where the training data is partitioned
into different textual domains, then train an individual ex-
pert model for each domain. Merging all of these experts
via weight averaging or ensembling to outperform the dense
baseline of training one large model on all of the data. Lo-fi
(Wortsman et al., 2022a) proposes splitting up a large lan-
guage model fine-tuning job into multiple smaller jobs, and
dedicating its fine-tuning across multiple nodes in isolation.
Unlike standard data-parallel multi-node finetuning where
gradients between nodes are communicated at each step,
Lo-fi removes all communication between nodes during
fine-tuning. (Jin et al., 2022) propose a dataless knowledge
fusion method and study the problem of merging individual
models built on different training data sets to obtain a single

8

Graph Ladling: Shockingly Simple Parallel GNN Training without Intermediate Communication

model that performs well both across all data set domains
and can generalize on out-of-domain data.

Despite many recent advancements in model parameter
merging, to the surprise, it has not been explored for GNNs,
where it can benefit the most, given the high demand for
distributed and parallel training for graph data. Our work
differs from recent works in model soups as: firstly, unlike
over-parameterized large language models, we explore com-
paratively under-parameterized GNNs; secondly, we work
with graph-structured relational data instead of indepen-
dent training samples in NLP or vision; thirdly, we explore
model merging on GNNs trained from scratch rather in the
fine-tuning settings. GNNs have their own set of unique
training challenges and it was unexplored if the model soup
mechanism will be beneficial or hurt the performance.

5. Conclusion
In this work, we explore a principled way to scale GNNs
capacity without deepening or widening which can improve
its performance across multiple small and large graph. We
present the first data-centric perspective of model soups
to build powerful GNNs by dividing giant graph data to
build independently and parallelly trained multiple com-
paratively weaker GNNs without any intermediate com-
munication, and combining their strength using a greedy
interpolation soup procedure to achieve state-of-the-art per-
formance. Moreover, we provide a wide variety of model
soup preparation techniques by leveraging SOTA graph sam-
pling and graph partitioning approaches. Our future work
will aim to develop a theoretical framework to explain the
benefits of data-centric GNN soups.

Acknowledgement
Z. Wang is in part supported by US Army Research Office
Young Investigator Award W911NF2010240 and the NSF
AI Institute for Foundations of Machine Learning (IFML).

References
Mage: Automatic diagnosis of autism spectrum disorders

using multi-atlas graph convolutional networks and en-
semble learning. Neurocomputing, 469:346–353, 2022.
ISSN 0925-2312.

Alon, U. and Yahav, E. On the bottleneck of graph
neural networks and its practical implications. ArXiv,
abs/2006.05205, 2021.

Chen, J., Ma, T., and Xiao, C. Fastgcn: fast learning with
graph convolutional networks via importance sampling.
arXiv preprint arXiv:1801.10247, 2018.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Sim-

ple and deep graph convolutional networks. ArXiv,
abs/2007.02133, 2020.

Chen, T., Zhou, K., Duan, K., Zheng, W., Wang, P., Hu, X.,
and Wang, Z. Bag of tricks for training deeper graph neu-
ral networks: A comprehensive benchmark study. arXiv
preprint arXiv:2108.10521, 2021.

Chen, T., Zhang, Z., JAISWAL, A. K., Liu, S., and Wang, Z.
Sparse moe as the new dropout: Scaling dense and self-
slimmable transformers. In The Eleventh International
Conference on Learning Representations, 2023.

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh,
C.-J. Cluster-gcn: An efficient algorithm for training
deep and large graph convolutional networks. In Proceed-
ings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 257–266,
2019.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. Advances in neural information pro-
cessing systems, 29, 2016.

Duan, K., Liu, Z., Wang, P., Zheng, W., Zhou, K., Chen,
T., Hu, X., and Wang, Z. A comprehensive study on
large-scale graph training: Benchmarking and rethink-
ing. In Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track,
2022. URL https://openreview.net/forum?
id=2QrFr_U782Z.

Gao, H., Wang, Z., and Ji, S. Large-scale learnable graph
convolutional networks. Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, 2018.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in neural
information processing systems, 30, 2017.

Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z.,
Tang, Y., Xiao, A., Xu, C., Xu, Y., Yang, Z., Zhang,
Y., and Tao, D. A survey on visual transformer. ArXiv,
abs/2012.12556, 2020.

Huang, W., Rong, Y., Xu, T., Sun, F., and Huang, J. Tackling
over-smoothing for general graph convolutional networks.
ArXiv, abs/2008.09864, 2020.

Ilharco, G., Wortsman, M., Gadre, S. Y., Song, S., Hajishirzi,
H., Kornblith, S., Farhadi, A., and Schmidt, L. Patching
open-vocabulary models by interpolating weights. arXiv
preprint arXiv:2208.05592, 2022.

Jaiswal, A., Li, T., Zander, C., Han, Y., Rousseau, J. F., Peng,
Y., and Ding, Y. Scalp-supervised contrastive learning for

9

https://openreview.net/forum?id=2QrFr_U782Z
https://openreview.net/forum?id=2QrFr_U782Z

Graph Ladling: Shockingly Simple Parallel GNN Training without Intermediate Communication

cardiopulmonary disease classification and localization
in chest x-rays using patient metadata. In 2021 IEEE
International Conference on Data Mining (ICDM), pp.
1132–1137. IEEE, 2021a.

Jaiswal, A., Tang, L., Ghosh, M., Rousseau, J., Peng, Y.,
and Ding, Y. Radbert-cl: Factually-aware contrastive
learning for radiology report classification. Proceedings
of machine learning research, 158:196–208, 2021b.

Jaiswal, A., Wang, P., Chen, T., Rousseau, J. F., Ding,
Y., and Wang, Z. Old can be gold: Better gradient
flow can make vanilla-gcns great again. arXiv preprint
arXiv:2210.08122, 2022.

Jaiswal, A., Chen, T., Rousseau, J. F., Peng, Y., Ding, Y.,
and Wang, Z. Attend who is weak: Pruning-assisted
medical image localization under sophisticated and im-
plicit imbalances. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pp.
4987–4996, 2023.

Jin, X., Ren, X., Preotiuc-Pietro, D., and Cheng, P. Data-
less knowledge fusion by merging weights of language
models. arXiv preprint arXiv:2212.09849, 2022.

Juneja, J., Bansal, R., Cho, K., Sedoc, J., and Saphra, N. Lin-
ear connectivity reveals generalization strategies. arXiv
preprint arXiv:2205.12411, 2022.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kipf, T. and Welling, M. Semi-supervised classification with
graph convolutional networks. ArXiv, abs/1609.02907,
2017.

Klicpera, J., Bojchevski, A., and Günnemann, S. Predict
then propagate: Graph neural networks meet personalized
pagerank. In ICLR, 2019.

Li, G., Müller, M., Thabet, A. K., and Ghanem, B. Can gcns
go as deep as cnns? ArXiv, abs/1904.03751, 2019.

Li, G., Müller, M., Ghanem, B., and Koltun, V. Training
graph neural networks with 1000 layers. In International
conference on machine learning, pp. 6437–6449. PMLR,
2021.

Li, M., Gururangan, S., Dettmers, T., Lewis, M., Althoff, T.,
Smith, N. A., and Zettlemoyer, L. Branch-train-merge:
Embarrassingly parallel training of expert language mod-
els. ArXiv, abs/2208.03306, 2022.

Li, Q., Han, Z., and Wu, X.-M. Deeper insights into graph
convolutional networks for semi-supervised learning. In

Thirty-Second AAAI conference on artificial intelligence,
2018.

Li, T., Shetty, S., Kamath, A., Jaiswal, A., Jiang, X., Ding,
Y., and Kim, Y. Cancergpt: Few-shot drug pair synergy
prediction using large pre-trained language models. arXiv
preprint arXiv:2304.10946, 2023.

Lin, Q., Yu, S., Sun, K., Zhao, W., Alfarraj, O., Tolba,
A., and Xia, F. Robust graph neural networks via
ensemble learning. Mathematics, 10(8), 2022. doi:
10.3390/math10081300.

Liu, H., Yang, Y., and Wang, X. Overcoming catastrophic
forgetting in graph neural networks. In Proceedings of
the AAAI conference on artificial intelligence, volume 35,
pp. 8653–8661, 2021.

Liu, M., Gao, H., and Ji, S. Towards deeper graph neural
networks. Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data
Mining, 2020.

Liu, S., Chen, T., Zhang, Z., Chen, X., Huang, T., Jaiswal,
A., and Wang, Z. Sparsity may cry: Let us fail (cur-
rent) sparse neural networks together! arXiv preprint
arXiv:2303.02141, 2023.

Mao, Z., Jaiswal, A., Wang, Z., and Chan, S. H. Sin-
gle frame atmospheric turbulence mitigation: A bench-
mark study and a new physics-inspired transformer model.
ArXiv, abs/2207.10040, 2022.

NT, H. and Maehara, T. Revisiting graph neural networks:
All we have is low-pass filters. ArXiv, abs/1905.09550,
2019.

Rong, Y., Huang, W., Xu, T., and Huang, J. Dropedge:
Towards deep graph convolutional networks on node clas-
sification. In ICLR, 2020.

Talmor, A., Herzig, J., Lourie, N., and Berant, J. Common-
senseqa: A question answering challenge targeting com-
monsense knowledge. arXiv preprint arXiv:1811.00937,
2018.

Thekumparampil, K. K., Wang, C., Oh, S., and Li, L.-
J. Attention-based graph neural network for semi-
supervised learning. arXiv preprint arXiv:1803.03735,
2018.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Wortsman, M., Gururangan, S., Li, S., Farhadi, A., Schmidt,
L., Rabbat, M., and Morcos, A. S. lo-fi: distributed
fine-tuning without communication. arXiv preprint
arXiv:2210.11948, 2022a.

10

Graph Ladling: Shockingly Simple Parallel GNN Training without Intermediate Communication

Wortsman, M., Ilharco, G., Gadre, S. Y., Roelofs, R.,
Gontijo-Lopes, R., Morcos, A. S., Namkoong, H.,
Farhadi, A., Carmon, Y., Kornblith, S., et al. Model
soups: averaging weights of multiple fine-tuned mod-
els improves accuracy without increasing inference time.
In International Conference on Machine Learning, pp.
23965–23998. PMLR, 2022b.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Simplifying graph convolutional networks. In
International conference on machine learning, pp. 6861–
6871. PMLR, 2019.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-
i., and Jegelka, S. Representation learning on graphs
with jumping knowledge networks. In International Con-
ference on Machine Learning, pp. 5453–5462. PMLR,
2018.

Yang, L., Luo, L., Xin, L., Zhang, X., and Zhang, X. Dagnn:
Demand-aware graph neural networks for session-based
recommendation. arXiv preprint arXiv:2105.14428,
2021.

You, Y., Chen, T., Wang, Z., and Shen, Y. L2-gcn: Layer-
wise and learned efficient training of graph convolutional
networks. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2124–2132,
2020.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and
Prasanna, V. Graphsaint: Graph sampling based inductive
learning method. arXiv preprint arXiv:1907.04931, 2019.

Zhao, L. and Akoglu, L. Pairnorm: Tackling oversmoothing
in gnns. ArXiv, abs/1909.12223, 2020.

Zheng, M., Gao, P., Zhang, R., Wang, X., Li, H., and Dong,
H. End-to-end object detection with adaptive clustering
transformer. ArXiv, abs/2011.09315, 2021a.

Zheng, W., Huang, E. W., Rao, N., Katariya, S., Wang, Z.,
and Subbian, K. Cold brew: Distilling graph node rep-
resentations with incomplete or missing neighborhoods.
arXiv preprint arXiv:2111.04840, 2021b.

Zheng, W., Sharan, S., Jaiswal, A. K., Wang, K., Xi, Y.,
Xu, D., and Wang, Z. Outline, then details: Syntactically
guided coarse-to-fine code generation. arXiv preprint
arXiv:2305.00909, 2023.

Zhou, K., Dong, Y., Wang, K., Lee, W. S., Hooi, B., Xu, H.,
and Feng, J. Understanding and resolving performance
degradation in deep graph convolutional networks. Pro-
ceedings of the 30th ACM International Conference on
Information & Knowledge Management, 2021a.

Zhou, K., Huang, X., Zha, D., Chen, R., Li, L., Choi, S.-H.,
and Hu, X. Dirichlet energy constrained learning for deep
graph neural networks. Advances in Neural Information
Processing Systems, 34:21834–21846, 2021b.

Zou, D., Hu, Z., Wang, Y., Jiang, S., Sun, Y., and Gu, Q.
Layer-dependent importance sampling for training deep
and large graph convolutional networks. In NeurIPS,
2019.

11

Graph Ladling: Shockingly Simple Parallel GNN Training without Intermediate Communication

A. Dataset Details
Table 10 provided provides the detailed properties and download links for all adopted datasets. We adopt the following
benchmark datasets since i) they are widely applied to develop and evaluate GNN models, especially for deep GNNs studied
in this paper; ii) they contain diverse graphs from small-scale to large-scale or from homogeneous to heterogeneous; iii) they
are collected from different applications including citation network, social network, etc.

Table 8. Graph datasets statistics and download links.

Dataset Nodes Edges Classes Download Links

Cora 2,708 5,429 7 https://github.com/kimiyoung/planetoid/raw/master/data

Citeseer 3,327 4,732 6 https://github.com/kimiyoung/planetoid/raw/master/data

PubMed 19,717 44,338 3 https://github.com/kimiyoung/planetoid/raw/master/data

OGBN-ArXiv 169,343 1,166,243 40 https://ogb.stanford.edu/

Flickr 89,250 899,756 7 PyTorchGeometic:https://arxiv.org/abs/1907.04931

Reddit 232,965 11,606,919 41 PyTorchGeometic:https://arxiv.org/abs/1706.02216

OGBN-products 2,449,029 61,859,140 47 https://ogb.stanford.edu/

B. Experimental setting of our large-scale datasets

Table 9. The searched optimal hyperparameters for all tested methods for data-centric soup.
Method Flickr Reddit OGBN-products

Split: 0.50/0.25/0.25 Split: 0.66 / 0.10 / 0.24 Split: 0.10 / 0.02 / 0.88

GraphSAGE(Hamilton et al., 2017) LR: 0.0001, WD: 0.0001, DP: 0.5, LR: 0.0001, WD: 0.0 DP: 0.2, LR: 0.001, WD: 0.0 DP: 0.5,
EP: 50, HD: 512, L: 4, BS: 1000 EP: 50, HD: 512, L: 4, BS: 1000 EP: 50, HD: 512, L: 4, BS: 1000

FastGCN(Chen et al., 2018) LR: 0.001, WD: 0.0002, DP: 0.1 LR: 0.01, WD: 0.0 DP: 0.5, LR: 0.01, WD: 0.0 DP: 0.2
EP: 50, HD: 512, L: 2, BS: 5000 EP: 50, HD: 256, L: 2, BS: 5000 EP: 50, HD: 256, L: 2, BS: 5000

LADIES(Zou et al., 2019) LR: 0.001, WD: 0.0002, DP: 0.1, LR: 0.01, WD: 0.0001 DP: 0.2, LR: 0.01, WD: 0.0 DP: 0.2
EP: 50, HD: 512, L: 2, BS: 5000 EP: 50, HD: 512, L: 2, BS: 5000 EP: 30, HD: 256, L: 2, BS: 5000

ClusterGCN(Chiang et al., 2019) LR: 0.001, WD: 0.0002, DP: 0.2, LR: 0.0001, WD: 0.0 DP: 0.5 LR: 0.001, WD: 0.0001 DP: 0.2,
EP: 30, HD: 256, L: 2, BS: 5000 EP: 50, HD: 256, L: 4, BS: 2000 EP: 40, HD: 128, L: 4, BS: 2000

GraphSAINT(Zeng et al., 2019) LR: 0.001, WD: 0.0004, DP: 0.2 LR: 0.01, WD: 0.0002 DP: 0.7 LR: 0.01, WD: 0.0 DP: 0.2,
EP: 50, HD: 512, L: 4, BS: 5000 EP: 30, HD: 128, L: 2, BS: 5000 EP: 40, HD: 128, L: 2, BS: 5000

C. Code adaptation URL for our baselines

Table 10. Method and their official implementation used in our work.
Method Download URL

JKNet(Xu et al., 2018) https://github.com/mori97/JKNet-dgl
DAGNN(Yang et al., 2021) https://github.com/vthost/DAGNN
APPNP(Klicpera et al., 2019) https://github.com/gasteigerjo/ppnp
GCNII(Chen et al., 2020) https://github.com/chennnM/GCNII
SGC(Wu et al., 2019) https://github.com/Tiiiger/SGC
ClusterGCN(Chiang et al., 2019) https://github.com/benedekrozemberczki/ClusterGCN
GraphSAINT(Zeng et al., 2019) https://github.com/GraphSAINT/GraphSAINT

12

https://github.com/kimiyoung/planetoid/raw/master/data
https://github.com/kimiyoung/planetoid/raw/master/data
https://github.com/kimiyoung/planetoid/raw/master/data
https://ogb.stanford.edu/
PyTorch Geometic: https://arxiv.org/abs/1907.04931
PyTorch Geometic: https://arxiv.org/abs/1706.02216
https://ogb.stanford.edu/
https://github.com/mori97/JKNet-dgl
https://github.com/vthost/DAGNN
https://github.com/gasteigerjo/ppnp
https://github.com/chennnM/GCNII
https://github.com/Tiiiger/SGC
https://github.com/benedekrozemberczki/ClusterGCN
https://github.com/GraphSAINT/GraphSAINT

