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Abstract
Recent complicated problems require large-scale
datasets and complex model architectures, how-
ever, it is difficult to train such large networks due
to high computational issues. Significant efforts
have been made to make the training more effi-
cient such as momentum, learning rate scheduling,
weight regularization, and meta-learning. Based
on our observations on 1) high correlation be-
tween past weights and future weights, 2) condi-
tions for beneficial weight prediction, and 3) fea-
sibility of weight prediction, we propose a more
general framework by intermittently skipping a
handful of epochs by periodically forecasting near
future weights, i.e., a Weight Nowcaster Network
(WNN). As an add-on module, WNN predicts
the future weights to make the learning process
faster regardless of tasks and architectures. Exper-
imental results show that WNN can significantly
save actual time cost for training with an addi-
tional marginal time to train WNN. We validate
the generalization capability of WNN under vari-
ous tasks, and demonstrate that it works well even
for unseen tasks. The code and pre-trained model
are available at https://github.com/jjh6297/WNN.

1. Introduction
Since the resurrection of Deep Neural Network (DNN), a
variety of Deep Learning models have shown unprecedented
improvements over several traditional prediction tasks such
as image classification (LeCun et al., 1998; He et al., 2016),
natural language processing (Vaswani et al., 2017; Brown
et al., 2020), and reinforcement learning (Mnih et al., 2013;
Schulman et al., 2017). In order to tackle complicated tasks
in these domains, the architectures of DNNs are becoming
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Figure 1. Illustration of the motivation. Weight Nowcaster net-
work predicts future values of weight and bias nearby those of real
in a DNN architecture. We expected that WNN reduces training
time by efficiently skipping future epochs during training process.

deeper and more complex to achieve better predictive per-
formance. It is inevitable for such complex models to utilize
extremely large-scale datasets together with high compu-
tational costs. Thus, efficiency has become a routine but
critical issue, especially at the training stage where its com-
plexity exponentially increases according to the size of the
model. Considering the practical use of DNN techniques for
a broad range of applications, this issue cannot be solved by
adding computing power alone.

Notable efforts have been spent to tackle the computational
issue. Architecture minimization (Sandler et al., 2018; Tan &
Le, 2019) and efficient physical hardware systems (Jouppi
et al., 2017; Khailany et al., 2020) have shown improve-
ments in efficiency. From an algorithmic perspective, diverse
training strategies were introduced such as optimizations
with advanced momentum (Kingma & Ba, 2014; Loshchilov
& Hutter, 2019), scheduling of learning rate (He et al., 2016;
Loshchilov & Hutter, 2017), and applying regularizers on
trainable parameters in networks (Rodrı́guez et al., 2017;
Jia et al., 2018), which have led to efficient and stable train-
ing of DNN models. These algorithmic approaches mainly
focus on learning stability; while they accelerate training
process to some extent, they do not directly address reduc-
ing training time. We also note that these approaches can be
used with the proposed WNN.

In this paper, we approach the problem of exhaustive train-
ing costs from a different perspective. Specifically, we pro-
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pose a Weight Nowcaster Network (WNN), which is a sepa-
rate DNN that concurrently forecasts updated weights and
biases (hereinafter referred to as weights for simplicity)
for near future epochs as a sub-module along with a tar-
get DNN for the task of interest (e.g., classification). One
can easily see that, if WNN can accurately predict future
weights based on the previous updates, then those training
epochs can be simply skipped. Such an idea was developed
based on our observation that changes in loss from various
training processes show similar trends in general (Section
3). This means that, even though the training processes of
DNNs for different tasks are different, they exhibit a general
macroscopic tendency although they may be noisy. Figure 1
briefly illustrates our motivation; if a training process has
such a macroscopic pattern, it is possible to jump to a future
point in the weight space instead of going through every
training epoch. For example, simply predicting one step
ahead will easily reduce the total number of epochs required
for training in half.

Implementing the ideas described above, we make contribu-
tions summarized as follows: 1) we propose the concept of
periodic nowcasting of weights in DNNs and validate the
concept by in-depth studies, 2) we introduce direct regres-
sion of weights and a simple plug-in DNN model, WNN, to
forecast updated trainable parameters for near future epochs
which reduces the total number of epochs to reach model
convergence, 3) we thoroughly validate the superior perfor-
mance and generalization capability of the proposed WNN
with extensive experiments on various tasks, architectures,
and datasets. In practice, based on our empirical results to
be shown, we saved up to 53% of the training time for im-
age classification tasks with a typical DNN pipeline (i.e.,
multi-layer perceptron).

2. Related Work
The present paper proposes a meta-learning strategy for
accelerating neural network training without compromising
performance. In this section, we provide an overview of
previous meta-learning techniques for training acceleration
in three categories: initialization-level, iteration-level, and
entire training-level strategies.

2.1. Initialization-level Acceleration

Initialization-level acceleration learns to choose better ini-
tial weights based on target architectures or data. Analytic
approaches (Dauphin & Schoenholz, 2019; Zhu et al., 2021)
establish task-agnostic criteria for good initialization (i.e.,
gradient quotient, initial loss), and adjust norm (Dauphin
& Schoenholz, 2019) and scaling (Zhu et al., 2021) of the
initial weights to meet the criteria through small-scaled op-
timization before training. Graph HyperNetworks (Knyazev
et al., 2021) predict initial weights from model architectures

represented in a graph form. A recent approach, using a con-
ditional diffusion transformer (Peebles et al., 2022), adjusts
given initial weights by analyzing them with initial loss, but
this method was limited to a single architecture and dataset
that the transformer was trained on. The initialization-level
approach reduces the number of updates required for con-
vergence. However, compared to our work, this approach
has a limited acceleration capability (one time acceleration
at the initialization step) and poor generalizability (not well
applicable to unseen architectures or datasets) and is not
compatible with transfer and continual learning that updates
initial weights.

2.2. Iteration-level Acceleration

Iteration-level acceleration learns changes in weights along
training steps through a separate meta-learning process, and
it replaces the conventional analytic optimizers (such as
SGD and Adam) with a DNN-based optimizer. This ap-
proach is commonly referred to as Learning to Optimize
(L2O). The early L2O (Andrychowicz et al., 2016) was
specific to a target task. To generalize L2O, later works
applied random scaling and a convexifying regularizer (Lv
et al., 2017), or trained a meta-optimizer on multiple target
tasks simultaneously (Wichrowska et al., 2017). Recently,
L2O-amalgam (Huang et al., 2022) has generalized a meta-
optimizer by distilling multiple teacher optimizers.

2.3. Entire Training-level Acceleration

The most closely related work to our study is Introspection
(Sinha et al., 2017), which predicts far future weights based
on a long-term training history. It trains a DNN through
supervised learning on a set of collected weights from a
toy example and applied it to other classification problems.
However, Introspection has several limitations: 1) unstable
results due to its far-future weight forecasting, 2) the need
for a heuristic selection of forecasting period, 3) a limited
number of forecasting (only 2 ∼ 4 forecasts in the Intro-
spection experiment), 4) low generalization capability to
various tasks, and 5) not performing well with transfer learn-
ing from pre-trained weights and learning rate scheduling
(e.g., warm-up, decay). We address each of these limitations
in the present paper. Between the iteration level and the
entire training level, our approach can be positioned, and it
is experimentally more stable and better accelerated.

3. Preliminary Study
The concept of forecasting future weight during the learning
process was firstly introduced in the Introspection method
(Sinha et al., 2017). However, there is a lack of analysis on
whether the future weights are related with the past weights,
what the beneficial prediction of future weights is, whether it
is possible to predict the future weights, and which specific
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Table 1. Cosine correlation between future weights of different
training sessions. When training DNN models from fixed initial
weights, trained future weights have a strong correlation with one
another.

Cosine Correlation
Architecture Random Initial Weights Fixed Initial Weights

Vanilla CNN (Xavier Uniform) 0.0131 ±0.0345 0.9018 ±0.0142
ResNet (He Normal) 0.0594 ±0.1712 0.8959 ±0.0137

strategies are efficient. We first examine the justification
of weight prediction through an in-depth pre-study, and
introduce our new weight prediction strategy for boosting
training speed. Detailed training recipe of each experiment
on the preliminary study are described in Appendix. I In this
section, we will use the term weight parameter, θ, to refer
to a single weight parameter that WNN predicts. Weights,
Θ, are referring a set of parameters.

3.1. The Future is Roughly Predetermined.

Q. Does predictable future exist?

To establish the basis for the weight prediction, we experi-
mentally validate that the target weights (i.e., weights after
training) are predictable from the initial weights. We repeat-
edly trained two architectures from fixed and random initial
weights: 1) Vanilla CNN which consists of four convolution
layers with [8,16,32,32] channels of 3×3 filters, a flattening
layer, a fully-connected layer with 64 hidden neurons, and a
classifier and 2) ResNet32 with [16,32,64] channels per each
residual block. Then, we examined the correlation among
sets of the trained weights at the designated epoch in tens of
model training sessions, even with diverse randomness such
as batch selection and data augmentation.

As in Table 1, the future weights in different training ses-
sions have strong association with one another when the
initial weights are fixed, but not when the initial weights are
randomly generated. This result indicates that the training
trajectory of weights is roughly predetermined from the ini-
tial weights even if there is randomness in batch selection
or data augmentation. That is, since the direction of training
following the initialization of weights is somewhat predeter-
mined, the values of weights during the training process can
be utilized as a goal (target) for weight prediction. Details
of the analysis are also described in Appendix A.1.

3.2. Beneficial Prediction of Future Weights

To measure quality of predicted weights, we defined three
metric using the start weights, Θstart, target weights,
Θtarget, and predicted weights, Θpredicted. The relative dis-
tance represents a distance between Θtarget and Θpredicted

normalized by a distance between Θtarget and Θstart:

Relative Distance =
||θtarget − θpredicted||2
||θtarget − θstart||2

. (1)

The relative direction indicates a cosine correlation between
θpredicted − θstart and θtarget − θstart as:

Relative Direction =

θpredicted − θstart
||θpredicted − θstart||2

· θtarget − θstart
||θtarget − θstart||2

,
(2)

The Relative Required Epochs (RRE) depicts a ratio be-
tween the minimal number of epochs required to reach a
validation accuracy of Θtarget when the network is initial-
ized from Θpredicted and it when initialized from Θstart as:

RRE =
Required Epochs fromΘpredicted

Required Epochs fromΘstart
, (3)

which quantifies training acceleration.

Q. What is the beneficial prediction?

Notice that the relative distance, Eq. (1), and direction, Eq.
(2), are defined as notions of error between θpredicted and
θtarget. In order to empirically find beneficial prediction of
future weights, we conducted weight forecasting simulation
experiments with Θpredicted generated by adding noise to
the target Θtarget as:

θpredicted ← θtarget + ϵ, where θ ∈ Θ (4)

where the Gaussian noise ϵ is generated as explained in
Appendix A.2.

Then, we trained the two networks from Θpredicted as a ini-
tial weights, and measured RREs to analyze benefits quanti-
tatively. Figure 2 shows the RREs with a fixed Θstart and
varying Θtarget; the closer the predicted weights are to the

(a) Vanilla CNN,
Xavier Uniform

(b) ResNet,
He Normal

Figure 2. Experimental results on learning efficiency with virtually
generated weights by distance. The learning efficiency is increases
as the predicted weights gets nearer the target weights for early
(red), mid (green), and later(blue) phases. The distinction between
efficiency and inefficiency is represented by the black line.
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(a) Vanilla CNN, Short-term
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(b) ResNet, Short-term
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(c) Vanilla CNN, Mid-term
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(d) ResNet, Mid-term
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(e) Vanilla CNN, Long-term
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(f) ResNet, Long-term

Figure 3. Experimental results on learning efficiency with virtually
generated weights by direction and distance. The black line repre-
sents the distinction between efficiency and inefficiency, in other
words, speed up is 1. The short-term prediction shows the largest
area of the efficiency region.

target weights (i.e., low relative distance), the fewer training
epochs are required. We also analyzed training efficiency
on weight prediction in terms of two factors from the fixed
Θtarget varying Θstart (Figure 3). Both figures clearly show
that the training becomes faster as the direction and distance
of the predicted weights approaches the target weights.

Q. Can a single prediction model be applied to overall
training phases?

We analyzed the results on three different targets Θtarget

from the early, mid, and later phases of training. As shown
from colored results in Figure 2, those trends were consis-
tently found in all early, middle, and later training phases.
This indicates that the amount of training time required
can be reduced by being aware of the target weights and
choosing new start weights close to it in any training phase.

Q. What is the best forecasting interval?

On top of that, we performed training experiments with a
fixed Θtarget and a varying Θstart to identify the best inter-

Table 2. Quantitative results of Figure 3. The beneficial area repre-
sents the size of the region enclosed by the black line.

Setting Avg. Speed Up Beneficial Area
Vanilla CNN Short-term ×1.7364 0.4488

(Xavier Uniform) Mid-term ×0.9789 0.2470
Long-term ×0.5761 0.1184

ResNet Short-term ×1.2368 0.5405
(He Normal) Mid-term ×1.1083 0.3886

Long-term ×1.1654 0.3291

val to predict future weights. We categorized the forecasting
interval into three groups: short-term (from Θt−5 to Θt),
mid-term (from Θt/2 to Θt), and long-term (from Θt/10 to
Θt), where t (20 for ResNet and 50 for Vanilla CNN) means
the epoch number of Θtarget . The black line in Figure 3 in-
dicates the border of training benefits, and area of beneficial
region is the largest in the short-term prediction as described
in Table 2. It is clear that the training benefit is larger the
nearer future prediction. Long-term prediction might fail
due to a large weight search space and the nature of non-
convexity of weights. We also experimentally observed the
trade-off between better prediction and training acceleration
from a larger skip (see Table A.5 in Appendix D.3).

3.3. Weight Prediction is Feasible.

In the previous subsection, the prediction benefit for model
training was quantitatively validated by adding noise to
the target weight without performing the prediction. In this
subsection, we use a curve fitting method, a representative
method for the regression task, to verify that the future
weights are actually predictable and advantageous for model
training. Results of other various models of curve fitting to
practical training are described in Section 5.2.

Q. Are the future weights predictable?

We conducted experiments on whether the actual predicted
weights from the linear curve fitting satisfy the beneficial
conditions (speed up > 1; the beneficial region in Figure
3) in terms of the relative distance and direction. In Table
3, the prediction error of curve fitting with short-term and
mid-term strategies is described with the degree of training
speedup. The training speedup at the prediction error rep-
resented as the relative distance and direction is depicted
in Figure 3. The curve fitting methods with both strategies
meet the beneficial conditions of relative distance and di-
rection. Between the two strategies, the prediction error of
mid-term strategy are located at the green-yellow region as
described in Figure 3(c) and (d). However, the error of the
short-term strategy is located at the red region as described
in Figure 3(a) and (b). That is, the short-term prediction
accelerates better than the mid-term one. Based on those
results, it is clear that even the most basic curve fitting can
forecast future weights, resulting in reducing training time.
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Figure 4. Conceptual view of short-term prediction with the proposed WNN.

Table 3. Experimental results on learning efficiency with several
prediction methods. The prediction error is represented by the
relative distance and direction. The results indicate that weight
prediction is feasible and efficient for model training. Spd.Up.
denotes the training speed increase.

Vanilla CNN ResNet
Method Rel. Dist. Rel. Dir. Spd. Up. Rel. Dist. Rel. Dir. Spd. Up.

Curve Fitting Conv 2.1282 0.3030 ×1.68 1.5422 0.2920 ×1.22
(Mid-term) FC 2.1958 0.4317 ×1.50 2.1588 0.3962 ×1.56

Bias 3.9395 0.5488 ×1.11 N/A N/A N/A
Avg 2.7545 0.4278 ×1.43 1.8505 0.3441 ×1.39

Curve Fitting Conv 0.7036 0.7770 ×1.42 1.1992 0.4247 ×1.18
(Short-term) FC 1.4660 0.4785 ×1.56 0.4280 0.9143 ×2.05

Bias 0.5754 0.8531 ×2.05 N/A N/A N/A
Avg 0.9150 0.7028 ×1.68 0.8136 0.6695 ×1.61

Introspection Conv 0.7883 0.6639 ×1.70 0.9029 0.4558 ×1.16
(Mid-term) FC 0.7049 0.7474 ×3.34 0.7016 0.8476 ×1.70

Bias 0.7150 0.6214 ×1.70 N/A N/A N/A
Avg 0.7360 0.6775 ×2.25 0.8022 0.6517 ×1.43

WNN Conv 1.0311 0.7375 ×1.92 0.9849 0.4174 ×2.02
(Short-term) FC 0.7378 0.6663 ×2.15 0.7078 0.8331 ×2.06

Bias 0.6990 0.4801 ×4.56 N/A N/A N/A
Avg 0.8226 0.6279 ×2.88 0.8256 0.6252 ×2.04

Q. Can a single prediction model be applied to different
types of weights?

As shown in Table 3, the prediction error for weights of
convolution layer, fully-connected layer, and bias is distinct.
Also, the operations can be differently clustered as shown in
Appendix B. That is, each operation has its own tendency.
Based on the two observations, it is better to use separate
predictor for each mathematical operation.

4. Method
4.1. Proposed Strategy: Periodic Short-term Prediction

Based on the observations from the previous section, we
established our forecasting strategy: 1) separate forecasting
for each mathematical operation, and 2) periodic short-term
nowcasting per every 5 epochs as shown in Figure 4. Details
are described in Appendix D.2. For more accurate forecast-
ing, we replaced the curve fitting into a DNN model which

is a simple neural network-based predictor F(·, ·), called
Weight Nowcasting Network (WNN). We designed WNN
to predict a short-term update between the future weights
and the latest weights by analyzing history of weights in the
recent few epochs as illustrated in Figure 5. Inputs of WNN,
i.e., weight parameters W o

t and their temporal differentials
dW o

t , are normalized as Wt and dWt and divided by two
for stable forecasting as

W o
t = [θl,i,jt−9 , θ

l,i,j
t−8 , θ

l,i,j
t−7 , θ

l,i,j
t−6 , θ

l,i,j
t−5 ]

T , (5)

dW o
t = [(θl,i,jt−5 − θl,i,jt−6 ), ..., (θ

l,i,j
t−8 − θl,i,jt−9 )]

T , (6)

Wt =
W o

t − θl,i,jt−5

2 · (max(W o
t )−min(W o

t ))
, (7)

dWt =
dW o

t

2 · (max(W o
t )−min(W o

t ))
, (8)

where l, i, j are the indices of the layer, channel, and spatial
coordinate of the target network, and t indicates the number
of epoch in training. Wt and dWt are then fed into our WNN
as δ = F(Wt, dWt) which predicts the normalized residual
between the latest weight parameter and future parameter.

Then, WNN was trained to minimize ℓ1 residual error as :∣∣∣∣∣δ − θl,i,jt − θl,i,jt−5

2 · (max(W o
t )−min(W o

t ))

∣∣∣∣∣
ℓ1

(9)

where the ℓ1-norm was used to obtain a larger gradient even
when the differences are small.

Then, WNN-based prediction can be given as:

θ̂l,i,jt = θl,i,jt−5 + 2 · (max(W o
t )−min(W o

t )) · δ (10)

skips 5 epochs and directly jumps to the θl,i,jt by updating
θl,i,jt−5 with denormalized δ.

To train WNN, weights in every epoch in various training
conditions; architectures, datasets, and augmentation were
collected so that the model can be adopted to even unseen
cases. More details are to be explained in Section 5.1. We
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Figure 5. Weight Nowcaster Network Architecture. The WNN is composed of simple two-stream networks that use fully-connected
layers and an activation network. Feature vectors from those two networks are unified to a feature vector and it is passed through a
fully-connected layer. The predicted future weight parameters are obtained by adding outputs and input weight parameters.

Figure 6. Visualization of histories of weight parameters across
different tasks (Image Classification, Language Modeling, Rein-
forcement Learning). Each dot is a history of changes of a weight
parameter for 15 epochs (compressed in 2D).

assumed that each type of weight; convolution weight, fully-
connected weight, and bias, have their own characteristics,
so individual forecasting networks for each type were sepa-
rately trained. In Table 3, we report the prediction error and
their resulted speed-up for our WNN and the most similar
approach to ours, and Introspection. Ablation study about
components of our WNN is described in Appendix D.3.

4.2. Weight Change Tendency is Consistent Across
Totally Different Tasks.

Most of existing approaches have failed to directly apply
their works to a new task without an extra training process
(Knyazev et al., 2021; Peebles et al., 2022; Andrychowicz
et al., 2016). In this subsection, we analyzed the tendency of
element-wise parameter changes on a variety of fundamen-

tally unrelated tasks, including image classification, natural
language processing, and reinforcement learning.

Q. Can a pre-trained WNN be applied to unseen task?

We collected weight parameters of the first 15 epochs of
training processes from scratch for the three tasks. Then,
we decomposed the histories of each parameters of only
fully-connected layers as [θl,i,j1 , θl,i,j2 , ..., θl,i,j15 ] and applied
the PCA to reduce dimension of a set of histories for vi-
sualizing their tendency. Interestingly, as seen in Figure 6,
the individual history of weight parameters formed clusters,
i.e., they are not completely heterogeneous in element-wise
level despite of different tasks, which suggests that a train-
ing history of parameter changes can be generalized to
various tasks. Then, it sets up the core hypothesis of WNN,
A WNN trained on only image classification can be appli-
cable to a variety of different tasks. The element-wise trend
doesn’t consider layer indices, channel indices, or weight
spatial coordinates, thus it doesn’t indicate all tasks have the
same weights. Details of the analysis on weight history are
explained in Appendix B.

5. Experiments: Comparison and Analysis
In this section, we performed extensive experiments to tes-
tify effectiveness of the proposed method. In Section 5.1,
detailed experimental design to construct our WNN is de-
scribed. Section 5.2 and 5.3 present experimental compar-
isons with similar approaches on image classification. All
the experiments adopted the pre-trained WNN described in
this section without any task-specific fine-tuning.

5.1. Constructing Weight Nowcaster Network

Collecting Training Data. We trained several target net-
works multiple times under various training conditions (ar-
chitectures, datasets, and augmentation methods) and saved
weights of every epoch from entire layers for collecting train-
ing data. LeNet (LeCun et al., 1998), VGG16 (Simonyan &
Zisserman, 2014), ResNet (He et al., 2016), MobileNetV2
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(Sandler et al., 2018), ShuffleNetV2 (Ma et al., 2018), and
DenseNet (Huang et al., 2017) were used as the architec-
tures. We assumed that WNN trained on collected weights
from image classification task is sufficiently transferable to
other tasks. As datasets, we adopted CIFAR10 (Krizhevsky
et al., 2009) and MNIST, which are representative datasets
in image classification, with various augmentation methods
(resize, rotation, noise, data size, and so on). For training
WNN, more than 30,000 epochs (∼1.8e+10 parameters) in
total under various conditions were collected. For validating
WNN, 2,200 epochs of ShuffleNetV2 and ResNet32 on CI-
FAR10 and MNIST were collected. We empirically chose
that WNN skips five epochs by prediction using weights of
five previous epochs as an input. The ablation study about
components of our WNN is described in Appendix D.3.

5.2. Comparisons with Curve Fitting

Setup. We first compare WNN and curve fitting approaches.
In this experiment, we used a Vanilla CNN as a target net-
work which is composed of four convolution layers and
two fully connected layers. We trained the Vanilla CNN on
CIFAR10 which consists of 50,000 images of 32× 32 with
10 classes for training and 10,000 images for validation. For
curve fitting model, we tested diverse models such as lin-
ear, polynomial, exponential, Xexponential, sigmoid, power,
and Michaelis Menten (described in Appendix C). Inputs of
the curve fitting methods were weights of past five epochs to
predict future weights after five epochs. All the experiments
were repeated 5 times to obtain average values.

Results. As shown in Figure 7(a), both WNN and curve
fitting-based approaches showed faster convergence than
naive training. Our WNN clearly outperformed all curve
fitting approaches. WNN requires the least the number of
epochs to the same validation accuracy. To sum up, those
experimental results show 1) effectiveness of nowcasting
concept for training DNNs, and 2) superiority of our WNN
over curve fitting in both stability and speed.

Visualization. We verified the forecasting process through

(a) (b)

Figure 7. Comparisons of validation accuracy (a) of the proposed
and curve fitting models, (b) of the proposed with previous methods
(HyperNetworks, L2O, L2O-Amalgam, and Introspection). The
shading represents the variation in validation accuracy of five trials.

Figure 8. Landscape visualization of loss and trajectory of updates
with Naive training, Curve Fitting, and WNN. WNN (red) accu-
rately follows training trajectory of naive training (cyan) in the
weight space.

landscape visualization for qualitative comparisons of our
WNN, the curve fitting, and the naive training. We trained
the Vanilla CNN once and did freeze all layers except the
first convolution layer to focus on changes of weights in the
layer. Then, we re-initialized and re-trained the layer of the
network for each algorithm. All weights in the layer were
saved per each epoch with corresponding validation loss
during an entire training process. To fill the rest part of the
landscape map, we added the Gaussian random noise and
trained the network repeatedly. With accumulated weights
and validation loss values, we build a landscape map that
illustrate changes of weights on the loss landscape. Figure
8 shows the loss landscape which describes the training
process of our WNN, the curve fitting, and the naive training.
WNN allows weights to jump farther than the naive method
during training process, resulting in faster convergence to
the optimum solution than the naive one. The curve fitting
algorithm also works well, but it shows less stable jumps at
the early phase than them of WNN.

5.3. Comparisons with Similar Recent Methods

Setup. We conducted comparative experiments with Hyper-
Networks, L2O, L2O-amalgam, and Introspection which
are representative efficient training methods. For Hyper-
Networks, a separate network was attached on the Vanilla
CNN to approximate weights. In case of L2O, we used a
pre-trained LSTM optimizer to train the Vanilla CNN. For
L2O-Amalgam, we used the officially provided pre-trained
model. For Introspection, we set forecasting points as the
20th and 40th epoch. For fair comparison, we trained the
Introspection network using our collected dataset.

Results. Figure 7 (b) shows that all the algorithms, i.e.,
WNN, curve fitting, L2O, L2O-Amalgam, HyperNetworks,
and Introspection, improve convergence speed compared
to the naive training. The linear curve fitting required only
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Table 4. Time cost comparisons to train a Vanilla CNN by using
various recent methods on the CIFAR10 dataset. NVIDIA TITAN
Xp GPU was used to estimate time cost. “Converge” is the time to
reach a validation accuracy of 59%

Method Update meta-learning forecasting Converge Speed Up
(sec/batch) (hour) (sec) (sec)

Naive Training 0.0245 - - 52.82 ×1.00
HyperNetworks 0.0267 - - 51.02 ×1.04

L2O 0.0290 20 (per task) - 44.05 ×1.20
L2O-Amalgam 0.0291 6.35 (only once) - 67.02 ×0.79
Introspection 0.0245 0.03 (only once) 0.015 43.23 ×1.22
CF (Linear) 0.0245 - 0.015 39.71 ×1.33

CF (Exponential) 0.0245 - 3.32 61.94 ×0.85
WNN 0.0245 0.08 (only once) 0.015 25.27 ×2.09

additional 0.015 seconds to forecast as presented in Table 4.

For HyperNetworks, since the number of trainable weights
is small, the loss rapidly decreases at the beginning as shown
in Fig 7 (b). However, the actual convergence is similar
to or slightly worse than the naive approach due to the
limitation of representation power. Furthermore, Table 4
shows that each update is slower because of additional cost
for calculation of HyperNetworks’ gradients.

Both L2O and L2O-Amalgam require fewer epochs to reach
the validation accuracy of 59% than the naive training, but
L2O-amalgam is slower than the naive training in actual
time. However, as shown in Table 4, updates of L2O and
L2O-Amalgam are slow because of additional computa-
tional time for the LSTM optimizer. Furthermore, L2O re-
quires additional meta-learning hours to train the target net-
work on a specific dataset or an architecture. L2O-Amalgam
is a generalized version of L2O, so it can be used without
an additional time cost for fine-tuning process. On the other
hand, WNN only requires an additional 0.015 sec of weight
nowcasting once per 5 epochs.

Finally, Introspection demonstrates slower convergence than
our WNN due to its inefficient forecasting strategy as ex-
plained in Sections 2 and 3, and structural difference as de-
scribed in Appendix D.3. This is because the Introspection
forecasts far-future weights twice, but our work repeatedly
forecast near-future weights. To reach a validation accu-
racy of 59%, which all methods could accomplish, WNN
requires the least time (25.27 sec) outperforming all other
approaches (× 1.71 faster than Introspection).

6. Experiments: Task-agnostic Applicability
In this section, we validate superior generalization ability
of our WNN by training a target network in unseen training
conditions and tasks. To be specific, without fine-tuning
WNN and further training data, we verified our WNN is
effective even in unseen tasks and unseen modalities.

Setup. On the basis of general tendency in history of weight

changes across various tasks as described in Section 4.2, we
try out WNN for training various models for a variety of
tasks to validate its universal applicability to unseen tasks
and modalities without fine-tuning WNN. In particular, ex-
periments on language modeling and reinforcement learning
show that our WNN (trained on only image classification)
can even perform well with totally different modalities (i.e.,
text and control). We set various unseen conditions as:

(i) ImageNet Classification. ImageNet (Deng et al.,
2009) is a widely-used large-scale dataset with 1.3
million images from 1,000 classes. We trained the Mo-
bileNetV2 using the Adam with exponential decay.

(ii) Image Segmentation. DeepLabV3+ (Chen et al.,
2018) with the MobileNetV2 backbone was trained
on the PASCAL VOC 2012 dataset (Everingham et al.,
2015) with the SGD, cosine decay, and cross entropy.

(iii) Pose Estimation. We adopted OpenPose (Cao et al.,
2017) with an ImageNet-pre-trained VGG19 backbone
on the MS COCO 2016 (Lin et al., 2014) that consists
of over 100K persons’ keypoints.

(iv) Language Modeling. The goal is to predict a masked
word from a sequence of words, i.e., text. The univer-
sal BERT (Dehghani et al., 2019) on the WikiText-2
dataset which consists of over 2 million words was
trained with the Adam, the masked LM loss, and the
penalized confidence (Pereyra et al., 2017).

(v) Reinforcement Learning. We applied WNN to the
Pendulum problem, which is a famous reinforcement
learning problem using the Deep Deterministic Policy
Gradient (DDPG) (Lillicrap et al., 2015). Two net-
works, an actor and a critic, were trained using the
Adam for 200 episodes.

(vi) Transfer Learning on Attention Model. PVTv2-B0
(Wang et al., 2022) with ImageNet-pre-trained weights
was trained on CIFAR100 for 50 epochs using the
Adam, the warm-up scheduling, and decay.

(vii) Diffusion Model. We validated on the Denoising Dif-
fusion Implicit Model (DDIM) (Song et al., 2020) on
the Oxford Flowers dataset (Nilsback & Zisserman,
2008). The model was trained to minimize ℓ1 loss us-
ing the AdamW with the learning rate decay from 1e-3
for 60 epochs. We evaluated it based on KID (Kernel
Inception Distance) metric (Bińkowski et al., 2018).

Each experiment was replicated at least 3 times (up to 30) to
obtain average performance and avoid bias. Training recipe
of each task is described in Appendix. I.

Results. Table 5 summarizes the overall performance com-
parisons demonstrating that WNN outperforms all the other
approaches in required epochs to reach 90 ∼ 97% of the
best accuracy (right before convergence) for all the tasks.
WNN, the curve fitting, and the Introspection obtained
×1.25, ×0.99, and ×0.94 speed-up on average compared
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Table 5. Experimental comparisons on various tasks with naive training, Introspection, a linear curve fitting, and the proposed WNN.
WNN consistently outperforms the other methods on a variety of tasks.

Task Method Best Converge Reach Speed Task Method Best Converge Reach Speed
(Metric) (epoch/episode) Up (Metric) (epoch/episode) Up

ImageNet Classification Naive 69.40% 26 68.00% × 1.00 RL Naive -139.10 116 -200.00 × 1.00
(Val Acc↑) Introspection 70.13% 24 68.00% × 1.08 (Episode Reward↑) Introspection -128.70 107 -200.00 × 1.08

CF (Linear) 68.19% 41 68.00% × 0.63 CF (Linear) -138.79 111 -200.00 × 1.05
WNN 70.57% 21 68.00% × 1.24 WNN -123.55 88 -200.00 × 1.32

Image Segmentation Naive 53.99% 55 48.00% × 1.00 Transfer Learning Naive 83.22% 17 80.00% × 1.00
(Val Jaccard↑) Introspection 53.97% 46 48.00% × 1.20 on Attention Model Introspection 81.52% 38 80.00% × 0.45

CF (Linear) 53.79% 50 48.00% × 1.10 (Val Acc↑) CF (Linear) 82.51% 14 80.00% × 1.21
WNN 53.81% 45 48.00% × 1.20 WNN 83.09% 14 80.00% × 1.21

Pose Estimation Naive 623.54 43 673.00 × 1.00 Diffusion Model Naive 0.1918 32 0.2000 × 1.00
(Val Loss↓) Introspection 627.17 46 673.00 × 0.94 (Val KID↓) Introspection 0.1786 36 0.2000 × 0.89

CF (Linear) 614.80 30 673.00 × 1.43 CF (Linear) 0.1878 54 0.2000 × 0.59
WNN 615.79 30 673.00 × 1.43 WNN 0.1732 26 0.2000 × 1.23

Language Modeling Naive 31.25 55 100.00 × 1.00 Average Naive N/A N/A N/A × 1.00
(Val Perplexity↓) Introspection 39.93 56 100.00 × 0.98 Introspection N/A N/A N/A × 0.94

CF (Linear) 42.67 58 100.00 × 0.95 CF (Linear) N/A N/A N/A × 0.99
WNN 31.26 48 100.00 × 1.15 WNN N/A N/A N/A × 1.25

to the naive training, respectively. Moreover, WNN consis-
tently outperforms the naive training on a variety of tasks
though it was trained only on weights from the image clas-
sification task. In contrast, the Introspection and the curve
fitting method often underperform the naı̈ve training. In this
regard, our WNN is more robust to unseen tasks without
a task-specific fine-tuning process than similar approaches.
Further, without any architecture-specific fine-tuning, our
WNN is applicable to transfer learning to a completely dif-
ferent architecture such as Transformer.

7. Conclusions
In this paper, we introduce a concept to periodically predict
near future weights during training process, i.e., Learning
to Boost Training, which can directly save the number of
epochs during training. The concept was first justified and
proved through in-depth studies on weight prediction, which
significantly improved training efficiency when realized as
WNN. The WNN, when trained for various training cases
for image classification, was able to aid training of various
models with different optimizers for several unseen tasks
such as image segmentation, pose estimation, word predic-
tion, reinforcement learning, and even a generative task.

The limitation is that it requires additional memory and com-
putation for using WNN, but those are far little compared to
training efforts for large-scale models. WNN is also needed
to be once trained with a collection of weight changes, but
it is task-agnostic and we provide the pre-trained model and
weight change dataset (∼200 GB). Also, note that there is
no additional benefit in task performance such as validation
accuracy. Our WNN is very flexible and thus has significant
potential to help lots of future researches that suffer from
lack of computational cost.
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Appendix
A. Experimental Details of Section 3
This section describes experimental procedures and setting of Section 3. We adopted two model architectures, a Vanilla
CNN and a ResNet, with Xavier Uniform and He Normal initialization methods on the CIFAR10 dataset from scratch. For
both cases, we used the Adam optimizer with 1e-3 learning rate and random data augmentation (e.g., flip, rotation, scaling,
translation). We first collected weight snapshots from initialization to the 100th training epoch for the Vanilla CNN and
ResNet which were represented as [ΘCNN

init ,ΘCNN
1 , ...,ΘCNN

100 ] and [ΘResnet
init ,ΘResnet

1 , ...,ΘResNet
100 ] , and determine the

target validation accuracies at the epoch where the weights were changed most extremely (ΘCNN
50 ,ΘResnet

20 ).

A.1. The Future is Roughly Predetermined (Section 3.1)

To figure out the training trajectories, i.e., histories of weight changes during training, roughly determined by initial weights,
we repeatedly trained models 30 times with two different weight initialization conditions: 1) training started from the
same initial weights (ΘCNN

init , ΘResNet
init ) and 2) from random initial weights. For each trial, we trained the models until

reaching the target validation accuracies achieved by ΘCNN
50 for Vanilla CNN and ΘResnet

20 for ResNet. We collected two
sets of weight snapshots: (1) weights updated from the same initial weights (ΦCNN,i and ΦResnet,i, i = 1, ..., 30) and (2)
weights updated from random initial weights (ΨCNN,i,ΨResnet,i, i = 1, ..., 30). Then, we calculated cosine correlations
between trials in each set (see Table A.1). We also report the correlations when training started from ΘResNet

15 , not ΘResNet
init ,

until reaching the target validation accuracy at ΘResnet
20 for verifying higher certainty of near future weights. The average

correlation was 0.9841, which indicates that the consistency is higher from the near past weights.

Table A.1. Predetermined Convergence: the cosine correlations between weights after training when using random initial weights and
using the same initial weight.

Cosine Correlation
Architecture Random Initial Weights(Ψ) The Same Initial Weights(Φ)

Vanilla CNN(from ΘCNN
init to ΘCNN

50 ) Conv 0.0131 ±0.0345 0.9018 ±0.0142
Bias 0.0306±0.0218 0.9229 ±0.0293

ResNet(from ΘResnet
init to ΘResnet

20 ) Conv 0.0594 ±0.1712 0.8959 ±0.0137
ResNet(from ΘResnet

15 to ΘResnet
20 ) Conv N/A 0.9841 ±0.0046

Layer-wise correlations of Vanilla CNN are in the table below.

Table A.2. Layer-wise Convergence for Vanilla CNN
Initialization Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 5

Random 0.06023±0.1095 0.0025±0.0260 -0.005±0.0233 -0.0036±0.0064 -0.0011±0.0098 -0.0258±0.0320
Fixed 0.9853±0.0011 0.9391±0.0210 0.8862±0.0150 0.7612±0.0212 0.8952±0.0132 0.9438±0.0069

We also tested how strong data augmentation (e.g. mixup, random crop, large image rotation) and learning rate scheduling
(e.g. cosine decay) affect the update paths when training the networks. The correlation with strong data augmentation was
lower than one with weak augmentation only. However, they were still much higher than that with random initialization
(0.0131 for Vanilla CNN and 0.0594 for ResNet).

Table A.3. Additional analysis about Predetermined Convergence for LR scheduling and strong data augmentation.
Cosine Correlation

Architecture Weak Augmentation w/o LR scheduling Strong Augmentation w/ LR scheduling
Vanilla CNN (Random Initialization) 0.0131 ±0.0345 N/A

Vanilla CNN (Fixed Initialization) 0.9018 ±0.0142 0.7424 ±0.0343
ResNet (Random Initialization) 0.0594 ±0.1712 N/A

ResNet (Fixed Initialization) 0.8959 ±0.0137 0.8559 ±0.0127

A.2. Beneficial Prediction of Future Weights (Section3.2)

To identify what predicted weights are beneficial, we simulated training processes with artificially generated predicted
weights by adding noise to the target weights. In this simulation experiment, there were three components, starting weights
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Θstart, predicted weights Θpredicted, and target weights Θtarget. Note that we confirmed the existence of Θtarget in
Appendix A.1. We set the Θpredicted to θtarget+ ϵ. Based on virtually generated predicted weights Θpredicted, we conducted
training experiments on varying Θstart and Θtarget as:

Train Simulation with Varying Θtarget: we verified that weight prediction can be worth for varying Θtarget, so we
fixed Θstart to [ΘCNN

init and ΘResnet
init ], and set Θtarget to [ΘCNN

5 ,ΘCNN
50 ,ΘCNN

100 ] and [ΘResnet
5 ,ΘResnet

20 ,ΘResnet
100 ]. Then

we followed the procedure as described in Algorithm 1. By this procedure, we can get 1) the number of required epochs

Algorithm 1 Train Simulation with Varying Θtarget

1: A target network T , training dataset (Xtr, Y tr), and test dataset (Xte, Y te)
2: Thresh = Accuracy(T (Xte,Θtarget), Y

te)
3: Current = 0
4: Set weights ΘT of T as Θstart

5: cnt=0
6: while Current < Thresh do
7: Update ΘT on (Xtr, Y tr) one epoch
8: Current = Accuracy(T (Xte,ΘT )
9: cnt = cnt+1

10: end while
11: Set Epochstart=cnt
12: Outputs = []
13: NumSample=0
14: while NumSample <500 do
15: Set ϵ′ ∼ N (0, I)
16: Set a relative distance d ∼ Unif(0, 8)

17: Set ϵ = d ◦ ||θtarget − θstart||2 ◦ ϵ′ ||ϵ′||2 for all θ ∈ Θ
18:19: Set θPredicted = θtarget + ϵ for all θ ∈ Θ
20: Current = 0
21: Set weights ΘT of T as ΘPredicted

22: cnt=0
23: while Current < Thresh do
24: Update ΘT on (Xtr, Y tr) one epoch
25: Current = Accuracy(T (Xte,ΘT )
26: cnt = cnt+1
27: end while
28: Set Epochpredicted=cnt
29: Output.append([d, Epochpredicted

Epochstart
])

30: NumSample = NumSample+1
31: end while
32: return Output

from Θstart and 2) the number of required epochs from Θpredicted. Figure 2 represents the ratio between the two numbers
according to the relative distance.

Train Simulation with Varying Θstart: we also conducted train simulations with varying Θstart and the fixed Θtarget. For
Θtarget, we used ΘCNN

50 and ΘResnet
20 . For Θstart, (ΘCNN

5 , ΘResnet
2 ), (ΘCNN

25 , ΘResnet
10 ), and (ΘCNN

45 , ΘResnet
15 ) were used.

Then, we performed training experiments to identify the best times to predict future weights based on the categorization of
the difference between the target epoch and the start epoch into three groups: short-term (from Θt−5 to Θt), mid-term (from
Θt/2 to Θt), and long-term (from Θt/10 to Θt), where t means the epoch number of Θtarget. The detailed procedure for
this simulation is described in Algorithm 2. From the procedure, we obtained RRE, relative distance, and relative direction.
Figure 3 represents the results of this train simulation experiment. those results indicate that the short-term prediction is
more reliable and has a wider range of beneficial regions for weight prediction.
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Algorithm 2 Train Simulation with Varying Θstart

1: A target network T , training dataset (Xtr, Y tr), and test dataset (Xte, Y te)
2: Thresh = Accuracy(T (Xte,Θtarget), Y

te)
3: Current = 0
4: Set weights ΘT of T as Θstart

5: cnt=0
6: while Current < Thresh do
7: Update ΘT on (Xtr, Y tr) one epoch
8: Current = Accuracy(T (Xte,ΘT )
9: cnt = cnt+1

10: end while
11: Set Epochstart=cnt
12: Outputs = []
13: NumSample=0
14: while NumSample <1000 do
15: Set ϵ′ ∼ N (0, I)
16: Set a relative distance: d ∼ Unif(0, 8)
17: Set a relative direction: a ∼ Unif(−1, 1)
18: Find a plane P containing ϵ′ and θtarget − θstart
19: Find ϵ that is on the P and orthogonal to θtarget − θstart
20: Set ϵ = d ◦

√
(1− a) ◦ ||θtarget − θstart||2 ◦ a ◦ ϵ′

||ϵ′||2 for all θ ∈ Θ

21: Set θPredicted = θtarget + ϵ for all θ ∈ Θ
22: Current = 0
23: Set weights ΘT of T as ΘPredicted

24: cnt=0
25: while Current < Thresh do
26: Update ΘT on (Xtr, Y tr) one epoch
27: Current = Accuracy(T (Xte,ΘT )
28: cnt = cnt+1
29: end while
30: Set Epochpredicted=cnt
31: Output.append([r, a, Epochpredicted

Epochstart
])

32: NumSample = NumSample+1
33: end while
34: return Output
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A.3. Weight Prediction is Feasible. (Section 3.3)

We tried to figure out the feasibility of weight prediction using a curve fitting method with two strategies, mid-term and
short-term prediction. The mid-term one was utilized by Introspection (Sinha et al., 2017), and the short-term one was set
from our observation. We applied the curve fitting to independently predict weight parameters by one-by-one. Then, the
curve fitting model (C) can be expressed as:

(mid− term) c∗ = argmin
c

∑
τ

(θl,i,jτ − C(τ, c))2 + ρ

b∑
i=1

c2i , c ∈ c and τ ∈ {0, 0.2t, 0.35t, 0.5t} (11)

(short− term) c∗ = argmin
c

t−5∑
τ=t−9

(θl,i,jτ − C(τ, c))2 + ρ

b∑
i=1

c2i , c ∈ c (12)

θ̂l,i,jt = C(t, c∗) (13)

where t means the number of epochs, c2i is ℓ2-regularizer with a hyperparameter ρ, and b is the number of coefficients in the
curve fitting model. Among the curve-fitting models, we chose a linear model because of its simplicity without optimizing it.
The linear curve fitting-based predictor receives weight parameters from multiple epochs and returns a predicted weight
parameter θ̂l,i,jt by solving the Pseudo inverse.

Similar to Introspection, the mid-term strategy receives a [4×1]-shaped input which is composed of [θl,i,j0 , θl,i,j0.2t , θ
l,i,j
0.35t, θ

l,i,j
0.5t ],

and predicts θl,i,jt , where l, i, j mean the indices of layer, channel, spatial coordinate, and θ ∈ Θ. To be specific, the linear
curve fitting model with the mid-term strategy can be described as:

A =

[
0 0.2t 0.35t 0.5t
1 1 ... 1

]
Wt = [θl,i,j0 , θl,i,j0.2t , θ

l,i,j
0.35t, θ

l,i,j
0.5t ]

T ,

θ̂l,i,jt = WT
t AT (AAT + ρI)−1[t, 1]T .

(14)

The short-term strategy also approximates the θl,i,jt , but differs in input. It receives a [5×1]-shaped input which is composed
of [θl,i,jt−9 , θ

l,i,j
t−8 , θ

l,i,j
t−7 , θ

l,i,j
t−6 , θ

l,i,j
t−5 ]. The linear curve fitting model for short-term strategy can be described as:

A =

[
t− 9 t− 8 ... t− 5
1 1 ... 1

]
Wt = [θl,i,jt−9 , θ

l,i,j
t−8 , ..., θ

l,i,j
t−5 ]

T ,

θ̂l,i,jt = WT
t AT (AAT + ρI)−1[t, 1]T .

(15)

The results are represented in Table 3. The linear curve fitting can predict the future weight parameters within the acceptable
error, i.e., the beneficial region depicted in Figure 3 in Section 3.1. Note that ResNet has Batch Normalization layers that
make bias terms meaningless, so we didn’t calculate the prediction errors for the bias of ResNet. We also tested the mid-term
approach with the [5×1]-shaped input, but it slightly underperformed it with the [4×1]-shaped input.
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B. Weight Change Tendency is Consistent Across Totally Different Tasks. (Section 4.2)
As explained in Section 4.2, we collected weights of the first 15 epochs of training processes from scratch for the three tasks:
image classification, language modeling, and reinforcement learning. For each task, we trained the VGG16 (Simonyan &
Zisserman, 2014) and the MobileNetV2 on CIFAR10 (Krizhevsky et al., 2009) for image classification, BERT (Devlin
et al., 2018) on WikiText-2 (Merity et al., 2017) for language modeling, and DDPG (Lillicrap et al., 2015) on the Pendulum
problem for reinforcement learning using the Adam with 1e-3 learning rate. Experimental results are described in Figure 6.
The individual history of weights formed clusters, indicating weight parameters are changed similarly in element-wise level
regardless of target tasks. Note that it doesn’t mean the converged weights, i.e., a set of weight parameters, are the same
for all the tasks because the element-wise trend doesn’t consider layer indices, channel indices, and spatial coordinates of
weights.

Additionally, we conducted the same experiments to visualize weight parameter change tendencies for diverse DNN
architectures and datasets. We collected the history of weights of the first 15 epochs of a training process according to
various architectures, datasets, and operation types. Then, we applied PCA for dimension reduction. As shown in Figure
9, these results illustrate that single predictor of weights can be generalized not only to various tasks but also to various
architectures and datasets. Then, Figure 9(c) indicates that separate predictors for each operation type are mandatory to
cover various types of operations.

(a) Architectures (b) Datasets (c) Operation types

Figure 9. Visualization of changes of weights across different architectures (Convolution of MobileNetV2, ResNet and VGGNet), datasets
(CIFAR10 and MNIST), operations types(Convolution, Fully-connected, and Bias). Each dot is a history of changes of a weight for 15
epochs (compressed in 2D).
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C. Details of Comparisons with Curve Fitting (Section 5.2 )
In this section, we tested more diverse curve fitting models such as linear, exponential, and 2nd ordered polynomial,
Xexponential, sigmoid, power, and Michaelis Menten as below: The curve fitting model (C) can be expressed as:

c∗ = argmin
c

t−5∑
τ=t−9

(θl,i,jτ − C(τ, c))2 + ρ

b∑
i=1

c2i , c ∈ c (16)

θ̂l,i,jt = C(t, c∗) (17)

and

C(x) = c11x+ c12 (Linear) (18)

C(x) = c21x
2 + c22x+ c23 (Polynomial) (19)

C(x) = c31e
(−c32x) + c33 (Exponential) (20)

C(x) = c41x exp (−c42x) + c43 (XExponential) (21)
C(x) = c51sigmoid(c52x) + c53 (Sigmoid) (22)
C(x) = c61x

c62 + c63 (Power) (23)

C(x) = c71x+ c72
x+ c73

(MichaelisMenten), (24)

where c means coefficient of each model, and x indicates their input.

Figure 10 shows the results using a Vanilla CNN and CIFAR10. The power and the Michaelis Menten functions cannot
accelerate convergence, but the others lead to faster convergence than naive training. For early training, exponential, sigmoid,
power, and Michaelis Menten functions are more effective than the linear and 2nd-ordered polynomial functions as shown in
changes of validation loss of various curve fitting algorithms. However, the linear and 2nd-ordered polynomial functions
outperform other functions from the 20th epoch in curve fitting algorithms. Our WNN consistently performs better than a
variety of curve-fitting models.
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Figure 10. Comparisons of loss and accuracy with various curve fitting models
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D. Weight Nowcaster Network
D.1. Network Architecture

We used a simple two-stream architecture, F = {FW , FdW }, that is composed of a set of fully connected layers and an
activation network as illustrated in Figure 5. Values of weights and their temporal differentials are normalized with bias term
θl,i,jt−5 and scaled by min-max scaler (max(W o

t )−min(W o
t )) and scaling factor 2 for stable forecasting, and fed into each

stream respectively:

W o
t = [θl,i,jt−9 , θ

l,i,j
t−8 , θ

l,i,j
t−7 , θ

l,i,j
t−6 , θ

l,i,j
t−5 ]

T , (25)

dW o
t = [(θl,i,jt−5 − θl,i,jt−6 ), ..., (θ

l,i,j
t−8 − θl,i,jt−9 )]

T , (26)

Wt =
W o

t − θl,i,jt−5

2 · (max(W o
t )−min(W o

t ))
, (27)

dWt =
dW o

t

2 · (max(W o
t )−min(W o

t ))
. (28)

where l, i, j mean the indices of layer, channel, spatial coordinates, t indicates the number of epochs, and θ ∈ Θ. We set the
scaling factor to 2. Each branch has a structure as:

l(x) = σ1(ξ
l · [x, 1]T ) (29)

act(x) = (ξa1 · l(x))⊙ e(ξ
a
2 ·l(x))⊙x + (ξa3 · l(x)) (30)

Fb(x) = σ2(ξ
F
2 · [act(σ2(θ1 · [x, 1]T )), 1]T ) (31)

where x is an input vector, σ means activation function, l(x) is an intermediate feature used in activation network, act
is an activation network, and Fb is an output vector derived from an individual branch denoted by b ∈ {W,dW}. Each
component here contain WNN’s trainable parameters Ξb = {ξF1 , ξF2 , ξl, ξa1 , ξa2 , ξa3}. Both outputs from the two branches,
FW and FdW , are concatenated and passed through a fully-connected layer as:

F(Wt) = σ3(ξo · [FW (Wt)
T , FdW (dWt)

T , 1]T ). (32)

The F(·) is an update term to predict future weights and tanh(·) was used for σ3 as the update can be both positive and
negative within 2 · (max(W o

t ) −min(W o
t )) range. Our WNN is trained to return the difference between the last input

weight and its future weight. Finally, ℓ1-norm is applied on the difference between the true updates (for 5 future iterations)
and the model to train, i.e., F(Wt) to define a loss function as

min
F

(

∣∣∣∣∣F(Wt, dWt)−
θl,i,jt − θl,i,jt−5

2 · (max(W o
t )−min(W o

t ))

∣∣∣∣∣
ℓ1

) (33)

The ℓ1-norm was used to obtain a larger gradient even when the differences are small. The optimal solutions, F , from the
two streams and a fully connected layer are then used to estimate the future weights of the target network. Then, WNN-based
training can be given as:

ˆθl,i,j t = θl,i,jt−5 + 2 · (max(W o
t )−min(W o

t )) · F(Wt, dWt) (34)

which let us skip 5 epochs and directly jump to the t-th epoch from (t − 5)-th epoch. The predicted future weights are
modeled by adding the outputs into the last input weights. This is an element-wise process, so WNN needs to individually
operate for all parameters. This property makes our approach much faster and more efficient with neglectable error in
estimating trainable parameters.

To train WNN, in practice, weights in every epoch in various training conditions; architectures, datasets, and augmentation
methods were collected so that the model can be adopted to even unseen cases. More details are to be explained in Section 5.1.
We assumed that each type of weight; convolution weight, fully-connected weight, and bias, have their own characteristics,
so individual forecasting networks for each type were separately trained.
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D.2. Perioodic Short-term Nowcasting Strategy

Based on those observations in Section 3, we established our forecasting strategy as:

(i) Element-wise independent forecasting for each weight parameter.
(ii) Separate forecasting models for each mathematical operation.

(iii) Periodic short-term forecasting rather than few-shot mid-term forecasting of Introspection (Sinha et al., 2017).

As shown in Figure 4, every five epochs, our predictor forecasts the future weights element by element. A target network is
trained with naive training for five epochs, while the weight parameters of each epoch are stacked to prepare WNN inputs.
Next, WNN receives the stacked weight parameters and predicts the future parameters after five epochs. From the predicted
weights, naive training is restarted while compensating the prediction error. The aforementioned procedure is repeated
during an entire training process.

D.3. Ablation Study and Model Analysis of WNN

In this section, we performed various ablation study of the proposed method. All the experiments were repeated 5 times
on CIFAR10 with a Vanilla CNN, and WNN was used as an add-on module to expedite the training. Average values of
performances measures from the replicated experiments are reported.

(i) Components of WNN. We conducted ablation study to validate our network architecture of WNN. As shown in
Table A.4, the performance of our WNN is improved by each component, periodic short-term forecast, normalized
residual, two-stream design, and activation network. Note that WNN without the four components is almost similar to
Introspection, only different in the network depth.

Table A.4. Actual time cost comparisons with WNN components on CIFAR10 with Vanilla CNN
Method Periodic Norm. Two Activation Converge

Nowcasting Residual Stream Network (epoch) (sec)
Naive N/A N/A N/A N/A 44 53.82
WNN ✗ ✗ ✗ ✗ 37 44.43

✓ ✗ ✗ ✗ 34 40.91
✓ ✓ ✗ ✗ 31 37.30
✓ ✓ ✓ ✗ 29 34.89
✓ ✓ ✓ ✓ 21 25.27

*Converge: Epoch/Time to reach a validation Acc of 59%

(ii) Input and skip lengths. Table A.5 shows experimental results on various input and skip lengths of WNN. WNN with
five input length and five skip length demonstrates the least time to reach 59% validation accuracy. The longer input
length leads the more stable results, but it limits the number of forecast. On the other hand, the shorter one makes more
frequent, but unstable forecasting. For skip length, the further forecast can skip more epochs, but it may lead inaccurate
regression results.

Table A.5. Convergence for various input/skip lengths.
Input Skip Length

Length 3 5 7 10
3 31.35 34.95 34.95 37.22
5 32.49 25.27 30.07 31.29

10 37.26 38.46 39.66 43.26
*Time to reach a validation Acc of 59%

(iii) Costs for nowcasting various target architectures We conducted experiments on the actual computational cost and
time for nowcasting weight parameters of various architectures. Our WNN predicts the future weights by inference
without calculating gradients. 1,000,000 weight parameters of a target network can be processed in one batch for
inference by using parallel processing. That is, WNN can rapidly predict weight parameters of 5 epochs future. As
shown in Table A.6, the most largest architecture (VGG19) requires only 10.6 seconds for nowcasting 5 epochs future.
In most training cases, time cost for less than 10.6 seconds is negligible when compared to duration for training 5
epochs using entire training data. To be specific, it generally takes much longer time than 10.6 seconds to train 1 epoch
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in practice. Our WNN can directly reduce training time. Furthermore, because it is not required to save every immediate
outputs of whole hidden layers for inference, our WNN does not need large memory cost.

Table A.6. Required FLOPs/Nowcasting Time for Nowcasting Various Architectures.
Architecture FLOPs Nowcasting
(#Params) Time(Sec)

MobileNetV2 (3.5M) 45G 0.3
VGG19 (143.7M) 1835G 10.6
ResNet50 (25.6M) 327G 1.9

ResNet152 (60.4M) 771G 4.4
ViT-B (86M) 1098G 6.4

Swin-B (88M) 1123G 6.4
*WNN occupies 9,425 parameters, and 0.04MB memory.

**WNN requires 13,713 FLOPs for nowcasting one parameter.
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E. Analysis on Various Hyperparameters for Training of Unseen Dataset
Setup. This experiment applies the pre-trained WNN on various conditions of training (optimizers, batch size, and learning
rate) and unseen dataset of image classification. Our WNN performs one prediction per one weight parameter independently
regardless of the correlation between each weight, so we believed that the WNN is applicable to not only seen but also
unseen conditions. Therefore, we performed experiments in various unseen conditions to validate general applicability
in image classification of our method without any fine-tuning. We adopted Fashion MNIST on ResNet32 to validate how
well a pre-trained WNN can adapt to unseen data. Fashion MNIST is composed of 28× 28 gray images with 10 classes of
fashion items, and it was not used to collect training data at Section 5.1. Therefore, this experiment validates that the WNN
trained on limited condition (i.e. only CIFAR10 and MNIST with Adam optimizer) can boost training of unseen dataset
(Fashion MNIST) with general conditions without any fine-tuning WNN. We applied varying conditions as follow:

E.1. Analysis on Various Optimizers

For collecting training data, the Adam optimizer was only used in Section 5.1. However, there are many kinds of optimizers,
so we tested on four other optimizers. SGD, AdamW(Loshchilov & Hutter, 2019), SAM(Foret et al., 2020), and L2O-
amalgam were used to verify effectiveness of WNN’s prediction for future weights in various optimizing environments.
Surprisingly, even though the WNN was not trained on Fashion MNIST, it worked well on the Fashion MNIST dataset.
Further, WNN and curve fitting outperform the naive training for all optimizers. Notice the red line (WNN) converging
faster than the validation accuracy from naive training for all optimizers (i.e., SGD, AdamW, SAM, and L2O-amalgam),
even though WNN was not trained on them.
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Figure 11. Comparisons of validation accuracy with unseen optimizers on Fashion MNIST (Unseen Dataset)

E.2. Analysis on Various Batch Sizes

To analyze our proposed work in detail, we conducted experiments with various batch size(256 and 512). It is widely known
that a training process with large batch size is much stable because it updates using an average value of gradients with large
samples. That is, the averaging operation with large batch size makes more global update in parameter space so that it can
be more stable. Training stability is an important issue because it highly affects on prediction stability of WNN. As shown in
Figure 12(a-d), the proposed method in 512-batch size shows better results than the naive training method in 256-batch size.
If the input weights show oscillation and shaking, the predicted values would easily diverge and less reliable. This leads
training with larger batch size to show bigger difference between the proposed and the naive training.
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Figure 12. Experimental results on Fashion MNIST (Unseen Dataset) with various batch size.
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E.3. Analysis on Various Learning Rates

Similarly to analysis on various batch size, we performed experiments on various learning rates with the naive method, the
linear curve fitting, and our WNN. We also performed comparison experiments with a naive training approach with varying
learning rates (1e-3, 1e-4, and 1e-5). Figure 13(a-d) illustrate that training with WNN shows the fastest convergence among
the three approaches. Because WNN skips five training epochs by prediction of weights based on previous five epochs, it
looks like a naive training with varying learning rates from a learning rate value to the larger one per every five epochs.
Although the naive approach with varying learning rates shows a tendency similar to our WNN, oscillation occurs when the
learning rate value increases as shown in Figure 13(e-h). In particular, in early training phase, training with larger learning
rate performs faster convergence than our proposed method, but the WNN shows increasingly good convergence in the mid
and the latter training phase. This tendency shows that our WNN produces weights more directly toward global minimum
rather than the naive method.
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Figure 13. Experimental results on Fashion MNIST (Unseen Dataset) with varying learning rate. We applied 2 times and 3 times of
learning rate value per five epochs to compare with our WNN which predicts future weights per five epochs.
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F. Analysis on Weight Prediction Error
F.1. Visualization of Weight Prediction Error

To verify efficacy of our WNN, we visualize predicted weights. Figure 14 represents samples of convolution weights and
absolute errors. The left column is samples of target convolution weights to be predicted. The middle column describes
absolute differences between the current weights and the target future weights and the right column represents those between
the predicted weights and the target future weights. Namely, the darker the color, the smaller the error in the middle and
right columns. On the other hand, the left column contains both positive and negative values, so it is illustrated with color.
The outputs of WNN show less errors than weights without WNN. Figure 15 illustrates average forecasting error for 3×3
filters extracted from validation dataset for training WNN. From these two figures, it is shown that the learning-based
approach is better than curve fitting-based approach. Figure 16 shows visualization examples of weight forecasting. The
black dots are previous 5 weights inputted to the weight prediction process and each method predicts five steps ahead (i.e.,
‘x’ denotes predicted values from each approach). The curve fitting approaches showed reasonable predictions for simple
cases (Figure 16 (mid)), but were inaccurate for complex and nonlinear cases (Figure 16 (left)). On the contrary, WNN
worked well on both simple and complex cases.

Figure 14. Weight samples and differences. The left column represents target future weights, the middle column describes absolute error
between the current weights (without WNN) and the target future weights. The right column shows absolute error between predicted
future weights (with WNN) and the target future weights.

(a) (b) (c) (d) (e)

Figure 15. Forecasting error between the last input weights and real future weights for 3×3 convolution filters. Note that blue color means
lower error, and yellow means higher one. (a): w/o Forecasting, (b): Curve Fitting(Linear), (c): Curve Fitting(Exponential), (d): Curve
Fitting(2nd Polynomial), and (e): WNN

F.2. Regression Error over Training Phase

It is known that training DNNs has a general tendency in phase analysis. In the beginning, training is generally unstable, so
gradients are too steep and large changes in weight value occur too frequently. Training becomes more and more stable
in the latter phase, so that gradients converge to zero and little change in weight value occurs. This tendency is generally
observed in many cases. We tried to analyze our work from this point of view. Our WNN is applied repeatedly during
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Figure 16. Examples of weight forecasting. Left: Successful cases for WNN, Middle: Easy cases for both Curve Fitting (Linear) and
WNN, Right: Failure cases.
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Figure 17. Phase analysis of the proposed method. (a) represents mean absolute error between predicted weights and ground truth. (b)
describes relative comparison between with and without our method.

training process, so we could compare effects of our method over training phase. Figure 17 (a) shows the effects of the
proposed method during training. The blue line represents the naive training approach, so the mean absolute error (MAE) is
differences between the current weight and the future weights without prediction. It can be an upper bound of MAE of the
proposed method. At early phase, the training is unstable so it is hard to predict accurately. Then the training in mid-phase
shows the biggest difference between MAE of our method and the upper bound. In addition, in the mid-term, training is
mainly done, which results in a dramatic improvement in performance In other words, learning is stable in the mid-term and
has a significant impact on performance. Our WNN, as shown in Figure 17 (a), allows to perform learning faster and more
reliably. Figure 17 (b) is a graph for relative comparison through dividing the mae of the proposed method by one of the
upper bound, so the smaller the value, the greater the difference. In the case of WNN-applied learning, it shows the best
effect in the mid-term compared to the naive training.
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G. Qualitative Results on Pose Estimation and Image Segmentation
Figure 18 shows qualitative results with and without WNN using the OpenPose model. The left column of images means
input images to the model. The middle and right columns describe joint map resulted from the models without and with
WNN respectively. Obviously, the predicted joint locations the model with WNN are more concentrated, which meansthe
model with WNN is more converged than that without WNN. Furthermore, there are undetected joints in results from the
model without WNN and the model with WNN shows robustness even when occluded with other objects.

Figure 18. Example outputs of OpenPose after training 100 Epochs without and with WNN. The left column describes input images. The
middle and right columns show outputs of trained OpenPose model without WNN and with WNN respectively. Yellow circles describe
improved results by WNN.

Figure 19 shows image segmentation results of DeepLabV3+ with and without WNN for qualitative visualization. Input
images, outputs from DeepLabV3+ trained without WNN, and outputs from DeepLabV3+ trained with WNN are located
from left to right columns. Each output is extracted at 50th train epoch from scratch. Output images from trained model
without WNN (middle column) show mis-classified segmentation parts (yellow circles). On the contrary, output trained with
WNN shows spatially consistent results with input images.

Figure 19. Example outputs of DeepLabV3+ after training 50 Epochs without and with WNN. The left column describes input images.
The middle and right columns show outputs of trained DeepLabV3+ without WNN and with WNN respectively. Yellow circles describe
improved results by WNN.
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H. Algorithm Fusion using WNN with HyperNetworks and Introspection
Finally, we tried to fuse our WNN algorithm with similar approaches such as HyperNetworks and Introspection. Figure 20(a)
shows validation accuracy of our WNN with HyperNetworks and Introspection when a Vanilla CNN is trained on CIFAR-10
dataset. In the case of HyperNetworks, training with the joint work (HyperNetworks + WNN) shows slower convergence
than that with only WNN. As we mentioned in our main paper, HyperNetworks has limitations in representation power,
resulting in performance drop.

Additionally, we performed training experiments with Introspection. Introspection forecasts mid-term future weights by
analyzing global history of training from scratch to current epoch. On the other hand, our WNN periodically nowcasts
near-future weights every 5 epoch when a target model is trained. Based on fundamental difference, we expected that
periodic nowcast of our WNN constructs a new global tendency with global forecast of Introspection, resulting in faster
convergence. As shown in Figure 20(b), WNN with Introspection outperforms the other methods when a Vanilla CNN is
trained on CIFAR-10 dataset. This shows complementary relationship between WNN and Introspection, which improves
training performance of a target network.
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Figure 20. Experiments on algorithm fusion using WNN with HyperNetworks and Introspection. We trained a Vanilla CNN model on
CIFAR10 dataset.
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I. Detailed Training Recipes
I.1. Preliminary study

ResNet32 with [16,32,64] channels per each residual block and Vanilla CNN as target DNNs were used in our preliminary
study. The Vanilla CNN has a conventional architecture, which consists of four convolution layers with [8,16,32,32] channels
of 3×3 filters, a flattening layer, a fully-connected layer with 64 hidden neurons, and a classifier. For each convolution layer,
we add a max pooling layer. Both ResNet and Vanilla CNN were trained by Adam optimizer with a fixed learning rate
(LR) of 1e-3, 0.9 and 0.999 as two βs without LR scheduling, 1,024 batch size, simple data augmentations (random flip,
rotation, translation) for totally 200 epochs. Also, we applied mean-subtraction and division by 255 on the CIFAR10 dataset
as preprocessing. Then, this Vanilla CNN was reused in Section 5.2 and 5.3.

Section 3.1 (Table 1): we chose a starting epoch Epochstart and a target epoch Epochtarget out of the 200 epochs and their
corresponding weights (Θstart,Θtarget). We set a validation accuracy of Θtarget as a target accuracy, and the two networks
were repeatedly retrained from Θstart until reaching the target accuracy. After reaching the target accuracy, we calculated
similarity between retrained weights and Θtarget. To compare with the fixed initialization from Θstart, we also trained the
two networks from random initialization.

Section 3.2 (Figure 2, 3, and Table 2): we added some noise to Θstart as Θstart + n and retrained from the Θstart + n for
simulating weight forecast with the error. Then, we measured direction and distance error using Θstart + n and Θtarget as
varying forecasting error and required epochs to reach the target accuracy from Θstart + n and Θstart. By analyzing those,
we could find the relation between forecasting error and its corresponding speedup ratio.

Section 3.3 (Table 3): we applied three approaches, such as curve fitting, introspection, and WNN, with two strategies to
real weight forecasting. Then, we measured direction and distance errors, and expected the speed up ratio based on the
results of Figure 3.

Section 4 (Figure 6): we used VGG and MobileNetV2 for image classification, BERT for language modeling, and DDPG
for RL. Details of the BERT, DDPG, and training recipe are the same with Section 6’s.

I.2. Experiments in Section 5

CIFAR10: We trained a Vanilla CNN on CIFAR10 using Adam optimizer with a fixed learning rate of 1e− 3 for 50 epochs.
For this experiment, Each batch was composed of 1,024 images, and random cropping, rotation, flip were used as data
augmentation. Also, we applied mean-subtraction and division by 255 on the CIFAR10 dataset as preprocessing. The same
recipe was applied to all the methods for fair comparison.

I.3. Experiments in Section 6

ImageNet: We trained MobileNetV2 with dropout for 60 epochs using Adam optimizer with exponential LR decay from
1e− 2 to 1e− 5, and 0.9, 0.999 as two βs. Each batch was composed of 64 images, and random cropping, rotation, flip, and
color jittering were used as data augmentation. Also, we applied mean-subtraction and standard deviation normalization as
preprocessing.

Image segmentation: DeepLabV3+ with a MobileNetV2 backbone was trained for 150 epochs from scratch on Pascal
VOC 2012 dataset. As hyperparameters, we applied SGD with cosine LR from 3e − 3 to 1e − 5 with random flipping,
scaling, blurring, and color jittering. Then, the batch size was 32 and objective function was cross entropy. We applied
mean-subtraction and standard deviation normalization as preprocessing.

Pose estimation: OpenPose with ImageNet pre-trained VGG19 backbone was trained on MS COCO 2016 for 100 epochs.
SGD with 1e− 3 LR, 0.9 momentum, 32 batch size without scheduling was used. As data augmentation, random rotation,
flip, scaling and translation were adopted to minimize L2 loss. Also, we applied mean-subtraction and standard deviation
normalization as preprocessing.

Language modeling: Universal transformer BERT were trained on WikiText2. For training 100 epochs, we used Adam
optimizer with cosine learning decay from 2e − 4 to 1e − 8, 0.9 and 0.999 as two βs, 32 batch size, 256 max sequence
length, and 512 dimensional word embedding. Then, masked LM loss with penalized confidence were used as an objective
function.
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Reinforcement learning: We trained Deep Deterministic Policy Gradient model which is composed of critic model to
calculate Q-value, and actor model for predict action on Pendulum problem which is provided by PyGYM library. A sequence
of fully-connected layers with [64,32,16] hidden neurons was used as the critic model, and a sequence of fully-connected
layers with [32,32,32,16] hidden neurons was adopted as the actor model. Both were optimized by Adam optimizer with 0.9
and 0.999 as two βs for 200 episodes with 32 batch size. The LRs were 1e− 4 for critic, and 1e− 3 for actor.

Finetuning Pyramid Vision Transformer v2 (PVTv2): For finetuning, we applied resize on CIFAR100 images into 224
×224 size, and preprocessing predefined by PVT V2. Adam optimizer with 0.9 and 0.999 as two βs for totally 50 epochs.
In detail, it was composed of 5 epochs of burn-in (training only the randomly initialized classifier), 5 epochs of warm-up
(training with small LR), 20 epochs with a fixed LR as 2.5e− 3, and 20 epochs with LR decay to 1e− 4. Also, we applied
random rotation, flip, crop, color jittering as data augmentation, and 128 batch size.

Diffusion model We chose Denoising Diffusion Implicit Model on 64 × 64 images of Oxford Flower. AdamW with 0.9 and
0.999 as two βs, cosine LR decay from 1e− 3 to 1e− 4 during 60 epochs, and 1e− 4 weight decay was used as optimizer
to minimize L1 loss. We set 64 as batch size, and adopted exponential moving averages. As preprocessing, we divided each
image into 127.5 and subtracted 1.0.
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