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Abstract
The Variational Autoencoder (VAE) is a semi-
nal approach in deep generative modeling with
latent variables. Interpreting its reconstruction
process as a nonlinear transformation of samples
from the latent posterior distribution, we apply
the Unscented Transform (UT) – a well-known
distribution approximation used in the Unscented
Kalman Filter (UKF) from the field of filter-
ing. A finite set of statistics called sigma points,
sampled deterministically, provides a more in-
formative and lower-variance posterior represen-
tation than the ubiquitous noise-scaling of the
reparameterization trick, while ensuring higher-
quality reconstruction. We further boost the
performance by replacing the Kullback-Leibler
(KL) divergence with the Wasserstein distribu-
tion metric that allows for a sharper posterior. In-
spired by the two components, we derive a novel,
deterministic-sampling flavor of the VAE, the
Unscented Autoencoder (UAE), trained purely
with regularization-like terms on the per-sample
posterior. We empirically show competitive per-
formance in Fréchet Inception Distance (FID)
scores over closely-related models, in addition to
a lower training variance than the VAE1.

1. Introduction
The Variational Autoencoder (VAE) (Rezende et al., 2014;
Kingma et al., 2015) is a widely used method for learn-
ing deep latent variable models via maximization of the
data likelihood using a reparametrized version of the Ev-
idence Lower Bound (ELBO). Deep latent variable mod-
els are used as generative models in a variety of applica-
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Figure 1: The VAE decoder fθ(·) can be interpreted as a
nonlinear mapping of the Gaussian posterior distribution
generated by the encoder, resulting in a non-Gaussian out-
put distribution. The standard VAE (top) samples randomly
from the posterior (black points) and matches each decoded
sample to the ground truth (green star). Our model (bot-
tom) samples and transforms fixed posterior sigma points
(red) instead. By matching the mean of the transformed
points, we push the entire output distribution to resemble
the ground truth.

tion domains such as image (Vahdat & Kautz, 2020), lan-
guage (Bowman et al., 2015; Kusner et al., 2017), and dy-
namics modeling (Karl et al., 2016). A good generative
model requires the VAE to produce high-quality samples
from the prior latent variable distribution and a disentan-
gled latent representation is desired to control the gener-
ation process (Higgins et al., 2017). Another important
application of deep latent variable models is representa-
tion learning, where the goal is to induce a latent represen-
tation facilitating downstream tasks (Bengio et al., 2013;
Townsend et al., 2019; Tripp et al., 2020; Rombach et al.,
2022). In many of these tasks a good sample quality, as
well as a ’well-behaved’ latent representation with a high
reconstruction accuracy is desired.

Since their introduction, VAEs have been one of the me-
thods of choice in generative modeling due to their compar-
atively easy training and the ability to map data to a lower
dimensional representation as opposed to generative adver-
sarial networks (Goodfellow et al., 2014). However, de-
spite their popularity there are still open challenges in VAE
training addressed by recent works. A major problem of
VAEs is their tendency to have a trade-off between the qual-
ity of samples from the prior and the reconstruction qual-
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ity. This trade-off can be attributed to overly simplistic pri-
ors (Bauer & Mnih, 2019), encoder/decoder variance (Dai
& Wipf, 2019), weighting of the KL divergence regulari-
zation (Higgins et al., 2017; Tolstikhin et al., 2018), or
the aggregated posterior not matching the prior (Tolstikhin
et al., 2018; Ghosh et al., 2019). Furthermore, the VAE
objective can be prone to spurious local maxima leading
to posterior collapse (Chen et al., 2017; Lucas et al., 2019;
Dai et al., 2020), which is characterized by the latent poste-
rior (partially) reducing to an uninformative prior. Finally,
the variational objective requires approximations of expec-
tations by sampling, which causes increased gradient vari-
ance (Burda et al., 2016) and makes the training sensitive
to several hyperparameters (Bowman et al., 2015; Higgins
et al., 2017).

Our main technical contributions are two modifications to
the original VAE objective resulting in an improved sam-
ple and reconstruction quality. We propose to use a well-
known algorithm from the filtering and control literature,
the Unscented Transform (UT) (Uhlmann, 1995), to ob-
tain lower-variance, albeit potentially biased gradient es-
timates for the optimization of the variational objective. A
lower variance is achieved by only sampling at the sigma
points of the variational posterior and transforming these
points with a deterministic decoder. In this context, we
show that reconstructing the entire posterior distribution
via its sigma points (visualized in Fig. 1) is superior in re-
sulting image quality to reconstructing individual random
samples. Furthermore, we observe that the regularization
toward a standard normal prior using a KL divergence of-
ten harshly penalizes low variance along some components
even though the low variance is usually beneficial for re-
construction. Thus, we use a different regularization based
on the Wasserstein metric (Patrini et al., 2020). To account
for resulting sharper posteriors, we add a regularizer for
decoder smoothness around the mean encoded value, sim-
ilar to (Ghosh et al., 2019). We conduct rigorous experi-
ments on several standard image datasets to compare our
modifications against the VAE baseline, the closely-related
Regularized Autoencoder (RAE) (Ghosh et al., 2019), the
Importance-Weighted Autoencoder (IWAE) (Burda et al.,
2016), as well as the Wasserstein Autoencoder (WAE) (Tol-
stikhin et al., 2018).

2. Related Work
Many recent works on VAEs focus on understanding and
addressing still existing problems like undesired poste-
rior collapse (Dai et al., 2020), trade-off between sam-
ple and reconstruction quality (Tolstikhin et al., 2018;
Bauer & Mnih, 2019), or non-interpretable latent represen-
tations (Rolinek et al., 2019; Higgins et al., 2017). Other
recent works suggest to move from the probabilistic VAE

models to deterministic models, such as the RAE in (Ghosh
et al., 2019); our model can be considered as part of this
class. As previously mentioned, we employ two major
modifications to the VAE, namely the Unscented Trans-
form and the Wasserstein metric, as well as decoder re-
gularization; we outline the section accordingly.

We use the Unscented Transform (Uhlmann, 1995) from
the field of nonlinear filtering within signal processing. In
this context, the signal state estimate is often assumed to
be Gaussian in order to maintain tractability. However,
nonlinear prediction and measurement models always in-
validate this assumption at each time step so that a re-
approximation becomes necessary. A commonly used ap-
proach is the Extended Kalman Filter (EKF), where a li-
nearization of the models is employed so that the Gaussian
state remains Gaussian during filtering. In contrast, alter-
native approaches that represent the Gaussian state (assum-
ing application in the context of the VAE posterior) with
samples for propagation and update have emerged. These
approaches can be clustered according to the employed
sampling method – random as in (Gaussian) particle fil-
ters (Doucet & Johansen, 2011) or deterministic, e.g. in the
UKF (Julier et al., 2000). In the UKF, the n-dimensional
Gaussian is approximated with 2n + 1 deterministic sam-
ples, which can be propagated through the nonlinearities
and are sufficient for computing the statistics of a Gaussian
distribution, i.e. its mean and covariance. This procedure
is referred to as the Unscented Transform (UT).

The use of deterministic sampling2 aims to achieve a good
coverage of the distribution represented with the mean and
covariance. Although this approach produces biased es-
timates of the involved expectations compared to random
sampling due to non-i.i.d. samples, it often captures well
the nonlinearities applied to the distribution, for a finite,
small set of samples in the filtering context. This observa-
tion can transfer to neural networks due to their Lipschitz
continuity (Khromov & Singh, 2023). Our UT experiments
empirically underline this expectation. For a more com-
prehensive overview of the UT and the UKF, we refer the
reader to (Menegaz et al., 2015).

The UT uses several samples to get an estimate of the
moments of a nonlinearly transformed probability distri-
bution. Along those lines, our method also relates to
the IWAE (Burda et al., 2016) and some of its exten-
sions (Tucker et al., 2018). IWAE uses importance weight-
ing of K posterior samples to obtain a variational distribu-
tion closer to the true posterior (Cremer et al., 2017). The
method is known to have a diminishing gradient signal for
the inference network (Rainforth et al., 2018) if no addi-
tional improvements are used (Tucker et al., 2018). Using
the Wasserstein metric, the inference distribution is sharp,

2Sampling from a set of points at fixed locations in the domain.
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so practically there is not much gain in a more complex
distribution. However, multiple samples can help to obtain
lower variance gradient estimates, which also applies to the
IWAE by taking a multiple of K samples. Sampling only
at the sigma points reduces this variance even more and is
known to empirically work well in filtering and control.

The Wasserstein metric is used in (Tolstikhin et al., 2018;
Patrini et al., 2020) to regularize the aggregated posterior
qagg(z) = Ep(x) [q(z|x)] toward the standard normal prior.
The authors also show that such an objective is an upper
bound to the Wasserstein distance between the sampling
distribution of the generative model and the data distribu-
tion if the regularization is scaled by the Lipschitz con-
stant of the generator. In contrast, we do not regularize
the aggregated posterior, but use the Wasserstein distance
to weakly regularize the mean and variance of the encoder,
such that neither explodes and we can do ex-post density
estimation. From a theoretical point of view, we do not fix
the prior but learn the manifold; the aggregated posterior is
learned by fitting a mixture to the encoded data points.

Finally, our work incorporates several ideas from the re-
cently published RAE (Ghosh et al., 2019). We also use
a decoder regularization term based on the decoder Ja-
cobian in our loss, which promotes smoothness of the la-
tent space. In contrast to the RAE however, we generalize
the term from a deterministic to a stochastic encoder as not
every data point might be encoded with the same fidelity.
Furthermore, we employ ex-post density estimation as we
do not explicitly regularize the aggregated posterior toward
a prior. Conceptually, the UAE can be placed between the
VAE, characterized by significant sampling variance, and
the purely deterministic RAE.

3. Problem Description
Most generative models take a max-likelihood approach
to model a real-world distribution p(x) via the θ-
parameterized probabilistic generator model pθ(x)

θ ← argmaxθ Ex∼p(x)[log pθ(x)] . (1)

In this setting, latent variable generative approaches as-
sume an underlying structure in p(x) not directly observ-
able from the data and model this structure with a la-
tent variable z, which is well-motivated by de Finetti’s
theorem (Accardi, 2001). As a result, the distribution
p(x) can be represented as a product of tractable distri-
butions. However, directly incorporating z via an inte-
gral

∫
pθ(x|z)p(z)dz is intractable; thus, one introduces

an amortized variational distribution qφ(z|x) (Zhang et al.,
2018) and obtains

log pθ(x) = logEz∼qφ(z|x)

[
pθ(x, z)

qφ(z|x)

]
. (2)

This model assumption is the basis of variational inference.
Applying Jensen’s inequality yields the well-known ELBO,
denoted by L

log pθ(x) ≥ L = Ez∼qφ(z|x)[log pθ(x|z)]−
−DKL(qφ(z|x)‖p(z)) ,

(3)

which is maximized w.r.t. θ and φ. The first term accounts
for the quality of reconstructed samples and the DKL(...)
term pushes the approximate posterior to mimic the prior,
i.e. it enforces a p(z)-like structure to the latent space.

Training on L in Eq. (3) requires computing gradients w.r.t.
θ and φ. This is relatively straightforward for the genera-
tor parameters, however, requiring a high-variance policy
gradient for the posterior parameters. To avoid this issue in
practice, the reparameterization trick (Kingma et al., 2015)
is used to simplify the sampling of the approximate poste-
rior by means of an easy-to-sample distribution. Assuming
a Gaussian posterior N (µ,Σ), we can sample a multivari-
ate normal and obtain the latent feature vector via the de-
terministic transformation

z = µ+Lε, ε ∼ N (0, I), Σ = LLT . (4)

With the help of the reparameterization trick, the
VAE (Kingma & Welling, 2013) provides a framework for
optimizing the loss function from the condition in Eq. (3)
via an encoder–decoder generative latent variable model.
The encoder Eφ(x) = {µφ(x),Σφ(x)} parameterizes
a multivariate Gaussian qφ(z|x) = N (z|µφ(x),Σφ(x)),
where Σφ is usually a diagonal matrix, Σφ = diag(σφ).
The decoder Dθ(z) = µθ(z) is in practice ren-
dered deterministic: pθ(x|z) = N (x|µθ(z),0), re-
ducing the reconstruction term in Eq. (3) to a simple
mean-squared error under the expectation of the poste-
rior Ez∼qφ(z|x)‖x− µθ(z)‖22. The VAE uses the reparam-
eterization trick for efficient sampling from the posterior qφ
(in practice providing only a single sample to the decoder),
which enables a lower-variance gradient backpropagation
through the encoder.

The deterministic decoder and the reparameterization trick
allow for a slightly different interpretation of the recon-
struction/generation process: a (highly) nonlinear transfor-
mation of an input distribution, represented (usually) only
by a single stochastic sample. The sample is white noise3,
scaled and shifted by the posterior moments. This interpre-
tation serves as the basis for our work, where the unscented
transform of the input distribution serves as an alternative
to the single-stochastic-sample representation. In the next
section, we outline the unscented transform representation
of the input to the decoder via a set of deterministically
computed and sampled sigma points.

3The white-noise interpretation is used in (Ghosh et al., 2019)
to justify regularization as an alternative to the noise sampling.

3



Unscented Autoencoder

4. Unscented Transform of the Posterior
4.1. Background

The unscented transform (Uhlmann, 1995) is a method to
evaluate a nonlinear transformation of a distribution char-
acterized by its first two moments. Assume a known deter-
ministic function f applied to a distribution P (µ,Σ) with
mean and covariance µ ∈ Rn and Σ ∈ Rn×n. If f is
a linear transformation, one can describe the distribution
Q(µ̂, Σ̂) at the output via µ̂ = fµ and Σ̂ = fΣfT . Simi-
larly, for a nonlinear transformation f but a zero covariance
matrix Σ = 0, the mean of the transformed distribution is
µ̂ = f(µ). However, in the general case it is not possi-
ble to determine µ̂ and Σ̂ of the f -transformed distribution
givenµ and Σ since the result depends on higher-order mo-
ments. Thus, the unscented transform is useful; it provides
a mechanism to obtain this result via an approximation of
the input distribution while assuming full knowledge of f .

In computing the unscented transform, first a set of sigma
points characterizing the input P (µ,Σ) is chosen. The
most common approach (Menegaz et al., 2015) is to take
a set {χi}2ni=0, χi ∈ Rn of 2n + 1 symmetric points cen-
tered around the mean (incl. the mean), e.g. for 1 ≤ i ≤ n,

χ0 = µ ,

χi = µ+
√
(κ+ n)Σ

∣∣
i
,

χi+n = µ−
√
(κ+ n)Σ

∣∣
i
,

(5)

where κ > −n is a real constant and
∣∣
i

denotes the i-th col-
umn. The approximation in Eq. (5) is unbiased; the mean
and covariance of the sigma points are µ and Σ. Thus, one
can compute the transformation χ̂i = f(χi) and estimate
the mean and covariance of the f -transformed distribution

µ̂ = 1
2n+1

∑2n
i=0 χ̂i , (6)

Σ̂ = 1
2n+1

∑2n
i=0(χ̂i − µ̂)(χ̂i − µ̂)T . (7)

A visualization of the sigma points and their transforma-
tion is depicted in Fig. 2a. The procedure in Eq. (5-7)
effectively applies the fully-known function f to an ap-
proximating set of points whose mean and covariance equal
the original distribution’s. Therefore, in the context of the
commonly used VAE decoder nonlinearities, the mean and
covariance of the transformed sigma points can be closer to
the true transformed mean and covariance compared to the
ones computed by propagating the same number of random
samples from the original distribution.

4.2. Unscented Transform in the VAE

In an ELBO maximization setting from Eq. (3), the non-
linear transformation of the posterior in the decoder lends
itself straightforwardly to the unscented transform approx-
imation. Given any posterior defined by µ and Σ, we

can compute the sigma points (for example according to
Eq. (5)) and provide them to the decoder. In a VAE, the
sigma points provide a deterministic-sampling alternative
to the reparameterization-trick-computed random samples
of the latent space. Furthermore, computing the average
reconstruction of the sigma points at the output of the de-
coder provides an approximation of the mean of the entire
transformed posterior distribution in Eq. (6), while implic-
itly taking into account the variance in Eq. (7), as opposed
to the per-sample reconstructions.

The choice of the number of sigma points provided to the
decoder is similar to the sampling in Eq. (4), where one
can realize a single latent vector with a single sample from
N (0, I) or multiple latents, resulting in a trade-off between
reconstruction quality and computation demands (Ghosh
et al., 2019). However, taking a single or few random sam-
ples in the VAE setting can produce instances very far from
the mean, especially in high dimensional spaces. In con-
trast, sampling sigma points produces a more controlled
overall estimate of the posterior (as well as producing a
more accurate transformed posterior, see Eq. (6-7)) since
the samples lie on the border of a hyperellipsoid induced by
the covariance matrix Σ (example in Fig. 2b). Thus, while
computing the loss function gradients (which are a func-
tion of the samples), the sigma-sampling has the potential
to bring a more accurate and lower-variance estimate when
all the sigma points are considered. This is illustrated in
Fig 2c. Further empirical arguments validating the lower
gradient variance claim are provided in Appendix B.

The sigma-sampling of the UT can be applied to any
learned posterior described by its first two moments (as
common in generative models), not only the VAE standard
normal. With this description, the sigma points cannot be
the uniquely optimal representation of the distribution since
there is an infinite number of distributions that share the
first two moments. However, the UT has shown superior
empirical performance over other representations in exten-
sive experiments in (Julier et al., 2000) and (Zhang et al.,
2009), under various distributions and nonlinear functions,
and especially for the case of differentiable functions. This
has led to the UKF, built on this paradigm, being one of the
major algorithms in filtering and control. Guided by the
success of the method, we hypothesize that applying the
UT in the VAE setting has the potential to, for a finite set
of samples, provide a better approximation of the learned
two-moment Gaussian posterior than the ubiquitous inde-
pendent random sampling and reconstruction. With these
insights, we develop the UAE model presented in the next
section.

4



Unscented Autoencoder

(a) (b) (c)

Figure 2: (best viewed in color) (a) (transforming 2D sigma points) Left: a Gaussian with its Monte Carlo approximation
(blue), sigma points computed according to Eq. (5) (red), and five random samples (black points). Right: nonlinear RReLU
activation (Xu et al., 2015) applied to the distribution, sigma points, and the random samples. In this example, the five
sigma points provide a better approximation of the transformed distribution than the five random samples.
(b) (3D sigma points) Sigma points (red) on an ellipsoid spanned by a 3 × 3 covariance matrix, consisting of a central
sigma point and a pair of sigma points on each axis.
(c) (gradient variance) Left: loss function (blue) at a sample (gray) corresponding to the standard normal (yellow) mean.
The gradient of the loss function (red) at the mean is not representative of the true gradient. Middle: a high-variance
gradient computed from the gradients at the three random samples drawn from the standard normal, potentially far away
from the true gradient. Right: gradient of the loss function computed from the gradients at the three sigma points; although
the estimate is potentially biased due to the applied nonlinear transformation, it has lower variance than if computed from
the random points. The three provided examples can be interpreted as the RAE-(Ghosh et al., 2019), VAE-, and UAE-like
sampling procedures.

5. Unscented Autoencoder (UAE)
The UAE is a deterministic-sampling autoencoder model
maximizing the ELBO. It addresses the maximum like-
lihood optimization problem from Sec. 3, namely the L
maximization from Eq. (3), by computing the UT of the
posterior qφ(z|x) parameterized by the encoder Eφ(x) =
{µφ(x),Σφ(x)} (see Eq. (5-7)). The latent features z can
be obtained by deterministically sampling multiple sigma
points, resulting in a lower variance sampling than of the
reparameterization trick in Eq. (4). Good performance of
the model is further boosted by replacing the vanilla KL
divergence with the Wasserstein distribution metric, which
effectively performs a regularization of the posterior mo-
ments. The decoder regularization applies an additional
smoothing effect on the latent space – it is formally derived
in Sec. 5.2. The full training objective consists of optimiz-
ing φ, θ ← argminφ,θ LUAE,

LUAE = Ex∼pdataLREC + βLW + γLDθREG , (8)

where β (from the β-VAE (Higgins et al., 2017)) and γ are
weights.

The reconstruction term LREC is an L2 loss function in-
corporating the average of decoded sigma points

LREC = ‖x− 1
K

∑K
k=1Dθ(zk)‖22 ,

zk ∼ {χi(µφ,Σφ)}2ni=0 ,
(9)

where K n-dimensional vectors zk are sampled from the
set of sigma points, K ≤ 2n + 1. Various sampling

heuristics are investigated in Appendix C. Note that this
reconstruction loss function differs from the commonly
used 1

K

∑K
k=1 ‖x−Dθ(zk)‖22, where each decoded sample

is matched to the ground truth. This strategy, employed in
the standard multi-sample VAE, aims at getting the same
output image for different samples thus demanding a cer-
tain attenuation property from the deterministic decoder.
In contrast, Eq. (9) is motivated by the application of the
UT in filtering where after propagating the sigma points
through a nonlinear function a Gaussian is fit to the poste-
rior (see Eq. (6-7)). By applying the loss to the mean output
image, we essentially maintain a probability distribution at
the output.

We use the Wasserstein metric term LW as an alternative
to the KL divergence. For a multivariate posterior and a
multivariate normal prior, the KL divergence is defined as

LKL = ‖µφ‖22 + tr(Σφ)− n− 2tr(logLφ) , (10)

in the general case4 of a full-covariance matrix Σφ =
LφL

T
φ . Instead, due to favorable optimization proper-

ties and higher-quality reconstruction, we use the Wasser-
stein metric between distributions. This metric effectively
replaces the covariance part of the KL term, tr(Σφ) −
2tr(logLφ), with the squared Frobenius norm of the mis-
match between the lower triangular matrix and the identity

4Derived from DKL(N0‖N1) =
1
2
(tr(Σ−1

1 Σ0)− n+ (µ1 −
µ0)

TΣ−1
1 (µ1−µ0)+log(detΣ1

detΣ0
)) forN1(0, I) and Σ = LLT .
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LW = ‖Lφ − I‖2F = tr(Σφ)− 2tr(Lφ) . (11)

It differs from the original objective in Eq. (10) only in the
lack of a logarithm while sharing the same global mini-
mum. Further details are provided in Sec. 5.3. Such a
loss function allows the variance to approach zero (which
is instead strongly penalized by the logarithm in Eq. (10)),
yielding a sharper posterior.

The decoder regularization term LDθREG is a generaliza-
tion of the gradient penalty term in (Ghosh et al., 2019),
accounting for a fully probabilistic formulation. It can be
realized as a penalty on the input–output gradient of the
posterior mean, weighted by the largest eigenvalue of the
covariance matrix

LDθREG = λmax(Σφ)‖∇µφDθ(µφ)‖22 . (12)

We approximate λmax(Σφ) by the largest diagonal, which
is correct for a diagonal Σφ.

We provide an overview of the VAE, RAE, and UAE loss
functions in Tab. 1, together with the models that are con-
ceptually between the VAE and UAE. Additional models
employing different combinations of the loss function com-
ponents are provided in Appendix D, Tab. 7.

5.1. Sampling From the Prior-Less UAE

Since the UAE model doesn’t regularize the aggregated
posterior toward the prior using the KL divergence (Hoff-
man & Johnson, 2016) or the Wasserstein metric (Patrini
et al., 2020) (we use the per-posterior Wasserstein metric),
it is not equipped with an easy-to-use sampling procedure
as the VAE. To remedy this, we use the straightforward
ex-post density estimation procedure described in (Ghosh
et al., 2019) for the deterministic RAE model. We fit the la-
tent means µφ for each input sample x to a 10-component
Gaussian Mixture Model (GMM) (which has shown good
performance and generalization ability in the experiments
of (Ghosh et al., 2019) even for VAE models) and use the
mixture to sample from the latent space. For a fair compar-
ison, we utilize this procedure in all models.

5.2. ELBO Derivation

In the following, we analytically derive the UAE model in
Eq. (8). The derivation is largely inspired from (Ghosh
et al., 2019), with a few crucial differences allowing for
greater generalizability and less restrictive assumptions.
We start with the general ELBO minimization formulation
in Eq. (3), augmented with a constraint

argminφ,θ Ex∼pdataLREC + LKL (13)

s.t. ‖Dθ(z1)−Dθ(z2)‖p < ε,

z1, z2 ∼ qφ(z|x), ∀x ∼ pdata.
(14)

Here, the decoder outputs given any two latent vectors z1
and z2 (any two draws from the posterior qφ(z|x)) are
bounded via their p-norm difference, for a deterministic de-
coder Dθ. It was shown in (Ghosh et al., 2019) that the
constraint in Eq. (14) can be reformulated as

sup{‖∇zDθ(z)‖p} · sup{‖z1 − z2‖p} < ε . (15)

We provide the full derivation in Appendix E. In Eq. (15),
∇zDθ(z) is the derivative of the decoder output w.r.t. its
input (not the parameterization θ). The second term in the
product depends on the parameterization of the posterior
qφ(z|x). For a Gaussian, sup{‖z1 − z2‖p} becomes a
functional r of the posterior entropy, r(H(qφ(z|x))). At
this point, the RAE derivation from (Ghosh et al., 2019)
takes a strong simplifying assumption of constant entropy
for all samples x, effectively asserting constant variance in
the posterior. This allows to incorporate a simplified ver-
sion of Eq. (15) into Eq. (13) via the Lagrange multiplier
γ, obtaining the following RAE loss function5

LRAE = ‖x−Dθ(z)‖22 + β‖z‖22 + γ‖∇zDθ(z)‖22 . (16)

Here, the KL-term from Eq. (13) is approximated by ‖z‖22
due to the constant variance assumption.

In the UAE formulation, the samples z1 and z2 in Eq. (15)
simply correspond to the sigma points of qφ(z|x) param-
eterized by Eφ(x) = {µφ(x),Σφ(x)}. Therefore, the
term sup{‖z1− z2‖p} can be computed analytically as the
largest eigenvalue λmax of the covariance matrix Σφ. We
regularize the decoder in an RAE-manner around the pos-
terior mean with ‖∇µφDθ(µφ)‖p to enforce smoothness.
Finally, the UAE does not require the constant variance as-
sumption; we can incorporate a posterior KL-term or the
Wasserstein metric used in Eq. (8). Thus, we arrive at the
following analytical UAE loss function from Eq. (8)

LUAE = Ex∼pdataLREC + βLW+

+γλmax(Σφ)‖∇µφDθ(µφ)‖p ,
(17)

where a more general form of the Eq. (15) constraint is used
than in Eq. (16).

It follows from the derivation that the major difference be-
tween the RAE on the one hand and VAE and UAE on the
other is that the RAE assumes constant variance in map-
ping the training data distribution into the latent space, thus
not including any variance-compensating terms in the loss
function. In effect, the RAE considers all the dimensions
equally and cannot take into account that the encoder might
have different uncertainty per dimension and data point.

5In (Ghosh et al., 2019), the decoder gradient penalty from
Eq. (16) is the analytically derived regularization; alternatives
such as weight decay and spectral norm are offered as well and
can also be used in the UAE.
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Table 1: A comparison of the VAE, RAE-GP (employing a Gradient Penalty (GP) on the decoder, a less general version
of Eq. (12)), and UAE loss functions, including the intermediate models UT-VAE, VAE*, UT-VAE*, (weights omitted
for clarity). UT-VAE uses the unscented transform in the VAE, VAE* uses the Wasserstein metric from Eq. (11), and
UT-VAE* differs from the UAE only in the lack of a decoder regularization term. All models use a diagonal posterior
representation (except RAE, which does not model uncertainty). The terms z, µφ, and σφ are realized given the sample x.

Loss function Posterior sampling

LVAE 1
K

∑K
k=1 ‖x−Dθ(zk)‖

2
2+‖µφ‖

2
2−n+

∑
i σ

2
φ,i−2 log σφ,i zk=µφ+σφ�εk, εk∼N (0,I)

LUT-VAE ‖x− 1
K

∑K
k=1Dθ(zk)‖

2
2+‖µφ‖

2
2−n+

∑
i σ

2
φ,i−2 log σφ,i zk∼{χi(µφ,diag(σ2

φ))}
2n
i=0

LRAE-GP ‖x−Dθ(z)‖22+‖z‖
2
2+‖∇zDθ(z)‖22 None, z=µφ

LVAE* 1
K

∑K
k=1 ‖x−Dθ(zk)‖

2
2+‖µφ‖

2
2+‖diag(σ2

φ)−I‖2F zk=µφ+σφ�εk, εk∼N (0,I)

LUT-VAE* ‖x− 1
K

∑K
k=1Dθ(zk)‖

2
2+‖µφ‖

2
2+‖diag(σ2

φ)−I‖2F zk∼{χi(µφ,diag(σ2
φ))}

2n
i=0

LUAE ‖x− 1
K

∑K
k=1Dθ(zk)‖

2
2+‖µφ‖

2
2+‖diag(σ2

φ)−I‖2F+max(σ2
φ)‖∇µφ

Dθ(µφ)‖22 zk∼{χi(µφ,diag(σ2
φ))}

2n
i=0

Additionally, the difference between VAE and UAE is that
the VAE incorporates a sampling procedure with higher
variance than the deterministic sigma-point sampling used
in the unscented transform. Therefore, loss function-wise,
the UAE can be regarded as a middle-ground between the
VAE and RAE – deterministic and lower-variance in train-
ing than the VAE, but with greater generalization capabili-
ties than the RAE due to the probabilistic formulation.

5.3. Posterior Regularization via the Wasserstein
Metric

The usage of the Wasserstein metric is motivated by practi-
cal properties of VAE model optimization. The training can
be sensitive to the weighting of the KL divergence term,
which can lead to posterior collapse (Dai et al., 2020). The
main factor is the strong variance regularization of the KL
divergence with its log term, which can be written as

LKL = ‖µφ‖22 + tr(Σφ)− n− 2
∑
i logLφ,ii (18)

If the posterior gets more peaked, which might be nec-
essary for good reconstructions, the divergence quickly
grows toward infinity. We observed such problems in par-
ticular with full-covariance posteriors (see Appendix F).

Despite these problems the KL divergence is theoretically
sound. It was shown in (Hoffman & Johnson, 2016) that
DKL(qφ(z|x)‖p(z)) can be reformulated into two terms,
one that weakly pushes toward overlapping per-sample
posterior distributions and a KL divergence between the
aggregated posterior and the prior. The latter is required if
samples are drawn from the prior and the former prevents
the latent encoding from becoming a lookup table (Math-
ieu et al., 2019). Replacing the KL divergence with the
Wasserstein-2 metric preserves the tendency toward over-
lapping posteriors, but does not match the aggregated pos-
terior to a predefined prior. However, a simple connection
can be found to such models, see Appendix G. Neverthe-

less, this matching is not required in our setup due to the
ex-post density estimation. Furthermore, successful practi-
cal approaches like Stable Diffusion (Rombach et al., 2022)
only require correctly learning the manifold and therefore
do not need a certain aggregated posterior to sample from.

We use the Wasserstein-2 metric between two Gaussian
distributions. Mathematically, it can be written as

W2(N1,N2) = ‖µφ‖22 + tr(Σφ) + n− 2tr(Σ1/2
φ )

= ‖µφ‖22 + tr(Σφ) + n− 2tr(Lφ) ,
(19)

for N1 = N (µφ,Σφ) and N2 = N (0, I). The last three
terms can be reformulated into Eq. (11)

tr(Σφ) + n− 2tr(Lφ) = tr(LTφLφ − 2Lφ + I) =

= tr((Lφ − I)T (Lφ − I)) = ‖Lφ − I‖2F .
(20)

Disregarding the constant terms, it is clear that Eq. (18)
and Eq. (19) differ in the lack of the log term that infinitely
penalizes zero-variance latents. In contrast, the Wasserstein
metric even allows the posterior variance to approach zero
if it helps to significantly reduce the reconstruction loss.
This is evidenced in the aggregated posterior visualization
of our model provided in Appendix H.

Naturally, the reduced reconstruction losses brought on by
the per-sample Wasserstein metric in place of the KL di-
vergence come at the cost of losing the ELBO formula-
tion of the overall optimization problem. Furthermore, the
Wasserstein distance between the aggregated posterior and
the standard normal prior (Patrini et al., 2020) is not opti-
mized either. Nevertheless, our empirical analysis shows
that replacing the KL divergence with a Wasserstein metric
regularization of the per-sample posterior results in signifi-
cantly better reconstruction performance.
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6. Results
In the following, we present quantitative and qualitative re-
sults of the UAE and its precursors compared to the VAE
and RAE baselines on Fashion-MNIST (Xiao et al., 2017),
CIFAR10 (Krizhevsky et al., 2009), and CelebA (Liu et al.,
2015). We aim to delineate the effects of the UT (along
with the reconstruction loss in Eq. (9), Wasserstein metric,
and the decoder regularization. Furthermore, we investi-
gate multi-sampling and various sigma-point heuristics in
Appendix C and ablate the entire loss function from Eq. (8)
in Appendix D. In addition to evaluating the reconstruction
and sampling quality (using a mixture for all models, see
Sec. 5.1), we investigate if sampling only at the sigmas
in training preserves the latent space structure (e.g. does
not create ’holes’) by evaluating interpolated samples. The
metric is the widely-used FID (Heusel et al., 2017), which
quantifies the distance between two distributions of images.
Detailed information about the network architecture, train-
ing, and the choice of FID datasets is given in Appendix A.

The main results are provided in Tab. 2. The table is di-
vided into three parts: the first part shows the effects of ap-
plying the Unscented Transform to the vanilla VAE model;
the second part shows the baseline results of the RAE,
while the third part shows the results of Wasserstein met-
ric models. In the UT-VAE row of Tab. 2, we tweak the
VAE sampling to select instances at the sigma points while
averaging the resulting images in the reconstruction loss,
as consistent with the definition in Eq. (5-6). This sim-
ple change brings a remarkable near 40% improvement on
Fashion-MNIST on average, near 15% on CIFAR10, and
near 30% on CelebA. It provides strong evidence that a
higher-quality, lower-variance representation of the poste-
rior distribution results in higher-quality decoded images.

The deterministic baseline RAE model in Tab. 2 sets the
context with a significantly higher performance than the
vanilla VAE. The Wasserstein metric of the VAE*, which
preserves the latent space regularization in spirit of the
RAE but extends it to a probabilistic, non-constant vari-
ance setting, can be considered close to the non-regularized
RAE: outperforms it on CIFAR10 while being behind on
Fashion-MNIST and CelebA. More importantly, the VAE*
model also achieves a large improvement over the classical
VAE in all metrics and on all datasets, achieved effectively
only by replacing the logarithm term with a linear term.
This indicates that the rigidity of the KL divergence w.r.t.
posterior variance potentially harms the quality of decoded
samples, particularly on the richer CIFAR10 and CelebA.

Observing the UT-VAE* row in Tab. 2, it can be seen that
the unscented transform (UT) sampling in the VAE* con-
text gives a further, albeit lesser boost in most metrics than
with the KL divergence. Due to the Wasserstein metric’s
ability to shrink the posterior variance while approaching

convergence, the effect of any sampling is reduced. Nev-
ertheless, it provides a considerable, approximately 10%
boost on CelebA and Fashion-MNIST as well as a larger
relative improvement with multiple samples than in VAE*
(see Tab. 5, 6 in Appendix C). Finally, the generalized de-
coder regularization from Eq. (12) of the UAE applies a
strong smoothing effect and further boosts the performance
on CelebA and especially CIFAR10. Surprisingly, it yields
a regression on Fashion-MNIST; similar effect of the gradi-
ent penalty harming the RAE performance compared to no-
regularization is observable in (Ghosh et al., 2019) MNIST
experiments. Overall, compared to the RAE, the UAE
achieves significant improvements on CIFAR10 and a mi-
nor improvement on CelebA, while interestingly, the best
model on Fashion-MNIST can be considered the UT-VAE.

In Tab. 3, we take a deeper look at the performance of the
UT reconstruction loss term from Eq. (9). We empirically
compare two strategies for designing the loss function: (i)
use the mean reconstruction loss of images for each se-
lected sample from the posterior (consistent with the stan-
dard VAE reconstruction loss) and (ii) apply the reconstruc-
tion loss to the mean image of samples from the posterior.
Quantitative results in Tab. 3 consistently show the advan-
tages of strategy (ii) for both the VAE and UT-VAE models
using random samples and sigma points, respectively.

CelebA qualitative results are shown in Fig. 3 and reflect
the FID scores: the UAE images appear similar to the RAE
but significantly more realistic than the VAE. Fashion-
MNIST and CIFAR10 images are provided in Appendix I.

7. Conclusion
In this paper, we introduced a novel VAE architecture em-
ploying the Unscented Transform, a lower-variance alter-
native to the reparameterization trick. We have challenged
one of the core components of the VAE by showing that a
sigma-point transform of the posterior significantly outper-
forms propagating random samples through the decoder.
This was empirically shown for a small number of sigma
points (2, 4, and 8) while taking more becomes imprac-
tical due to computationally-intensive training. Addition-
ally, we proposed to use the Wasserstein metric, which does
not optimize the ELBO. Although it can be considered as
the main theoretical limitation of our model, it is a sound
practical alternative to the KL divergence. By breaking
its rigidity w.r.t. posterior variance, we unlocked perfor-
mance improvements brought on by sharper posteriors that
preserve a smooth latent space. Our work contributes an
important step toward establishing competitive determinis-
tic and deterministic-sampling generative models. Future
work will thus focus on expanding the classes of supported
generative models and on evaluation of further determinis-
tic and quasi-deterministic sampling methods.
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Table 2: Comparison of the architectures from Tab. 1. In all sampling instances, we select 8 random samples or sigma
points. In the unscented transform models (UT-VAE, UT-VAE*, UAE), we select random sigma points on all datasets apart
from CIFAR10, where pairs of sigma points along the largest eigenvalue axes are selected (see Appendix C). All RAE
variants from (Ghosh et al., 2019) are provided: RAE-no-reg. without decoder regularization, RAE-GP with the Gradient
Penalty (GP) from Eq. (16), RAE-L2 with decoder weight decay, and RAE-SN with spectral normalization.

Fashion-MNIST CIFAR10 CelebA
Rec. Sample Interp. Rec. Sample Interp. Rec. Sample Interp.

VAE8x 44.29 48.73 61.99 110.0 120.6 118.3 65.86 68.53 68.75
UT-VAE8x 27.79 30.39 39.92 91.04 111.7 104.3 50.11 54.15 54.32

RAE-no-reg. 21.56 34.79 50.27 86.79 102.1 96.80 40.79 47.88 49.97
RAE-GP 22.91 33.80 50.74 85.70 100.7 96.06 39.89 46.67 46.18
RAE-L2 20.28 32.06 48.52 84.27 99.26 94.23 38.78 46.44 50.33
RAE-SN 21.40 33.50 49.60 85.75 101.1 96.48 41.23 48.39 50.23

VAE*8x 27.36 36.63 52.61 82.22 99.11 92.84 45.02 50.81 53.64
UT-VAE*8x 23.64 31.51 48.06 81.12 100.6 93.80 40.18 47.39 49.62
UAE8x 25.07 35.19 54.24 71.97 89.91 83.50 38.48 45.60 45.88

Table 3: Comparison of a VAE model using the reconstruction loss of the mean image of random samples from the
posterior: ‖x− 1

K

∑K
k=1Dθ(zk)‖22, zk = µφ + σφ � εk, εk ∼ N (0, I), denoted by VAE†2x, and a model with the mean

reconstruction loss of sigma points from the posterior: 1
K

∑K
k=1 ‖x −Dθ(zk)‖22, zk ∼ {χi(µφ, diag(σ2

φ))}2ni=0, denoted
by UT-VAE‡2x. The UT-VAE2x uses the full unscented transform with the reconstruction loss of the mean image of sigma
points from the posterior: ‖x − 1

K

∑K
k=1Dθ(zk)‖22, zk ∼ {χi(µφ, diag(σ2

φ))}2ni=0, as consistent with the Unscented
Transform in Eq. (5-6). In the sigma-point variants of UT-VAE‡2x and UT-VAE2x, random sigma points are selected for
Fashion-MNIST and CelebA, while largest-eigenvalue pairs are used in CIFAR10.

Fashion-MNIST CIFAR10 CelebA
Rec. Sample Interp. Rec. Sample Interp. Rec. Sample Interp.

VAE2x 43.66 49.01 61.03 112.7 123.2 120.6 67.29 69.92 70.00
VAE†2x 42.22 47.33 59.47 110.0 121.6 118.6 61.71 65.77 65.29
UT-VAE‡2x 46.79 52.87 74.11 115.2 128.2 124.7 54.61 61.03 59.49
UT-VAE2x 36.25 40.30 53.10 95.70 115.4 107.3 51.61 57.42 56.56

Reconstruction Sampling Interpolation

GT

VAE

RAE

UAE

Figure 3: Qualitative results on the CelebA dataset of the VAE8x, RAE-L2, and UAE8x models.
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Appendix

A. Network Architecture and Training

Table 4: Network architectures of the implemented VAE, RAE, and UAE models. Batch dimensions omitted for clarity.

VAE, UAE: xC×W×H → ENCODER→{FC1024×n : µφ, FC1024×n : logσ2
φ} → z→ DECODER→ x̂

RAE: xC×W×H → ENCODER→{FC1024×n : zφ}→ DECODER→ x̂

ENCODER: CONV32×64 → CONV64×128 → CONV128×256 → CONV256×512 → CONV512×1024 → FLATTEN

DECODER: FCn×1024·8·8 → TCONV1024×512 → TCONV512×256[→ TCONV256×128]
CelebA → TCONV256 or128×C

MNIST: C = 1,W = H = 32, n = 64
CIFAR10: C = 3,W = H = 32, n = 128
CELEBA: C = 3,W = H = 64, n = 64

Network architectures are given in Tab. 4 and largely follow the architecture in (Ghosh et al., 2019). For consistency, all
models share the same encoder/decoder structure. All encoder 2D convolution blocks contain 3 × 3 kernels, stride 2, and
padding 1, followed by a 2D batch normalization and a Leaky-ReLU activation. The decoder transposed convolutions share
the same parameters as the encoder convolutions apart from using a 4×4 kernel. The last transposed convolution (mapping
to channel dimension) however has a 3× 3 kernel and is followed by a tanh activation (without batch normalization).

The dataset preprocessing procedure is the following. The Fashion-MNIST images are scaled from 28 × 28 to 32 × 32.
For the training dataset, we use 50k out of the 60k provided examples, leaving the remaining 10k for the validation
dataset. For the test dataset, we use the provided examples. In CIFAR10, we perform a random horizontal flip on the
training data followed by a normalization for all dataset subsets. We use the same training/validation/test split method as
in Fashion-MNIST. In CelebA, we perform a 148× 148 center crop and resize the images to 64× 64. We use the provided
training/validation/testing subsets.

All models are implemented in PyTorch (Paszke et al., 2019) and use the library provided in (Seitzer, 2020) for FID
computation. The models are trained for 100 epochs, starting with a 0.005 learning rate that is then halved after every five
epochs without improvement. The weights used in the loss functions are the following: KL-divergence (or the Wasserstein
metric) terms are weighted with β = 2.5e−4 in the case of VAE and UAE and β = 1e−4 for the RAE. The decoder
regularization terms are weighted with γ = 1e−6 for both RAE and UAE. We performed minimal hyperparameter search
over the weights.

In computing the FID scores, we follow the same procedure as in (Ghosh et al., 2019). In the three cases of reconstruction,
sampling, and interpolation, we evaluate the FID to the test set image reconstructions as the ground-truth. In the recon-
struction metric, we use the validation set image reconstructions. In sampling, we fit the training dataset latent features
to a GMM (see Sec. 5.1) and sample and reconstruct the same number of elements as in the test set. In interpolation, we
apply mid-point spherical interpolation between a random pair of validation set embeddings. In all cases, we generate a
single image per input; this image corresponds to the posterior mean of the latent distribution. This mean latent feature
vector is also used in sampling and interpolation while fitting a mixture ex-post or interpolating the latent space vectors.
Thus, the resulting number of generated images for FID computation is the same regardless of the number of sigma points
or samples used in training. In all experiments, the average FID score of three runs is reported, while observing a similar
variation between scores of individual runs among the models employing the UT compared to the vanilla VAE. In contrast,
the scores of RAE and VAE* modes were significantly more consistent.

The network architectures largely follow the structure adopted by (Ghosh et al., 2019), with the difference of the added
first two encoder layers. Nevertheless, in Tab. 2, we did not manage to reproduce the FID values reported in (Ghosh et al.,
2019) on CelebA and CIFAR10, even observing that removing the first two encoder layers reduces the overall performance.
We suspect that it is due to the differing Tensorflow and PyTorch model implementations as well as the FID computation
libraries. However, in most cases, our implementation of the RAE attains a significantly larger performance gain over the
VAE than reported in (Ghosh et al., 2019).
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Figure 4: Comparison of the variance and bias trade-off for the VAE† (employing the decoder output mean instead of the
sample mean, see Tab. 3) and UT-VAE across approx. 60k training steps (100 epochs) on the CIFAR10 dataset. The data
is based on a single training of an UT-VAE where every 50th epoch the gradient variance and bias was estimated using
different sampling schemes. In case of VAE†, two random points are sampled (in accordance with the reparameterization
trick), while in case of UT-VAE, a single sigma point pair is sampled.

B. Gradient Variance and Bias
In this section, we investigate the gradient variance and bias of the proposed base UT-VAE model. Compared to random
sampling of the reparameterization trick, using a different integration scheme like sampling sigma points can be biased. It
can nevertheless achieve lower variance depending on the nonlinear function of the decoder. Thus, for our decoder setup,
we compare the gradient variance and bias of the UT-VAE (with random sigma pair sampling) and the VAE† (with random
sampling) employing the decoder output mean instead of the sample mean6 (see Tab. 3 for a performance comparison) in
order to isolate the effect of sampling sigma points.

We train both models and estimate the gradient variance and bias every 50th iteration. For UT-VAE we independently
sample 50 sigma point pairs, pass them through the decoder, and calculate the gradients’ mean mj and standard deviation
σj . For VAE† we draw 2 random samples 200 times and perform the same steps to obtain m′j and σ′j . We calculate
the median Coefficient of Variation (CV) of the gradients for both models, assuming that m′j computed with 200 random
samples is a good enough estimate of the true gradient. Furthermore, we compute the median relative bias brel for the
decoder gradients and output of the UT-VAE. The CV (for UT-VAE) and brel (for decoder gradients bias) are computed as
follows

CV = median
{
σj
|mj |

}
brel = median

{
|mj −m′j |
|m′j |

}
. (21)

The gradient variance results are depicted in Fig. 4a. The variance of the sigma pair sampling of the UT-VAE is consistently
lower than the gradient variance of the random sampling within VAE†. Interestingly, for the VAE† the standard deviation
of the gradients is on average larger than the magnitude of the gradient during the whole training, whereas for the UT-
VAE this is only the case at the end of the training. Fig. 4b shows the relative decoder output bias as well as the relative
gradient bias of the UT-VAE at the same iterations. Whereas the relative bias at the decoder output is below 3% throughout
the whole training, the bias of the gradients is around 30% of their magnitude. It is unclear whether such a substantial
gradient bias is behind the good performance of the UT-VAE or if there is a performance trade-off between variance and
bias. Nevertheless, our experiments show that, under a common decoder architecture, integration schemes like the UT
can exhibit lower variance and higher bias while outperforming the standard VAE sampling scheme. Thus, investigating
alternative integration schemes for VAEs can be a promising research direction.

6Reconstruction loss function of the VAE†: ‖x− 1
K

∑K
k=1Dθ(zk)‖

2
2, zk = µφ + σφ � εk, εk ∼ N (0, I)
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Table 5: Analysis of the number of sampled sigma points and different heuristics, where the mean image of multiple sigma
points is matched to the ground truth in the reconstruction loss. The three investigated heuristics are sampling random
sigma points, random pairs of sigma points along an axis, and pairs of sigma points along axes with largest eigenvalues.

Fashion-MNIST CIFAR10 CelebA

Rec. Samp. Interp. Rec. Samp. Interp. Rec. Samp. Interp.

UT-VAE1x,rand. 47.27 52.10 67.16 119.9 129.8 127.9 55.93 62.13 60.54
UT-VAE2x,rand. 36.25 40.30 53.10 111.5 124.7 121.0 51.61 57.42 56.56
UT-VAE4x,rand. 32.13 36.41 47.30 105.9 119.8 115.9 50.85 55.82 55.99
UT-VAE8x,rand. 27.79 30.39 39.92 95.40 110.8 106.4 50.11 54.15 44.32
UT-VAE*2x,rand. 28.26 36.36 50.69 85.88 103.7 96.90 44.32 50.33 52.40
UT-VAE*4x,rand. 24.38 32.75 49.40 81.99 100.6 93.52 42.52 49.21 51.35
UT-VAE*8x,rand. 23.64 31.51 48.06 81.10 99.87 92.48 40.18 47.39 49.62

UT-VAE2x,rand. pairs 102.1 115.1 112.8 102.3 119.6 114.0 150.0 150.4 151.3
UT-VAE4x,rand. pairs 96.85 110.1 107.3 101.0 119.5 113.4 224.3 225.0 225.4
UT-VAE8x,rand. pairs 90.14 103.6 101.5 100.3 119.2 113.2 173.2 175.4 175.8
UT-VAE*2x,rand. pairs 32.66 38.68 58.72 85.64 102.3 97.00 45.96 53.16 51.49
UT-VAE*4x,rand. pairs 32.85 38.58 57.70 84.62 102.2 96.14 252.9 254.8 253.8
UT-VAE*8x,rand. pairs 30.65 36.88 56.42 80.51 98.40 91.96 141.9 144.3 147.4

UT-VAE2x,larg. λ pairs 106.6 118.6 115.7 95.70 115.4 107.3 54.02 60.29 60.26
UT-VAE4x,larg. λ pairs 108.3 120.1 117.2 92.56 111.6 104.2 46.37 53.53 52.62
UT-VAE8x,larg. λ pairs 115.5 128.8 126.3 91.04 111.7 104.3 48.59 55.22 55.29
UT-VAE*2x,larg. λ pairs 33.49 42.63 61.57 82.17 100.7 93.80 55.57 61.42 61.53
UT-VAE*4x,larg. λ pairs 34.94 43.18 67.65 81.61 101.3 94.11 48.41 54.70 54.80
UT-VAE*8x,larg. λ pairs 31.08 41.06 64.58 81.12 100.6 93.80 45.08 51.45 52.05

C. Additional Results: Multi-Sigma Heuristics and Multi-Sample Models
The UT-VAE loss function defined in Tab. 1 samples K sigma points in the reconstruction term. Increasing the number
of sigma points (up to 2n + 1) improves the estimate of the transformed posterior distribution and thus the resulting
reconstruction quality, at the expense of an approximately linear increase in training time. We observed this in most
cases when training on 2, 4, and 8 sigma points, see Tab. 5. However, a much larger number of sigma points might not
result in expected additional performance improvement due to significantly larger batch size, which could be mitigated by
constructing approaches to select and train on a fixed, smaller batch size.

For K selected sigma points, various strategies can be used instead of sampling a discrete uniform distribution. For
example, only pairs of sigma points along an axis can be chosen, conveying the width of the posterior distribution in the
given dimension. This strategy can be adapted to select pairs along axes with largest eigenvalues. Tab. 5 also explores
different sampling heuristics in the case of UT-VAE and UT-VAE*. We have observed that models trained with KL
divergence exhibit larger variation in results w.r.t. the sampling heuristic, which is reasonable since the Wasserstein metric’s
posterior variance suppression diminishes the effect of sampling. The choice of the sigma-point selection heuristic turns
out to have a large effect on the overall performance given a dataset. We have observed that a random selection of sigma
points performs consistently well across all datasets while selecting random pairs generates reasonable results only in
the case of CIFAR10. Interestingly, random-pairs performs very poorly on Fashion-MNIST and CelebA while largest
eigenvalue pairs shows very good performance in the UT-VAE case on CIFAR10. In the main experiments of Tab. 2, we
used a random selection for the Fashion-MNIST and CelebA models and largest-eigenvalue pairs for CIFAR10, due to its
superior performance in the UT-VAE case.

Tab. 6 analyzes models using multiple samples in training. We compare the VAE* and the UAE with the classical VAE and
the IWAE (Burda et al., 2016) as a baseline where multiple importance-weighted posterior samples help achieve a tighter
lower bound. Observing the results, it is clear that models employing the Wasserstein metric can benefit from increasing
the number of samples in training despite their ability to reduce the latent space variance, while significantly outperforming
the baselines.
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Table 6: Comparison of models employing multiple samples in training. The UAE uses random sigma points on Fashion-
MNIST and CelebA and largest-eigenvalue pairs on CIFAR10.

Fashion-MNIST CIFAR10 CelebA

Rec. Sample Interp. Rec. Sample Interp. Rec. Sample Interp.

VAE1x 45.64 49.99 61.33 116.4 126.8 124.2 68.32 71.05 71.16
VAE2x 43.66 49.01 61.03 112.7 123.2 120.6 67.29 69.92 70.00
VAE4x 44.94 49.51 62.29 111.7 121.3 119.5 66.32 68.87 69.06
VAE8x 44.29 48.73 61.99 110.0 120.6 118.3 65.86 68.53 68.75

IWAE1x 49.27 53.71 64.50 111.7 121.6 119.6 68.28 71.16 71.17
IWAE2x 48.21 53.11 65.69 112.1 122.4 119.8 66.85 69.81 69.74
IWAE4x 47.40 51.77 64.10 110.6 120.6 118.2 66.01 68.82 68.90
IWAE8x 46.16 50.91 63.68 108.9 118.9 116.9 64.83 67.96 67.86

VAE*1x 31.62 38.44 52.33 83.49 101.5 94.56 44.69 50.55 53.18
VAE*2x 30.07 37.92 52.15 84.57 102.2 95.61 45.18 50.97 53.73
VAE*4x 28.98 41.35 52.17 84.64 102.3 95.96 45.03 50.59 53.32
VAE*8x 27.36 36.63 52.61 82.22 99.11 92.84 45.02 50.81 53.64

UAE2x 29.29 37.59 53.69 77.71 96.37 89.71 40.07 47.28 50.51
UAE4x 27.11 38.03 53.11 75.63 93.02 86.41 39.48 46.35 50.94
UAE8x 25.07 35.19 54.24 71.97 89.91 83.50 38.48 45.60 45.88

D. Additional Results: Ablation Study of the Loss Components
This section provides an additional ablation study of the loss components used in the UAE model. The loss functions
considered are provided in the upper half of Tab. 7 and the obtained results are in Tab. 8. There are three dimensions along
which the results can be interpreted: Wasserstein metric, unscented transform, and the generalized decoder regularization
(gradient penalty).

Tab. 8 is divided into two parts: the top part models use the analytical form of the KL divergence in Eq. (10) while the
bottom part use the Frobenius norm mismatch derived from the Wasserstein metric in Eq. (11). It is clearly visible that
the latter models strongly outperform the former, in all datasets and configurations. The loss function allows for a sharper
posterior and thus larger expressiveness of the model (see Appendix H).

Similarly, the unscented transform models UT-VAE and UT-VAE* clearly outperform the random sampling and per-sample
reconstruction counterparts of VAE and VAE*. In the latter case, the differences are smaller due to the sharper posterior of
the VAE*. An ablation study of the unscented transform components can be found in Tab. 3.

Considering the gradient penalty models, interesting interplays can be noticed. Applying the decoder regularization on
the vanilla VAE and the VAE* (this model can be considered closest to the RAE-GP) brings only minor improvements in
the case of CIFAR10 and CelebA for each of the models respectively. The strong smoothing of the latent space however
seems detrimental when combined with the unscented transform and the KL divergence training. One can conclude that
only the latent space regularization models (such as the Wasserstein metric VAE* or the deterministic RAE) can benefit
from decoder regularization. Furthermore, the effect appears to be dataset-dependent since the Fashion-MNIST VAE* and
UT-VAE* slightly regress when augmented with decoder regularization.
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Table 7: The loss functions used for the models in Tab. 8 and Tab. 9. The upper and lower half of the table contain diagonal
and full-covariance posterior models, respectively.

Loss function Posterior sampling

LVAE 1
K

∑K
k=1 ‖x−Dθ(zk)‖

2
2+‖µφ‖

2
2−n+

∑
i σ

2
φ,i−2 log σφ,i zk=µφ+σφ�εk, εk∼N (0,I)

LVAE-GP 1
K

∑K
k=1 ‖x−Dθ(zk)‖

2
2+‖µφ‖

2
2+

∑
i σ

2
φ,i−2 log σφ,i+max(σφ)‖∇µφ

Dθ(µφ)‖22 zk=µφ+σφ�εk, εk∼N (0,I)

LUT-VAE ‖x− 1
K

∑K
k=1Dθ(zk)‖

2
2+‖µφ‖

2
2+

∑
i σ

2
φ,i−2 log σφ,i zk∼{χi(µφ,diag(σ2

φ))}
2n
i=0

LUT-VAE-GP ‖x− 1
K

∑K
k=1Dθ(zk)‖

2
2+‖µφ‖

2
2+

∑
i σ

2
φ,i−2 log σφ,i+max(σφ)‖∇µφ

Dθ(µφ)‖22 zk∼{χi(µφ,diag(σ2
φ))}

2n
i=0

LVAE* 1
K

∑K
k=1 ‖x−Dθ(zk)‖

2
2+‖µφ‖

2
2+‖diag(σ2

φ)−I‖2F zk=µφ+σφ�εk, εk∼N (0,I)

LVAE*-GP 1
K

∑K
k=1 ‖x−Dθ(zk)‖

2
2+‖µφ‖

2
2+‖diag(σ2

φ)−I‖2F+max(σφ)‖∇µφ
Dθ(µφ)‖22 zk=µφ+σφ�εk, εk∼N (0,I)

LUT-VAE* ‖x− 1
K

∑K
k=1Dθ(zk)‖

2
2+‖µφ‖

2
2+‖diag(σ2

φ)−I‖2F zk∼{χi(µφ,diag(σ2
φ))}

2n
i=0

LUT-VAE*-GP ‖x− 1
K

∑K
k=1Dθ(zk)‖

2
2+‖µφ‖

2
2+‖diag(σ2

φ)−I‖2F+max(σφ)‖∇µφ
Dθ(µφ)‖22 zk∼{χi(µφ,diag(σ2

φ))}
2n
i=0

LVAE-fullΣφ
1
K

∑K
k=1 ‖x−Dθ(zk)‖

2
2+‖µφ‖

2
2+tr(Σφ)−2tr(logLφ) zk=µφ+Lφεk, εk∼N (0,I)

LVAE-fullΣφ-GP 1
K

∑K
k=1 ‖x−Dθ(zk)‖

2
2+‖µφ‖

2
2+tr(Σφ)−2tr(logLφ)+λmax(Σφ)‖∇µφ

Dθ(µφ)‖22 zk=µφ+Lφεk, εk∼N (0,I)

LUT-VAE-fullΣφ
‖x− 1

K

∑K
k=1Dθ(zk)‖

2
2+‖µφ‖

2
2+tr(Σφ)−2tr(logLφ) zk∼{χi(µφ,Σφ)}2ni=0

LUT-VAE-fullΣφ-GP ‖x− 1
K

∑K
k=1Dθ(zk)‖

2
2+‖µφ‖

2
2+tr(Σφ)−2tr(logLφ)+λmax(Σφ)‖∇µφ

Dθ(µφ)‖22 zk∼{χi(µφ,Σφ)}2ni=0

LVAE*-fullΣφ
1
K

∑K
k=1 ‖x−Dθ(zk)‖

2
2+‖µφ‖

2
2+‖Lφ−I‖2F zk=µφ+Lφεk, εk∼N (0,I)

LVAE*-fullΣφ-GP 1
K

∑K
k=1 ‖x−Dθ(zk)‖

2
2+‖µφ‖

2
2+‖Lφ−I‖2F+λmax(Σφ)‖∇µφ

Dθ(µφ)‖22 zk=µφ+Lφεk, εk∼N (0,I)

LUT-VAE*-fullΣφ
‖x− 1

K

∑K
k=1Dθ(zk)‖

2
2+‖µφ‖

2
2+‖Lφ−I‖2F zk∼{χi(µφ,Σφ)}2ni=0

LUT-VAE*-fullΣφ-GP ‖x− 1
K

∑K
k=1Dθ(zk)‖

2
2+‖µφ‖

2
2+‖Lφ−I‖2F+λmax(Σφ)‖∇µφ

Dθ(µφ)‖22 zk∼{χi(µφ,Σφ)}2ni=0

Table 8: Full ablation study of the models between the VAE and UAE (in the UT-VAE*-GP row), using the Wasserstein
metric denoted by *, unscented transform (UT), and the decoder gradient penalty (GP) components. See the upper half
Tab. 7 for the loss function definitions.

Fashion-MNIST CIFAR10 CelebA

Rec. Sample Interp. Rec. Sample Interp. Rec. Sample Interp.

VAE2x 43.66 49.01 61.03 112.7 123.2 120.6 67.29 69.92 70.00
VAE-GP2x 44.17 48.63 59.58 108.9 120.3 117.5 66.94 70.16 69.77
UT-VAE2x 36.25 40.30 53.10 95.70 115.4 107.4 51.61 57.42 56.56
UT-VAE-GP2x 47.77 65.24 72.43 102.6 118.6 113.1 100.4 102.2 100.3

VAE*2x 30.07 37.92 52.15 84.57 102.2 95.61 45.18 50.97 53.73
VAE*-GP2x 29.40 38.53 53.88 85.19 103.7 96.66 41.69 48.77 51.29
UT-VAE*2x 28.26 36.36 50.69 82.17 100.7 93.80 44.32 50.33 52.40
UT-VAE* -GP2x 29.29 37.59 53.69 77.71 96.37 89.71 40.07 47.28 50.51
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E. ELBO Constraint Derivation
In this section, we complete the derivation of the constraint in Eq. (14) to the reformulated version in Eq. (15). The
constraint in Eq. (14) can be bounded by the maximum of the decoder output in a single dimension i, multiplied by the
number of dimensions

‖Dθ(z1)−Dθ(z2)‖p ≤ dim(x) · sup
i
{‖di(z1)− di(z2)‖p} < ε . (22)

Using the mean value theorem, the term supi{‖di(z1)− di(z2)‖p} can be reduced to

sup
i
{‖∇tdi((1− t)z1 + tz2)‖p · ‖z1 − z2‖p} < ε , (23)

Since z1 and z2 are arbitrary, the first part can be simplified and generalized over all dimensions while separating the
overall product using the Cauchy-Schwarz inequality

sup
i
{‖∇zdi(z)‖p · ‖z1 − z2‖p} < ε (24)

sup{‖∇zDθ(z)‖p} · sup{‖z1 − z2‖p} < ε , (25)

obtaining the form in Eq. (15).

F. Full-Covariance Posterior
In this section, we aim to investigate the performance of full-covariance posterior models. The non-diagonal posterior
representation is naturally supported by the unscented transform and common in filtering. However, it is seldom in VAEs
– one of the key ingredients of the standard VAE model is its diagonal Gaussian posterior approximation. The induced
orthogonality can implicitly have positive effects on the structure of the latent space and the decoder (Zietlow et al.,
2021; Rolinek et al., 2019), but such effects highly depend on implicit biases present in the dataset (Zietlow et al., 2021).
Furthermore, the diagonal posterior together with the KL regularization allows for pruning unnecessary latent dimensions,
also known as desired posterior collapse (Dai et al., 2020). A full-covariance posterior does not have such implicit biases
and pruning properties, but it can have a positive effect on the optimization of the variational objective, as it connects
otherwise disconnected global optima (Dai et al., 2018). Furthermore, it allows for modeling correlations in the posterior.
We are not aware of a work successfully employing a full-covariance posterior.

The full-covariance representation can be practically realized by predicting n-dimensional standard deviations σφ as well
as n(n−1)/2-dimensional correlation factors rφ (followed by a tanh projection into the valid [−1, 1] range), and building
the lower triangular covariance matrix7 Lφ. In this way, the full-covariance matrix Σφ = LφL

T
φ is ensured to be symmetric

and positive semi-definite.

The results of the full-covariance models are shown in the bottom half of Tab. 9. In all KL divergence instances, the
performance of the models regresses significantly compared to their counterparts in Tab. 8. This indicates that, despite its
theoretical potential to connect disconnected global optima of the optimization objective, a non-diagonal latent space is
nevertheless difficult to train with KL divergence, regardless of the sampling method. However, the Wasserstein metric
models receive a surprising performance boost. In some cases, they significantly outperform the models from Tab. 8 on
Fashion-MNIST and CelebA while achieving similar results on CIFAR10, which has less structure in its input data. It
is evident that the Wasserstein metric and potentially its lower posterior variance can enable a successful utilization of
correlations in the posterior.

7In the 3-dimensional case: Lφ = [σ1 0 0; r1σ2σ1 σ2 0; r2σ3σ1 r3σ3σ2 σ3].
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Table 9: Ablation study of the models in Tab. 8 in a full-covariance setting. See Tab. 7 for the loss function definitions.

Fashion-MNIST CIFAR10 CelebA

Rec. Sample Interp. Rec. Sample Interp. Rec. Sample Interp.

VAE-fullΣφ2x 79.01 83.15 91.01 123.8 132.6 130.2 99.72 100.9 99.96
VAE-fullΣφ-GP2x 180.0 181.5 184.4 158.3 165.8 164.0 244.2 244.6 241.8
UT-VAE-fullΣφ2x 57.93 58.87 64.86 129.6 141.2 138.2 132.1 132.4 136.0
UT-VAE-fullΣφ-GP2x 133.6 136.7 136.9 208.9 217.7 212.2 303.5 304.5 303.3

VAE*-fullΣφ2x 31.16 40.99 54.73 85.47 103.9 96.55 42.07 48.59 50.72
VAE*-fullΣφ-GP2x 19.86 32.71 48.84 84.19 102.9 95.63 39.69 46.76 49.70
UT-VAE*-fullΣφ2x 21.96 34.17 48.32 79.51 98.32 91.82 41.54 48.32 50.29
UT-VAE*-fullΣφ-GP2x 24.37 34.43 51.58 82.15 100.9 94.65 39.48 46.60 48.97

G. Connection to Wasserstein Autoencoders
Wasserstein-distance autoencoders (Patrini et al., 2020; Tolstikhin et al., 2018) use the Wasserstein distance
Wp(qagg(z), p(z)) to regularize the aggregated posterior qagg(z) toward the prior p(z) = N (0, I). Instead, we use the
Wasserstein distance as a simple regularization of the per-sample posterior. However, there is a simple connection of our
posterior regularization to the aggregated posterior regularization. Assuming standard normal posteriors, the aggregated
posterior can be represented as a mixture

qagg(z) =
1

N

∑
n

q(z|xn) =
1

N

∑
n

N (µn,Σn). (26)

In the one-dimensional case (generalizable to multiple dimensions) the mean and variance of the mixture are
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Thus, the aggregated posterior Wasserstein metric can be represented as
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in the case p = 2 and while discarding constants. Similarly, the average per-sample posterior metric is

1
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Table 10: Comparison of the Wasserstein autoencoder that utilizes the aggregated posterior Wasserstein metric, and the
VAE*, utilizing the per-sample posterior Wasserstein metric in the loss.

Fashion-MNIST CIFAR10 CelebA

Rec. Sample Interp. Rec. Sample Interp. Rec. Sample Interp.

WAE-MMD 47.58 62.44 73.94 88.31 100.35 94.78 67.54 75.92 73.21
VAE*1x 31.62 38.44 52.33 83.49 101.5 94.56 44.69 50.55 53.18

Comparing the aggregated posterior metric with the average per-sample posterior metric yields

1

N

∑
n

(
σ2
n + µ2

n

)
− 2

√√√√ 1

N

∑
n

(σ2
n + µ2

n)−

(
1

N

∑
n

µn

)2

≤ 1

N

∑
n

µ2
n +

1

N

∑
n

σ2
n − 2

1

N

∑
n

σn (30)

−2

√√√√ 1

N

∑
n

(σ2
n + µ2

n)−

(
1

N

∑
n

µn

)2

≤ −2 1

N

∑
n

σn (31)√√√√ 1

N

∑
n

(σ2
n + µ2

n)−

(
1

N

∑
n

µn

)2

≥ 1

N

∑
n

σn (32)

1

N

∑
n

(
σ2
n + µ2

n

)
−

(
1

N

∑
n

µn

)2

≥

(
1

N

∑
n

σn

)2

(33)

1

N

∑
n

(
σ2
n + µ2

n

)
≥

(
1

N

∑
n

µn

)2

+

(
1

N

∑
n

σn

)2

. (34)

Eq. (34) can be regarded as two Jensen’s inequalities f(E[x]) ≤ E[f(x)], where f(x) = x2, and E[x] = 1
N

∑
n xn. Thus,

the initial inequality holds. It shows that the per-sample posterior Wasserstein metric is an upper bound to the aggregated
posterior Wasserstein metric, commonly used in the WAE (Tolstikhin et al., 2018). Therefore, we can guarantee that the
Wasserstein distance of the aggregated posterior to the assumed standard normal prior will not be larger than than the
average distance of per-sample posteriors.

In addition to the theoretical argument, in Tab. 10 we offer an empirical comparison of the VAE* with the WAE-MMD
model from (Tolstikhin et al., 2018) with aggregated posterior weight λ = 10. We observed that the per-sample posterior
regularization significantly outperforms the WAE on Fashion-MNIST and CelebA, while being on par on CIFAR10.
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H. Wasserstein Metric Aggregated Posterior Visualization
In Fig. 5 we present detailed plots on the posterior distributions of VAE and VAE* for the first 16 dimensions. The VAE
clearly shows signs of posterior collapse (so-called polarized regime (Rolinek et al., 2019)); we have observed that more
than half of the 128 dimensions are nearly equal to the prior. This considerably hurts the generative power of the VAE
model. In contrast, the VAE* model has very low variance in all dimensions, which reflects a nearly deterministic encoder
at the end of the training.
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Figure 5: Comparison of the distribution of absolute means and variances of 1000 posterior samples for the VAE1x and the
VAE*1x models trained with 100 epochs on the CIFAR10 dataset. Top rows show the absolute means and the lower rows
the variances of the first 16 dimensions. For the VAE*1x all means differ from zero while the variances are close to zero,
whereas for the VAE1x, 10 of 16 dimensions are effectively deactivated.
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I. Qualitative Results on Fashion-MNIST and CIFAR10
Qualitative results on Fashion-MNIST and CIFAR10 are provided in Fig. 6 and Fig. 7. The same setup as in Fig. 3 is
employed. It can be seen that the CIFAR10 images appear considerably richer and sharper, consistent with the results in
Tab. 2 and Tab. 6.
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Figure 6: Qualitative results on the CIFAR10 dataset.
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Figure 7: Qualitative results on the Fashion-MNIST dataset.
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