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Abstract
The ability of deep neural networks to continu-
ally learn and adapt to a sequence of tasks has
remained challenging due to catastrophic forget-
ting of previously learned tasks. Humans, on the
other hand, have a remarkable ability to acquire,
assimilate, and transfer knowledge across tasks
throughout their lifetime without catastrophic for-
getting. The versatility of the brain can be at-
tributed to the rehearsal of abstract experiences
through a complementary learning system. How-
ever, representation rehearsal in vision transform-
ers lacks diversity, resulting in overfitting and con-
sequently, performance drops significantly com-
pared to raw image rehearsal. Therefore, we pro-
pose BiRT, a novel representation rehearsal-based
continual learning approach using vision trans-
formers. Specifically, we introduce constructive
noises at various stages of the vision transformer
and enforce consistency in predictions with re-
spect to an exponential moving average of the
working model. Our method provides consistent
performance gain over raw image and vanilla rep-
resentation rehearsal on several challenging CL
benchmarks, while being memory efficient and
robust to natural and adversarial corruptions. 1

1. Introduction
Computational systems operating in the real world are nor-
mally exposed to a sequence of multiple tasks with non-
stationary data streams. Similar to biological organisms, it
is desirable for these artificial systems to be able to learn
on a continual basis to successfully act and adapt to new
scenarios in the real world. However, deep neural networks
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Figure 1. Overall performance of our proposed method, BiRT, vs.
DyTox trained continually on CIFAR-100 with 500 buffer size on
different metrics; Top-1 accuracy is reported for all metrics. There-
fore, a CL method with full coverage of the octagon has all the
ideal features: highest accuracy (on varying task sequences), natu-
ral/adversarial robustness, forward transfer, and stability-plasticity
trade-off.

(DNNs) are inherently designed for training on stationary,
independent, and identically distributed (i.i.d.) data. The
sequential nature of continual learning (CL) violates this
strong assumption, leading to catastrophic forgetting of
older tasks. Catastrophic forgetting often leads to a rapid de-
cline in the performance of old tasks and, in the worst case,
the previously acquired information is completely overwrit-
ten by the new one (Parisi et al., 2019).

Rehearsal-based approaches, which store and replay previ-
ous task samples, have been fairly successful in mitigating
catastrophic forgetting in CL. Recent evidence suggests that
replay might even be unavoidable in certain CL scenarios
(Farquhar and Gal, 2018). However, replaying raw pixels
from past experiences is not consistent with neurophysio-
logical mechanisms in the brain (Kudithipudi et al., 2022;
Hayes et al., 2019). Furthermore, the replay of raw pixels
is memory inefficient and raises data privacy and security
concerns (Mai et al., 2022). Juxtaposing biological and
artificial experience rehearsal, representation rehearsal is a
lucrative alternative to address the problems associated with
raw image rehearsal in CL. Representation rehearsal, either
generative (van de Ven et al., 2020; Lao et al., 2020) or by
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Figure 2.BiRT employs a bio-inspired non-veridical experience replay in a dual memory system based on vision transformers. The
semantic memory,f s , gradually assimilates learned knowledge from working model,f w , by taking an exponential moving average over
its weights. The semantic memory interacts with the episodic memory which stores the learned representations of the previous tasks (r ).
To effectively replay these abstract high-level representations, we inject constructive noise by mixing up representations (~M ), adding
noise to the internal attention maps (~A ), and emulating trial-to-trial variability through adding noise to the outputs of semantic memory
( ~S) and to the targets (~T ). To retrieve the knowledge, the consolidated knowledge from semantic memory is enforced to the working
model in the functional space via a consistency regularization.

storing (Hayes et al., 2020; Caccia et al., 2020; Iscen et al.,
2020), entails replaying the latent features of the intermedi-
ate layers of DNNs to mitigate catastrophic forgetting. In
generative methods, the generator itself is as large as the
CL model and is prone to catastrophic forgetting. Addi-
tionally, generative models are dif�cult to train and suffer
mode collapse. However, although storing representations
is memory and computation ef�cient, choosing an ideal
layer for rehearsal remains an open question. Furthermore,
stored representations in a bounded memory lack diversity,
resulting in over�tting.

In contrast, the human brain learns, stores, and remem-
bers experiences without catastrophically forgetting previ-
ous tasks. The versatility of the brain can be attributed to the
rehearsal of abstract experiences through multiple memory
systems (Hassabis et al., 2017) and a rich set of neuro-
physiological processing principles (Parisi et al., 2019). In
addition, the brain harbors random disturbances of signals,
termed noise, that contribute to cellular and behavioral trial-
to-trial variability (Faisal et al., 2008). Although noise is
sometimes considered a nuisance, noise forms a notable
component of the computational strategy of the brain. The
brain exploits noise to perform tasks, such as probabilis-
tic inference through sampling, that facilitate learning and
adaptation in dynamic environments (Maass, 2014). As is
the case in the brain, we hypothesize that noise can be a
valuable tool in improving generalization in representation
rehearsal in vision transformers.

To this end, we propose BiRT, a novel representation
rehearsal-based continual learning method based on vision
transformers, architectures composed of self-attention mod-

ules inspired by human visual attention (Lindsay, 2020).
Speci�cally, our method consists of two complementary
learning systems: a working model and semantic mem-
ory, an exponential moving average of the working model.
To reduce over�tting and bring diversity in representation
rehearsal, BiRT introduces various controllable noises at
various stages of the vision transformer and enforces con-
sistency in predictions with respect to semantic memory.
As semantic memory consolidates semantic information,
consistency regularization in the presence of meaningful
noise promotes generalization while effectively reducing
over�tting. BiRT provides a consistent performance gain
over the raw image and the vanilla representation rehearsal
on several CL scenarios and metrics while being robust to
natural and adversarial corruptions (Figure 1).

2. Related Work

Continual Learning: DNNs are typically designed to in-
crementally adapt to stationary i.i.d. data streams shown in
isolation and random order (Parisi et al., 2019). Therefore,
sequential learning over non-i.i.d. data causes catastrophic
forgetting of previous tasks and over�tting of the current
task. Approaches to address catastrophic forgetting can be
broadly divided into three categories: regularization-based
approaches (Kirkpatrick et al., 2017; Zenke et al., 2017;
Li and Hoiem, 2017) penalize changes in important pa-
rameters pertaining to previous tasks, parameter isolation
methods (Rusu et al., 2016; Aljundi et al., 2017; Fernando
et al., 2017) allocate a distinct set of parameters for distinct
tasks, and rehearsal-based approaches (Ratcliff, 1990; Re-
buf� et al., 2017; Lopez-Paz and Ranzato, 2017; Bhat et al.,
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2023) store old task samples and replay them alongside
current task samples. Among different approaches to mit-
igate catastrophic forgetting, experience rehearsal is fairly
successful in multiple CL scenarios (Parisi et al., 2019).

Rehearsal-based approaches replay raw pixels from past ex-
periences, inconsistent with how humans continually learn
(Kudithipudi et al., 2022). Furthermore, the replay of raw
pixels can have other rami�cations, including a large mem-
ory footprint, data privacy, and security concerns (Mai et al.,
2022). Therefore, several works (Pellegrini et al., 2020;
Iscen et al., 2020; Caccia et al., 2020) mimic abstract rep-
resentation rehearsal in the brain by storing and replaying
representations from intermediate layers in DNNs. Repre-
sentation rehearsal can be done by employing generative
models (van de Ven et al., 2020; Lao et al., 2020) or by
storing previous task representations in the buffer (Hayes
et al., 2020; Iscen et al., 2020). While generative mod-
els themselves are prone to forgetting and mode collapse,
storing representations in a bounded memory buffer lacks
diversity due to the unavailability of proper augmentation
mechanisms. Although high-level representation replay can
potentially mitigate memory overhead and privacy concerns,
replaying representations over and over again leads to over-
�tting.

Transformers for CL: Transformer architectures (Vaswani
et al., 2017) were �rst developed for machine translation and
later expanded to computer vision tasks (Dosovitskiy et al.,
2020; Touvron et al., 2021; Jeeveswaran. et al., 2022) by
considering image patches as replacements for tokens. De-
spite their success in several benchmarks, vision transform-
ers have not been widely considered for continual learning.
Yu et al. (2021) studied transformers in a class-incremental
learning setting and pointed out several problems in naively
applying transformers in CL. DyTox (Douillard et al., 2021)
proposed a dynamically expanding architecture using sepa-
rate task tokens to model the context of different classes in
CL. LVT (Wang et al., 2022a) proposed an external key and
an attention bias to stabilize the attention map between tasks
and used a dual classi�er structure to avoid catastrophic
interference while learning new tasks. Pelosin et al. (2022)
proposed an asymmetric regularization loss on pooled atten-
tion maps with respect to the model learned on the previous
task to continually learn in an exemplar-free approach. Sev-
eral other concurrent works (Ermis et al., 2022; Wang et al.,
2022c;b) harnessed the pre-trained model and incorporated
the learning of generic and task-speci�c parameters. Unlike
these works, we do not use pre-trained models and replay
intermediate representations instead of raw image inputs.

We seek to improve the performance of vision transformers
under representation rehearsal in CL. As noise plays a con-
structive role in the brain, we mimic the prevalence of noise
in the brain and the consequent trial-to-trial variability by

injecting noise into our proposed method.

3. Proposed Method

The CL paradigm normally consists ofT sequential tasks,
with the data gradually becoming available over time. Dur-
ing each taskt 2 f 1; 2; ::; Tg, the samples and the corre-
sponding labels(x i ; yi )N

i =1 are drawn from the task-speci�c
distributionDt . The continual learning modelf � is opti-
mized sequentially on one task at a time, and inference is
carried out on all the tasks seen so far. CL is especially
challenging for vision transformers due to the limited train-
ing data for every task (Raghu et al., 2021; Touvron et al.,
2021) in addition to the issue of catastrophic forgetting. By
mimicking the association of past and present experiences
in the brain, experience rehearsal (ER) partially addresses
the problem of catastrophic forgetting. Thus, the learning
objective of ER is as follows:

L er , E
(x i ;y i ) �D t

[ L ce(f � (x i ); yi ) ]

+ � E
(x j ;y j ) �D m

[ L ce(f � (x j ); yj ) ] ;
(1)

where� represents a balancing parameter,Dm is episodic
memory, andL ce is cross-entropy loss. To further reduce
catastrophic forgetting, we employ a complementary learn-
ing system based on abstract, high-level representation re-
hearsal. To promote diversity and generalization in repre-
sentation rehearsal, we introduce various controllable noises
at different stages of the vision transformer and enforce con-
sistency in predictions with respect to the semantic memory.
In the following sections, we describe in detail different
components of BiRT.

3.1. Knowledge Consolidation through complementary
learning system

Complementary learning system (CLS) theory posits that
the hippocampus and neocortex entail complementary prop-
erties necessary to capture complex interactions in the brain
(McNaughton and O'Reilly, 1995). Inspired by CLS the-
ory, we propose a dual memory transformer-based learning
system that acquires and assimilates knowledge over short
and long periods of time. The working model encounters
new tasks and consolidates knowledge over short periods
of time. We then gradually aggregate the weights of the
working model into semantic memory during intermittent
stages of inactivity. Following Arani et al. (2021), we design
the semantic memory as an exponential moving average of
the working model as follows:

� s = 
� s + (1 � 
 )� w (2)

where� w and� s are the weights of the working model and
semantic memory, respectively, and
 is a decay parameter.
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As the working model focuses on specializing on the current
task, the copy of the working model at each training step
can be considered as an expert on a particular task. There-
fore, the aggregation of weights throughout CL training can
be deemed as an ensemble of expert models that consoli-
date knowledge across tasks, resulting in smoother decision
boundaries.

3.2. Episodic Memory

In line with experience rehearsal in the brain (Ji and Wilson,
2007), we propose an abstract, high-level representation
rehearsal for vision transformers. The working model com-
prises two nested functions:g(:) andf w (:). The �rst few
layers of the encoder,g(:), process the raw image input,
and the output along with the ground truth label is stored in
episodic memoryDm . To ensure consistency in intermedi-
ate representations,g(:) can be initialized using pre-trained
weights and �xed before starting CL training or �xed after
learning some tasks. On the other hand,f w (:), the later
layers of the transformer, process abstract high-level repre-
sentations, and remain learnable throughout the CL training.
During intermittent stages of inactivity, the stable counter-
part semantic memoryf s(:) is updated according to Eq.
2.

The episodic memory is populated at the task boundary us-
ing iCaRL herding (Rebuf� et al., 2017). Representations
r j = g(x j ), stored in episodic memory, are interleaved
with current task representations and are processed syn-
chronously byf w (:) andf s(:). The learning objective for
representation rehearsal can thus be obtained by adapting
Eq. 1 as follows:

L repr , E
(x i ;y i ) �D t

[ L ce(f w (g(x i )) ; yi ) ]

+ � E
( r j ;y j ) �D m

[ L ce(f w (r j ); yj ) ]
(3)

3.3. Noise and Trial-to-Trial Variability

Noise is prevalent at every level of the nervous system and
has recently been shown to play a constructive role in the
brain (Faisal et al., 2008; McDonnell and Ward, 2011). Trial-
to-trial variability, a common phenomenon in biological
systems in which the neural response to the same stimuli
differs across trials, is often the result of noise (Faisal et al.,
2008). Trial-to-trial variability has been shown to be one of
the key components of the computational mechanism in the
brain (Maass, 2014). Furthermore, injecting noise into the
neural network learning pipeline has been shown to result
in faster convergence to the global optimum (Zhou et al.,
2019), better generalization (Srivastava et al., 2014), and
effective knowledge distillation.

To simulate noise and trial-to-trial variability, we stochas-

Algorithm 1 BiRT Algorithm

input: Data streamsDt , bufferDm , working modelf w ,
hyperparameters
 , � t , � m , � a , � s

for all taskst 2 f 1; 2; ::; Tg do
for epochse 2 f 1; 2; ::; Eg do

sample a mini-batch(x; y) � D t

x = augment(x)
if Dm 6= ; then

sample a mini-batch(r; y ) � D m

a; b; c; d; e� U (0; 1)
~y  ~T (y) if a < � t

(~r; ~y)  ~M (r; y ) if b < � m I (Eq. 4)
~A  ~A(A) if c < � a I (Eq. 5)
f s(r )  ~S(f s(r ); � ) if d < � s I (Eq. 7)

end if
Compute outputs off w (:) andf s(:)
ComputeL = L repr + � L cr I (Eqs. 3, 6, 8)
� w  � w + r � w L
� s  
� s + (1 � 
 )� w if e < � e and t > 1

end for
if task-end = Truethen

if t = 1 then
Freezeg(:)
� s = copy(� w )

end if
Dm  (r; y )

end if
end for
Return:working model� w , and semantic memory� s

tically inject constructive noise into various components
of our CL setup. In the following sections, we describe in
detail how exactly we leverage noise during CL training.

3.3.1. REPRESENTATION NOISE ~M

During CL training, the working model encounters task-
speci�c dataDt that are �rst fed intog(:), and then the
output representations ofg(:) are interleaved with the repre-
sentations of previous task samples from episodic memory
Dm . We updateDm at the task boundary using iCaRL
herding. The interleaved representations are then processed
by bothf w (:) andf s(:). Analogous to the replay of novel
samples in the brain (Liu et al., 2019), we linearly com-
bine representations sampled from episodic memory using
a manifold mixup (Verma et al., 2019):

~r = �r i + (1 � � ) r j

~y = �y i + (1 � � ) yj ;
(4)

wherer i ; r j are stored representations of two different sam-
ples andyi ; yj are the corresponding labels. Here, the mix-
ing coef�cient � is drawn from a Beta distribution. As
manifold mixup interpolates representations of samples be-
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Table 1.Results on multiple datasets learned with 10 tasks with varying buffer sizes, averaged over multiple class orders. BiRT achieves
consistent improvements over DyTox in different metrics, i.e. accuracy, forgetting, BWT, and FWT. The last accuracy determines the
performance on past tasks after learning the last task, and the average accuracy shows the average of the last accuracy after learning every
task.

BUFFERSIZE 500 1000 2000
JOINT DYTOX BIRT DYTOX BIRT DYTOX BIRT

CIFAR-100

LAST ACC " 74.99� 0.22 34.54� 1.82 50.20� 0.67 43.92� 0.84 51.20� 1.46 52.34� 0.46 53.01� 0.57

AVG ACC " 58.35� 1.54 63.82� 1.80 63.67� 1.31 64.56� 2.31 68.42� 1.13 66.70� 0.36

BWT " -39.79� 1.16 -15.62� 0.29 -32.05� 0.33 -15.25� 0.66 -24.44� 0.65 -16.30� 1.31

FWT " 41.51� 1.61 56.14� 1.52 50.04� 1.17 57.04� 2.2 57.77� 0.77 59.74� 1.30

FORGETTING# 53.87� 1.95 17.45� 0.61 43.64� 0.71 17.70� 1.42 33.92� 0.79 19.00� 1.98

T INY I MAGE NET

LAST ACC " 58.46� 0.60 23.95� 0.71 32.60� .018 33.25� 1.28 38.41� 0.33 37.34� 0.22 40.49� 0.52

AVG ACC " 42.53� 1.74 44.57� 2.84 48.74� 1.29 49.26� 2.34 51.30� 2.17 51.15� 0.34

BWT " -40.46� 0.41 -13.38� 0.98 -31.12� 1.19 -17.34� 0.51 -27.68� 0.77 -17.85� 0.37

FWT " 27.84� 1.02 37.87� 1.91 36.60� 0.34 41.97� 1.54 40.39� 1.16 43.93� 1.54

FORGETTING# 52.32� 0.94 14.57� 2.00 40.07� 2.12 18.85� 0.22 35.56� 1.29 19.48� 0.21

I MAGE NET-100

LAST ACC " 79.05� 0.16 39.03� 1.57 51.05� 0.24 50.62� 1.04 52.89� 0.96 58.54� 0.42 59.52� 1.39

AVG ACC " 60.52� 1.56 65.51� 0.30 68.14� 1.38 67.33� 0.57 71.67� 1.71 70.51� 1.87

BWT " -38.15� 0.48 -14.42� 0.06 -26.87� 0.72 -12.90� 0.31 -21.10� 0.78 -16.53� 0.84

FWT " 44.94� 1.69 58.27� 0.30 56.86� 1.46 60.78� 0.86 62.85� 1.54 63.40� 2.01

FORGETTING# 51.71� 0.91 16.10� 0.42 37.93� 11.23 14.83� 0.67 28.68� 1.41 19.79� 0.61

longing to different classes / tasks, it brings diversity for the
experience-rehearsal, thereby reducing over�tting.

3.3.2. ATTENTION NOISE ~A

As we employ vision transformer as our architecture of
choice, self-attention forms the core component of BiRT.
The working modelf w (:) in BiRT consists of several multi-
head self-attention layers that map a query and a set of
key-value pairs to an output. We inject noise into the scaled
dot-product attention at each layer off w (:) while replaying
the representation as follows:

Attention( Q; K; V ) = (softmax
�

QK T
p

dk

�
+ � ) V (5)

whereQ, K andV are query, key and value matrices, and
� � N (0; � 2) is a white Gaussian noise. By stochastically
injecting noise into self-attention, we discourage BiRT from
attending to sample speci�c features, thereby potentially
mitigating over�tting.

3.3.3. SUPERVISION NOISE ~T AND ~S

We now shift our focus toward the supervision signals to fur-
ther reduce over�tting in CL. Due to over-parameterization,
the CL model tends to over�t on the limited number of sam-
ples from the buffer. Therefore, we introduce a synthetic
label noise (~T ) wherein a small percentage of the samples
are re-assigned a random class. BiRT takes advantage of the
fact that label noise is sparse, meaning that only a fraction
of the labels are corrupted while the rest are intact in the
real world (Liu et al., 2022). In addition, the harmful effects
of inherent label noise on generalization can be mitigated by
using additional controllable label noise (Chen et al., 2021).

During intermittent stages of inactivity, the knowledge in
the working model is consolidated into semantic memory
through Eq. 2. Therefore, knowledge of previous tasks is
encoded in semantic memory weights during the learning
trajectory of the working model (Hinton et al., 2015). Then,
to retrieve the structural knowledge encoded in the semantic
memory, we regularize the function learned by the working
model by enforcing consistency (Bhat et al., 2022) in its
predictions with respect to the semantic memory:

L cr , � 1 E
x i � D t

kf w (g(x i )) � f s(g(x i ))kp

+ � 2 E
r j � D m

kf w (r j ) � f s(r j )kp;
(6)

where� 1 and� 2 are balancing weights. To mimic trial-to-
trial variability in the brain, we inject noise into the logits
of semantic memory (~S) before applying consistency regu-
larization as follows:

f s(r j )  f s(r j ) + � (7)

where� � N (0; � 2) is a white Gaussian noise,L cr rep-
resents the expected Minkowski distance between the cor-
responding pairs of predictions andp = 2 . Consistency
regularization enables the working model to retrieve struc-
tural knowledge from the semantic memory from previous
tasks. Consequently, the working model adapts the decision
boundary to new tasks without catastrophically forgetting
previous tasks.

Thus, the �nal learning objective for the working model is
as follows:

L , L repr + � L cr (8)

where� is a balancing parameter. Our proposed approach is
illustrated in Figure 2 and is detailed in Algorithm 1.
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Note that these noises are applied stochastically, and there-
fore, a single representation can have multiple noises asso-
ciated with it. Although noise is generally treated as a nui-
sance, BiRT introduces controllable noise at various stages
of the vision transformer to promote robust generalization
in CL.

4. Experimental Results

We use the continuum library (Douillard and Lesort, 2021)
to implement different CL scenarios and build our approach
on top of DyTox (Douillard et al., 2021) method, the main
baseline in all our experiments. We report the last accuracy
(Last), average accuracy (Avg), forward transfer (FWT),
backward transfer (BWT) and forgetting. More information
on experimental setup, datasets, and metrics can be found
in Appendix A.

Table 1 presents the comparison of our method with stan-
dard CL benchmarks with different buffer sizes, averaged
across three random seeds. We can make the following ob-
servations from Table 1: (i) Across CL settings and different
buffer sizes, BiRT shows consistent performance improve-
ment over DyTox across all metrics. (ii) BiRT enables the
consolidation of rich information about the previous tasks
better even under low buffer regimes, e.g. for CIFAR-100,
the absolute improvement in terms of Last Acc is7:28%for
buffer size 1000 while it is as much as15:66%for buffer
size 500. (iii) BWT and FWT elucidate the in�uence of
learning a new taskt on the performance of previous and
subsequent tasks, respectively. BiRT shows a smaller nega-
tive BWT and a higher positive FWT across all CL datasets,
resulting in less forgetting and better forward facilitation.
(iv) TinyImageNet is one of the challenging datasets for
CL considered in this work. Under low buffer regimes, the
number of samples per class will be severely limited due
to the large number of classes per task. BiRT consistently
outperforms DyTox across all buffer sizes on TinyImageNet.

Table 2 further demonstrates the comparison of our
method with transformer-based exemplar-free (ATT-asym
and FUNC-asym (Pelosin et al., 2022); averaged over 3
seeds) and rehearsal-based (DyToX and LVT; averaged
over 5 class orderings) approaches. Although originally
not designed for the exemplar-free scenario, BiRT shows
a signi�cant improvement over the rehearsal-free methods.
Progressing from the exemplar-free scenario, BiRT shows
a further improvement in performance when provided with
experience rehearsal. We also compare CL methods with
different numbers of tasks in CIFAR-100 with limited buffer
sizes. BiRT consolidates generalizable features rather than
discriminative features speci�c to buffered samples, thereby
exhibiting superior performance across all buffer sizes and
task sequences.

Reinforcing our earlier hypothesis, the controllable noises
introduced in BiRT play a constructive role in promoting
generalization and consequently reducing over�tting in CL.
In addition to allaying privacy concerns, replacing raw im-
age rehearsal with representation rehearsal reduces the mem-
ory footprint without compromising performance.

5. Model Analysis

Task Recency Bias:Sequential learning of multiple tasks
causes classi�er predictions to tilt toward recent tasks, re-
sulting in a task recency bias (Masana et al., 2020). One
direct consequence of task recency bias is that the classi-
�er norm is higher for recent classes while lower for older
classes, which means that older classes are less likely to be
picked for prediction (Hou et al., 2019). Figure 4 (right)
shows the normalized probability that all classes in each
task are predicted at the end of training. The probabilities in
BiRT are more evenly distributed than in DyTox, resulting
in a lower recency bias. We argue that supervision noises
proposed in BiRT implicitly regularize the classi�er towards
more evenly distributed prediction probabilities.

Stability-Plasticity Dilemma: The extent to which the
CL model is plastic enough to acquire new information
while stable enough not to catastrophically interfere with
consolidated knowledge is referred to as stability-plasticity
dilemma (Parisi et al., 2019). Catastrophic forgetting is a
direct consequence of this dilemma when the plasticity of
the CL model overtakes its stability. To investigate how well
our method handles the stability-plasticity dilemma, we plot
the task-wise performance at the end of each task in Figure 3
for the CIFAR-100 test set. Following Sarfraz et al. (2022),
we also visualize a formal trade-off measure in Figure 4
(left). Both the working model and semantic memory exhibit
higher stability, while DyTox is more plastic. Therefore,
DyTox is more prone to forgetting, whereas BiRT displays a
better stability-plasticity trade-off compared to the baseline.

Attention Map Analysis: As learning progresses through
a sequence of tasks, a CL model that retains its focus on
salient regions undergoes less catastrophic forgetting. There-
fore, it would be bene�cial to study the variation in the
salient regions of the image during the learning trajectory.
Figure 6 shows a comparison of saliency maps for samples
of the �rst task after training on the �rst and last task, re-
spectively. As can be seen, BiRT retains the attention to
important regions in these images better than DyTox. We
contend that the attention noise proposed in BiRT helps
focus on class-wide features rather than sample speci�c fea-
tures, thereby retaining attention to important regions in test
images. More explanation and extended visualizations are
provided in Appendix M.

Robustness Analysis: Continual learning models are
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Table 2.Results on CIFAR-100 learned with 5, 10, and 20 tasks with varying buffer sizes. BiRT achieves consistent improvements over
the state-of-the-art on average accuracy and last accuracy.

METHODS
BUFFER

SIZE
#P 5 STEPS 10 STEPS 20 STEPS

AVG LAST AVG LAST AVG LAST

ATT-ASYM - 16.87 - - 25.58� 0.01 16.31� 0.00 - -
FUNC-ASYM - 16.87 - - 25.95� 0.00 16.21� 0.01 - -
BIRT - 10.73 - - 56.40� 1.57 42.59� 0.84 - -

DYTOX 10.73 56.98� 0.61 41.50� 1.00 48.31� 1.23 23.92� 1.11 38.10� 1.72 14.27� 0.94

LVT 200 8.9 - 39.68� 1.36 - 35.41� 1.28 - 20.63� 1.14

BIRT 10.73 67.15� 0.95 54.15� 0.94 61.01� 1.58 45.59� 1.54 48.03� 0.97 29.10� 1.88

DYTOX 10.73 63.85� 0.99 52.99� 0.53 58.35� 1.54 34.54� 1.82 49.98� 1.32 24.86� 0.81

LVT 500 8.9 - 44.73� 1.19 - 43.51� 1.06 - 26.75� 1.29

BIRT 10.73 68.40� 1.56 55.65� 0.99 63.82� 1.80 50.20� 0.67 50.34� 1.64 30.22� 1.63

Figure 3.Comparison of task-wise performance after learning each task on CIFAR-100 with a buffer size of 500 learned for 10 tasks. The
working model achieves better accuracy for the seen tasks after learning 10 tasks compared to DyTox. The semantic memory retains the
performance of older tasks better than DyTox and the working model.

mostly evaluated on accuracy on seen tasks and forgetting
metrics. However, the research community has largely ne-
glected the susceptibility of continually learned models to
adversarial attacks and corrupted data in the wild (Khan
et al., 2022). Figure 5 illustrates the robustness of BiRT on
adversarial attack of varying strengths (Kim, 2020) and sev-
eral natural corruptions (Hendrycks and Dietterich, 2019).
In addition, we evaluate the robustness of BiRT without
any noise in the learning trajectory in order to elucidate the
bene�ts of constructively inducing noise in the pipeline of
continually learning models. BiRT is robust to adversarial
attacks, as well as corrupted data, and learning with noise
results in improved robustness. This is evident from the
performance under severe noises such as`contrast', `fog',
`motion blur' and the average performance across different
settings wherein learning with noise helps the model recover
from the inferior performance.

This makes it well-suited for safety-critical applications,
such as autonomous vehicles, where the consequences of a
model failure can be severe.

6. Ablation Study

Table 3 provides an overview of the effect of the different
components used in BiRT. Unlike DyTox, we employ an
exponential moving average as semantic memory, resulting
in the biggest jump in accuracy. BiRT entails representa-
tion, attention, and supervision noises to promote robust
generalization in CL and diversify the buffered representa-
tions. As can be seen, all three components of BiRT play a
constructive role in building a successful continual learner.
Supervision noise, representation noise, and attention noise
bring performance improvements of 0.54%, 3.30%, and
3.41%, respectively, over BiRT without any noise. In addi-
tion, compared to vanilla representation rehearsal, the right
combination of controllable noises in BiRT greatly reduces
over�tting and improves performance by as much as9%
(relative Avg). Therefore, it is quintessential to have con-
trollable noise to further improve representation rehearsal
in CL.
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Figure 4.Comparison of CL methods in the stability-plasticity trade-off (left) and the task-recency bias (right) on C-100 (buffer size 500).

Figure 5.Robustness of CL methods to adversarial attacks (left) and 19 different natural corruptions (right) on C-100 (buffer size 500).

Figure 6.Comparison of attention maps on the validation set of the
�rst task of ImageNet-100 trained for 10 tasks with buffer size 500
(red regions correspond to regions with higher attention). BiRT
retains the knowledge of salient regions in the image better than
DyTox, leading to better predictions and less forgetting.

7. Conclusions and Future Work

We proposed BiRT, a novel representation rehearsal-based
continual learning approach based on vision transformers.
Speci�cally, we introduce controllable noises at various
stages of the vision transformer and enforce consistency
in predictions with respect to an exponential moving aver-
age of the working model. Our empirical results show that

Table 3.Ablations of the different key components of BiRT. The
average and last accuracies are reported on CIFAR100 for the
buffer size of 500 learned for 10 tasks.

SUPERVISION
NOISE

REPRES.
NOISE

ATTENTION
NOISE

LAST
ACC

AVG
ACC

3 3 3 50.20� 0.67 63.82� 1.80

7 3 3 49.63� 0.30 63.67� 1.55

7 7 3 49.30� 0.91 63.29� 1.71

3 7 7 49.19� 0.46 62.58� 1.44

7 3 7 46.43� 0.41 61.83� 0.23

7 7 7 45.89� 1.25 59.58� 0.58

DYTOX 34.54� 1.82 58.35� 1.54

BiRT outperforms raw image rehearsal and vanilla repre-
sentation rehearsal while being memory ef�cient and robust
to natural and adversarial corruptions. Furthermore, the
improvement is even more pronounced under low buffer
regimes and longer task sequences. Reinforcing our earlier
hypothesis, the controllable noises introduced in BiRT play
a constructive role in promoting generalization and conse-
quently reducing over�tting in CL. Extending our work to
more realistic settings such as general CL where task bound-
aries are not known at training time, and exploring other
ef�cient transformer architectures are some of the useful
research directions for this work.
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A. Experimental setup, datasets and metrics

We use the continuum library (Douillard and Lesort, 2021) to implement different CL scenarios and build our approach
on top of DyTox (Douillard et al., 2021) framework, which is the main baseline in all our experiments. We use a network
that consists of 5 self-attention blocks and a task-attention block. All blocks have 12 attention heads and an embedding
dimension of 384. We train models with a learning rate of5e� 4, a batch size of 128, and a weight decay of1e� 6. All models,
including the baseline, are trained for 500 epochs per task in CIFAR-100 (Krizhevsky et al., 2009), TinyImageNet (Le and
Yang, 2015), and ImageNet-100 (Deng et al., 2009). During the patch embedding process, we utilize patch sizes of 4 for
CIFAR-100, 8 for TinyImageNet, and 16 for ImageNet-100. After each task, the model is �ne-tuned on a balanced dataset
with a learning rate of5e� 5 for 20 epochs. All models are trained on a single NVIDIA V100 GPU, and all evaluations are
performed on a single NVIDIA RTX 2080 Ti GPU.

We focus mainly on the class-incremental learning setting (Class-IL) (Van de Ven and Tolias, 2019), where the task ID is not
known at the test time. In every task, samples belonging to a new set of classes disjoint from the previous tasks' classes are
learned by the model. Following Douillard et al. (2021) and De Lange et al. (2021), we evaluate our approach on CIFAR-100,
ImageNet-100, and TinyImageNet. CIFAR-100 consists of 50,000 training images and 10,000 test images of size 32� 32
belonging to 100 classes. ImageNet-100 consists of 129k train and 5,000 validation images of size 224� 224 belonging to
100 classes. TinyImageNet consists of 100,000 training images and 10,000 test images of size 96� 96 belonging to 200
classes.

Except for the analysis of longer task sequences, all other experiments are carried out in the Class-IL setting with 10 tasks.
In the case of CIFAR-100, 100 classes are divided into 10 tasks, with 10 classes in each task. Similarly, 20 classes per task
are learned on TinyImageNet and 10 classes per task on ImageNet-100. The order in which classes are learned can affect the
performance of a CL model (Yoon et al., 2019). We use “class order 1” from (Douillard et al., 2021) for CIFAR-100 and
ImageNet-100, and the sequential class order from 1 to 200 for TinyImageNet-200.

Although the performance of task-incremental learning (Task-IL) can be evaluated in our proposed approach, we exclude
them in our analysis because it simpli�es the CL scenario by assuming the availability of task id at the test time, which
translates into choosing the right prediction head during inference.

A.1. Evaluation Metrics

To evaluate the performance of different models under different settings, we select �ve different metrics widely used in the
CL literature. We formalize each metric below.

1. Last Accuracy (Douillard et al., 2021) de�nes the �nal performance of the CL model on the validation set of all the
tasks seen so far. Concretely, given that tasks are sampled from a sett 2 1; 2:::; T , whereT is the total number of tasks
andak;j is the accuracy of a CL model on the validation set of the taskk after learning taskj , last accuracyA last is as
follows:

A last =
1
T

TX

k=1

ak;T (9)

2. Average Accuracy(Rebuf� et al., 2017) de�nes the average performance of the learned CL model on the validation
set of all tasks seen so far after learning each task. Given thatK is the number of tasks seen so far andT is the total
number of tasks, the average accuracyAavg is as follows:

Aavg =
1
T

TX

j =1

1
K

KX

k=1

ak;j (10)

3. Backward Transfer (BWT) (Lopez-Paz and Ranzato, 2017) de�nes the in�uence of the learning taskt on previously
seen tasksk < t . Positive BWT implies that the learning taskt increased performance on previous tasks, while negative
BWT indicates that the learning taskt affected the performance of the model on previous tasks. Formally, BWT is as
follows:

BWT =
1

T � 1

T � 1X

j =1

aT;j � aj;j (11)
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Figure 7.Comparison of performance across learning longer sequence of tasks on CIFAR-100.

4. Forward Transfer (FWT) (Lopez-Paz and Ranzato, 2017) de�nes the in�uence of learning the taskt on future tasks
k > t . Positive FWT implies that learning the taskt increased performance in future tasks and vice versa. Positive
FWT occurs when the model learns generalizable features that can help it learn future tasks. Formally, given thatâj is
the accuracy of the taskj at random initialization, the FWT is as follows:

FWT =
1

T � 1

TX

j =2

aj � 1;j � âj (12)

5. Forgetting (Chaudhry et al., 2018) quanti�es the forgetting of previously learned tasks given the current state of
the model. It is de�ned as the difference between the maximum accuracy of the model in previously learned tasks
throughout the learning process and the current accuracy of the task. Concretely, forgetting for the taskk is as follows:

Forgetting= max
l 2 1;2;:::;k � 1

ak;l � ak;T (13)

B. Quantitative results for �gures

To facilitate comparisons with BiRT, we provide quantitative results for the �gures in the main text.

B.1. Effect of Longer Sequences

Given a limited buffer size, catastrophic forgetting worsens with increasing number of tasks, since the number of representa-
tive samples per task/class will be more limited (Peng et al., 2021). To perform better, it is quintessential for the CL model
to consolidate generalizable features rather than discriminative features speci�c to buffered samples. Figure 7 presents
the performance of CL models in sequences of 5, 10, and 20 tasks on CIFAR-100 with a buffer size of 500. Even as the
number of tasks increases, BiRT maintains a substantial improvement over DyTox across all task sequences. As is the case
with low-buffer regimes, BiRT consolidates the past task information better than the baseline, thereby further mitigating
catastrophic forgetting.

B.2. Stability-plasticity dilemma

Figure 4 (left) shows that BiRT achieves better stability, while DyTox is more plastic. We concluded that DyTox is more
prone to forgetting, while BiRT exhibits a better stability-plasticity trade-off. We provide the numerical values for the same
in Table 4. Note that the semantic memory of BiRT achieves a slightly higher stability-plasticity trade-off compared to the
working model of BiRT (which is not clear in the illustration).

C. Working Principle of DyTox

As mentioned in Section A, we build our proposed approach on top of DyTox framework (Douillard et al., 2021), an
architecture expansion approach to continual learning with Transformers as the working model. DyTox uses the information
about the task id during the training time to learn task-speci�c classi�ers and task tokens. However, no task oracle is used
during inference.
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Table 4.Quantitative results for the stability-plasticity trade-off in CIFAR-100 for 10 tasks with buffer size 500.

PLASTICITY STABILITY TRADE-OFF

DYTOX 86.06 29.74 44.16
BIRT - WORKING MODEL 66.42 50.52 57.38
BIRT - SEMANTIC MEMORY 66.08 50.37 57.16

Figure 8.Comparison of task-wise performance after learning every task on TinyImageNet with a buffer size of 500 learned for 10 tasks.
The working model achieves better accuracy for the seen tasks after learning 10 tasks compared to DyTox. Semantic memory retains the
performance of older tasks better than the baseline and working model.

DyTox architecture consists of 5 blocks of Self-Attention Blocks (SABs, implemented using ConVit (d'Ascoli et al., 2021))
as an encoder to process the input image after the tokenization process. The features predicted by the encoder are then
combined with a task token (which is speci�c to that task) and fed into a Task-Attention Block (TAB), in which the task
token attends to the features and extracts the task-speci�c information. A task-speci�c classi�er projects the processed
task token to the number of classes in the task. Thus, the task token and classi�er are expanded with respect to every task,
while the SAB and TAB blocks are shared between tasks. Furthermore, it employs the copy of the working model at the
task boundary as a teacher model to distill the information about past tasks into the working model. DyTox freezes the task
tokens and classi�er heads of previously learned tasks in order to retain the performance on old tasks.

D. Model Analysis on Other Datasets

We analyze task-wise probability (in Figure 3), stability-plasticity trade-off, and task-recency bias (in Figure 4) on the
CIFAR-100 dataset learned for 10 tasks with buffer size 500 in the main text. Here, we show additional results on other
datasets (TinyImageNet and ImageNet-100).

Figure 8 illustrates the task-wise accuracy of BiRT vs. DyTox in TinyImageNet. It is evident that BiRT (Semantic Memory)
retains more knowledge about past tasks, which in turn helps BiRT (Working Model) achieve better overall performance
compared to DyTox. The stability-plasticity trade-off shown in Figure 9 corroborates this conclusion by showing that both
the working model and the semantic memory of BiRT have better stability and trade-off values compared to the baseline.

Given that TinyImageNet is one of the challenging benchmarks used in our study, we can see a very high task recency bias
in DyTox in Figure 9, suggesting that the model is more likely to predict classes from the last few tasks for samples during
inference. The skew toward recent tasks is more pronounced in the TinyImageNet data set compared to CIFAR-100. On the
other hand, we can see a more balanced distribution of prediction probabilities in the working model and semantic memory
of BiRT.

E. Hyperparameters for the Empirical Results

We provide the hyperparameters that we used in our proposed approach for different datasets and tasks in Table 5. Two main
hyperparameters in our approach are the decay parameter
 that is used to gradually assimilate knowledge into the semantic
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Figure 9.Comparison of the stability-plasticity trade-off (left) and the task-recency bias (right) trained for 10 tasks on TinyImageNet with
buffer size 500.

Table 5.Hyperparameters used in BiRT for different datasets and tasks.

DATASET # OF TASKS BUFFERSIZE 
 � e � 1 � 2

CIFAR-100

5 200 0.0005 0.001 0.05 0.01
500 0.005 0.003 0.05 0.01

10

200 0.001 0.003 0.05 0.001
500 0.001 0.003 0.05 0.001
1000 0.0005 0.0008 0.05 0.01
2000 0.0002 0.0015 0.05 0.01

20 200 0.005 0.001 0.05 0.08
500 0.0005 0.003 0.05 0.1

TINY IMAGENET 10
500 0.001 0.003 0.05 0.01
1000 0.01 0.0008 0.01 0.001
2000 0.0001 0.008 0.01 0.0008

IMAGENET-100 10
500 0.0001 0.003 0.05 0.001
1000 0.0001 0.003 0.05 0.001
2000 0.01 0.005 0.01 0.001

Table 6.Robustness of BiRT under individual noise in CIFAR-100 dataset.

BI RT W /O NOISE SUPERVISION NOISE REPRESENTATION NOISE ATTENTION NOISE

LAST ACC 45.89 49.64 46.43 49.06
ADV ACC (� =4) 36.52 37.95 36.64 38.39
ADV ACC (� =8) 26.17 26.26 25.64 27.04
NAT COR ACC 21.82 24.33 21.07 24.42

memory of the working model with frequency� e in Eq. 2 and the weighting parameters� 1 and� 2 in Eq. 6 used to enforce
consistency between the working model and the knowledge consolidated in the semantic memory with respect to images
from the current task and representations from the buffer memory.

F. Robustness Analysis with Individual Noise

In order to elucidate the improvements in robustness of BiRT brought about by different noises, we conducted more
experiments to ablate the same. As shown in Table 6, overall, every noise proposed in this paper contributes to improving
the generalization of stored representations, enabling effective CL in vision transformers. Every noise makes the model less
susceptible to adversarial attacks and more robust to natural corruption on the data.

15



BiRT: Bio-inspired Replay in Vision Transformers for Continual Learning

Table 7.Comparison of performance across different noise strengths on CIFAR-100 dataset with buffer size 500.

SUPERVISION NOISE REPRESENTATION NOISE ATTENTION NOISE
STRENGTH (P) LAST ACC STRENGTH (P) LAST ACC STRENGTH (P) LAST ACC

0.2 50.90 0.2 51.45 0.2 49.93
0.7 49.85 0.7 49.27 0.8 49.82

Table 8.Comparison of training time taken to learn one task in CIFAR-100 dataset with buffer size 500.

CIFAR-100 T INY I MANGE NET I MAGE NET-100

DYTOX � 44 MINS � 2 HOURS10 MINS � 11 HOURS22 MINS
BIRT � 45 MINS � 2 HOURS6 MINS � 10 HOURS52 MINS

Table 9.Comparison between the working model and the semantic memory of BiRT for different datasets and buffer sizes.

DATASET
BUFFER

SIZE
WORKING

MODEL
SEMANTIC
MEMORY

CIFAR-100 500 50.20� 0.67 50.11� 0.75

1000 51.20� 1.46 51.17� 1.41

TINY IMAGENET
500 32.60� 0.18 32.58� 0.24

1000 38.42� 0.34 38.24� 0.37

IMAGENET-100 500 51.06� 0.24 50.80� 0.56

1000 52.21� 0.00 51.69� 0.00

G. Sensitivity Analysis to Noise

We control the strength and amount of noise added at different stages of the training process, based on the percentage of
samples to which noise is added in each batch. We conducted additional experiments on CIFAR-100 with 10 tasks and a
buffer size of 500, varying the percentage of samples to which each noise type is added. The results are shown in Table 7.
`p' denotes the percentage of samples to which the corresponding noise is added during the replay of the representation in
each batch (batchsize = 128). It is evident that different levels of noise change the last accuracy; however, the performance
at different levels of noise reveals that BiRT is not very sensitive to hyperparameters.

H. Training Time Analysis

We conducted an experiment to compare the training time of different CL models considered in this work. The training time
on an NVIDIA RTX 2080 Ti for various datasets with buffer size 500 to learn a single task (500 epochs) in CIFAR-100
dataset is enumerated in Table 8. As can be seen, both DyTox and BiRT entail similar training times, indicating that the
proposed noise-based approach in BiRT does not increase the training time. In fact, our proposed approach improves
generalization performance to a large extent with minimal/no additional computational cost.

I. Analysis on Working Model and Semantic Memory

We compare the performance between DyTox and the BiRT working model in Table 1. However, stochastically assimilating
the knowledge learned in the working model into the semantic memory throughout the learning process and at the end of
tasks results in a generalized working model with lesser forgetting. We show the last accuracy of the working model and
semantic memory for different datasets and buffer sizes in Table 9.

J. Quantitative Results for Model Analysis

Figure 4 in the main text illustrates the stability-plasticity trade-off between DyTox and BiRT. We provide the quantitative
results for the same in Table 10. DyTox is more prone to forgetting, whereas BiRT displays a better stability-plasticity
trade-off compared to the baseline. We evaluated the robustness of DyTox, BiRT without noise, and BiRT across different
strengths of adversarial attacks and natural corruptions. Qualitative results are presented in Figure 5 in the main text. Table
11 and 12 enumerate the quantitative results of the same.

16



BiRT: Bio-inspired Replay in Vision Transformers for Continual Learning

Table 10.Quantitative results for the stability-plasticity analysis of different CL models.

PLASTICITY STABILITY TRADE-OFF

DYTOX 73.30 18.08 29.01
BIRT 43.73 32.75 37.45

Table 11.Quantitative results of different CL models to different levels of adversarial attacks. Noise in BiRT improves its robustness
against adversarial attacks across different epsilon values.

AVERAGE 0 0.25 0.5 1 2 4 8 16 32

DYTOX 23.59 35.29 33.35 31.43 29.30 28.26 27.88 19.16 7.03 0.67
BIRT W/O NOISE 31.50 47.45 44.74 41.77 38.92 37.54 36.53 26.18 9.54 0.90
BIRT 33.37 50.27 47.32 44.23 41.30 39.79 38.95 27.37 10.12 1.03

Table 12.Quantitative results of different CL models to different levels of natural corruption. Noise in BiRT improves its robustness
against natural corruption across different strengths.

AVERAGE BRIGHT . CONTRAST DEFOCUS ELASTIC FOG FROST G BLUR G NOISE GLASS

DYTOX 21.06 26.66 12.38 22.64 21.32 18.57 24.92 21.21 20.99 17.08
BIRT W/O NOISE 21.82 28.71 10.99 22.19 21.34 16.07 27.44 20.40 23.41 18.32
BIRT 25.81 32.59 14.19 26.49 25.53 20.04 32.46 24.34 27.17 22.22

IMPULSE JPEG MOTION PIXELATE SATURATE SHOT SNOW SPATTER SPECKLE ZOOM

DYTOX 18.51 22.69 19.56 24.54 21.60 22.00 21.39 22.43 21.11 20.57
BIRT W/O NOISE 19.83 25.23 18.22 24.25 21.36 24.36 25.05 24.57 23.30 19.71
BIRT 22.86 29.71 21.84 28.71 24.68 28.32 29.58 28.67 27.09 23.98

K. Extended Related Works

In addition to the CL methods discussed in the Related Works section in the main text, there is another line of work that
pursues the `Deep Inversion' technique to synthesize replay images for old tasks. Deep inversion works by inverting a neural
network's feature extractor to generate synthetic input data that is similar to the original input data. In the context of class
incremental learning, deep inversion can be used to generate synthetic data for the new classes that the model needs to learn
without requiring access to any real data for those classes (Yin et al., 2020; Gao et al., 2022; Smith et al., 2021). Though this
approach alleviates any privacy issues and is more memory-ef�cient, the model responsible for generating the synthetic data
might undergo catastrophic forgetting and this can be exacerbated in long-task sequences.

The theory of a complementary learning system (CLS) posits that the ability to continually acquire and assimilate knowledge
over time in the brain is mediated by multiple memory systems (Hassabis et al., 2017; Kumaran et al., 2016). Inspired by
CLS theory, CLS-ER (Arani et al., 2021) proposed a dual memory method that maintains multiple semantic memories that
interact with episodic memory. On the other hand, FearNet (Kemker and Kanan, 2017) utilizes a brain-inspired dual-memory
system coupled with pseudo rehearsal (Robins, 1995) in order to ef�ciently learn new tasks.

L. Limitations

BiRT is a novel continual learning approach that can be applied to various tasks. However, the effectiveness of different
levels of noise in BiRT varies in terms of generalization and robustness. The impact of hyperparameters on the effectiveness
of different types of noise can also affect accuracy to some extent. However, our empirical results reveal that BiRT is not
very sensitive to hyperparameters. BiRT may not be well-suited for datasets with small images (e.g., 32 x 32) since the
representations stored in the buffer for such datasets may require more memory compared to storing images. Nonetheless,
since real-world datasets typically contain high-resolution images (as in ImageNet-100 and TinyImageNet), BiRT can enable
ef�cient CL in most cases. BiRT does not raise privacy concerns as we do not store personal data, and there are no known
bias and fairness issues since we do not use any pretrained weights.
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Figure 10.Comparison of attention maps with respect to the class token on the validation set of the �rst task of ImageNet-100 trained
for 10 tasks with buffer size 500. The attention maps are plotted after learning the �rst, fourth, seventh, and last tasks (red regions
correspond to regions with higher attention). BiRT retains the knowledge of salient regions in the image better than DyTox, leading to
better predictions and less forgetting.

M. Attention Map Analysis

A CL model that is able to preserve the salient regions learned in the �rst task (when those samples were trained) as learning
progresses through the subsequent tasks would provide less catastrophic forgetting (Ebrahimi et al., 2021). The [CLS] token
in Vision Transformers, which is utilized to infer the class of a sample (Dosovitskiy et al., 2020), attends to the salient
regions of an image in order to extract rich features pertaining to the task learned by the model. Therefore, it would be
bene�cial to study the drift in the regions that the model considers to be salient in the image as learning progresses.

Concretely, we study the attention maps calculated by the last Class-Attention block in BiRT for samples in the validation
set of the �rst task as the learning progresses from the �rst task to the last task. We overlay the attention map as a heatmap
(interpolated to the image size) on the image. Figures 10 and 11 show that the BiRT working model preserves the attention
map learned in the �rst task better than DyTox as the training progresses.
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