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Abstract
Crowdsourcing has emerged as an effective plat-
form for labeling large amounts of data in a cost-
and time-efficient manner. Most previous work
has focused on designing an efficient algorithm to
recover only the ground-truth labels of the data. In
this paper, we consider multi-choice crowdsourc-
ing tasks with the goal of recovering not only the
ground truth, but also the most confusing answer
and the confusion probability. The most confus-
ing answer provides useful information about the
task by revealing the most plausible answer other
than the ground truth and how plausible it is. To
theoretically analyze such scenarios, we propose
a model in which there are the top two plausi-
ble answers for each task, distinguished from the
rest of the choices. Task difficulty is quantified
by the probability of confusion between the top
two, and worker reliability is quantified by the
probability of giving an answer among the top
two. Under this model, we propose a two-stage
inference algorithm to infer both the top two an-
swers and the confusion probability. We show
that our algorithm achieves the minimax optimal
convergence rate. We conduct both synthetic and
real data experiments and demonstrate that our
algorithm outperforms other recent algorithms.
We also show the applicability of our algorithms
in inferring the difficulty of tasks and in training
neural networks with top-two soft labels.

1. Introduction
Crowdsourcing has been widely adopted to solve a large
number of tasks in a time- and cost-efficient manner with
the help of human workers. In this paper, we consider
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multiple-choice tasks, where a worker is asked to provide
a single answer among multiple choices. Some examples
are as follows: 1) Using crowdsourcing platforms such as
MTurk, we solve object counting or classification tasks
on a large collection of images. Answers can be noisy
either due to the difficulty of the scene or due to unreliable
workers making random guesses. 2) Scores are collected
from referees for papers submitted to a conference. For
certain papers, scores can vary widely among reviewers,
either due to the inherent nature of the paper (clear pros and
cons) or due to the reviewer’s subjective interpretation of
the scoring scale (Stelmakh et al., 2019; Liu et al., 2022).

In the above scenarios, the answers provided by human
workers may not be consistent among themselves, not only
due to the presence of unreliable workers, but also due to
the inherent difficulty of the tasks. In particular, for multiple
choice tasks, there can exist plausible answers other than
the ground truth, which we call confusing answers.1 For
tasks with confusing answers, even reliable workers may
provide wrong answers due to confusion. Thus, we need to
decompose the two different causes of wrong answers: low
reliability of workers and confusion due to task difficulty.

However, most previous models of multi-choice crowdsourc-
ing do not adequately model the errors from confusion. For
example, the single-coin Dawid-Skene model (Dawid &
Skene, 1979), which is the most widely studied model in the
literature, assumes that a worker is associated with a single
skill parameter that is fixed across all tasks, which models
the probability of giving a correct answer for every task.
Under this model, any algorithm that infers the worker’s
skill would count a confused labeling as the worker’s error
and lower its accuracy estimate for the worker, resulting in
a wrong estimate of the worker’s true skill level.

To model the effect of confusion in multi-choice crowd-
sourcing problems, we propose a new model in which each
task can have a confusing answer other than the ground truth,
with a different confusion probability across tasks. Task dif-
ficulty is quantified by the confusion probability between

1This phenomenon is evident on public datasets: for ‘Web’
dataset (Zhou et al., 2012), which consists of five-choice tasks, the
most dominant top-two answers of each task account for 80% of
the total answers, and the ratio between the top two is 2.4:1.
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the top two plausible answers, and worker skill is modeled
by the probability of giving an answer among the top two, to
distinguish reliable workers from pure spammers who just
give random guesses among possible choices. We justify
the proposed top-two model with public datasets. Under
this new model, we aim to recover both the ground truth and
the most confusing answer with the confusion probability,
which indicates how plausible the recovered ground truth is
compared to the most confusing answer.

We provide an efficient two-stage inference algorithm to
recover the top-two plausible answers and the confusion
probability. The first stage of our algorithm uses the spectral
method to obtain an initial estimate for the top-two answers
and the confusion probability, and the second stage uses this
initial estimate to estimate the workers’ reliabilities and to
refine the estimates for the top-two answers. Our algorithm
achieves the minimax optimal convergence rate. We then
perform experiments comparing our method to recent crowd-
sourcing algorithms on both synthetic and real datasets, and
show that our method outperforms other methods in recov-
ering top-two answers. This result demonstrates that our
model better explains the real-world datasets, including er-
rors due to confusion. Our code is available at https://
github.com/Hyeonsu-Jeong/TopTwo. Our main
contributions can be summarized as follows.

• Top-two model: We propose a new model for multi-
choice crowdsourcing tasks, where each task has top-
two answers, and the difficulty of the task is quantified
by the confusion probability between the top two plau-
sible answers. We justify the proposed model by ana-
lyzing six public datasets and showing that the top-two
structure explains the real datasets well.

• Inference algorithm and its application: We propose
a two-stage algorithm that recovers the top-two an-
swers and the confusion probability of each task at the
minimax optimal convergence rate. We demonstrate
the potential applications of our algorithm not only in
crowdsourced labeling, but also in two more applica-
tions: (i) quantifying task difficulty, and (ii) training
neural networks for classification with soft labels that
include the top-two information and the task difficulty.

2. Related works
Dawid-Skene(D&S) model. In crowdsourcing (Welinder
et al., 2010; Liu & Wang, 2012; Demartini et al., 2012; Ay-
din et al., 2014; Demartini et al., 2012), one of the most
widely studied models is the Dawid-Skene (D&S) model
(Dawid & Skene, 1979). In this model, each worker is as-
sociated with a single confusion matrix, fixed across tasks,
that models the probability of giving a label b ∈ [K] for
the true label a ∈ [K] for a K-ary classification task. In

the single-coin D&S model, the model is further simplified
such that each worker has a fixed skill level regardless of the
true label or task. Under the D&S model, various methods
have been proposed to estimate the confusion matrix or skill
of workers by spectral methods (Zhang et al., 2014; Dalvi
et al., 2013; Ghosh et al., 2011; Karger et al., 2013), iterative
algorithms (Karger et al., 2014; 2011; Li & Yu, 2014; Liu
et al., 2012; Ok et al., 2016), or rank-1 matrix completion
(Ma et al., 2018; Ma & Olshevsky, 2020; Ibrahim et al.,
2019). The estimated skill can be used to infer the ground
truth answer by approximating maximum likelihood (ML)-
type estimators (Gao & Zhou, 2013; Gao et al., 2016; Zhang
et al., 2014; Karger et al., 2013; Li & Yu, 2014; Raykar
et al., 2010; Smyth et al., 1994; Ipeirotis et al., 2010; Berend
& Kontorovich, 2014). Unlike the D&S models, our model
allows each worker to make errors over tasks with different
probabilities due to confusion. Thus, our algorithm needs
to estimate not only the worker’s skill, but also the task dif-
ficulty. Since the number of tasks is often much larger than
the number of workers in practice, estimating task difficulty
is much more challenging than estimating worker skill. We
provide a statistically-efficient algorithm to estimate the task
difficulty and use this estimate to infer the top-two answers.

Task Dificculty. We also remark that there have been some
recent attempts to model task difficulty in crowdsourcing
(Khetan & Oh, 2016; Shah et al., 2020; Krivosheev et al.,
2020; Shah & Lee, 2018; Bachrach et al., 2012; Li et al.,
2019; Tian & Zhu, 2015). However, these works are either
restricted to binary tasks (Khetan & Oh, 2016; Shah et al.,
2020; Shah & Lee, 2018) or focus on grouping confusable
classes (Krivosheev et al., 2020; Li et al., 2019; Tian & Zhu,
2015). Our result, on the other hand, applies to any set of
multi-choice tasks of which the choices are not necessarily
restricted to a fixed set of classes/labels.

Modeling confusion. There is a growing interest in the
machine learning community in utilizing soft labels to train
deep neural networks. Various methods have been proposed
to generate soft labels of training data, e.g., by using mixup
(Zhang et al., 2017; Sohn et al., 2022) or by using the output
of trained models (Sabetpour et al., 2021). Also, CIFAR-
10H (Peterson et al., 2019) dataset was generated by using
all the human annotations from the data collection step as
soft labels on images. Our algorithm estimates the task
difficulty and the top two answers, which can produce a new
form of soft label that can be used in this line of work, as
will be discussed in Sec. 6.3.

Notation. For a vector x, xi represents the i-th component
of x. For a matrix M , Mij refers to the (i, j)th entry of M .
For any vector x, its ℓ2 and ℓ∞-norm are denoted by ∥x∥2
and ∥x∥∞, respectively. We follow the standard definitions
of asymptotic notations, Θ(·), O(·), o(·), and Ω(·).

2

https://github.com/Hyeonsu-Jeong/TopTwo
https://github.com/Hyeonsu-Jeong/TopTwo


Recovering Top-Two Answers and Confusion Probability in Multi-Choice Crowdsourcing

3. Model and Problem Setup
We consider a crowdsourcing model to infer the top two
most plausible answers among K choices for each task.
There are n workers and m tasks. For each task j ∈ [m] :=
{1, . . . ,m}, we denote the correct answer by gj ∈ [K] and
the next plausible or the most confusing answer by hj ∈ [K].
We call the pair (gj , hj) the top two answers for the task
j ∈ [m]. Let p ∈ [0, 1]n and q ∈ (1/2, 1]m be parameters
modeling the reliability of the workers and the difficulty of
the tasks, respectively. For each pair of (i, j), the j-th task
is assigned to the i-th worker independently with probability
s. We use a matrix A ∈ Rn×m to represent the responses of
the workers, where Aij = 0 if the j-th task is not assigned
to the i-th worker, and if it is assigned, Aij is equal to the
received label. The distribution of Aij is determined by the
worker reliability pi and the task difficulty qj as follows:

Aij =


gj , w.p. s

(
piqj +

1−pi

K

)
,

hj , w.p. s
(
pi(1− qj) +

1−pi

K

)
,

b ∈ [K]\{gj , hj}, w.p. s
(
1−pi

K

)
,

0, w.p. 1− s.
(1)

Here pi is the reliability of the i-th worker in giving the
answer from the most plausible top two (gj , hj). If pi = 0,
the worker is considered a spammer, giving random answers
among K choices, and a larger value of pi indicates a higher
reliability of the worker. The parameter qj represents the
inherent difficulty of the task j in discriminating between
the top two answers: for an easy task, qj is closer to 1,
and for a hard task, qj is closer to 1/2. We call qj the
confusion probability. Our goal is to recover the top two
answers (gj , hj) for all j ∈ [m] with high probability at the
minimum possible sampling probability s. We assume that
the model parameters (p, q) are unknown.

We propose the top-two model to reflect common character-
istics of public crowdsourcing datasets, as outlined in Appx.
§A. The most important observation is that the top-two an-
swers dominate the overall answers, and only the second
dominant answer has an incidence rate comparable to the
ground truth. In other words, the incidence rate of the sec-
ond answer falls within the one-sigma range of the ground
truth, indicating a significant overlap. However, such an
overlap is not observed with the third or fourth answers.
This suggests that the assumption of a unique “confusing an-
swer” is adequate to model confusion due to task difficulty.
More details can be found in Appx. §A.

Binary conversion. We provide the main observation on
the structure of A, which will be used to design algorithms
for estimating the top two plausible answers (gj , hj) and the
confusion probability qj for j ∈ [m]. The K-ary task can be
decomposed into (K − 1)-binary tasks as follows (Karger
et al., 2013): define A(k) for 1 ≤ k < K such that the

(i, j)-th entry A
(k)
ij indicates whether the original answer

Aij is greater than k or not, i.e., A(k)
ij = −1 if 1 ≤ Aij ≤ k;

A
(k)
ij = 1 if k < Aij ≤ K; and A

(k)
ij = 0 if Aij = 0. We

show that E[A(k)] is a rank-1 matrix and the singular value
decomposition (SVD) of E[A(k)] can reveal the top-two
answers {(gj , hj)}mj=1 and the confusion probability vector
q.

Proposition 1. For each 1 ≤ k < K, the bi-
nary mapped matrix A(k) ∈ {−1, 0, 1}n×m satisfies
E[A(k)] − s(K−2k)

K 1n×m = 2sp(r(k))⊤, where r(k) =

[r
(k)
1 · · · r(k)m ]⊤ is defined as

Case I: gj > hj

r
(k)
j :=


k
K where k < hj ;
k
K − (1− qj) where hj ≤ k < gj ;
k
K − 1 where gj ≤ k,

Case II: gj < hj

r
(k)
j :=


k
K where k < gj ;
k
K − qj where gj ≤ k < hj ;
k
K − 1 where hj ≤ k.

The proof of Proposition 1 is available in Appendix §F. By
defining ∆r

(k)
j := r

(k)
j − r

(k−1)
j for k ∈ [K] with r

(0)
j := 0

and r
(K)
j := 0 for all j, we have

∆r
(k)
j =


1
K − qj where k = gj ,
1
K − (1− qj) where k = hj ,
1
K otherwise.

(2)

Note that ∆r
(k)
j has its minimum at k = gj and its second

smallest value at k = hj for qj ∈ (1/2, 1]. If one can
specify gj , the task difficulty qj can also be found from
1
K −∆r

(gj)
j . In the next section, we will use this structure

of r(k) for k ∈ [K] to infer the top two answers and the
confusion probability. 2

Remark 1. Our top-two model can be generalized to top-T
(T ≥ 2) model, where it is assumed that for each task there
are T (≤ K) plausible answers with the associated confu-
sion probabilities with respect to the ground truth. Even
for this generalized model, we can define binary-converted
observation matrices A(k), k ∈ [K], which enjoy the rank-
1 structure, and prove the results similar to Proposition 1,
showing that the top T plausible answers and the associ-
ated confusion probabilities can be inferred using the rank-1
structure. More details can be found in the Appendix A.2.

2We assume that η
√
n ≤ ∥p∥2 ≤

√
n for some η > 0, which

ensures that there are only o(n) spammers (pi = 0). We also
assume that ∥r(k)∥2 = Θ(

√
m) for every k ∈ [K], which can be

easily satisfied except for exceptional cases from (2).

3



Recovering Top-Two Answers and Confusion Probability in Multi-Choice Crowdsourcing

4. Proposed Algorithm
In this section, we present an algorithm to estimate the top
two answers {(gj , hj)}mj=1 and the confusion probability
vector q. Our algorithm consists of two stages. In Stage
1, we compute an initial estimate of the top two answers
and the confusion probability q. In Stage 2, we estimate
the worker reliability vector p by using the result of the first
stage, and use the estimated p and q to refine our estimates
for the top two answers. We randomly split the entires of the
original response matrix A ∈ Rn×m into A1 ∈ Rn×m and
A2 ∈ Rn×m with probability s1 and 1 − s1, respectively,
and use only A1 for stage 1 and (A1,A2) for stage 2.

4.1. Stage 1: Initial estimates using SVD

The first stage of our algorithm is presented in Algorithm 1.
In this stage, we use the data matrix A1 ∈ Rn×m to estimate
the left singular vector p∗ := p/∥p∥2 and the scaled right
singular vector ∥p∥2r(k) of E[A(k)] for all k ∈ [K], which
are then used to infer both the top two answers and the
confusion probability by using (2).

The first stage begins with randomly splitting the entries
of A1 ∈ Rn×m again into two independent matrices
B ∈ Rn×m and C ∈ Rn×m with equal probabilities.
We then convert B and C into (K − 1)-binary matrices
B(k) and C(k) for 1 ≤ k < K, defined as B

(k)
ij = −1

if 1 ≤ Bij ≤ k; B
(k)
ij = 1 if k < Bij ≤ K; and

B
(k)
ij = 0 if Bij = 0, and similarly for C(k). Define

X(k) and Y (k) as X(k) := B(k) − s′(K−2k)
K 1n×m and

Y (k) := C(k)− s′(K−2k)
K 1n×m for s′ = s · s1/2. We have

E[X(k)] = E[Y (k)] = s′p(r(k))⊤ from Proposition 1.

We use X(k) and Y (k) to estimate p∗ := p/∥p∥2 and
∥p∥2r(k), respectively. The estimators are denoted by u(k)

and v(k), respectively. We define u(k) as the left singular
vector of X(k) with the largest singular value. Sign ambi-
guity of the singular vector is resolved by defining u(k) as
the one between {u(k),−u(k)} in which at least half of the
entries are positive. After trimming abnormally large com-
ponents of u(k) and defining the trimmed vector as ũ(k), we
calculate v(k) := 1

s′ (Y
(k))⊤ũ(k), which is an estimate for

∥p∥2r(k). By using v(k) for 1 ≤ k < K, we get estimates
for top-two answers (ĝj , ĥj) as in (3) by using the relation
in (2) . Lastly, we estimate ∥p∥2 and use v(k)/∥p∥2 ≈ r(k)

to estimate the confusion probability vector q as in (4).

4.2. Stage 2: Plug-in Maximum Likelihood Estimator
(MLE)

The second stage uses the result of Stage 1 to estimate the
worker reliability vector p. Remind that we randomly split
the original response matrix A into A1 and A2 with proba-

Algorithm 1 Spectral Method for Initial Estimation
(TopTwo1 Algorithm)

Input: data matrix A1 ∈ {0, 1, . . . ,K}n×m and parame-
ter η > 0 where η

√
n ≤ ∥p∥2 ≤

√
n.

Output: estimated top-two answers {(ĝj , ĥj)}mj=1 and con-
fusion probability vector q̂.

1: Randomly split (with equal probabilities) A1 into
B and C, and convert the two matrices into bi-
nary matrices X(k) ∈ {−1, 0, 1}n×m and Y (k) ∈
{−1, 0, 1}n×m for 1 ≤ k < K, respectively, as de-
scribed in Sec. 4.1.

2: Let u(k) be the leading normalized left singular vector
of X(k). Trim the abnormally large components of u(k)

by setting them to zero if u(k)
i > 2

η
√
n

and denote the

resulting vector as ũ(k).
3: Calculate the estimate of ∥p∥r(k) by defining v(k) :=

1
s′ (Y

(k))⊤ũ(k). Assume v(0) := 0 and v(K) := 0.
4: For k ∈ [K], calculate ∆v

(k)
j := v

(k)
j − v

(k−1)
j . Esti-

mate the top-two answers for j ∈ [m] by

ĝj := argmin
k∈[K]

∆v
(k)
j ; ĥj := argmin

k ̸=ĝj ,k∈[K]

∆v
(k)
j . (3)

5: Estimate ∥p∥2 by lj := K
K−2

∑
k ̸=ĝj ,k ̸=ĥj

∆v
(k)
j and

l := 1
m

∑m
j=1 lj .

6: Estimate qj for j ∈ [m] by defining

q̂j := 1/K −∆v
(ĝj)
j /l. (4)

bility s1 and 1− s1, respectively, and use A1 only for Alg.
1. Thus, the estimated top-two answers {(ĝj , ĥj)}mj=1 from
Alg. 1 depend only on A1. We then define the estimator p̂
for worker reliability by comparing the unused data matrix
A2 with the estimated top two answers {(ĝj , ĥj)}mj=1 as

p̂i =
K

(K − 2)

 1

ms(1− s1)

m∑
j=1

1(A2
ij = ĝj or ĥj)−

2

K

 .

(5)

The final step refines the estimates for the top two answers
by using the plug-in MLE where the estimated (p̂, q̂) are
placed in (p, q) at the oracle MLE, which finds (ĝj , ĥj) ∈
[K]2\{(1, 1), (1, 2), . . . , (K,K)} such that (ĝj , ĥj) :=
argmax(a,b)∈[K]2,a̸=b

∑n
i=1 logP(Aij |p, qj , (a, b)) as in

(6). Our complete algorithm is presented in Algorithm 2.

The time complexity of Alg. 2 is O(m2 logm + nmK2),
since the SVD in Alg. 1 can be computed via power iter-
ations within O(m2 logm) steps (Boutsidis et al., 2015),
and the step for finding the pair of answers maximizing (6)
requires O(nmK2) steps.
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Algorithm 2 Plug-in MLE (TopTwo2 Algorithm)

Input: data matrix A ∈ {0, 1, . . . ,K}n×m and the sample
splitting rate s1 > 0.

Output: estimated top two answers {(ĝMLE
j , ĥMLE

j )}mj=1

and confusion probability vector q̂.
1: Randomly split A into A1 and A2 by defining A1 :=

A◦S and A2 = A◦(1n×m−S) where S is an n×m
matrix whose entries are i.i.d. with Bernoulli(s1) and ◦
is an entrywise product.

2: Apply Algorithm 1 to A1 to yield estimates for top-two
answers {(ĝj , ĥj)}mj=1 and confusion probability vector
q̂.

3: By using {(ĝj , ĥj)}mj=1 and A2, calculate the estimate
for worker reliability vector p̂ as in (5).

4: By using the whole A and (p̂, q̂), find the plug-in MLE
estimates (ĝMLE

j , ĥMLE
j ) by

argmax
a,b∈[K]2,a̸=b

n∑
i=1

log

(
Kp̂iq̂j
1− p̂i

+ 1

)
1(Aij = a)

+ log

(
Kp̂i(1− q̂j)

1− p̂i
+ 1

)
1(Aij = b).

(6)

5. Performance Analysis
To state our main theoretical results, we first need to intro-
duce some notation and assumptions. Let µ(i,j)

(a,b),k denote
the probability that a worker i ∈ [n] gives the label k ∈ [K]
for the assigned task j ∈ [m], whose top two answers are
(gj , hj) = (a, b). Note that µ(i,j)

(a,b),k can be written in terms
of (pi, qj) from the distribution in (1) for every a, b, k ∈
[K]3. Let µ(i,j)

(a,b) = [µ
(i,j)
(a,b),1 µ

(i,j)
(a,b),2 · · · µ

(i,j)
(a,b),K ]⊤.

We introduce a quantity that measures the average abil-
ity of workers in distinguishing the ground-truth pair of
top-two answers (gj , hj) from any other pair (a, b) ∈
[K]2/{(gj , hj)} for the task j ∈ [m]. We define

D
(j)

:= min
(gj ,hj) ̸=(a,b)

1

n

n∑
i=1

DKL

(
µ

(i,j)
(gj ,hj)

,µ
(i,j)
(a,b)

)
; (7)

D := min
j∈[m]

D
(j)

, (8)

where DKL(P,Q) :=
∑

i P (i) log(P (i)/Q(i)) is the KL-

divergence between P and Q. Note that D
(j)

is strictly
positive if qj ∈ (1/2, 1) and there exists at least one worker
i with pi > 0, so that (gj , hj) can be distinguished from any
other (a, b) ∈ [K]2/{(gj , hj)} statistically in (1). We de-

fine D as the minimum of D
(j)

over j ∈ [m], indicating the
average ability of workers in distinguishing (gj , hj) from
any other (a, b) for the most difficult task in the set of tasks.

Theorem 1 states the performance guarantees for Algo-
rithm 1 by providing sufficient conditions for achieving
an arbitrarily accurate estimation of the top-two answers
and the confusion probability.

Theorem 1 (Performance Guarantees for Algorithm 1).
For any ϵ, δ1 > 0, if the sampling probability s · s1 =

Ω
(

1
δ21∥p∥2

2
log K

ϵ

)
, Algorithm 1 guarantees the recovery of

the ordered top-two answers (gj , hj) with probability at
least 1− ϵ for any task j ∈ [m] having qj ∈ (1/2, 1), i.e.,

P
(
(ĝj , ĥj) = (gj , hj)

)
≥ 1− ϵ for all j ∈ [m], (9)

and also guarantees the recovery of the confusion probabil-
ity qj with

P (|q̂j − qj | < δ1) ≥ 1− ϵ for all j ∈ [m], (10)

where the number m of tasks is sufficiently large and the
number of workers scales as n = O(m/ logm).

For a task j with qj = 1, it is impossible to recover hj ,
since hj cannot be distinguished from the rest of wrong
labels c ∈ [K]\{gj} statistically from (1). For such tasks,
we can still guarantee the recovery of gj with accuracy
P (ĝj = gj) ≥ 1− ϵ under the conditions in Theorem 1. By
using Theorem 1, we can also find the sufficient conditions
to guarantee the recovery of paired top-two answers for all
tasks and q with an arbitrarily small ℓ∞-norm error with
probability at least 1− ϵ.

Corollary 1. For any ϵ, δ1 > 0, if the sampling probability
s · s1 = Ω

(
1

δ21∥p∥2
2
log mK

ϵ

)
, Algorithm 1 guarantees the

recovery of {(gj , hj)}mj=1 and q with probability at least
1− ϵ as m → ∞ such that

P
(
(ĝj , ĥj) = (gj , hj),∀j ∈ [m]

)
≥ 1− ϵ, and (11)

P (∥q − q̂∥∞ < δ1) ≥ 1− ϵ. (12)

Proofs of Thm. 1 and Cor. 1 are available in Appendix §G.

We next analyze the performance of Algorithm 2, which
uses Algorithm 1 as the first stage. Before providing the
main theorem for Algorithm 2, we state a lemma character-
ing a sufficient condition for estimating the worker reliabil-
ity vector p from (5) with an arbitrarily small ℓ∞ error.

Lemma 1. Conditioned on (ĝj , ĥj) = (gj , hj) for all j ∈
[m], if s(1−s1) = Ω

(
1

δ22m
log n

ϵ

)
, the estimator p̂i defined

in (5) of Algorithm 2 guarantees P (∥p− p̂∥∞ < δ2) ≥
1− ϵ for any ϵ > 0.

Combining Corollary 1 and Lemma 1, we can obtain the
estimators (p̂, q̂) of the worker reliability vector p and the
confusion probability vector q, respectively, with ℓ∞-norm
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error bounded by any arbitrarily small δ > 0 with probabil-
ity at least 1− 2ϵ if

s = s · s1 + s(1− s1) = Ω

(
log(mK/ϵ)

δ2∥p∥22
+

log(n/ϵ)

δ2m

)
= Ω

(
log(mK/ϵ)

δ2∥p∥22

)
(13)

where the last equality is from the assumption that ∥p∥2 =
Θ(

√
n) and n = O(m/ logm). In this regime, the sample

complexity for estimating the task difficulty q is greater than
that required for estimating worker reliability p. To make
the sampling probability s < 1, we need n = Ω(logm).

Our second theorem characterizes the sufficient condition
on the sampling probability s to guarantee the recovery of
the pair of top-two answers for all tasks by (6) of Alg. 2,
when a sufficiently accurate estimation of (p, q) is provided.
Theorem 2. Assume that there is a positive scalar ρ such
that µ(i,j)

(gj ,hj),c
≥ ρ for all (i, j, gj , hj , c) ∈ [n]× [m]× [K]3.

For any ϵ > 0, if (p̂, q̂) are given with

max{∥p−p̂∥∞, ∥q−q̂∥∞} ≤ δ := min

{
ρ

4
,

ρD

4(6 +D)

}
,

(14)
and the sampling probability satisfies

s = Ω

(
log(1/ρ) log(mK2/ϵ) + log(m/ϵ)

nD

)
,

then for any ϵ > 0 the estimates of {(gj , hj)}mj=1 from (6)
of Algorithm 2 guarantees

P
(
(ĝMLE

j , ĥMLE
j ) = (gj , hj),∀j ∈ [m]

)
≥ 1− ϵ. (15)

Proofs of Lemma 1 and Theorem 2 are available in Ap-
pendix §H. The assumption in Theorem 2 that µ(i,j)

(gj ,hj),c
≥ ρ

for some ρ > 0 holds if pi < 1 for all i ∈ [n], i.e., there is
no perfectly reliable worker. This assumption can be easily
satisfied by adding an arbitrary small random noise to the
worker answers as well. By combining the statements in
Corollary 1, Lemma 1, and Theorem 2 with δ1 = δ2 = δ for
δ defined in (14), we get the overall performance guarantee
for Algorithm 2.
Corollary 2 (Performance Guarantees for Algorithm 2). Al-
gorithm 2 guarantees the recovery of top-two answers for all
tasks with P

(
(ĝMLE

j , ĥMLE
j ) = (gj , hj),∀j ∈ [m]

)
≥ 1− ϵ

for any ϵ > 0 if s satisfies

s =Ω

(
log(m/ϵ)

δ2∥p∥22
+

log(m/ϵ)

nD

)
. (16)

In (16), the first term is for guaranteeing the accurate esti-
mate of (p, q) with ℓ∞-norm error bounded by δ, and the

second term is for the recovery of top-two answers from
MLE with high probability. Since ∥p∥22 = Θ(n), the two
terms have the same order but with different constant scal-
ing, depending on model-specific parameters (p, q).

Lastly, we show the optimality of the convergence rates of
Algorithm 1 and Algorithm 2 with respect to two types of
minimax errors, respectively. The proof of Theorem 3 is
available in Appendix §I.
Theorem 3. (a) Let Fp be a set of p ∈ [0, 1]n such that
the collective quality of workers, measured by ∥p∥2, is pa-
rameterized by p as Fp̄ := {p : 1

n∥p∥
2
2 = p}. Assume that

p ≤ 2/3. If the average number (ns) of samples (queries)
per task is less than 1

2p log
(
K−1
Kϵ

)
, then

min
ĝ

max
p∈Fp, g∈[K]m

1

m

∑
j∈[m]

P(ĝj ̸= gj) ≥ ϵ. (17)

(b) There is a universal constant c > 0 such that for any
p ∈ [0, 1]n and q ∈ (1/2, 1]m, if the sampling probability
s ≤ 1/(4nD), then

min
(ĝ,ĥ)

max
(g,h)∈[K]m×[K]m

gj ̸=hj ,∀j[m]

1

m

∑
j∈[m]

P((ĝj , ĥj) ̸= (gj , hj)) ≥ c.

(18)

From part (a) of Theorem 3, it is necessary to have s =
Ω
(
(1/∥p∥22) log(1/ϵ)

)
to make the minimax error in (17)

less than ϵ. Since Thm. 1 shows that Alg. 1 recovers (ĝj , ĥj)
with probability at least 1− ϵ if s = Ω

(
(1/∥p∥22) log(1/ϵ)

)
when s1 = 1, we can conclude that Alg. 1 achieves the
minimax optimal rate for a fixed collective intelligence of
workers, measured by ∥p∥2. From part (b) of Theorem 3,
for any (p, q), unless we have s > 1/(4nD) there exists a
constant fraction of tasks for which the recovered top-two
answers are incorrect. This bound matches with our suffi-
cient condition on s in (16) from Alg. 2 upto logarithmic
factors, as long as δ2∥p∥2 ≳ nD, showing the minimax
optimality of Alg. 2. More discussions on the theoretical
results are available at Appendix §E.

It is also worth comparing our algorithm with the simple
majority voting (MV) scheme where we infer the top-two
answers by counting the majority of the received answers.
Simple analysis shows that the MV scheme requires the
sampling probability s to be ns = Θ

(
( 1n
∑

i pi)
−2 log 1

ϵ

)
to recover (gj , hj) with probability 1− ϵ. Since 1

n∥p∥
2
2 =

1
n

∑
i p

2
i ≥

(
1
n

∑
i pi
)2

, Algorithm 1 achieves strictly better
trade-offs unless pi is the same for all workers i ∈ [n].
For a spammer-hammer model (Karger et al., 2014) where
α ∈ (0, 1) fraction of workers are hammers with pi = 1 and
the rest are spammers with pi = 0, Algorithm 1 requires
ns = Θ

(
1
α log 1

ϵ

)
samples per task, while MV requires

ns = Θ
(

1
α2 log

1
ϵ

)
samples per task to recover top-two

answers with probability 1− ϵ.
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Figure 1. Prediction error in recovering the ordered top-two answers (g, h) for four different scenarios, summarized in Table 1, as the avg.
number of queries per task changes. Our TopTwo2 algorithm achieves the best performance, near the oracle MLE for all the scenarios.

6. Experiments
We evaluate the proposed algorithm under diverse scenarios
of synthetic datasets in Sec. 6.1, and for two applications–in
identifying difficult tasks in real datasets in Sec. 6.2, and
in training neural network models with soft labels defined
from the top-two plausible labels in Sec. 6.3.

6.1. Experiments on synthetic dataset

We compare the empirical performance of Algorithm 1
and Algorithm 2 (referred as TopTwo1 and TopTwo2) with
other baselines: majority voting(MV), MV-D&S and OPT-
D&S (Zhang et al., 2014), PGD (Ma et al., 2018), M-MSR
(Ma & Olshevsky, 2020), MultiSPA-KL and MultiSPA-EM
(Ibrahim et al., 2019), EBCC (Li et al., 2019) and oracle-
MLE. OTP-D&S and MV-D&S assume the D&S model and
use the EM algorithm, initialized with worker confusion
matrices estimated by spectral method or MV, respectively.
PGD, on the other hand, assumes a simpler single-coin D&S
model, which is equivalent to our model (1) with a fixed
qj = 1 for all tasks, and estimates pi of each worker and
uses this estimate to compute the MLE. We choose these
baselines because they have the strongest established guaran-
tees in the literature, and they are all MLE-based approaches,
from which the top-two answers can be inferred. Obviously,
oracle-MLE, which uses the ground-truth model parameters,

Table 1. Parameters for synthetic data experiments under diverse
scenarios.

Worker Task

Easy pi ∈ [0, 1] qj ∈ [0.9, 1]

Hard pi ∈ [0, 1] qj ∈ (0.5, 0.6]

Few-smart 90% pi ∈ [0, 0.1]
qj ∈ (0.5, 1]10% pi ∈ [0.9, 1]

High-variance pi ∈ [0, 0.1]
50% qj ∈ (0.5, 0.6]
50% qj ∈ [0.9, 1.0]

provides the best possible performance since oracle MLE
uses the ground-truth (p, q) from which the synthetic data
is generated. See Appendix §C for more details of these
baselines.

We devise four scenarios described in Table 1 to verify
the robustness of our model for different (p, q) ranges,
at (n,m) = (50, 500) with s ∈ (0, 0.2]. The number of
choices for each task is fixed as 5. Fig. 1 reports the empir-
ical error probability 1

m

∑m
j=1 P((ĝj , ĥj) ̸= (gj , hj)) aver-

aged over 30 runs, with 95% confidence intervals (shaded
region). Four columns correspond to the four scenarios,
respectively. The prediction errors for gj and hj are plotted
in Fig. 6 of Appendix. §D.1.

We can observe that for all considered scenarios, TopTwo2
achieves the best performance, close to the oracle MLE, in
recovering (gj , hj). Depending on the scenario, the reason
for TopTwo2’s outperformance can be explained differently.
For the Easy scenario, since qj is close to 1, it is easy to
distinguish gj from hj , but hard to distinguish hj from other
labels. Our algorithm achieves the best performance in esti-
mating hj by a large margin (Fig. 6), which also leads to a
better performance in estimating (gj , hj) compared to other
baselines. For the Hard scenario, it is difficult to distinguish
gj from hj , but our algorithm using an accurate q̂j can bet-
ter distinguish gj from hj . For Few-smart, our algorithm
achieves the largest gain compared to other methods, since
our algorithm can effectively distinguish few smart workers
from spammers. High-variance shows the effect of having
diverse qj in a dataset.

We remark that our algorithm (TopTwo2) achieves the best
performance, close to that of the oracle MLE, for all sce-
narios, while the next performer changes depending on the
scenario. For example, the OPT D&S is the second best per-
former in the Hard scenario, while it is the worst performer
in the Few-smart scenario. We also show the robustness of
our algorithm to changes in model parameters in Appendix
§D.
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(a) The average prediction error on color comparison tasks (b) Histogram of dist. gap

Figure 2. (a) Prediction error for (gj , hj), gj and hj (from left to right) for color comparison task using real data collected by MTurk.
TopTwo2 algorithm achieves the best performance. (b) Histogram of color distance gap for two task groups, the easy group with the
highest qj(red) and the difficult group with the lowest qj(blue). The difficult group tends to have a smaller color distance gap.

6.2. Experiments on real-world dataset: inferring task
difficulties

We provide experimental results using real-world data col-
lected by MTurk and show that our algorithm can be used
to infer task difficulty. Since publicly available datasets do
not provide information about confusing answers or task
difficulty, we designed a new set of multiple-choice tasks
for which we can identify both. We designed a color com-
parison task in which we asked the crowd to choose, from
six given choices, the color that looks the most like a ref-
erence color of each task. See Fig. 4 in Appx. §A.1 for
example tasks. After randomly generating a reference color
and the six choices, we identified the ground truth and the
most confusing answer for each task by measuring the dis-
tance between colors using the CIEDE2000 color difference
formula (Sharma et al., 2005). If the distance from the ref-
erence color to the ground truth is much shorter than the
distance to the most confusing answer, then the task is con-
sidered easy. We designed 1,000 tasks and distributed them
to 200 workers, collecting 19.5 responses for each task. Af-
ter collecting the data, we subsampled it to simulate how the
prediction error decreases as the number of responses per
task increases. Fig. 2a shows the performance in detecting
(gj , hj), gj and hj , averaged over 10 random sampling, with
a 95% confidence interval (shaded region).

First, we can verify that the ground truth and the most con-
fusing answer we identified by the measured color distance
are valid with the collected data, since the prediction error
actually decreases as the number of queries per task in-
creases. As shown in Fig. 2a, TopTwo2 algorithm achieves
the best performance in detecting (gj , hj), gj and hj in all
ranges. We further investigate the correlation between the
task difficulty - quantified by the distance gap between the
ground truth and the most confusing answer from the ref-
erence color - and the estimated confusion probability qj
across tasks. We select the top 50 most difficult/easiest tasks
according to the estimated confusion probability qj and plot

the histograms of the distance gap for the two groups in
Fig 2b. We can see that the difficult group (blue, with the
lowest qj) tends to have a smaller distance gap than the
easy group (red). This result shows that our algorithm can
identify difficult tasks in real datasets.

6.3. Training neural networks with soft labels having
top-two information

An appealing example where we can use the knowledge
of the second best answer is in training deep neural net-
works for classification tasks. Traditionally, a hard label
(one ground-truth label per image) has been used to train
a classifier. Recent work has shown that using a soft label
(a full label distribution that reflects human perceptual un-
certainty) is sometimes advantageous in obtaining a model
with better generalization ability (Peterson et al., 2019).
However, obtaining an accurate full label distribution re-
quires much higher sample complexity than just recovering
only the ground-truth. For example, Peterson et al. (2019)
provided a CIFAR10H dataset with full human label distri-
butions for 10,000 instances of CIFAR10 test examples by
collecting an average of 50 judgments per image, which is
about 5-10 times larger than the usual datasets (Table 4 in
Appendix A.1).

Our top-two model, on the other hand, can effectively re-
duce the required sample complexity while still providing
the benefit of the soft-label training. To demonstrate this
idea, we train two deep neural network models, VGG-19
and ResNet18, with the soft label vectors having the top-
two (top2) structure extracted from the CIFAR10H dataset3.

3As in (Peterson et al., 2019), we used the original 10,000
test examples from CIFAR10 for training and 50,000 training
examples for testing. Thus, the final accuracy is lower than usual.
Since CIFAR10H is collected from selected ‘reliable’ workers who
answered a set of test examples with an accuracy higher than 75%,
we directly used the top two dominant answers and the fraction
between them to obtain the soft label vector (top2).
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Table 2. Comparison of performances for CIFAR10H dataset with
hard/soft label training

Network Train accuracy Test accuracy

VGG-19 (hard) 97.46±0.59% 77.64±1.54%
VGG-19 (top2) 97.00±0.51% 79.20±1.04%
VGG-19 (full) 96.69±0.48% 78.66±0.97%

ResNet18 (hard) 98.47±0.320% 76.49%±1.80%
ResNet18 (top2) 98.67±0.491% 80.58%±2.36%
ResNet18 (full) 99.19±0.125% 80.93%±2.66%

We then compare the training and testing results of our
method with those of the hard label (hard) and full label
(full) training. Experimental details are given in Appendix
§B. Compared to the original training with hard labels, train-
ing with the top-two soft labels achieves 1.56% and 4.09%
higher test accuracy in VGG-19 and ResNet18, respectively
(averaged over three runs, 150 epochs), as shown in Table
2. This result is also comparable to that of the full label
distribution. It shows that training with the top-two soft
labels can achieve better generalization (test accuracy) than
training with hard labels, because the top-two soft label
contains simple but helpful side information, the most con-
fusable class, and the confusion probability. In Sec. B.4, we
also report an additional experiment showing that training
with the top-two labels is more robust to the label noise than
training with the full label distribution.

7. Discussion
We proposed a new model for multiple-choice crowdsourc-
ing with top-two confusable answers and varying confusion
probabilities across tasks. We provided an algorithm to
infer the top-two answers and the confusion probability.
This work can benefit various query-based data collection
systems, such as MTurk or review systems, by providing
additional information about the task, such as the most plau-
sible answer other than the ground truth and how plausible it
is. This information can be used to quantify the accuracy of
the ground truth or to classify the tasks based on difficulty.
We also demonstrated possible applications of our top-two
model in designing soft labels for training neural networks.
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A. Verification for the Proposed Top-Two Model
We proposed the top-two model to reflect the key attributes of seven datasets including Adult2, Dog, Web, Flag, Food, Plot,
and Color, of which the details are summarized in Appendix A.1.

Table 3 shows empirical distributions of the mean incidence of responses for the top-three dominating answers, sorted by the
dominance proportions, for the six public datasets and the Color dataset that we collected, with the standard deviation over
the tasks in the dataset. In Fig. 3, we also plot empirical distributions of the mean incidence of responses sorted by the
dominant proportion with error bars indicating the standard deviation. The i-th data point represents the average incidence
of the i-th highest response in each task. For example, in Adult2 dataset, the most dominating answer takes 0.8 portion of
the total answers, and the next dominating answer takes 0.14 portion of the total answers on average.

Table 3. Proportions of top-three dominating answers in public datasets

Dataset Ground truth 2nd dominating answer 3rd dominating answer

Adult2 0.80±0.19 0.14±0.13 0.04±0.07
Dog 0.76±0.15 0.22±0.14 0.01±0.04
Web 0.59±0.20 0.25±0.12 0.12±0.09
Flag 0.90±0.16 0.09±0.13 0.01±0.03
Food 0.80±0.18 0.17±0.15 0.02±0.05
Plot 0.62±0.21 0.30±0.16 0.06±0.07

Color 0.43±0.1 0.23±0.06 0.15±0.05

(a) (b) (c) (d)

(e) (f) (g)

Figure 3. Empirical distribution of the mean incidence of responses sorted by the dominant proportion, averaged over all tasks in each
dataset. The i-th data point represents the average incidence of the i-th highest response in each task. The error bars indicate the standard
deviation of the mean incidence of the i-th dominating answer over the tasks in the dataset.

From the table and figure, we can observe that for all the considered public datasets the top-two answers dominate the
overall answers, i.e., about 65-90% of the total answers belong to the top two. Furthermore, the average ratio from the most
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(a) gj = 6 and hj = 5 (b) gj = 4 and hj = 3

(c) gj = 5 and hj = 3 (d) gj = 6 and hj = 2

Figure 4. Example tasks for ‘Color’ dataset where the ground truth g and the most confusing answer h are determined by the color
distance from the reference color (top).

dominating answer to the second one is 4:1, while that between the second and the third is 7.5:1. There often exist overlaps
in the error bars between the ground truth and the second dominating answer, e.g., for Web, Plot, and Color datasets, but no
such overlap is found between the ground truth and the third dominating answer. What we can call a ‘confusing answer’ is
an answer that has an incidence rate comparable to that of the ground truth. In all the considered datasets, only the second
dominating answer shows such a tendency, and thus, we can conclude that the third dominating answer cannot be called a
‘confusing answer’, and the top-two model in (1) well describes the errors in answers caused by confusion.

Moreover, from the public datasets, we also observe that the task difficulty can be quantified by the confusion probability
between the top-two answers. As an example, for the Web dataset, when we select the easiest 500 tasks and hardest 500
tasks by ordering tasks with the ratio of correct answers, the ratio between the ground-truth to the 2nd best answer was
10.7:1 for the easiest group, while it was 1.5:1 for the hardest group. This observation shows that the ratio between the
top-two answers indeed captures task difficulty as does our model parameter for task difficulty qj in (1).

A.1. Datasets

We collect six publicly available multi-class datasets: Adult2, Dog, Web, Flag, Food and Plot. Since these datasets do not
provide information about the most confusing answer or the task difficulty, we additionally create a new dataset called
‘Color’, for which we can identify the most confusing answer and also quantify the task difficulty for all the included tasks.

• Color is a dataset where the task is to find the most similar color to the reference color among six different choices. For
each task, we randomly create a reference color and then choose six choices of colors. The distance from the reference
color to the ground truth color is in between 4.5 and 5.5, the distance to the most confusing answer is in between 5.5
and 6.5, and the distance to the rest of the choices is between 11 and 12, where the distance between the pairs of colors
is measured by CIEDE2000 (Sharma et al., 2005) color difference formulation. The tasks are ordered in terms of their
difficulty levels by measuring the gap between: the distance from the reference color to the ground truth; and that to the
most confusing answer. If the distance from the reference color to the ground truth is much shorter than that to the
most confusing answer, then the task is considered easy. Using MTurk, we collected 19600 labels from 196 workers
for 1000 tasks. Each Human Intelligence Task (HIT) is composed of randomly selected 100 tasks, and we pay $1 to
each worker who completed a HIT. Fig. 4 shows an example task for the Color dataset.

• Adult2 (Ipeirotis et al., 2010) is a 4-class dataset where the task is to classify the web pages into four categories (G,
PG, R, X) depending on the adult level of the websites. This dataset contains 3317 labels for 333 websites which are
offered by 269 workers.

• Dog (Zhang et al., 2014) is a 4-class dataset where the task is to discriminate a breed (out of Norfolk Terrire, Norwich
Terrier, Irish Wolfhound, and Scottich Deerhound) for a given dog. This dataset contains 7354 labels collected from 52
workers for 807 tasks.
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• Web (Zhou et al., 2012) is a 5-class dataset where the task is to determine the relevance of query-URL pairs with a
5-level rating (from 1 to 5). The dataset contains 15567 labels for the 2665 query-URL pairs offered by 177 workers.

• Flag (Krivosheev et al., 2020) is a dataset for multiple-choice tasks where each task is to identify the country for a
given flag from 10 given choices. A total of 1600 votes are collected from 220 workers for the 100 tasks.

• Food (Krivosheev et al., 2020) is a dataset for multiple-choice tasks where each task asks to identify a picture of a
given food or dish from 5 given choices. This dataset contains 1220 labels for 76 tasks collected from 177 workers.

• Plot (Krivosheev et al., 2020) is a dataset for multiple-choice tasks where the task is to identify a movie from a
description of its plot from 10 given choices. Only workers who correctly solved the first 10 test questions can answer
the rest of the tasks. A total of 1937 labels are collected from 122 workers for 100 tasks.

Table 4 shows a summarized information for the introduced datasets.

Table 4. Dataset information

Dataset # workers # tasks # labels or choices sparsity dtask dworker

Adult2 269 333 4 0.037 10.0 12.4
Dog 109 807 4 0.092 10.0 74.0
Web 176 2653 5 0.033 5.9 88.3
Flag 220 100 10 0.073 16.0 7.3
Food 177 54 5 0.125 22.1 6.7
Plot 122 56 10 0.293 35.7 16.4

Color 196 1000 6 0.1 19.5 99.4

A.2. Top-T model: extension of the Top-Two model

In this section, we also show that our top-two model (1) can be generalized to have T ≥ 2 plausible answers. The distribution
of the response Aij can be defined as follows:

Aij =


gjt for t ∈ [T ] w.p. s

(
piqjt +

1−pi

K

)
;

each b ∈ [K]\{gj1, . . . , gjT } w.p. s
(
pi(1−

∑T
t=1 qjt) +

1−pi

K

)
;

0, w.p. 1− s,

(19)

where gj1, . . . , gjT represent the T plausible answers, and qj1, . . . , qjT are the associated confusion probabilities with
respect to the ground truth. Without loss of generality, let the ground truth answer of the task j be gj1, where we assume
qj1 ≥ qj2 · · · ≥ qjT > 1−

∑T
t=1 qjt. Similar to the top-two model, we can define a binary converted observation matrices

A(k) for 1 ≤ k < K, which enjoy the rank-1 structure. The analysis of the binary converted observation matrices reveals
that ∆r

(k)
j in (2) can be represented as below

∆r
(k)
j =

{
1
K − qjt for k = gjt, t ∈ [T ],
1
K otherwise.

(20)

Thus, we can estimate the top-T plausible answers for each task by finding the lowest-T values of ∆r
(k)
j , k ∈ [K]. We

can also obtain qjt from 1
K −∆r

(t)
j . Based on this observation, we can generalize Algorithm 1 of the top-two model to

Algorithm 3 of the top-T model.
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Algorithm 3 Spectral Method for Initial Estimation (Top-T1 Algorithm)

1: Input: data matrix A1 ∈ {0, 1, . . . ,K}n×m and parameter η > 0 where η
√
n ≤ ∥p∥2 ≤

√
n.

2: Randomly split (with equal probabilities) and convert A1 into binary matrices X(k) ∈ {−1, 0, 1}n×m and Y (k) ∈
{−1, 0, 1}n×m for 1 ≤ k < K as described in Sec. 4.1.

3: Let u(k) be the leading normalized left singular vector of X(k). Trim the abnormally large components of u(k) by
setting them to zero if u(k)

i > 2
η
√
n

and denote the resulting vector as ũ(k).

4: Calculate the estimate of ∥p∥r(k) by defining v(k) := 1
s′ (Y

(k))⊤ũ(k). Assume v(0) := 0 and v(K) := 0.
5: For k ∈ [K], calculate ∆v

(k)
j := v

(k)
j − v

(k−1)
j . Estimate the top-T answers for j ∈ [m] by

ĝjt := argmin
k∈[K],k ̸=ĝj1,...,ĝj(t−1)

∆v
(k)
j , t ∈ [T ]. (21)

6: Estimate ∥p∥2 by lj :=
K

K−T

∑
k/∈{gj1,...,gjT } ∆v

(k)
j and l := 1

m

∑m
j=1 lj .

7: Estimate qjt for j ∈ [m] and t ∈ [T ] by defining

q̂jt := 1/K −∆v
(ĝjt)
j /l. (22)

8: Output: estimated top-T answers {ĝj1, . . . , ĝjT }mj=1 and confusion probability matrix q̂.

To proceed to the second stage, we also generalize Algorithm 2 of the top-two model to Algorithm 4 of the top-T model by
defining the estimate of the worker reliability in a similar way as (5), but for the case of the top-T model:

p̂i =
K

(K − T )

 1

ms(1− s1)

m∑
j=1

1(A2
ij ∈ {ĝj1, . . . , ĝjT })−

T

K

 . (23)

We then apply the Maximum Likelihood Estimator (MLE) using p̂ and q̂. See Algorithm 4 for details.

Algorithm 4 Plug-in MLE (Top-T2 Algorithm)

1: Input: data matrix A ∈ {0, 1, . . . ,K}n×m and the sample splitting rate s1 > 0.
2: Randomly split A into A1 and A2 by defining A1 := A ◦ S and A2 = A ◦ (1n×m − S) where S is an n×m matrix

whose entries are i.i.d. with Bern(s1) and ◦ is an entrywise product.
3: Apply Algorithm 1 to A1 to yield estimates for top-T answers {ĝj1, . . . , ĝjT }mj=1 and confusion probability vector q̂.
4: By using {ĝj1, . . . , ĝjT }mj=1 and A2, calculate the estimate p̂ as in (23).
5: By using the whole A and (p̂, q̂), find the plug-in MLE estimates {ĝMLE

j1 , . . . , ĝMLE
jT }mj=1 by

argmax
a1,...,aT∈[K]T

n∑
i=1

T∑
t=1

log

(
Kp̂iq̂jt
1− p̂i

+ 1

)
1(Aij = at) (24)

6: Output: estimated top-two answers {ĝMLE
j1 , . . . , ĝMLE

jT }mj=1

Although theoretical analysis needs to be changed accordingly, the model and algorithms can be easily extended to the
general case of T ≥ 2 plausible answers as above, since the binary-converted observation matrices still enjoy the rank-1
structure. Generalizing the theoretical analysis will be an interesting open problem.
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(a) Images with lowest q (considered to be hard) (b) Images with highest q (considered to be easy)

Figure 5. Training images with (a) lowest and (b) highest confusion probabilities.

B. Experimental Details for Neural Network Training
We show the details of the experiments presented in Sec. 6.3.

B.1. Datasets

The CIFAR10H dataset (Peterson et al., 2019) consists of 511,400 human classifications by 2,571 participants which were
collected via Amazon Mechanical Turk. Each participant classified 200 images, 20 from each category. Every 20 tasks,
a trivial question is presented to prevent random guessing, and participants who scored below 75% were excluded from
the dataset. We present the images with the lowest/highest q from the training samples in Fig 5. The image with a lower q
means that the first answer and the second answer are hard to distinguish.

B.2. Model

We train two simple CNN architectures, VGG-19 and ResNet-18, to show the usefulness of the second answer and the
confusion probability. For each model, our loss function is defined as the cross-entropy between the softmax output and the
two-hot vector (in which the values are q and 1− q for g and h, respectively). We compare the results of our top-two label
training with those of full-distribution training and hard label (one-hot vector) training.

B.3. Training

We train each model using 10-fold cross validation (using 90% of images for training and 10% images for validation) and
average the results across 5 runs. We run a grid search over learning rates, with the base learning rate chosen from {0.1, 0.01,
0.001}. We find 0.1 to be optimal in all cases. We train each model for a maximum of 150 epochs using SGD optimizer with
a momentum of 0.9 and a weight decay of 0.0001. Our neural networks are trained using NVIDIA GeForce 3090 GPUs.

B.4. Training neural networks with corrupted CIFAR10H datasets

The CIFAR10H dataset is collected from workers whose reliability is above 75%, so that the full label distribution is in fact
almost the same as the top-two distribution. To analyze the robustness against the label noise, we conduct an additional
experiment by adding different portions of random responses to the original CIFAR10H dataset. In the experiment, we add
the responses from spammers, who provide random labels on each image, to the original dataset, with the varying ratio of
[0.1, 0.2, 0.3, 0.4, 0.5]. For example, if the ratio of spammers is 0.5, it means that we add the same number of responses
from spammers as the original dataset. The exact number of the added responses is

(# of added responses) =
(spammer ratio)

1− (spammer ratio)
× (# of total responses). (25)

As in the experiments of Sec.6.3, we train two neural networks, ResNet18 and VGG-19, with the top-two label distribution
and the full label distribution as the spammer ratio increases. Table 5 shows the test accuracy of the trained neural networks.
As shown in the table, the top-two label training outperforms the full label training in the high spammer ratio regime. This
is because the training with the full label distribution tries to fit the model to all the collected answers, which include the
responses from spammers. On the other hand, training with the top-two labels is more robust against the label noise, since it
focuses on the simple yet meaningful side information, the ground-truth label and the most confusing label with the ratio
between the two in the collected answers.
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Table 5. Comparison of performances for the corrupted CIFAR10H dataset with top2/full label training

spammer ratio
ResNet18 VGG-19

top-two full top-two full

0.1 80.18±1.30% 80.73±0.79% 78.90±0.72% 78.67±1.45%
0.2 80.30±1.81% 79.79±0.59% 79.10±0.64% 78.65±0.91%
0.3 79.80±0.44% 79.23±0.79% 79.08±1.22% 77.80±1.08%
0.4 79.05±0.78% 76.82±0.75% 79.15±1.46% 77.40±1.09%
0.5 78.40±0.96% 75.88±0.93% 78.22±0.69% 76.11±1.53%

C. Baseline Methods
In this section, we explain the baseline methods with which we compare the performance of our algorithms. To analyze
the performance in recovering the top-two answers, we considered the ML-based algorithms, including the Spectral-EM
algorithm (MV-D&S and OPT-D&S) (Zhang et al., 2014), Projected Gradient Descent (PGD) (Ma et al., 2018), M-MSR
(Ma & Olshevsky, 2020), MultiSPA (Ma & Olshevsky, 2020), and EBCC (Li et al., 2019), which provide a “score” for
each label so that we can recover the top-two answers.

• Spectral-EM algorithm (MV-D&S and OPT-D&S) (Zhang et al., 2014) is a two-stage algorithm for multi-class
crowd labeling problems. These algorithms are built for the D&S model where each worker has his/her own confusion
matrix. In the first stage of the algorithm, the confusion matrix of each worker is estimated via spectral method
(OPT-D&S) or majority voting (MV-D&S), respectively, and in the second stage, the estimates for the confusion
matrices are refined by optimizing the objective function of the D&S estimator via the Expectation Maximization (EM)
algorithm.

• Projected Gradient Descent (PGD) (Ma et al., 2018) is an approach to estimate the skills of each worker in the
single-coin D&S model. The authors formulate the skill estimation problem as a rank-one correlation-matrix completion
problem. They propose a projected gradient descent method to solve the correlation-matrix completion problem.

• M-MSR (Ma & Olshevsky, 2020) algorithm is an approach to estimate the reliability of each worker in the multi-class
D&S model. M-MSR algorithm utilizes that the rank of the response matrix is one. To estimate the reliability of the
workers, they use update rules to find the left singular vector and right singular vector of the response matrix. In this
process, the extreme values are filtered out to guarantee the stable convergence of the algorithm.

• MultiSPA-EM (Ibrahim et al., 2019) is an approach to estimate each worker’s confusion matrix using pairwise co-
occurrence matrix. To estimate the confusion matrices, three SPA (successive projection algorithm)-based algorithms
are proposed; MultiSPA, MultiSPA-KL and MultiSPA-EM. MultiSPA utilizes the second order statistics to obtain
the confusion matrices and the ground truth. MultiSPA-KL is an iterative optimization method to minimize the
KL-divergence between the expectation of the co-occurrences and the empirical co-occurrences, where the initial
estimates are obtained from MultiSPA. MultiSPA-EM is an EM based algorithm where the initial estimates are obtained
from MultiSPA. Since the MultiSPA-EM outperforms MultiSPA and MultiSPA-KL, we only include these two in our
baselines.

• EBCC (Li et al., 2019) algorithm is an enhanced version of the Baysian classifier combination model. The authors
assume that each label has its own subtypes. Each subtype has different probability distribution even if the label is the
same. EBCC algorithm utilizes the Expectation-Maximization (EM) algorithms to recover the hidden variables and
estimates the true labels.

D. Synthetic Experiments
D.1. Additional plots for synthetic data experiments in Sec. 6.1

In Section 6.1, we devised four scenarios described in Table 1 to verify the robustness of our model for various (p, q) ranges,
with (n,m, s) = (50, 500, 0.2). The performance of algorithms is measured by the empirical average error probabilities
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Figure 6. Prediction error for (gj , hj) (top row), gj (middle) and hj (bottom) for four scenarios. Our algorithm (TopTwo2) achieves the
best performance, near the oracle MLE for all the scenarios.

in recovering gj , hj and (gj , hj), i.e., 1
m

∑m
j=1 P(ĝj ̸= gj), 1

m

∑m
j=1 P(ĥj ̸= hj) and 1

m

∑m
j=1 P((ĝj , ĥj) ̸= (gj , hj)) and

plotted in Fig. 6. We can observe that for all the considered scenarios TopTwo2 achieves the best performance, near the
oracle MLE, in recovering (gj , hj). Depending on scenarios though, the reason TopTwo2 outperforms can be explained
differently. For Easy scenario, since qj is close to 1, it becomes easy to distinguish gj from hj but hard to distinguish hj

from other labels. Our algorithm achieves the best performance in estimating hj by a large margin. For Hard scenario,
it becomes hard to distinguish gj and hj , but our algorithm, which uses an accurate q̂j , can better distinguish gj and hj .
For Few-smart, our algorithm achieves the largest gain compared to other methods, since our algorithm can effectively
distinguish few smart workers from spammers. High-variance show the effect of having diverse qj in a dataset.

D.2. Robustness of our methods

In this section, we present a set of four additional synthetic experiments to demonstrate the robustness of our methods, Alg. 1
and Alg. 2 (referred to as TopTwo1 and TopTwo2). In each experiment, we change a parameter of our synthetic error model
and compare the prediction error of our algorithms to the baselines: majority voting(MV), MV-D&S (Zhang et al., 2014),
PGD (Ma et al., 2018), MultiSPA-KL and MultiSPA-EM(Ibrahim et al., 2019), EBCC(Li et al., 2019) and Oracle-MLE.
We measure the performance of each algorithm by the empirical average error probabilties in recovering the ground truth
gj , the most confusing answer hj and the pair of top two (gj , hj), i.e., 1

m

∑m
j=1 P(ĝj ̸= gj), 1

m

∑m
j=1 P(ĥj ̸= hj) and

1
m

∑m
j=1 P((ĝj , ĥj) ̸= (gj , hj)). Obviously, Oracle-MLE provides a lower bound for the performance.

Changing the dimension of observed matrix: We first check the robustness of our methods against the change of
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(a) Effect of the number of workers on the performance

(b) Effect of the number of tasks on the performance

(c) Effect of the variance of worker reliability on the performance

(d) Effect of the variance of task difficulty on the performance

(e) Effect of the portion of spammers on the performance

Figure 7. Prediction error for (gj , hj) (first column), gj (second column), and hj (third column) for five different setups. The solid lines
represent the mean prediction errors of each algorithm averaged over 10 runs, and the shaded regions represent the standard deviations.
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dimensions of the observation matrix A ∈ {0, 1 . . . ,K}n×m with n ≤ m. We vary the number of workers (n) or the
number of tasks (m) while fixing the other dimension. The default values of n and m are 50 and 500, respectively, and
the sampling probability s is fixed as 0.1 throughout the experiments. The worker reliability pi and the task difficulty qj is
sampled uniformly at random from [0, 1] and (1/2, 1], respectively, for all i ∈ [n] and j ∈ [m].

In Fig. 7a and 7b, we report the results when we change n for a fixed m and s, or when we change m for a fixed n and
s, respectively. From Fig. 7a, we can see that as the number of workers increases, the performance of every algorithm
improves since the number of samples per task scales as ns for a fixed s. Our algorithm achieves the performance close to
the Oracle-MLE for all the considered range, which implies that the worker reliabilities {pi} are well estimated with our
methods. From Fig. 7b, we can see that our algorithm achieves a robust performance against the change in the number of
tasks, although the performance gets closer to that of Oracle-MLE as the number of tasks increases. Since our method uses
SVD in the first stage, the larger dimension is beneficial for the concentration of the random perturbation matrix with respect
to the expectation of the observation matrix. This phenomenon is observed for other baseline methods as well, which are
based on the spectral method.

Changing the variance of worker reliability: In this experiment, we change the range of pi, the parameter for worker
skill/reliability, for i ∈ [n], with a fixed mean in order to observe the impact of the variance of the worker reliability on the
prediction error. We randomly sample pi from the window [0.5− x, 0.5 + x] with x varying from 0.05 to 0.25. The mean
of the worker reliability is fixed as 0.5.

As shown in Fig. 7c, when the variance of the worker reliability increases, the baseline methods estimating worker reliabilities
perform better than the majority voting. Our TopTwo2 algorithm achieves the best performance close to Oracle-MLE, as the
standard deviation increases, i.e., as the workers become more heterogeneous.

Changing the variance of task difficulty: We also design an experiment to observe the impact of the variance of qj , j ∈ [m],
the parameter for task difficulty, on the prediction error. We randomly sample qj from the window [0.75− x, 0.75 + x] with
x varying from 0.05 to 0.25. The mean of the worker reliability is fixed as 0.75. If the variance of the task difficulty is small,
it could be sufficient to only estimate the worker reliability since all the tasks have almost the similar task difficulties.

As shown in Fig. 7d, when the variance of the task difficulty increases, our TopTwo2 algorithm performs better than the
other baselines. This is the evidence for the validity of our method in estimating the task difficulty.

Changing the portion of spammers: Spammers who provide random answers always exist in crowdsourcing systems. To
improve the inference performance, it is important to distinguish spammers from reliable workers. In our experimental setup,
we define a spammer as a worker whose reliability parameter pi is in the range [0, 0.1]. We change the portion of spammers
among the workers from 0.1 to 0.9 and compare the prediction error of our methods to those of other baseline methods.

In Fig. 7e, we can see that our algorithm achieves the best performance among all the considered baselines except Oracle-
MLE, which can exactly distinguish spammers from reliable workers. This result demonstrates the superiority of our
methods in detecting spammers compared to other methods.

D.3. Estimating the worker reliability vector and the task difficulty vector

In this section, we examine the accuracy of our estimates for the worker reliability vector p and the task difficulty vector q.
The worker reliability is estimated by p̂ defined in (5) of Algorithm 2 and the task difficulty is estimated by q̂ defined in (4)
of Algorithm 1. To analyze the accuracy of these estimators, we compute the mean squared error (MSE), 1

n∥p̂− p∥22 and
1
m∥q̂ − q∥22, respectively.

To analyze the estimation accuracy for the worker reliability, we first sample pi uniformly at random from [0, 1] for all
i ∈ [n] and fix the worker reliability vector p. Then, we randomly sample the task difficulty vector q ∈ (1/2, 1]m fifty times
and then sample the observation matrices from the distribution (1) for each (p, q) pair with a fixed p. For each observation
matrix, we subsample the data with varying probabilities and apply Algorithm 2 to get the estimate p̂, which is then used to
calculate the MSE of p. We report the MSE averaged over these fifty cases. Similarly, to analyze the estimation accuracy for
the task difficulty, we randomly sample and fix a task difficulty vector q ∈ (1/2, 1]m and generate fifty different observation
matrices while varying the worker reliability vector p. We again report the MSE averaged over these fifty cases. The number
of workers and that of tasks is set to be (50, 500) for the worker reliability estimation, and to be (100, 1000) for the task
difficulty estimation.

In Fig. 8a and 8b, we plot the MSE for p and q, respectively, as the average number of queries per task increases. We can
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see that both for p and q, the MSEs converge to near zero as the average number of queries per task increases. However,
estimating the task difficulty requires more number of samples as our theory (13) suggests.

(a) Mean squared error 1
n
∥p̂− p∥22 (b) Mean squared error 1

m
∥q̂ − q∥22

Figure 8. Mean squared errors in estimating the worker reliability vector p (left) and the task difficulty vector q (right), respectively.

E. Discussion of theoretical results
In this section, we present a discussion of the main theoretical results.

• Theorem 1 asserts that the sampling probability of Ω
(

1
δ21∥p∥2

2
log K

ϵ

)
is sufficient to recover the top-two answers

(gj , hj) for any task j ∈ [m] and to estimate the confusion probability qj with accuracy of |q̂j − qj | < δ1 by Algorithm
1 with probability at least 1 − ϵ. Combined with Theorem 3 part (a), we can see that this sample complexity is the
minimax optimal rate for a fixed collective quality of workers, measured by ∥p∥22.

• Theorem 2 shows that when we have an entrywise bound on the estimated worker reliability vector p and the task
difficulty vector q, the plug-in MLE estimator, used in Algorithm 2, guarantees the recovery of top-two answers if the
sampling probability s = Ω( log(m/ϵ)

nD̄
) where D̄, which depend on (p, q), indicates the average reliability of workers in

distinguishing the top-two answers from any other pairs for the most difficult task. Combined with Theorem 3 part (b),
we can see that this sample complexity is the minimax optimal rate for any (p, q), ignoring the logarithmic terms.

• Combining the conditions for the accurate estimation of model parameters in (13) and the convergence of the plug-in
MLE (Theorem 2), Corollary 2 shows the condition on the sample complexity to guarantee the performance of
Algorithm 2.

F. Proof of Proposition 1
For each task j and label k, define four indicator functions:

Πa(j, k) :=1(gj > k, hj > k),

Πb(j, k) :=1(gj ≤ k, hj > k),

Πc(j, k) :=1(gj > k, hj ≤ k),

Πd(j, k) :=1(gj ≤ k, hj ≤ k),

(26)

which satisfy Πa(j, k) + Πb(j, k) + Πc(j, k) + Πd(j, k) = 1. For notational simplicity, we will often drop (j, k) fron Π∗.
The pmf of A(k) is given by

A
(k)
ij =


−1 with probability s(1− ρ

(k)
ij ),

1 with probability sρ
(k)
ij ,

0 with probability 1− s,

(27)
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where ρ
(k)
ij = Πa(j, k)pi + Πb(j, k)pi(1 − qj) + Πc(j, k)piqj + (K−k)(1−pi)

K , and its expectation is E[A(k)
ij ] =

s(2ρ
(k)
ij − 1). Note that by using Πa = 1 − Πb − Πc − Πd, the probability ρ

(k)
ij can be written as ρ

(k)
ij =

pi
(
qj(Πc −Πb)− (Πc +Πd) +

k
K

)
+ K−k

K . Thus, by defining

r
(k)
j := qj(Πc −Πb)− (Πc +Πd) +

k

K
, (28)

the expectation of A(k)
ij can be written as

E[A(k)
ij ] = s(2ρ

(k)
ij − 1) = s

(
2pir

(k)
j +

K − 2k

K

)
, (29)

and

E[A(k)]− s(K − 2k)

K
1n×m = 2sp(r(k))⊤. (30)

Note that

Case I: gj > hj

Πa(j, k) = 1 where k < hj ,

Πc(j, k) = 1 where hj ≤ k < gj ,

Πd(j, k) = 1 where gj ≤ k;

Case II: gj < hj

Πa(j, k) = 1 where k < gj ,

Πb(j, k) = 1 where gj ≤ k < hj ,

Πd(j, k) = 1 where hj ≤ k.

(31)

Thus, r(k)j in (28) is equal to

Case I: gj > hj

r
(k)
j =


k
K where k < hj ;
k
K − (1− qj) where hj ≤ k < gj ;
k
K − 1 where gj ≤ k,

Case II: gj < hj

r
(k)
j =


k
K where k < gj ;
k
K − qj where gj ≤ k < hj ;
k
K − 1 where hj ≤ k.

G. Performance Analysis of Algorithm 1
G.1. Proofs of Theorem 1 and Corollary 1

In Algorithm 1, we use the data matrix A1, which is obtained by randomly splitting the original data matrix A into A1 and
A2 with probability s1 and (1− s1), respectively. Then, the first stage of Algorithm 1 begins with randomly splitting A1

again into two independent matrices B and C with equal probabilities, and then converting B and C into (K − 1)-binary
matrices B(k) and C(k) as explained in Sec. 3. We define X(k) and Y (k) as X(k) := B(k) − s′(K−2k)

K 1n×m and

Y (k) := C(k) − s′(K−2k)
K 1n×m where s′ = s · s1/2. We have E[X(k)] = E[Y (k)] = s′p(r(k))⊤ from Prop. 1. For

notational simplicity, we will ignore this random splitting for a moment and just pretend that X(k) and Y (k) are sampled
independently with s′ = s throughout this section.

We first outline the proof. Based on the observation that E[X(k)] = sp(r(k))⊤, if E[X(k)] is available we can recover
p∗ = p

∥p∥2
by SVD, and by using p∗ it is possible to recover ∥p∥2r(k), which then reveals {(gj , hj)}mj=1 as well as q from

the relation in (2). To estimate p∗ from X(k), we first bound the spectral norm of the perturbation, ∥X(k) −E[X(k)]∥2. We
then use this bound and Wedin SinΘ theorem to bound sin θ(u(k),p∗) where u(k) is the left singular vector of X(k) with
the largest singular value. We trim the abnormally large components of u(k) and denote the resulting vector by ũ(k). After
trimming, it is still possible to show that sin θ(ũ(k),p∗) can be bounded in the same order as that of sin θ(u(k),p∗). Finally,
we provide an entrywise bound between v(k) = 2

s (Y
(k))⊤ũ(k) and ∥p∥2r(k) in Lemma 5, which is the main lemma to

prove Theorem 1. We state our main technical lemmas first and then prove Theorem 1.

Let us define the perturbation matrix

E := X(k) − E[X(k)] = B(k) − s(K − 2k)

K
1n×m − sp(r(k))⊤ = B(k) − E[B(k)] (32)
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where

B
(k)
ij =


−1 w.p. s(1− ρ

(k)
ij ),

1 w.p. sρ(k)ij ,

0 w.p. 1− s,

(33)

and ρ
(k)
ij = Πa(j, k)pi +Πb(j, k)pi(1− qj) + Πc(j, k)piqj +

(K−k)(1−pi)
K for (Πa,Πb,Πc,Πd) defined in (26).

For the perturbation matrix E in (32), we have

E[Ei,j ] = 0, and |Ei,j | ≤ 2, 1 ≤ i ≤ n, 1 ≤ j ≤ m, (34)

and also

var(Eij) = var(B
(k)
ij ) = E[(B(k)

ij )2]− (E[B(k)
ij ])2

= s− (s(ρ
(k)
ij − 1/2))2 ≤ s.

(35)

Note that {Eij} are independent across all i, j. Define

ν := max

max
i

∑
j

E[E2
i,j ], max

j

∑
i

E[E2
i,j ]

 ≤ max{m,n}s. (36)

By applying the spectral norm bound to random matrices with independent entires, appeared in (Bandeira & Van Handel,
2016) and summarized in Theorem 4, we can bound the spectral norm of E as below.

Lemma 2 (Spectral norm bound of E). With probability 1− (n+m)−8, we have

∥E∥ ≤ 4
√
smax (m,n) + c̃

√
log(n+m) (37)

for some constant c̃ > 0 when m ≥ n. For some sufficiently large m, assuming n = o(m) and s = Ω(log(n+m)/m), the
spectral norm of E can be further bounded by

∥E∥ ≤ 5
√
sm. (38)

Using the bounded spectral norm of E in (38) and applying the Wedin SinΘ theorem, summarized in Theorem 5, we can
bound the angle between u(k) and p∗.

Lemma 3. For some sufficiently large m, assuming n = o(m) and s = Ω(log(n+m)/m), we have

sin θ(u(k),p∗) ≤ Θ(1/
√
sn) (39)

with probability at least 1− (n+m)−8.

Proof. By applying the Wedin SinΘ Theorem (Theorem 5), we have

sin θ(u(k),p∗) ≤
√
2∥E∥

s∥p∥2 · ∥r(k)∥2 − ∥E∥
. (40)

We have ∥p∥2 = Θ(
√
n) and ∥r(k)∥2 = Θ(

√
m) by assumptions on model parameters. By Lemma 2, for some sufficiently

large m, assuming n = o(m) and s = Ω(log(n+m)/m), we have ∥E∥ ≤ 5
√
sm with probability at least 1− (n+m)−8.

Combining these bounds, we get

sin θ(u(k),p∗) ≤ Θ(
√
sm)

Θ(s
√
mn)−Θ(

√
sm)

=
1

Θ (
√
sn)

. (41)

We trim the abnormally large components of u(k) by letting it zero if u(k)
i > 2/(η

√
n) and denote the resulting vector as

ũ(k). This process is required to control the maximum entry size of ũ(k), which is used later in the proof. For the next
lemma, we show that after the trimming process, the norm of ũ(k) is still close to 1 and the angle between ũ(k) and p∗ has
the same order as that of sin θ(u(k),p∗).
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Lemma 4. Given ∥p∗∥2 ≥ η
√
n, we have

∥ũ(k)∥2 ≥
√
1− 50 sin2 θ(u(k),p∗), (42)

sin θ(ũ(k),p∗) ≤ 6
√
2 sin θ(u(k),p∗). (43)

The proof of Lemma 4 is provided in Section G.2.

Finally, we provide our main lemma giving the entrywise bound on the difference between v(k) = 1
s (Y

(k))⊤ũ(k) and
∥p∥2r(k).
Lemma 5 (Entrywise Bound). For any δ1, ϵ > 0, and any task j ∈ [m] and label index k ∈ [K], if the sampling probability

s ≥ Θ
(

1
δ21∥p∥2

2
log 1

ϵ

)
, then we can guarantee

P
(∣∣∣∣1s 〈Y (k)

∗j , ũ(k)
〉
− ∥p∥2r(k)j

∣∣∣∣ < δ1∥p∥2
)

> 1− ϵ (44)

as m → ∞ when n = O(m/ logm).

Proof. For notional simplicity, denote θ(ũ(k),p∗) by θ. To prove (44), we show bounds on two probabilities,

P
(∣∣∣∣1s 〈Y (k)

∗j , ũ(k)
〉
− ∥ũ(k)∥2∥p∥2r(k)j cos θ

∣∣∣∣ > δ1∥p∥2
2

)
< ϵ/2, (45)

P
(∣∣∣∥ũ(k)∥2∥p∥2r(k)j cos θ − ∥p∥2r(k)j

∣∣∣ > δ1∥p∥2
2

)
< ϵ/2. (46)

Then, the triangle inequality implies (44).

We first prove (45). Remind that we do the random splitting of the input matrix A and define the two independent binary-
converted matrices as X(k) and Y (k), for 1 ≤ k < K, which are used to estimate ũ(k) and v(k), respectively. Thus, ũ(k) is
independent from Y (k) and this independence is used when we bound the first and second moments of v(k)j = 1

s ⟨Y
(k)
∗j , ũ(k)⟩.

For any 1 ≤ j ≤ m, the first and second moments of v(k)j = 1
s ⟨Y

(k)
∗j , ũ(k)⟩ satisfy

E
[
1

s

〈
Y

(k)
∗j , ũ(k)

〉]
= ⟨p, ũ(k)⟩r(k)j = ∥p∥2∥ũ(k)∥2(cos θ)r(k)j = Θ(

√
n) (47)

if r(k)j ̸= 0 by Lemma 3 and 4, and

var

(
1

s

〈
Y

(k)
∗j , ũ(k)

〉)
≤ 1

s2

n∑
i=1

(ũ
(k)
i )2E[(Y (k)

ij )2] = Θ

(
1

s

)
(48)

since E[(Y (k)
ij )2] = Θ(s) and

∑n
i=1(ũ

(k)
i )2 = Θ(1) by Lemma 3 and 4. Furthermore, we have max1≤i≤m |Y (k)

ij ũ
(k)
i | ≤

Θ
(

1√
n

)
since ũ

(k)
i ≤ 2

η
√
n

. By applying the Bernstein’s inequality, we can show that

P
(∣∣∣∣1s 〈Y (k)

∗j , ũ(k)
〉
− ∥ũ(k)∥2∥p∥2r(k)j cos θ

∣∣∣∣ > δ1∥p∥2
2

)
≤ 2 exp

(
− Θ(δ21∥p∥22)
Θ
(
1
s

)
+Θ(δ1∥p∥2/

√
n)

)
≤ exp

(
−Θ(sδ21∥p∥22)

) (49)

where the second inequality is due to the assumption ∥p∥2 = Θ(
√
n). To make this probability less than ϵ

2 , it is sufficient to

have s ≥ Ω
(

1
δ21∥p∥2

2
log 1

ϵ

)
.

We next prove (46) by bounding
∣∣∣∥ũ(k)∥2∥p∥2r(k)j cos θ − ∥p∥2r(k)j

∣∣∣. By the triangle inequality, we have∣∣∣∥ũ(k)∥2∥p∥2r(k)j cos θ − ∥p∥2r(k)j

∣∣∣ ≤ ∣∣∣∥ũ(k)∥2∥p∥2r(k)j cos θ − ∥p∥2r(k)j cos θ
∣∣∣

+
∣∣∣∥p∥2r(k)j cos θ − ∥p∥2r(k)j

∣∣∣ . (50)
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Note that

1

∥p∥2
·
∣∣∣∥ũ(k)∥2∥p∥2r(k)j cos θ − ∥p∥2r(k)j cos θ

∣∣∣ = r
(k)
j cos θ

∣∣∣∥ũ(k)∥2 − 1
∣∣∣

≤ Θ(sin2 θ(u(k),p∗)) =
1

Θ (ns)
,

(51)

with probability 1− (n+m)−8 by Lemma 3 and 4, and also note that

1

∥p∥2
·
∣∣∣∥p∥2r(k)j cos θ − ∥p∥2r(k)j

∣∣∣ = r
(k)
j (1− cos θ)

≤ Θ(sin2 θ(u(k),p∗)) =
1

Θ (ns)
,

(52)

with probability 1− (n+m)−8 by Lemma 3 and 4. To make these errors of order 1/Θ(ns) less than δ1
2 , it is sufficient to

have s ≥ Ω
(

1
δ1n

)
.

By combining the above results, it can be guaranteed that
∣∣∣ 1
2s

〈
Y

(k)
∗j , ũ(k)

〉
− ∥p∥2r(k)j

∣∣∣ < δ∥p∥2 with probability at least
1− ϵ, if the sampling probability

s ≥ max

{
Ω

(
1

δ21∥p∥22
log

1

ϵ

)
,Ω

(
1

δ1n

)}
= Ω

(
1

δ21∥p∥22
log

1

ϵ

)
(53)

where the last equality is due to ∥p∥2 = Θ(
√
n). The condition s = Ω(log(n+m)/m) in Lemma 3 is immediately satisfied

by (53) when n = O(m/ logm).

Proof of Theorem 1. By using Lemma 5, we next prove Theorem 1. By applying the union bound over k ∈ [K], if
s ≥ Θ

(
1

δ21∥p∥2
2
log K

ϵ

)
then we have

∥p∥2(r(k)j − δ1) ≤ v
(k)
j =

1

s

〈
Y

(k)
∗j , ũ(k)

〉
≤ ∥p∥2(r(k)j + δ1), ∀k ∈ [K] (54)

for any δ1 > 0 and j ∈ [m] with probability at least 1 − ϵ. Under the condition (54), for any qj ∈ (1/2, 1) and

δ < min
{

2qj−1
2 ,

1−qj
2

}
, we can guarantee that

1

K
− qj + δ <

1

K
− (1− qj)− δ and

1

K
− (1− qj) + δ <

1

K
− δ, (55)

which implies (ĝj , ĥj) = (gj , hj) for (ĝj , ĥj) defined in (3). This proves (9) of Theorem 1.

We next prove (10), the accuracy guarantee in estimating the task difficulty vector q. After estimating ∥p∥2r(k) by
v(k) = 1

s (Y
(k))⊤ũ(k), we estimate ∥p∥2 by calculating l where lj := K

K−2

∑
k ̸=ĝj ,k ̸=ĥj

∆v
(k)
j and l := 1

m

∑m
j=1 lj .

Assume that |∥p∥2 − l| ≤ ∥p∥2δ′. We will specify the required order of δ′ later. Remind that the estimate for qj is defined

as q̂j := 1
K − ∆v

(ĝj)

j

l . Under the condition that ĝj = gj and |vj − ∥p∥2r(k)j | ≤ ∥p∥2δ1, both of which are satisfied under
the conditions of Lemma 5, we have (

1
K − qj − 2δ1

)
1 + δ′

≤
∆v

(ĝj)
j

l
≤
(

1
K − qj + 2δ1

)
1− δ′

. (56)

By the Taylor expansion for 1
1−x = 1 + x+Θ(x2) as x → 0, we have

|q̂j − qj | ≤ 2δ1 + δ′
(

1

K
− qj + 2δ1

)
+Θ(δ′2) = Θ(δ1 + δ′). (57)

25



Recovering Top-Two Answers and Confusion Probability in Multi-Choice Crowdsourcing

Thus, both the order of δ′, which is the estimation error of ∥p∥2, and that of δ, which is the estimation error of ∥p∥2r(k)j ,

govern the estimation accuracy of qj . We next show that we can have δ′ = Θ(δ1). By Lemma 5, we have |vj −∥p∥2r(k)j | ≤
∥p∥2δ1, which implies

∥p∥2(∆r
(k)
j − 2δ1) ≤ ∆v

(k)
j ≤ ∥p∥2(∆r

(k)
j + 2δ1). (58)

Under the condition (ĝj , ĥj) = (gj , hj), since ∆r
(k)
j = 1

K for k ̸= ĝj , ĥj , we have

∥p∥2 − ∥p∥2
2δ1K

K − 2
≤ lj =

K

K − 2

∑
k ̸=ĝj ,k ̸=ĥj

∆v
(k)
j ≤ ∥p∥2 + ∥p∥2

2δ1K

K − 2
, (59)

and thus δ′ = 2δ1K
K−2 = Θ(δ1). Thus, it is enough to have s = Ω

(
1

δ21∥p∥2
2
log K

ϵ

)
to guarantee (10).

Proof of Corollary 1. By using Lemma 5 and taking the union bound over all tasks j ∈ [m] as well as k ∈ [K], we can
prove Corollary 1 in a similar way as that of Theorem 1.

G.2. Proof of Lemma 4

We first prove (42),

∥ũ(k)∥2 ≥
√
1− 50 sin2 θ(u(k),p∗).

Let I be the set of indices 1 ≤ i ≤ n such that u(k)
i ≥ 2

η
√
n

. Then, we have u
(k)
i − p∗i ≥ 1

η
√
n

for all i ∈ I since
p∗i = pi/∥p∥2 ≤ 1

η
√
n

due to the assumption that ∥p∥22 ≥ η2n. Thus, we have

|I|
η2n

≤
∑
i∈I

(u
(k)
i − p∗i )

2 ≤ ∥u(k) − p∗∥22. (60)

By using the triangle inequality, we can show that√∑
i∈I

(
u
(k)
i

)2
≤

√√√√∑
i∈I

(
u
(k)
i − 2

η
√
n

)2

+

√
4|I|
η2n

≤

√√√√∑
i∈I

(
p∗i −

2

η
√
n

)2

+

√∑
i∈I

(
u
(k)
i − p∗i

)2
+

√
4|I|
η2n

≤

√
4|I|
η2n

+

√∑
i∈I

(
u
(k)
i − p∗i

)2
+

√
4|I|
η2n

≤ 5∥u(k) − p∗∥2.

(61)

Therefore, we get
1 ≥ ∥ũ(k)∥22 = 1−

∑
i∈I

(u
(k)
i )2 ≥ 1− 25∥u(k) − p∗∥22. (62)

By the law of cosine, we have

∥p∗ − u(k)∥22 = sin2 θ(u(k),p∗) + (1− cos θ(u(k),p∗))2 = 2− 2 cos θ(u(k),p∗)

= 2

(
1−

√
1− sin2 θ(u(k),p∗)

)
= 2

sin2 θ(u(k),p∗)

1 +
√
1− sin2 θ(u(k),p∗)

≤ 2 sin2 θ(u(k),p∗).

(63)

Combining (62) and (63) proves (42).
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We next prove (43),
sin θ(ũ(k),p∗) ≤ 6

√
2 sin θ(u(k),p∗).

First, note that ∥ũ(k) − u(k)∥22 =
∑

i∈I

(
u
(k)
i

)2
. We have

sin θ(ũ(k),p∗) ≤ ∥ũ(k) − p∥2 ≤ ∥ũ(k) − u(k)∥2 + ∥u(k) − p∗∥2 ≤ 6∥u(k) − p∗∥2 (64)

where the last inequality is from (61). Combined with (63), we get (43).

H. Performance Analysis of Algorithm 2
H.1. Proof of Lemma 1

In this lemma, we show that conditioned on (ĝj , ĥj) = (gj , hj) for all j ∈ [m], if s(1− s1) = Ω
(

1
δ2m

log n
ϵ

)
, the estimator

p̂i defined in (5),

p̂i =
K

(K − 2)

 1

s(1− s1)

 1

m

m∑
j=1

1(A2
ij = ĝj or ĥj)

− 2

K

 ,

guarantees P (∥p− p̂∥∞ < δ2) ≥ 1− ϵ for any ϵ > 0.

Given (ĝj , ĥj) = (gj , hj) for all j ∈ [m], since A2 is independent of (ĝj , ĥj), we have

E
[
1(A2

ij = ĝj or ĥj)
]
= P(A2

ij = ĝj or ĥj) = s(1− s1)

(
K − 2

K
pi +

2

K

)
,

var
(
1(A2

ij = ĝj or ĥj)
)
≤ s(1− s1).

(65)

By applying the Bernstein’s inequality, we can show that

P

∣∣∣∣∣∣
m∑
j=1

(
1(A2

ij = ĝj or ĥj)− s(1− s1)

(
K − 2

K
pi +

2

K

))∣∣∣∣∣∣ > (K − 2)ms(1− s1)δ2
K


≤ exp

−
1
2

(
(K−2)ms(1−s1)δ2

K

)2
ms(1− s1) +

1
3
(K−2)ms(1−s1)δ2

K

 ≤ exp
(
−Θ

(
ms(1− s1)δ

2
2

))
.

(66)

Thus, if the sampling probability satisfies

s(1− s1) = Ω

(
1

mδ22
log

1

ϵ

)
, (67)

then we can guarantee that P(|p̂i − pi| < δ2) ≥ 1− ϵ. By taking the union bound over i ∈ [n], if the sampling probability
satisfies

s(1− s1) = Ω

(
1

mδ22
log

n

ϵ

)
, (68)

then we can guarantee that P (∥p̂− p∥∞ < δ2) ≥ 1− ϵ.

H.2. Proof of Theorem 2

To prove this theorem, we use similar proof techniques from (Zhang et al., 2014). Since the work in (Zhang et al., 2014)
focuses on the recovery of only the ground-truth label for each task, we generalize the techniques to recover not only the
ground-truth label but also the most confusing answer.

We first introduce some notations. Let µ(i,j)
(a,b),k denote the probability that a worker i ∈ [n] gives label k ∈ [K] for the

assigned task j ∈ [m] of which the top-two answers are (gj , hj) = (a, b). Let µ(i,j)
(a,b) = [µ

(i,j)
(a,b),1 µ

(i,j)
(a,b),2 · · · µ

(i,j)
(a,b),K ]⊤.
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We introduce a quantity that measures the average ability of workers in distinguishing the ground-truth pair of top-two
answers (gj , hj) from any other pair (a, b) ∈ [K]2/{(gj , hj)} for the task j ∈ [m]. We define

D
(j)

:= min
(gj ,hj )̸=(a,b)

1

n

n∑
i=1

DKL

(
µ

(i,j)
(gj ,hj)

,µ
(i,j)
(a,b)

)
; D := min

j∈[m]
D

(j)
, (69)

where DKL(P,Q) :=
∑

i P (i) log(P (i)/Q(i)) is the KL-divergence between P and Q. Note that D
(j)

is strictly positive if
qj ∈ (1/2, 1) and there exists at least one worker i with pi > 0 for the distribution (1), so that (gj , hj) can be distinguished

from any other (a, b) ∈ [K]2/{(gj , hj)} statistically. We define D as the minimum of D
(j)

over j ∈ [m], indicating the
average ability of workers in distinguishing (gj , hj) from any other (a, b) for the most difficult task in the set.

Let us define an event that will be shown holding with high probability,

E :

n∑
i=1

K∑
k=1

1(Aij = k) log

µ
(i,j)
(gj ,hj),k

µ
(i,j)
(a,b),k

 ≥ nsD/2 for all j ∈ [m] and (a, b) ∈ [K]× [K]\(gj , hj). (70)

Define

li :=

K∑
k=1

1(Aij = k) log
(
µ
(i,j)
(gj ,hj),k

/µ
(i,j)
(a,b),k

)
. (71)

We can see that l1, . . . , ln are mutually independent on any value of (gj , hj), and each li belongs to the interval [0, log(1/ρ)]
where µ

(i,j)
(gj ,hj),c

≥ ρ for all (i, j, gj , hj , c) ∈ [n]× [m]× [K]3. We can easily show that

E

[
n∑

i=1

li

∣∣∣∣∣(gj , hj)

]
=

n∑
i=1

sDKL

(
µ

(i,j)
(gj ,hj)

,µ
(i,j)
(a,b)

)
. (72)

We define

D :=

n∑
i=1

DKL

(
µ

(i,j)
(gj ,hj)

,µ
(i,j)
(a,b)

)
. (73)

The following lemma shows that the second moment of li is bounded above by the KL-divergence between the label
distribution under (gj , hj) pair and the label distribution under (a, b) pair.

Lemma 6. Conditioning on any value of (gj , hj), we have

E
[
l2i |(gj , hj)

]
≤ 2 log(1/ρ)

1− ρ
sDKL

(
µ

(i,j)
(gj ,hj)

,µ
(i,j)
(a,b)

)
. (74)

The proof of this lemma can be obtained by following the proof of the similar result, Lemma 4 of (Zhang et al., 2014).

According to Lemma 6, the aggregated second moment of li is bounded by

E

[
n∑

i=1

l2i

∣∣∣∣∣(gj , hj)

]
≤ 2 log(1/ρ)

1− ρ

n∑
i=1

sDKL

(
µ

(i,j)
(gj ,hj)

,µ
(i,j)
(a,b)

)
=

2 log(1/ρ)

1− ρ
sD.

(75)

Thus, applying the Bernstein’s inequality, we have

P

[
n∑

i=1

li ≥ sD/2

∣∣∣∣∣(gj , hj)

]
≥ 1− exp

(
−

1
2 (sD/2)2

2 log(1/ρ)
1−ρ sD + 1

3 (2 log(1/ρ))(sD/2)

)
. (76)
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Since ρ ≤ 1/2 and D ≥ nD
(j) ≥ nD, combining the above inequality with union bound over j ∈ [m], we have

P [E ] ≥ 1−mK2 exp

(
− nsD

33 log(1/ρ)

)
. (77)

The maximum likelihood estimator finds a pair of (a, b) ∈ [K]2, a ̸= b, maximizing

(ĝj , ĥj) = argmax
(a,b)∈[K]2,a̸=b

n∏
i=1

P(Aij |p, qj , (a, b))

= argmax
(a,b)∈[K]2,a̸=b

n∑
i=1

logP(Aij |p, qj , (a, b))

= argmax
(a,b)∈[K]2,a̸=b

n∑
i=1

K∑
k=1

1(Aij = k) logµ
(i,j)
(a,b),k. (78)

The plug-in MLE in (6), on the other hand, finds a pair of (a, b) ∈ [K]2, a ̸= b, maximizing

(ĝj , ĥj) = argmax
(a,b)∈[K]2,a ̸=b

n∑
i=1

K∑
k=1

1(Aij = k) log µ̂
(i,j)
(a,b),k (79)

where µ̂
(i,j)
(a,b),k is the estimated probability that a worker i ∈ [n] gives label k ∈ [K] for the assigned task j ∈ [m] of which

the top two answers are (gj , hj) = (a, b) assuming pi = p̂i from (5) and qj = q̂j from (4) in the distribution (1). Thus, for
the plug-in MLE to correctly find the ground-truth top two answers (gj , hj), we need to satisfy the following event:

n∑
i=1

K∑
k=1

1(Aij = k) log
(
µ̂
(i,j)
(gj ,hj),k

/µ̂
(i,j)
(a,b),k

)
≥ 0 for all (a, b) ∈ [K]× [K]\(gj , hj). (80)

For any arbitrary (a, b) ̸= (gj , hj), consider the quantity

Q(a,b) :=

n∑
i=1

K∑
k=1

1(Aij = k) log
(
µ̂
(i,j)
(gj ,hj),k

/µ̂
(i,j)
(a,b),k

)
, (81)

which can be written as

Q(a,b) =

n∑
i=1

K∑
k=1

1(Aij = k) log
µ
(i,j)
(gj ,hj),k

µ
(i,j)
(a,b),k

+

n∑
i=1

K∑
k=1

1(Aij = k)

log
 µ̂

(i,j)
(gj ,hj),k

µ
(i,j)
(gj ,hj),k

− log

 µ̂
(i,j)
(a,b),k

µ
(i,j)
(a,b),k

 . (82)

Assuming that there exist ρ > δ3 such that

µ
(i,j)
(a,b),k ≥ ρ and |µ̂(i,j)

(a,b),k − µ
(i,j)
(a,b),k| ≤ δ3 for all i ∈ [n], j ∈ [m], (a, b) ∈ [K]2, (83)

we have

max
i∈[n],k∈[K]

log
 µ̂

(i,j)
(gj ,hj),k

µ
(i,j)
(gj ,hj),k

− log

 µ̂
(i,j)
(a,b),k

µ
(i,j)
(a,b),k

 ≤ 2 log

(
ρ

ρ− δ3

)
. (84)

By the Bernstein’s inequality, we also have

P

[∣∣∣∣∣
n∑

i=1

K∑
k=1

1(Aij = k)− ns

∣∣∣∣∣ > ns/2

]
≤ exp

(
−

1
2 (ns/2)

2

ns+ 1
3 (ns/2)

)
= exp

(
−3ns

28

)
. (85)

By taking the union bound over j ∈ [m], we have

P

[∣∣∣∣∣
n∑

i=1

K∑
k=1

1(Aij = k)− ns

∣∣∣∣∣ > ns/2 for any j ∈ [m]

]
≤ m exp

(
−3ns

28

)
. (86)
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Under the intersection of the event
∣∣∣∑n

i=1

∑K
k=1 1(Aij = k)− ns

∣∣∣ ≤ ns/2 for all j ∈ [m] and the event E , we can
guarantee

Q(a,b) =

n∑
i=1

K∑
k=1

1(Aij = k) log
µ
(i,j)
(gj ,hj),k

µ
(i,j)
(a,b),k

+

n∑
i=1

K∑
k=1

1(Aij = k)

log
 µ̂

(i,j)
(gj ,hj),k

µ
(i,j)
(gj ,hj),k

− log

 µ̂
(i,j)
(a,b),k

µ
(i,j)
(a,b),k


≥ nsD

2
− 3ns log

(
ρ

ρ− δ3

)
≥ ns

(
D

2
− 3δ3

ρ− δ3

)
> 0

(87)

for every j ∈ [m] where the last inequality holds if

δ3 < ρ
D

6 +D
. (88)

In summary, under that the event
∣∣∣∑n

i=1

∑K
k=1 1(Aij = k)− ns

∣∣∣ ≤ ns/2 for all j ∈ [m] and the event E hold, if we have
δ3 such that

|µ̂(i,j)
(a,b),k − µ

(i,j)
(a,b),k| ≤ δ3 for all i ∈ [n], j ∈ [m], (a, b) ∈ [K]2 (89)

and

δ3 < ρ and δ3 < ρ
D

6 +D
, (90)

then we can guarantee that the plug-in MLE in (79) successfully recovers the pair of top two (gj , hj) for all the tasks
j ∈ [m]. To make the right-hand side of (77) and (86) less than ϵ/2, it is sufficient to have

s = Ω

(
log(1/ρ) log(mK2/ϵ) + log(m/ϵ)

nD

)
. (91)

Lastly, when we have
max{∥p− p̂∥∞, ∥q − q̂∥∞} ≤ δ, (92)

we can guarantee that
|µ̂(i,j)

(a,b),k − µ
(i,j)
(a,b),k| ≤ 4δ := δ3. (93)

Thus, it is sufficient to guarantee (92) with

δ < min

{
ρ

4
,

ρD

4(6 +D)

}
. (94)

I. Proof of Theorem 3
I.1. Proof of part (a)

To prove this minimax bound, we use the similar arguments from (Karger et al., 2014). In particular, we consider a
spammer-hammer model such that

pi =

{
0, for 1 ≤ i ≤ ⌊(1− p)n⌋
1, otherwise.

(95)

Assume that total lj workers randomly sampled from [n] provide answers for the task j. Under the spammer-hammer model,
the oracle estimator makes a mistake on task j with probability (K − 1)/K if it is only assigned to spammers. When lj is
the number of assignments, we have

P(ĝj ̸= gj) =
K − 1

K
(1− p)lj . (96)

By convexity and using Jensen’s inequality, the average probability of error is lower bounded by

1

m

∑
j∈[m]

P(ĝj ̸= gj) ≥
K − 1

K
(1− p)l (97)
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where 1
m

∑
i∈[m] li ≤ l. By assuming p ≤ 2/3, we have (1− p) ≥ e−(p+p2). Thus,

min
ĝ

max
p∈Fp, g∈[K]m

1

m

∑
j∈[m]

P(ĝj ̸= gj) ≥
K − 1

K
e−(p+p2)l ≥ K − 1

K
e−2pl. (98)

The inequality in (98) implies that if l is less than 1
2p log

(
K−1
Kϵ

)
, then no algorithm can make the minimax error in (98)

less than ϵ. Since the average number of queries per task in our model is ns, it implies that it is necessary to have
s = Ω

(
1

∥p∥2
2
log 1

ϵ

)
.

I.2. Proof of part (b)

To prove the second part of the theorem, we use proof techniques from (Zhang et al., 2014), but generalizes the results for
pair of top two answers. We assume that jc ∈ [m], (gc, hc) ∈ [K]2 and (ac, bc) ∈ [K]2 are the task index and the pairs of
labels such that

D =
1

n

n∑
i=1

DKL

(
µ

(i,jc)
(gc,hc)

,µ
(i,jc)
(ac,bc)

)
(99)

for D defined in (69).

Let Q be a uniform distribution over the set {(gc, hc), (ac, bc)}m. For any (ĝ, ĥ), we have

max
(v,u)∈[K]m×[K]m

vj ̸=uj ,∀j[m]

E

 m∑
j=1

1((ĝj , ĥj) ̸= (gj , hj))
∣∣∣(g,h) = (v,u)


≥

m∑
j=1

∑
(v,u)∈{(gc,hc),(ac,bc)}m

Q((v,u))E
[
1((ĝj , ĥj) ̸= (gj , hj))

∣∣∣(g,h) = (v,u)
] (100)

Let A := {Aij : i ∈ [n], j ∈ [m]} be the set of observations. Define two probability measures P0 and P1, such that P0 is
the measure of A conditioned on (gj , hj) = (gc, hc), while P1 is that on (gj , hj) = (ac, bc). Then, we can have∑

(v,u)∈{(gc,hc),(ac,bc)}m

Q((v,u))E
[
1((ĝj , ĥj) ̸= (gj , hj))

∣∣∣(g,h) = (v,u)
]

= Q((gj , hj) = (gc, hc))P0((ĝj , ĥj) ̸= (gc, hc)) +Q((gj , hj) = (ac, bc))P1((ĝj , ĥj) ̸= (ac, bc))

≥ 1

2
− 1

2
∥P0 − P1∥TV

≥ 1

2
− 1

4

√
DKL(P0,P1).

(101)

where the second to the last inequality is by Le Cam’s method and the last inequality is by Pinsker’s inequality.4

Conditioned on (gj , hj), the set of random variables Aj := {Aij : i ∈ [n]} are independent of A\Aj for both P0 and P1,
and thus

DKL(P0,P1) = DKL(P0(Aj),P1(Aj)) + DKL(P0(A\Aj),P1(A\Aj)) = DKL(P0(Aj),P1(Aj)) (102)

where P(X) denote the distribution of X with respect to the probability measure P. Given (gj , hj), since A1j , . . . , Anj are
independent, we can show that

DKL(P0(Aj),P1(Aj)) =

n∑
i=1

DKL(P0(Aij),P1(Aij))

=

n∑
i=1

(
(1− s) log

1− s

1− s
+ sDKL

(
µ

(i,j)
(gc,hc)

,µ
(i,j)
(ac,bc)

))
≥ snD.

(103)

4The total variation distance between probability distributions P and Q defined on a set X is defined as the maximum difference
between probabilities they assign on subsets of X : ∥P −Q∥TV := supA⊂X |P (A)−Q(A)|.
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Combining (100)– (103), we have

max
(v,u)∈[K]m×[K]m

vj ̸=uj ,∀j[m]

E

 1

m

m∑
j=1

1((ĝj , ĥj) ̸= (gj , hj))
∣∣∣(g,h) = (v,u)


≥ 1

2
− 1

4

√
snD.

(104)

Thus, if s ≤ 1
4nD

, then the above inequality is lower bounded by 3/8. This completes the proof.

J. Useful Inequalities
In this section, we summarize the useful inequalities used in the proof of the main results.

The following inequality, which appeared in (Bandeira & Van Handel, 2016) provides a non-asymptotic spectral norm bound
for random matrices with independent random entries.

Theorem 4 (Spectral norm bound of a random matrice with independent entries). Consider a random matrix X ∈ Rn×m,
whose entries are independently generated and obey

E[Xi,j ] = 0, and |Xi,j | ≤ B, 1 ≤ i ≤ n, 1 ≤ j ≤ m. (105)

Define

ν := max

max
i

∑
j

E[X2
i,j ], max

j

∑
i

E[X2
i,j ]

 . (106)

Then there exists some universal constant c > 0 such that for any t > 0,

P
{
∥X∥ ≥ 4

√
ν + t

}
≤ (n+m) exp

(
− t2

cB2

)
. (107)

We also present a useful corollary of Theorem 4, which can be shown from (107) by setting c̃ =
√
9c and t =

B
√
9c log(n+m).

Corollary 3 (Corollary of Theorem 4). If E[X2
i,j ] ≤ σ2 for all i, j and satisfying conditions in Theorem 4, then we have

∥X∥ ≤ 4σ
√

max(m,n) + c̃B
√
log(n+m) (108)

with probability 1− (n+m)−8 for some constant c̃ > 0.

We next summarize the eigenspace perturbation theory for asymmetric matrices with singular value composition (SVD).
Suppose X := [X0,X1] and Z := [Z0,Z1] are orthonormal matrices. When we define the distance between two subspaces
X0 and Z0 by

dist(X0,Z0) := ∥X0X
⊤
0 −Z0Z

⊤
0 ∥, (109)

then we have
dist(X0,Z0) = ∥X⊤

0 Z1∥ = ∥Z⊤
0 X1∥. (110)

Given ∥X⊤
0 Z0∥ ≤ 1, we write SVD of X⊤

0 Z0 ∈ Rr×r as X⊤
0 Z0 := U cosΘV ⊤ where cosΘ = diag(cos θ1, . . . , cos θr).

We call {θ1, . . . , θr} principal angles between X0 and Z0. Then, we have

∥X⊤
0 Z1∥ = ∥ sinΘ∥ = max{| sin θ1|, · · · , | sin θr|}. (111)

Let M∗ and M = M∗+E be two matrices in Rn×m with n ≤ m, whose SVD are represented by M∗ =
∑n

i=1 σ
∗
i u

∗
i v

∗
i
⊤

and M =
∑n

i=1 σiuivi
⊤, where σ1 ≥ · · · ≥ σn (resp. σ∗

1 ≥ · · · ≥ σ∗
n). Let us define

U0 := [u1, · · · ,ur] ∈ Rn×r, V0 := [v1, · · · ,vr] ∈ Rm×r. (112)

The matrices U∗
0 and V ∗

0 are defined analogously.
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Theorem 5 (Wedin sinΘ Theorem). If ∥E∥ < σ∗
r − σ∗

r+1, then one has

max{∥dist(U0,U
∗
0 )∥, ∥dist(V0,V

∗
0 )∥} ≤

√
2∥E∥

σ∗
r − σ∗

r+1 − ∥E∥
, (113)

where U∗
0 (V ∗

0 ) and U0 (V0) are subspaces spanned by the largest r left (right) singular vectors of M∗ and M , respecively.

Lastly, we also write down two useful concentration inequalities.

Theorem 6 (Hoeffding). Let X1, X2, . . . , Xn be independent random variables such that Xi ∈ [ai, bi] for 1 ≤ i ≤ n. Then,
we have

P

[∣∣∣∣∣
n∑

i=1

(Xi − E[Xi])

∣∣∣∣∣ > t

]
≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
. (114)

Theorem 7 (Bernstein). Let X1, X2, . . . , Xn be independent random variables such that Xi ∈ [ai, bi] for 1 ≤ i ≤ n. Let
C := max1≤i≤n(bi − ai) and σ2 =

∑n
i=1 var(Xi). Then we have

P

[∣∣∣∣∣
n∑

i=1

(Xi − E[Xi])

∣∣∣∣∣ > t

]
≤ 2 exp

(
− t2/2

σ2 + C · t/3

)
. (115)
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