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Abstract

We study how to efficiently perform A/B/n test-
ing for a high-volume of short-lived treatments.
We formulate the problem as a multiple-play ban-
dits model. In each round a set of k actions ar-
rive. Each action is available for w rounds and
has an unknown reward rate. In each round, the
learner selects a multiset of n actions and imme-
diately observes the realized rewards. We aim
to minimize the average loss under a random in-
put model where the instance is randomly drawn
from a known prior distribution D. We show
that if k = O(nρ) for some ρ > 0, our policy
achieves Õ(n−min{ρ, 12 (1+ 1

w )−1}) average loss on
a sufficiently large class of prior distributions. We
also complement this result by showing that ev-
ery policy suffers Ω(n−min{ρ, 12}) average loss on
the same class of distributions. We further val-
idate the effectiveness of our policy through a
large-scale field experiment on Glance, a content
card-serving platform.

1. Introduction
Modern platforms leverage randomized experiments to
make informed decisions from a given set of alternatives.
As a particularly challenging scenario, these alternatives
can potentially have at the same time (i) high volume, with
thousands of new items being released each hour, and (ii)
short lifetime, due to the transient nature of the contents.
This challenge arises from, for example, recommending
short-lived content on a video-sharing platform.

Orthogonal to lifetime, the problem is similarly well un-
derstood when there is a low volume of contents relative
to the number of users - dedicated exploration methods,
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such as standard A/B/n testing, are sufficient for finding the
most appealing content for the users; see, e.g., (Kohavi &
Longbotham, 2017).

Naturally, then, the most challenging settings are where the
contents to be selected are short-lived and have high volume,
which occur in a variety of applications.
(A) Recommender Systems. From online advertising to so-
cial networks, platforms are sometimes faced with a massive
amount of short-lived contents to be recommended to users.
For example, more than 210 million Snaps were created on
Snapchat each day in 2020, most of which expired within
just 24 hours (Vuleta, 2021). The brevity of the lifetime can
either be caused by the features of the content (e.g. breaking
news) itself or by the transient nature of user attentions. The
platform needs to decide which contents to appear at the top
of the user news feeds to maximize user engagement.
(B) Website Optimization. In internet marketing, online
platforms perform multi-variate A/B/n testing (e.g., (Mc-
Farland, 2012; Yang et al., 2017)) to test different designs
of their user interface. For example, LinkedIn runs over
400 concurrent experiments per day to compare different
website designs, with the goal of encouraging users to es-
tablish or refine their personal profiles, or increasing the
subscriptions to LinkedIn Premium (Xu et al., 2015). The
combinatorial nature of the decision space results in a high
volume of items to test. Specifically, the number of possible
designs can be exponential in the number of features (e.g.,
logos, font, background color, etc.).

However, these items can have a short life. For example,
considering the non-stationarity of the underlying environ-
ment (say, due to seasonality or societal events), any estima-
tion is only reliable for a short amount of time. A simple
approach is to partition the time horizon into short segments,
in which the conversion rates of the designs are approxi-
mately constant, and then view the same design in different
segments as separate copies.

Adding to this challenge is personalization. A common and
naive approach is to cluster the users and solve the problem
for each cluster separately. However, when restricting to a
cluster, the number of users becomes much smaller while
the number of actions remains the same. In other words,
personalization would substantially limit the resources avail-
able for experimentation, rendering the problem harder.
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Thus motivated, we study how to efficiently identify the
effective items from a high volume of short-lived candidates.
To encapsulate the key features of the problem, we propose
the Short-lived High-volume Bandits (SLHVB) problem.
We employ a multiple-play bandit framework with the fol-
lowing key features:
1) Multiple-play. In each round, we can choose each action
(or arm) multiple times as long as the total number of plays
is n, which corresponds to the number of user interactions
in this time period;1

2) High-Volume of Arrivals. In each round, a set of k = nρ

actions arrive where ρ > 0;
3) Short Lifetime. Each arms is available for w rounds,
which is a known, small constant;
4) Random Input Model (RIM). The reward rates are drawn
from a fixed known distribution. Our analysis focuses on the
average performance over all instances, rather than against
the worst-case instance.

We present a policy that recursively refines the exploration
for up to w times and compares it against what is best
achievable for different regimes of ρ > 0.

1.1. Our Contributions

This work contributes to the literature of multi-armed ban-
dits and online controlled experiments in the following
ways.
1) A Novel and Practical Formulation. Our first contribution
is formulating an online learning model that faithfully mod-
els a ubiquitous problem faced by online platforms. Our
formulation considers a practical metric - the average loss -
which better reflects the quality of a policy than worst-case
metrics, which are more common in previous literature.
2) Average Regret for Batched Bandits. As a subroutine
for our showing main result, we show that the Batched
Successive Elimination algorithm (Gao et al., 2019) for the
Batched Bandits (BB) problem achieves Õ((k/n)

`
`+2 ) aver-

age regret using ` rounds of adaptivity whenever ρ ≥ `−1
2`+1 .2

In particular, for ` ≥ 2, this bound is asymptotically bet-
ter than the optimal Õ((k/n)1/2 · n2−`) worst-case regret.
This contrast is strongest when ρ = 1/2 - in this case our
policy has average regret n−1/2+O(1/`) whereas the optimal
worst-case regret is Õ(n−1/4+2−`).
3) Policy for SLHVB. We show that any policy for BB with
R(n, k) average regret can be converted into a policy for
SLHVB with Õ (n−ρ +R(n, k)) average loss. Our average
regret bound for BB then implies an Õ(n−min{ρ, w

2(w+1)
})

average loss bound for SLHVB, by choosing a suitable `
depending on ρ and w.
4) Nearly Matching Lower Bound. We show that any policy

1Do not confuse this “n” with the “n” in the term “A/B/n”
testing - the latte is actually our k, i.e., the number of treatments.

2All big-O’s are with respect to n→∞, with ρ fixed.

for SLHVB suffers an Ω(n−min{ρ, 12}) average loss. Fur-
ther, we juxtapose this result with a lower bound on the
worst-case loss which is higher, and hence highlights the
value of our RIM.
5) Large-Scale Field Experiment. Finally and most impor-
tantly, we validated the effectiveness of our policy in a field
experiment via collaboration with Glance, a leading lock-
screen content platform in India. This firm faces exactly
the aforementioned challenge: they generate hundreds of
content cards on an hourly basis, which are available for
at most 48 hours. Their current recommender is based on
a state-of-the-art Deep Neural Network (DNN), which is
time-consuming to re-train and hence unable to utilize user
feedback in a timely manner. In a field experiment, we
observed that our 1-Layered Sieve policy outperforms their
DNN-based recommender by 4− 7% in user engagement.

1.2. Related Work

Our problem is a variant of the Multi-Armed Bandits (MAB)
problem (Lai et al., 1985). Three lines of work are most
related to ours: multiple-play bandits, mortal bandits and
high-volume Bandits.

Multiple-play Bandits. In this variant, several arms are
selected in each round. Many results in single-play bandits
can be generalized to the multi-play variant, for example,
(Komiyama et al., 2015) showed that the instance dependent
regret bound for Thompson sampling can be generalized
to the multi-play setting. One motivation of the multi-play
variant is online ranking, see e.g., (Radlinski et al., 2008;
Lagrée et al., 2016; Gauthier et al., 2022), where the learner
presents an ordered list of items to each user, viewed sequen-
tially under certain click model. Unlike in our formulation,
the arms have infinite lifetime. Further, there is no arrival of
new arms, so the learner does not need to take into consider-
ation the ages of the arms.

Mortality of Arms. A quintessential motivation for the
mortality of arms is online advertising. In the classical
pay-by-click model, the ad broker matches each ad from a
large corpus to contents, and is paid by the advertiser (i.e.
who created the ad) only when an ad is clicked. As the
key feature, an ad becomes unavailable when its advertiser’s
budget is run out. Thus motivated, (Chakrabarti et al., 2008)
introduced the mortal bandits problem and considered two
death models. In the deterministic model, each arm dies
after being selected for a certain number of times, which
corresponds to the advertisers’ budget in the advertising
example. In the stochastic lifetime model, an arm dies with
a fixed probability every time it is selected. Relatedly, in
rotting bandits (Levine et al., 2017), each arm’s reward
rate decays in the number of times it has been selected. In
particular, if the reward function is an indicator function,
then effectively each arm has a finite lifetime.
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Motivated by demand learning in assortment planning,
(Farias & Madan, 2011) considered the irrevocable ban-
dits problem that bears both the multi-play and mortality
features: arms are selected in batches and discarded imme-
diately once selected. Unlike in this work, however, none of
these models considered arrivals, and hence the learner does
not need to take into consideration the age of the actions.

High Volume of Arms. Most existing work concerning
large volume of arms considered the worst-case regret of a
policy, i.e., the regret on the worst input in a given family
(e.g. (Berry et al., 1997; Zhang & Frazier, 2021)). As a
distinctive feature, in this work we consider a random input
model where the reward rates follow a known distribution,
and perform an average case analysis. As we will soon see,
our formulation leads to theoretical results that would be
otherwise impossible.

(Wang et al., 2008) also assumed that the reward rates of the
arms are independently drawn from a common distribution
such that the probability of being ε-optimal is O(εβ) where
β ∈ [0, 1] is a known constant. However, unlike in our
problem, there are no arrivals and hence the policy does
not need to balance the exploration for items with different
ages.

Finally, we are aware of another variant of MAB closely
related to the multi-play bandits (and hence to this work).

Low-Adaptive Bandits Algorithms. In the batched ban-
dits problem (Perchet et al., 2016; Agarwal et al., 2017)
we aim to achieve low regret using low adaptivity. Unlike
in the multi-play setting, here the learner can partition the
time horizon [T ] into w batches where w is a given con-
stant, and choose a batch (i.e., a multiset) of arms based on
the realizations in the previous batches. Alternatively, w
can be interpreted as a constraint on the adaptivity of the
policy. In the classical setting, the learner has unlimited
adaptivity, i.e., w = T . (Gao et al., 2019) showed that
for any k arms, we can achieve Õ(

√
kT ) regret whenever

w = Ω(log log T ), which is optimal among all policies with
arbitrary adaptivity.

2. Formulation
Suppose at the start of each round t = 1, 2, · · · , a set At of
k actions (or arms) arrives, available in rounds t, . . . , t+w.
We call w the lifetime and viewed it as a small constant. In
each round, the learner selects a multiset of n available arms
- each arm can be chosen multiple times, as long as the total
number of plays is n. If an arm a is selected m times, the
learner immediately observes i.i.d. rewards X1, . . . , Xm

with mean µa.3 For simplicity, we consider only Bernoulli
random variables, although the analysis can be generalized

3“i.i.d.” stands for “identically independently distributed”

to subgaussian reward distributions in a straightforward
manner.

For concreteness, let us relate the above formulation to the
recommendation problem. Most online platforms retrieve
user interaction data and update the predictions periodically.
A round corresponds to such a period. Further, n corre-
sponds to the number of user impressions in a round, and
is assumed to be independent of the quality of the recom-
mendation. Selecting a multiset of arms corresponds to
recommending exactly one item to each impression.

A Random Input Model. Unlike most work in MAB, here
we consider a Random Input Model (RIM) where µa’s are
assumed be drawn i.i.d. from a known distribution D. This
is realistic in practice as D can be approximated using past
data. In contrast to the minimax framework, this formulation
better reflects the reality and more importantly, enables us
to obtain theoretical guarantees that would be otherwise
impossible; see Section 3.

As a standard assumption in statistical learning (Ghosal,
2001; Petrone & Wasserman, 2002; Audibert & Tsybakov,
2007), we assume the density of D is bounded from above
and below away from 0, although our analysis extends to
more general distributions (with possibly weaker guaran-
tees).

Assumption 2.1 (Bounded Density Assumption). The dis-
tribution D admits a density function f with a compact
support C, and there exist constants C1, C2 > 0 such that
C1 ≤ f(x) ≤ C2 for all x ∈ C. W.l.o.g.4 we assume
C = [0, 1].

The Average Loss. The procedure of selecting arms can be
encoded by a policy π = (πt) satisfying

∑
a∈Att−w

πt(a) =

n for each t, where At
′

t :=
⋃t′
s=tAs for 0 < t < t′. The

expected reward in round t is then
∑
a πt(a) · µ(a). The

problem is easy if µa’s were known. In fact, let a∗t =
arg max{µa : a ∈ Att−w}, then the optimal policy is given
by π∗t (a) = n · 1[a = a∗t ].

When reward rates are unknown, the performance of a policy
is measured by the following notion of average loss.5 We
first define the finite-time loss. For any integer T ≥ w and
reward rates µ = {µa}, consider

Lossn(π;T, µ) :=
1

nT
·E

 T∑
t=1

∑
a∈Att−w

πt(a) · (µ∗t − µa)

 ,
where the expectation is only over the reward realizations
but not µ. To characterize the long-run performance of the
system, let T →∞ and define the average loss (or simply,

4“w.l.o.g.” stands for “without loss of generality”
5To avoid confusions, we use the term “loss” for SLHVB and

“regret” for Batched Bandits in Section 4 to prevent confusions.
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loss) as

Lossn(π) := lim
T→∞

Eµ∼D [Lossn(π;T, µ)] .

We are interested in how rapidly Lossn(π) vanishes given a
fixed ρ > 0.

3. Lower Bounds
We first show that every policy suffers Ω(n−min{ρ, 12}) av-
erage loss. We defer the details to Appendix A and only
explain the high level ideas here. Consider the average loss
Lt given by

Lt =
1

n
· E

 ∑
a∈Att−w

πt(a) · (µ∗t − µa)

 ,
where µ∗t = µmax(Att−w). By linearity of expectation, it
suffices to lower bound Lt. We will show that the regret
is large in each of the following two cases. First consider
the case where πt(At) ≥ n

2 , i.e., the policy sufficiently
explores the arms arriving at t. Due to the RIM and by
Assumption 2.1, the reward rates µa’s are approximately
evenly spaced. Since there are wk arms available at any
time, the gap between the best and second best arms a, a′ is
approximately 1

wk , formally, µa−µa′ & 1
wk . Consequently,

if the arriving batch At does not contain the best available
arm, i.e., a∗t /∈ At, then µ(a∗t )−µmax(At) & 1

wk .Moreover,
by symmetry a∗t appears in each of the w available batches
equally likely, so the above event occurs with probability
1− 1

w ≥
1
2 , we have Lt & 1

2 ·
1
wk ∼

1
w · n

−ρ.

Now consider the other case, πt(At) < n
2 , i.e., At is

under-explored in round t. Consider the event a∗t ∈ At.
Then, by an argument similar to the first case, we have
µ(a∗t ) − µmax

(
At−wt−1

)
∼ 1

wk . Further, this event occurs
with probability 1

w , so in this case Lt & 1
w ·

1
wk = 1

w2n
−ρ.

Thus in both cases, we have Lt ≥ 1
w2n

−ρ, as formally
stated below. We defer the proof to Appendix A.1.

Proposition 3.1 (Lower Bound). For any policy π and ρ ≥
0, we have Lossn(π) ≥ 1

12w2 · n−ρ.

However, this bound becomes very weak when ρ is large.
We next present a lower bound specific to ρ ≥ 1

2 . We argue
that to avoid an Ω(n−1/2) regret, a policy has to identify
an n−1/2-optimal arm a, i.e., µa ≥ µ∗t − O(n−1/2). To
this goal, by Assumption 2.1, the learner needs to explore
& n1/2 distinct arms, leading to an Ω(n1/2) regret. We
formally state the second lower bound below. We defer the
proof to Appendix A.2.

Proposition 3.2 (Lower Bound, ρ > 1
2 ). If ρ ≥ 1

2 , then for
any policy π, we have Lossn(π) ≥ 1

96w2 · n−1/2.

Note that when ρ = 1/2, the above two lower bounds have

the same asymptotic order. By combining the above two
lower bounds, we immediately obtain the following.
Theorem 3.3 (Lower Bound). For any ρ > 0 and policy π,
it holds that Lossn(π) ≥ 1

96w2 · n−min{ρ,1/2}.

Finally, we present a lower bound on the worst-case regret
that highlights the advantage of the RIM. We show that no
policy achieves o(1) worst-case regret, defined as

Loss′n(π) := max
µ

lim
T→∞

Loss(π;T, µ),

where max is over all instances 0 ≤ µ ≤ 1.
Proposition 3.4 (Worst-case Regret). For any policy π and
lifetime w > 0, we have Loss′n(π) ≥ 1

2w2.

This bound can be proved by constructing an instance with
binary rewards, such that in each round there is exactly one
arm a with µa = 1.

4. Upper Bounds
In this section, we establish the connections to the Batched
Bandits (BB) problem. We first explain how a semi-adaptive
algorithm for BB can be converted into a policy for SLHVB,
and show how the guarantees translate from one problem
to another. Then, we consider a variant of the Batched Suc-
cessive Elimination (BSE) algorithm (Gao et al., 2019) and
analyze its regret. Finally, using this result, we obtain a pol-
icy for the SLHVB problem with Õ(n−min{ρ, 12 ·(1+ 1

w )−1})
average loss. We defer the details to Appendix C.

4.1. Batched Bandits

In the BB problem (Perchet et al., 2016), the learner is given
k arms, n slots, and an adaptivity level ` ≥ 1. In each phase
i = 0, 1, . . . , `, the learner selects a multiset6 Mi of arms
such that

∑`
i=0 |Mi| = n. Each time an arm a is selected, a

reward is randomly drawn from a Bernoulli distribution with
unknown reward rate µa, and is immediately observed. If
an arm is selected multiple times in one phase, the realized
rewards may be different. The goal is to maximize the
expected total reward.

Given an instance (µa)a∈[k], the regret7 of an algorithm A
for BB is defined as

Regn(A;µ) :=
1

n
· E

∑
a∈[k]

(µ∗ − µa) ·Na


where µ∗ = arg maxa∈[k]{µa} and Na is the number of
times an arm a is selected. Most existing work for MAB

6an easy way to remember the indexing rule: Mi is the batch
of arms selected when using the i-th chance of being adaptive.

7To avoid confusions, we use synonymous terms “algorithm”
for BB and “policy” for SLHVB; for the objective we use “regret”
for BB and “loss” for SLHVB.
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considered the worst-case regret

Regwc
n (A) := max

µ∈[0,1]k
Regn(A;µ).

Analogous to the notion of average loss for the SLHVB
problem, for BB we define the average regret over all in-
stances drawn from a distribution D as

Regavg
n (A) = Eµ∼D [Regn(A;µ)] .

An appealing class of algorithms is the semi-adaptive al-
gorithms, where the cardinality of each batch Mi of arms
selected are decided in advance non-adaptively and the
selection of arms in each batch depends on the reward real-
izations adaptively.

Definition 4.1 (Semi-adaptive Algorithm). Given an adap-
tivity level ` > 0, a semi-adaptive algorithm is specified by
(i) grid sizes ε0, . . . , ε`−1 ∈ (0, 1) with

∑`−1
i=0 εi < 1, and

(ii) a family of decision rules

Aj : ([k]× R)nj−1 → [k]nj−nj−1

for j = 0, . . . , ` where8

nj :=


∑j
i=0 εin, if j = 0, . . . , `− 1,

n, if j = `,

0, if j = −1.

(Gao et al., 2019) proposed the following Batched Succes-
sive Elimination (BSE) algorithm. In each phase the algo-
rithm keeps track of a subset Si ⊆ [k] of surviving arms
(or simply survivors) that serve as the candidates for the
optimal arm, computed in the following manner. Initially
S0 = [k]. In each phase i = 0, . . . , `− 1, the algorithm ex-
plores arms in Si uniformly, i.e., selects each arm εin/|Si|
times. Finally in the last phase, i.e., phase `, we arbitrarily
choose an arm from S`. For completeness, we formally
state the algorithm in Algorithm 1.

(Gao et al., 2019) analyzed the performance of the BSE
algorithm under two types of grids. The first is called the
minimax grid: let c = n

1

1−2−` = Õ(
√
n · n2−`), we re-

cursive define εi+1 = c
√
εi where ε0 = c. The second

is called geometric grid, as the batch sizes form a geomet-
ric progression. Specifically, let c = n1/`, recursively we
define εi+1 = c · εi for ` = 1, . . . , `− 1.

As the name suggests, the BSE algorithm under the minimax
grid achieves the minimax regret. The geometric grid, on
the other hand, is shown to achieve nearly-optimal instance-
dependent regret. We rephrase (Gao et al., 2019)’s main
result as follows.

8To avoid integrality issues, we assume εin/|Si| is an integer.
This does not affect the asymptotic order of our bounds.

Theorem 4.2 (Theorem 1 of (Gao et al., 2019)). Given
any adaptivity level `, denote by BSEminimax

` and BSEgeo
`

the BSE algorithms under the minimax and geometric
grids. Then, for any k-armed instance, it holds that
Regwc

n (BSEminimax
` ) = Õ(

√
k/n · n2−`). Further, if the

highest and second highest reward rates differ by ∆, then
Regwc

n (BSEgeo
` ) = Õ(n

1
`−1 · k/∆).

Algorithm 1 Batched Successive Elimination Policy
BSE(ε0, . . . , ε`−1; k′) for Batched Bandits.

1: Input:
`: adaptivity level
ε0, . . . , ε`−1 ∈ (0, 1): exploration intensities
n: number of arms to be selected in total
A: a set of k arms

2: Let Ã be a uniformly random subset of A of size k′

3: for i = 0, 1, ..., `− 1 do
4: if |Si| = 1 then
5: Set S` = Si; Break
6: end if
7: if |Si| ≥ 2 then
8: ni ←

⌊
εin
|Si|

⌋
9: for a ∈ Si do

10: Select arm a for ni times and observe rewards
Xa,1, ..., Xa,ni

11: Xa ← 1
ni

∑ni
j=1Xa,j

12: end for
13: Xmax ← max

{
Xa : a ∈ Si

}
14: Si+1 = {a ∈ Si : |Xa − Xmax| ≤

3n
−1/2
i log1/2 n}

15: end if
16: end for
17: Select any arm in S` for n−

∑`−1
i=0bεinc times

Apparently, the worst-case regret bound trivially holds for
average regret. On the other hand, the worst-case regret
of BSEgeo

` depends on the parameter ∆, which is random
under the RIM. By Assumption 2.1, we have Eµ[∆−1] =

Θ̃(k), immediately implying an Õ(k2n
1
`−1) bound on the

average regret, as summarized below.
Corollary 4.3 (Average Regret of BSE). For any adaptivity
level ` ≥ 1, we have Regavg

n (BSEminimax
` ) = Õ(

√
k/n ·

n2−`) and Regavg
n (BSEgeo

` ) = Õ(k2n−(1− 1
` )).

In particular, when ` = O(log log n), we have n2−` = Õ(1)
and hence the bound in Theorem 4.2 becomes Õ(

√
k/n).

Surprisingly, this matches the Ω(
√
k/n) lower bound for

unlimited adaptivity level; see, e.g., (Auer et al., 2002).

4.2. Breaking the
√
k/n Bound

Using a different geometric grid, we obtain a stronger bound
on the average regret for the BSE algorithm, compared to
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the Õ(
√
k/n) bound in Corollary 4.7. More precisely, the

common ratio in this geometric progression is k/n, whereas
in (Gao et al., 2019) the dependence only depends on n.
With some foresight, let’s consider the following choice of
exploration intensities.

Definition 4.4 (Revised Geometric Grid). For any adaptiv-
ity level ` and i ≤ `, we define ε?i,` = (k/n)

(`−i)/(`+2) for
integers i = 0, . . . , `− 1. For each fixed `, denote by BSE?`
the algorithm BSE` with grid size (ε?0,`, . . . , ε

?
`−1,`).

Our bound for a fixed ` requires ρ to be larger than the
following threshold, otherwise there is no need for having `
phases.

Definition 4.5 (Threshold Exponent). For each integer ` ≥
1, we define the threshold exponent as θ` := `−1

2`+1 .

To see why we need ρ to be large, observe that by the RIM,
µa’s are ∼ n−ρ distance apart. On the other hand, if ρ is
small, the confidence intervals are expected to be narrower
than n−ρ with strictly less than ` phases, and hence there is
no need for extra layers.

More concretely, suppose ` = 2 and consider ρ = 0.04 <
θ2 = 1/5. To see why the second phase is redundant, note
that by Definition 4.4, ε?0 = Õ((k/n)1/2), so each arm is
selected ∼ ε?0n/k = (n/k)1/2 = n0.48 times upon arrival.
Thus, the confidence interval of each arm after selecting the
first batch of arms has width ∼ (n0.48)−1/2 = n−0.24. On
the other hand, the reward rates are spaced at n−ρ = n−0.04

distance apart on average. Therefore, the optimal arm in At
is likely to be identified after just one phase.

Theorem 4.6 (Average Regret of BSE?` ). For any adaptiv-
ity level ` with ρ ≥ θ`, the average regret of the BSE algo-
rithm under the revised geometric grids can be bounded as
Regavg

n (BSE?` ) = Õ((k/n)`/(`+2)).

The proof of this result crucially relies on the RIM. We
argue that due to the RIM, the number of surviving arms
is bounded by a function in n, ρ, j w.h.p.9 after a num-
ber j of phases. Consequently, each surviving arm then is
guaranteed at least a certain amount of slots in phase j + 1.

As a caveat, the above argument breaks when there remains
only one surviving arm after a number of phases. This event,
however, occurs with low probability, since ρ is greater than
the threshold exponent.

Note that average regret becomes lower as ` increases. But
` can not be arbitrarily high since we required θ` < ρ. To
find the maximal feasible `, consider the following meta-
algorithm: If ρ < 1/2, choose the maximum ` with ρ ≥ θ`.
Equivalently, choose ` = `∗(ρ) := b 1+ρ

1−2ρc. If ρ ≥ 1
2 , then

the condition ρ ≥ θ` holds for any `, and so we can choose

9We say an event occurs “w.h.p.” (which stands for “with high
probability”) if it has probability 1− nΩ(1).

arbitrarily large `. We formally state this result as follows.

Corollary 4.7 (Explicit Form of the Average Regret). The
average regret of the BSE algorithm under the revised geo-
metric grids satisfies the following:
(i) If 0 < ρ < 1

2 , then for adaptivity level `∗(ρ) =
⌊

1+ρ
1−2ρ

⌋
the average regret can be bounded as

Regavg
n

(
BSE?`∗(ρ)

)
= Õ

(k
n

) `∗(ρ)
`∗(ρ)+2

 .

(ii) If ρ ≥ 1
2 , then for any adaptivity level ` ≥ 1, the average

regret can be bounded as

Regavg
n (BSE?` ) = Õ

((
k

n

) `
`+2

)
.

In particular, Regavg
n (BSE?` ) = (k/n)1−O(1/`) as `→∞.

Note that n2−` > 1 for any `, so the Õ(
√
k/n ·n2−`) bound

in Theorem 4.2 is no better than Õ((k/n)1/2). In contrast,
note that whenever ρ ≥ 1/5, we have `∗(ρ) ≥ 2, so the
bound in Corollary 4.7 is stronger.

This contrast becomes sharper as ρ increases. For example,
with ρ = 1/3, we have `∗(ρ) = 4, and hence Reg?`∗(ρ) =

Õ((k/n)2/3), which is better than Õ((k/n)1/2). In the
extreme case, for ε > 0 and ρ = 1

2 − ε we have `∗(ρ) =

Ω(1/ε) and hence (k/n)Ω(1/ε), which is much stronger a
guarantee than Õ((k/n)1/2).

4.3. From Regret to Loss

A semi-adaptive algorithm for BB induces the following
policy for SLHVB. Let εi be the grid sizes, which is usually
chosen such that

∑`−1
j=0 εi = o(n), e.g., as in Definition 4.4.

At each time t, the induced policy uses εin slots to perform
the i-th phase of the BB algorithm on At−i, i.e., the arms
arriving at time t − i. Meanwhile, we use the remaining
(1 −

∑`−1
i=0 εi)n slots for “exploitation”; see Algorithm 2

for a formal statement.

As a nice property, the induced policy of any semi-adaptive
algorithm selects exactly n arms in each round and is hence
valid for SLHVB. In fact, suppose the semi-adaptive policy
for BB has grid sizes (εi). Using the notations in Algorithm
2, for each round t and each phase j = 0, . . . , `, an arm
a ∈ At−j is selected N t

j,a times. By definition of εj , we
have

∑
a∈At−j N

t
j,a = εjn. Summing over all j’s, the total

number of arms selected is

∑̀
j=0

∑
a∈At−j

N t
j,a =

`−1∑
j=0

εjn+

n− `−1∑
j=0

εjn

 = n.

6
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Algorithm 2 Induced Policy π[A; k′] for SLHV Bandits
1: Input:

A: a semi-adaptive algorithm for BB
k′: cardinality of the random subset of arms

2: for t = 1, 2, . . . do
3: Sample a random subset Ãt of At of size k′

4: At ← Ãt
5: for j = 0, . . . , ` do
6: for a ∈ At−j do
7: Query A for the number N t

j,a of times to select
arm a in the j-th batch

8: Select a for N t
j,a times, and return the rewards

to A
9: end for

10: end for
11: end for

Note that in Algorithm 2, we only use age-` arms for “ex-
ploitation”. This is not practical – an obviously better pol-
icy would exploit the empirically best arm in At−`t−w =⋃w
j=`At−j rather than just in At−`. We choose to state

the policy in this way for simplicity of analysis. By doing
this, the loss only increases by Õ(n−ρ), which is on the
same order as the Ω̃(n−ρ) lower bound in Theorem 3.1, and
is hence not essential.

We can convert the regret of any semi-adaptive BB algo-
rithm to the loss of the induced SLHVB policy as follows.

Proposition 4.8 (Regret-to-Loss Conversion). Suppose A
is a semi-adaptive algorithm with average regretR(n, k) on
any BB instance with k arms and n slots. Then for any k′,
the loss of the induced policy π[A, k′] for SLHVB satisfies
Lossn(π[A, k′]) = Õ(1/k′ + ρ−1n−ρ +R(n, k′)).

We explain the high level idea and defer the details to Ap-
pendix B. The term 1/k′ captures the gap between the opti-
mal reward rate in the resampled subset and the original set
of arms. The second term, n−ρ = 1/k, captures the loss due
to the reward uncertainty of new arrivals – we have to decide
how many times to choose them without any knowledge of
their qualities apart from the RIM assumption. The final
term, R(n, k′), bounds the average regret on the resampled
subset, which contains k′ arms.

4.4. Loss of the Induced Policy

The average regret bound in Proposition 4.6 and the regret-
to-less conversion formula in Proposition 4.8 immediately
lead to a loss bound for the induced SLHVB policy. To
formalize this, we first recapitulate some notations. Given a
semi-adaptive algorithm A for BB, we defined π[A, k′] as
the induced policy for SLHVB with resampling size k′. Let
BSE?(`, k′) := π[BSE?` , k

′] be the SLHVB policy induced
by the BSE algorithm with the revised geometric grid (ε?j;`)

specified in Definition 4.4.

Proposition 4.9 (Loss of the Induced Policy). If ` ≤ w and
ρ ≥ θ`, then

Lossn (BSE? (`, k)) = Õ
(
n−ρ + n(ρ−1)· `

`+2

)
=

{
Õ (n−ρ) , if ρ < `

2(`+1) ,

Õ
(
n(ρ−1)· `

`+2

)
, otherwise.

(1)

Different from the previous subsections, we now have an
extra lifetime constraint that ` ≤ w. Our meta-policy, called
the Hybrid policy, chooses suitable ` for any given ρ; see
Algorithm 3).

Algorithm 3 Hybrid Policy H(ρ;w)

1: If ρ < 1
5 then set ` = 1 and k′ = k.

2: If 1
5 ≤ ρ < w

2w+2 , then set k′ = k and choose any
` ≤ w such that θ` = `−1

2`+1 ≤ ρ <
`

2`+2 .
3: If ρ ≥ w

2w+2 , then set ` = w and k′ = n
w

2w+2 .
4: Invoke BSE?(`, k′).

We prove the following in Appendix D.

Theorem 4.10 (Loss of the Hybrid Policy). For any SLHVB
instance with n slots per round, volume exponent ρ > 0
and lifetime w ≥ 1, the average loss of the Hybrid policy
satisfies Lossn(H(ρ;w)) = Õ(ρ−1 · n−min{ρ, 12 (1+ 1

w )−1}).

To better understand the impact of the lifetime w, observe
that for w = 1, 2, the regret bounds are asymptotically
r1(n) := n−min{ρ,1/4} and r2(n) := n−min{ρ,1/3}. In
particular, when ρ > 1/4, we have r2 = o(r1) as n→∞.

5. Field Experiment
We further validated the effectiveness of our policy in a
field experiment, via collaboration with Glance, a leading
lock-screen content platform that faces the aforementioned
challenge. Specifically, their marketing team curates around
200 content cards (or simply, cards) per hour, and around
70% of them expire in 48 hours. Each card consists of a link
to some external content (e.g., video, news or article), along
with a short text description; see Figure 1. The firm needs
to recommend cards to users with the goal of maximizing
the total user engagement, measured by the total duration
of the interactions and the number of click-throughs.

This problem can be cast as an SLHVB problem, assuming
that the total impressions is independent of the recommen-
dations. Two key quantities are of particular interest for
each card: (i) the click-through rate (CTR) and (ii) the av-
erage duration per impression. Both metrics are unknown
when a card is released. We mix the above two metrics by
considering the conversions. A conversion occurs if either a

7
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Figure 1. Glance’s content cards. The image and text summarize
the content, and by clicking on the link the user is shown the
details.

click-through occurs or the duration reaches a threshold of
θ = 5 seconds. For simplicity, we assume that the rewards
across different impressions are i.i.d. random variables.

The platform sends cards to the users on an hourly basis.
For each user, the platform replaces the cards that the user
has viewed in the past with new content cards, provided the
device is connected to the internet. The users can swipe
through the cards stored in the platform’s app. When a
user is interested in the content, they can click on the pro-
vided link and be redirected to an external source for further
engagement, and then be redirected back to the app when
finished. To decide which cards to send to each user, the firm
deployed a recommender system based on a state-of-the-art
Deep Neural Network (DNN). This DNN predicts, for each
pair of user and card, the expected conversion probability,
using (i) the user interaction history and (ii) the card’s text,
image features.

Although the current recommender system works reason-
ably well, there is a considerable potential for improvement.
Most notably, the current system only uses the user feed-
back to update the users’ behavioral signature for future
prediction, and does not directly leverage the feedback in
making recommendations for similar users. In particular,
they do not use the feedback to adjust the predictions on the
conversion rates directly. This may have caused substantial
loss in user engagement.

It is thus vital for the platform to find a recommendation
policy that (i) can learn the true conversion rates of new
cards quickly using user interaction data and (ii) is computa-
tionally simple to deploy. Our policy is well-suited for this
task. We defer the implementation details to Appendix E.

We perform a detailed analysis on the field experiment result
and show that the simplest version of our policy outperforms
the DNN-based recommender by about 4% in total dura-
tion (see Figure 2) and nearly 7% in the total number of
click-throughs per-user-per-day; see Figure 3. We defer the
detailed analysis in Appendix F.

Figure 2. Duration per user-day pair.

Figure 3. Click-through per impression.
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A. Details of the Lower Bounds
A.1. Proof of Proposition 3.1

Consider the event

Wt−1 =

{
1− 2

(w − 1)k
≤ µmax(At−1

t−w) ≤ 1− 1

(w − 1)k

}
.

We first show that this event occurs with large probability.

Lemma A.1. If K ≥ 10, then P(Wt−1) ≥ 1
8 .

Proof. Denote µmax = µmax(At−1
t−w). Let H =

{
µmax ≥ 1− 1

(w−1)k

}
and H ′ =

{
µmax < 1− 2

(w−1)k

}
. Then for any

k ≥ 10, we have

P
[
H
]

= P
[
µmax < 1− 1

(w − 1)k

]
=

(
1− 1

(w − 1)k

)(w−1)k

≥ 3

4
· e−1,

and thus P[H] ≤ 1− 3
4e . Moreover, since P[H ′] =

(
1− 2

(w−1)k

) (w−1)k
2 ·2

≤ e−2, we conclude that

P[Wt−1] ≥ 1− P[H ′]− P[H] ≥ 1−
(

1− 3

4e

)
− e−2 >

1

8
.

Thus, by giving up a constant factor in the loss, we may restrict our attention on the event Wt−1. For each time period t,
define probability measure Pt(·) = P[·|Wt−1] and Et(·) = E[·|Wt−1]. Consider the event that at time t, the policy selects
arms from At at least n/2 times, i.e., Et =

{∑
a∈At πt(a) ≥ n

2

}
. Further, define

B−t =

{
µmax(At) ≤ µmax(At−1

t−w)− 1

k

}
and B+

t =

{
µmax(At) ≥ µmax(At−1

t−w) +
1

wk

}
.

Observe that

Et(Lt) = Et(Lt|Et ∩ B−t ) · Pt(Et ∩ B−t ) + Et(Lt|Et ∩ B+
t ) · Pt(Et ∩ B+

t )

+ Et(Lt|Et ∩ B−t ) · Pt(Et ∩ B−t ) + Et(Lt|Et ∩ B+
t ) · Pt(Et ∩ B+

t )

≥ Et[Lt|Et ∩ B−t ] · Pt(Et ∩ B−t ) + Et(Lt|Et ∩ B+
t ) · Pt(Et ∩ B+

t ). (2)

We next lower bound the above two terms. Note that the event in the first term, i.e., Et ∩ B−t , says that the policy selects
arms from At for at least n/2 times, but the best arm in At is suboptimal (w.r.t. µmax(Att−w)) by 1/k. Intuitively, when this
event occurs, the policy suffers at least n2 ·

1
k = n

2k loss in this round. On the other hand, the event in the other term, i.e.,
Et ∩ B+

t , says that the policy selects At for less than n/2 times, but the best arm in µ(At−1
t−w) is suboptimal by n/(wk). By

a similar argument, we can show that the loss in this round is at least 1
2wk on this event. At a high level, both these two lower

bounds are caused by not knowing quality of the new batch of arms. We formalize the above ideas in the following lemma.

Lemma A.2 (Loss for Uncertainty in the New Batch). The loss in any round t satisfies Et[Lt|Et ∩ B−t ] ≥ n
2k and

Et[Lt|Et ∩ B+
t ] ≥ n

2wk .

Proof. Write µ∗t = µmax(At). Recall from the definition that when B−t occurs, we have µ∗t − µmax(At) ≥ 1/k. Thus, if π

10
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selects arms from At for Ω(n) times, an Ω (n/k) loss is incurred. Formally,

Et
[
Lt| Et ∩ B−t

]
= Et

 ∑
a∈Att−w

πt(a) · (µ∗t − µa)
∣∣∣ Et ∩ B−t


≥ Et

[∑
a∈At

πt(a) · (µ∗t − µa)
∣∣∣ Et ∩ B−t

]

≥ Et

[∑
a∈At

πt(a) · (µ∗t − µmax(At))
∣∣∣ Et ∩ B−t

]
. (3)

Note that conditional on Et,B−t andWt−1 (recall that Et[·] = E[·|Wt−1]), we have
∑
a∈At πt(a) ≥ n

2 and µ∗t−µmax(At) ≥
1/k. Thus,

(3) ≥ n

2
· 1

k
=

n

2k
.

Now consider the second term in (2). When B+
t occurs, we have µmax(At)− µmax(At−1

t−w) ≥ 1
wk , so if the π selects arms

in At−1
t−w for Ω(n) times, an Ω(n/k) loss is incurred. Formally,

Et
[
Lt| Et ∩ B+

t

]
= Et

 ∑
a∈Att−w

πt(a) · (µ∗t − µa)
∣∣∣ Et ∩ B+

t


≥ Et

 ∑
a∈At−1

t−w

πt(a) ·
(
µmax (At)− µmax(At−1

t−w)
) ∣∣∣ Et ∩ B+

t

 . (4)

Note that conditional on Et,B−t and Wt−1, we have
∑
a∈At−1

t−w
πt(a) ≥ n

2 and At − µmax(At−1
t−w) ≥ 1

wk . Therefore,

(4) ≥ n

2
· 1

wk
=

n

2wk
.

A.2. Proof of Proposition 3.2

Consider the event Gt =
{
µmax(Att−w) ≥ 1− n−1/2

}
where t ≥ w.

Lemma A.3 (µmax is Close to 1). For k >
√
n, we have P[Gt] ≥ 1

2 .

Proof. Since |Att−w| = wk and the reward rate of each arm is drawn i.i.d. uniformly, we have P[Gt] = (1 − δ)kw =

(1− δ) 1
δ ·kwδ ≤ e−kwδ. Since k >

√
n, we have kδ > n

1
2 · n− 1

2 ≥ 1, so P[Gt] ≤ e−kwδ ≤ e−w ≤ 1
2 , i.e. P[Gt ≥ 1

2 ].

An arm is said to be unexplored at time t if it has never been selected by the policy before. Our proof considers the number
of unexplored arms selected in each round, as formalized below.

Definition A.4 (Unexplored Arms). We say an arm a is unexplored at round t if it has never been selected by (the start
of) round t; formally, this means

∑t−1
τ=1 πτ (a) = 0. For each round t, define Mt as the subset of unexplored arms selected

in this round; formally, Mt = {a ∈ Att−w : πt(a) > 0 and
∑t−1
s=1 πs(a) = 0}. Moreover, as for any t, t′, we write

M t′

t =
⋃t′
τ=t Sτ .

From a myopic perspective, selecting too many unexplored arms in a round leads to high loss since, by Assumption 2.1,
each unexplored arm is suboptimal by Ω(1) on average. We formalize this in the following lemma.

Lemma A.5 (Cost of Selecting Many unexplored Arms). For any t ≥ 1, consider the event Vt =
{
|Mt| ≥

√
n

4w

}
. The

expected loss in round t conditional on Vt satisfies E [Lt|Vt] ≥
√
n

24w .
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Proof. Write µ∗t = µmax(Att−w) and Et[·] = E[·|Gt] for any t. We start with lower bounding the conditional loss. Observe
that

Et [Lt|Vt] = Et

[∑
a∈A

πt(a) · (µ∗t − µa)
∣∣∣ Vt]

≥
∑
a∈A

Et
[
πt(a) · 1(a ∈Mt) · (µ∗t − µa)

∣∣∣ Vt]
≥
∑
a∈A

Et[1(a ∈Mt) ·
(

1− n−1/2 − µa
)
| Vt], (5)

where the last inequality follows by definition of Et and that a ∈Mt implies πt(a) ≥ 1. To further simplify, note that the
reward rate of any unexplored arm a is an independent draw and is hence independent with the set Mt of unexplored arms
selected in this round, so

(5) =
∑
a∈A

Et [1(a ∈Mt)| Vt] · Et
[
1− n−1/2 − µa| Vt

]
. (6)

Note that Et[µa|Vt] = E[µa] = 1
2 , we have Et

[
1− n−1/2 − µa| Vt

]
= 1− n−1/2 − 1

2 ≥
1
3 for any n ≥ 1. Therefore,

(6) ≥ Et

[∑
a∈A

1(a ∈Mt)
∣∣∣Vτ] · 1

3
= Et

[
|Mt|

∣∣∣Vτ] · 1

3
≥
√
n

12w
.

By Lemma A.5, we have P[Gt] ≥ 1
2 , and thus

E[Lt|Vt] ≥ Et[Lt|Vt] · P[Gt] ≥
1

2
·
√
n

12w
=

√
n

24w
.

The above says that selecting too many unexplored arms leads to high loss. On the flip side, selecting too few unexplored
arms also leads to high loss. To show this, consider the cold-start event where no δ-good arms that π ever selected is still
available at the start of round t.

Definition A.6 (Cold-start Event). For each t ≥ 1, the cold-start event is defined as Bt =
{
µmax(Stt−w) ≤ 1− n−1/2

}
.

As the name suggests, when this event occurs, the policy has little information about the available arms, and hence it behaves
as if the time horizon has restarted. This leads to high loss. In fact, a policy has to identify a δ-good arm to have low loss
from time t−w to t+w. This forces the policy to explore Ω(1/δ) = Ω(n1/2) unexplored arms, which leads to an Ω(n1/2)
loss. This result is implied by the lower bound for infinite armed bandits (Wang et al., 2008).

Lemma A.7 (Cold-start Incurs High Loss). For any t, we have E
[∑t+w

τ=t Lτ

∣∣∣Bt] ≥ √n6w .

To apply the above, we next characterize when Bt would occur. Consider the number Nt of new arms selected in [t− w, t].
If ENt ≥ 1/δ, then on average the policy suffers Ω(1/δ) = Ω(

√
n) loss. If ENt < 1/δ, then with Ω(1) probability, none

of those Nt arms are δ-good, which leads to the cold-start event Bt. We formalize this idea below.

Lemma A.8 (Under-Exploration Leads to Cold-start Event). Suppose E
[∑t

s=t−w Ls

]
≤
√
n

96w2 , then P[Bt] ≥ 1
2 .

Proof. Consider the event Es =
{
µmax(Ss) ≥ 1− 1√

n

}
that the for any s = 1, 2 . . . , then our goal reduces to showing

that P[Es] ≤ 1
2w for every s = t − w, . . . , t. In fact, if none of the events Et−w, . . . , Et occurs, i.e. no unexplored arm

selected in the past w rounds is n−1/2-good, then Bt occurs. It then follows from the union bound that

P [Bt] ≥ P

[
t⋂

τ=t−w
Eτ

]
= 1− P

[
t⋃

τ=t−w
Eτ

]
≥ 1− w · 1

2w
=

1

2
,
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and the proof will be complete.

To show P[Es] ≤ 1
2w for s ∈ {t− w, ..., t}, observe that for any fixed s,

P[Es] = P[Es|Vs] · P[Vs] + P[Es|Vs] · P[Vs] ≤ P[Vs] + P[Es|Vs], (7)

where we recall that Vt =
{
|Mt| ≥

√
n

4w

}
. we will bound each of the two terms in (7) by 1

4w separately. To see P[Vs] ≤ 1
4w ,

note that √
n

96w2
≥

t∑
t′=t−w

E[Lt′ ] ≥ E[Ls] ≥ E[Ls|Vs] · P[Vs].

Note that by Lemma A.5, we have E[Ls|Vs] ≥
√
n

24w , so P [Vs] ≤ 1
4w .

To bound the second term in (7), note that by definition of Es, for any C, δ > 0 we have

P
[
Es

∣∣∣Ss ≤ C] ≥ (1− δ)C ≥ (1− δ) 1
δ ·δC ≥ e−δC ≥ 1− δC,

where the last inequality follows since e−x ≥ 1− x for any x ∈ R. In particular, for C =
√
n

4w and δ = 1√
n

, we have

P
[
Es

∣∣∣Vs] = P
[
Es

∣∣∣Ss ≤ √n
4w

]
≥ 1− 1√

n
·
√
n

4w
= 1− 1

4w
,

i.e.,

P
[
Es

∣∣∣Vs] = 1− P
[
Es

∣∣∣Vs] ≤ 1

4w
.

We now combine the above to establish the
√
n lower bound.

Proof of Proposition 3.2. Fix any round t. Decompose Lt+wt−w into the loss before and after round t as

Lt+wt−w =

t+w∑
τ=t−w

ELτ =

t−1∑
τ=t−w

ELτ +

t+w∑
τ=t

ELτ .

If the first term, i.e., the loss before time t, is greater than
√
n

96w2 , then the claim holds trivially. Otherwise, by Lemma A.8,
the cold-start event Bt occurs w.p. P[Bt] ≥ 1

2 . Thus, the loss after time t can be bounded using Lemma A.7 as

t+w∑
τ=t

ELτ ≥ E

[
t+w∑
τ=t

Lτ

∣∣∣Bt] · P[Bt] ≥
√
n

6w
· 1

2
=

√
n

12w
>

√
n

96w2
.

A.3. Proof of Theorem 3.1

Now we are ready to show the Ω(1/k) lower bound. By (2) and Lemma A.2, we have

Et(Lt) ≥ Et[Lt|Et ∩ B−t ] · Pt(Et ∩ B−t ) + Et(Lt|Et ∩ B+
t ) · Pt(Et ∩ B+

t )

≥ n

2k
· Pt(Et ∩ B−t ) +

n

2wk
· Pt(Et ∩ B+

t ). (8)

Note that the events Et and B+
t (Et and B−t resp.) are independent conditional on Gt−1, so

(8) ≥ n

2wk
·
(

1

2
· Pt(Et) +

1

w
· Pt(Et)

)
≥ n

2w2k
.

13
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Therefore,

E[Lt] ≥ E[Lt · 1(Gt−1)] = E[Lt|Gt−1] · P[Gt−1] ≥ n

2w2k
· 1

8
=

n

16w2k
.

Summing over t and taking the limit, we conclude that

Lossn(π) = lim
T→∞

1

nT

T∑
t=1

E[Lt] ≥
1

16w2k
.

B. Proof of Proposition 4.8: Regret-to-Loss Conversion

As we recall, given a policy π = (πt) for SLHV bandits, the loss in round t is Lt = 1
n · E

[∑
a∈Att−w

πt(a) · (µ∗t − µa)
]
.

We first decompose Lt into the following internal and external loss.

Definition B.1 (External and Internal Loss). Let A be a semi-adaptive algorithm for the BB problem with adaptivity
level ` and π = (πt) be the induced policy for the SLHVB problem. For any round t, integer j ≤ w, let ∆t,j =
µmax(Att−w)− µmax(At). Define the external and internal loss as

Lext
t = E

[
max

1≤j≤w
∆t,j

]
and Lint

t = E

∑̀
j=0

∑
a∈At−j

πt(a)

n
· (µmax(At−j)− µ(a))

 . (9)

Here, the term ∆t,j is external in the sense that it does not depend on the policy, but only on the randomness in the RIM. On
the other hand, the term Lint

t is internal – it measures the reward gap between the selected arms and the best arms among the
respective age groups. It is straightforward to show the following.

Lemma B.2 (Loss Decomposition). In any round t, the loss satisfies Lt ≤ Lint
t + Lext

t .

Proof. By the definition of internal and external loss, we have

Lt =
1

n
· E

 ∑
a∈Att−w

πt(a) · (µ∗t − µa)


= E

∑̀
j=0

∑
a∈At−j

πt(a)

n
·
(
µmax(Att−w)− µa

) (since πt(a) = 0 if a ∈ Att−w\Att−`)

= E

∑̀
j=0

∑
a∈At−j

πt(a)

n
· (∆t,j + (µmax(At−j)− µa))

 (by definition of ∆i,j)

≤ E
[

max
1≤j≤w

∆t,j

]
+ E

∑̀
j=0

∑
a∈At−j

πt(a)

n
· (µmax(At−j)− µa)

 . (since
∑̀
j=0

∑
a∈At−j

πt(a)

n
= 1)

We next bound the external and internal losses separately. We start by showing the external regret is Õ(1/k). Recall from
the definition of the RIM that µa ∼ D and from Assumption 2.1 that the density of D is bounded by C2, C1 > 0 from
above and below.

Proposition B.3 (External Loss). For any round t, the external loss can be bounded as Lext
t ≤ 3ρ logn

C1k
for any sufficiently

large n.10

10We say that a property Pn (e.g., an inequality) holds for “any sufficiently large n” if there exists a constant n0 > 0 such that Pn
holds whenever n ≥ n0.

14
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Proof. Consider any i ∈ [w] and Yi := µmax(At−i). For any ε < 1 and arm a ∈ A, by the RIM and Assumption 2.1, we
have P[µa > 1− ε] ≥ C1ε, or equivalently, P[µa ≤ 1− ε] ≤ 1− C1ε. In particular, for ε = 2ρ logn

C1k
, we have

P
[
Yi < 1− 2ρ log n

C1k

]
≤
(

1− C1 ·
2ρ log n

C1k

)k
=

(
1− 2ρ log n

k

) k
2ρ logn ·2ρ logn

≤ e−2ρ·logn = n−2ρ.

Thus, the event B :=
⋃
i∈[w]

{
Yi < 1− 2ρ logn

C1k

}
has probability P [B] ≤

∑
i∈[w] n

−2ρ ≤ wn−2ρ. It follows that

E
[

min
i∈[w]

Yi

]
= E

[
min
i∈[w]

Yi
∣∣ B̄] · P [B̄] ≥ (1− 2ρ log n

C1k

)
·
(
1− wn−2ρ

)
≥ 1− 3ρ log n

C1k
,

where the last inequality follows since wn−2ρ ≤ 2ρ logn
C1k

for any sufficiently large n. Therefore, E
[
maxi∈[w] ∆t,i

]
≤

1− E
[
mini∈[w] Yi

]
≤ 3ρ logn

C1k
.

Now we are ready to prove the regret-to-loss conversion formula.

Proof of Proposition 4.8. Recall that k′ is the size of the resampled subset of each set At of arriving arms. For any fixed
T ≥ w, by re-arranging the terms in (9), we obtain

T∑
t=1

Lint
t =

T∑
t=1

E

∑̀
j=0

∑
a∈At−j

πt(a)

n
· (µmax (At−j)− µa)


=

T∑
t=1

E

∑̀
j=0

∑
a∈At−j

πt(a)

n
·
[(
µmax (At−j)− µmax

(
A′t−j

))
+
(
µmax

(
A′t−j

)
− µa

)]
≤

T∑
t=1

E

max
0≤j≤`

∣∣µmax

(
A′t−j

)
− µmax (At−j)

∣∣+
1

n
·
∑̀
j=0

∑
a∈At−j

πt(a) ·
(
µmax

(
A′t−j

)
− µa

) (10)

where the inequality follows since for any t, the total number of arms the policy selects satisfies
∑`
j=0

∑
a∈At−j πt(a) = n.

Note that E
[
max0≤j≤`

∣∣µmax

(
A′t−j

)
− µmax (At−j)

∣∣] ≤ 1
k′ , so

(10) ≤ T

k′
+

T−∑̀
t=`

E

∑
a∈At

1

n
·
∑̀
j=0

πt+j(a) · (µmax(At)− µa)

+ 2` ≤ T

k′
+ (T − 2`) ·R(n, k′) + 2`,

where the 2` term in the first inequality is because we are summing from ` to T − `. It follows that

Lossn(π) ≤ lim
T→∞

1

T

T∑
t=1

(
Lint
t + Lext

t

)
≤ 1

k′
+

3 log k

C1ρk
+ lim
T→∞

(T − 2`) ·R(n, k′) + 2`

T

=
1

k′
+

3 log k

C1ρk
+R(n, k′).

where the last identity follows since R(n, k′) does not depend on T , and ` = O(1) as T →∞.

C. Proof of Theorem 4.6: Average Regret of BSE
In this section we prove Theorem 4.10, which says that the average regret is Õ((k/n)`/(`+2)) for the BSE algorithm with
the revised geometric grid, specified in Definition 4.4. We illustrate the key ideas by considering adaptivity levels ` = 1 and
2 as warm-up first in Section C.2 and C.2 respectively, and then in Section C.4 we present the proof for general ` ≥ 1.
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C.1. Preliminaries

We introduce some tools for our analysis. For any arm a, consider i.i.d. Bernoulli rewards (Zai,j)i∈[w],j∈[n] with mean µa.
We first state a standard concentration bound for independent random variables, see e.g., (Vershynin, 2018).

Lemma C.1 (Concentration Bounds). Let Z1, ..., Zm be independent random variables supported on [0, 1], and Z̄ =
1
m

∑m
i=1 Zi, then for any δ > 0, it holds that

P(|Z̄ − E(Z̄)| > δ) ≤ exp

(
−δ

2m

2

)
(Hoeffding’s inequality),

and

P
(
|Z̄ − E(Z̄)| > δ · E(Z̄)

)
≤ exp

(
−
E
(
Z̄
)

2
δ2m

)
(Chernoff’s inequality).

Consider the event that the empirical mean rewards of all available arms available at time t satisfy Hoeffding’s inequality.

Definition C.2 (Clean Event). For any integers i,m and arm a, define

Ci,ma =

∣∣∣
m∑
j=1

Zai,j −mµa
∣∣∣ ≤√2m · (ρ+ 3) · log n

 .

We define the clean event as Ct =
⋂
Ci,ma where the intersection is over m ∈ [n], i ∈ [w] and a ∈ Att−w.

We use Lemma C.1 to show that Ct occurs with high probability in each round t.

Lemma C.3 (Clean Event is Likely). For any time t, the clean event satisfies P
[
Ct
]
≤ n−1.

Proof. Fix an arbitrary i ∈ [w] and arm a ∈ Att−w. Then for any integer m, by Hoeffding’s inequality,

P
[
Ci,ma

]
= P

∣∣∣ m∑
j=1

Zai,j −mµa
∣∣∣ >√2m(ρ+ 3) log n

 ≤ exp

(
− 1

2m
· 2m(ρ+ 3) log n

)
= n−3.

By the union bound over all a ∈ [k], i ∈ [w] and m ∈ [n], we have

P

 ⋃
m∈[n],i∈[w],

a∈Att−w

Ci,ma

 ≤ ∑
m∈[n],i∈[w],

a∈Att−w

P
[
Ci,ma

]

=
∑

m∈[n],i∈[w],

a∈Att−w

P

∣∣∣ m∑
j=1

Zai,j −mµa
∣∣∣ >√2m(ρ+ 3) log n


≤ nwk · n−ρ−3 = w · n−2 ≤ n−1.

We will also repeatedly apply the following simple fact.

Lemma C.4 (3∆-Inequality). Let ∆ > 0 and X = {xj}j∈[k], X
′ = {x′j}j∈[k] be two sets of real numbers such that

|xj − x′j | ≤ ∆ for all j ∈ [k]. Suppose for some i we have x′i ≥ maxX ′ −∆. Then, xi ≥ maxX − 3∆.

Proof. Since |xj − x′j | ≤ ∆ for all j ∈ [k], we have |maxX −maxX ′| ≤ ∆. Hence, x′i ≥ maxX ′−∆ ≥ maxX − 2∆.
Therefore, xi ≥ x′i −∆ ≥ maxX − 2∆−∆ = maxX − 3∆.
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C.2. Warm-up: ` = 1

In this subsection we show that the average regret is Õ
(
(k/n)1/3

)
for the BSE algorithm with grid ε?0,1. We first prove that

w.h.p. all surviving arms are close to optimal. Recall from Algorithm 1 that S1 denotes the surviving arms at the end of the
first phase.

Lemma C.5 (Surviving Arms Have High Rewards). If the clean event C occurs, then µmax(A)− µmin(S1) ≤ δ1 where
δ1 = 3

(
ε0n
k

)−1/2
log1/2 n.

Proof. By Hoeffding’s inequality (see Lemma C.1), the deviation of the empirical mean reward of each arm satisfies
|µ̂a−µa| ≤ 1

3δ1 for all arms a ∈ A. Consider â = arg maxa µ̂a and a∗ = arg maxa µa. By definition of S1 (see Algorithm
1), an arm a survives only if |µ̂a − µ̂â| ≤ 1

3δ1. Thus, by the 3∆-inequality (Lemma C.4) we have µa ≥ µmax(A)− δ1.

Combining the above with the regret decomposition (Lemma B.2), we obtain the following.

Proposition C.6 (Average Regret of BSE?1). Suppose ρ ≤ 1. Then the average regret of BSE?1, the BSE algorithm with
exploration intensities ε?0,1, satisfies

Regavg
n (BSE?1) ≤ 5

(
k

n

)1/3

log1/3 n.

Proof. To suppress notations, write ε0 := ε?0;1. By Lemma C.5, we have µmax(A)− µmin(S1) ≤ δ1, and thus

Regavg
n (BSE?1) ≤ ε0 + (1− ε0) · E [µmax(A)− µmin(S1)]

≤ ε0 + δ1 · P [C] + P
[
C
]

≤ ε0 + δ1 + n−1,

where the last inequality follows from Lemma C.3. Expanding δ1 using Lemma C.5 and recalling that ε?0,1 =(
k
n

)1/3
log1/3 n, we have

Regavg
n (BSE?1) ≤ 4

(
k

n

) 1
3

log
1
3 n+ n−1 ≤ 5

(
k

n

) 1
3

log
1
3 n,

where the last inequality follows since 1
n ≤

k
n ≤

(
k
n

)1/3
.

C.3. Bounding the Number of Survivors: Analysis for ` = 2

Recall that for adaptivity level ` = 2, we first select a batch of arms and compute a subset S1 of surviving arms whose
confidence intervals are not dominated by any other arm. Then we select another batch of arms, and compute a further
subset S2 ⊆ S1 in a similar manner. Finally, in the exploitation phase, we choose an arbitrary arm from S2.

The key step is bounding the number of survivors after the first phase - if we can upper-bound S1’s cardinality (w.h.p.), then
we can lower-bound the number of times each arm in S1 is selected in phase 2, leading to a guarantee on the width of the
confidence interval. To this goal, consider the following uniform event that µa’s are distributed approximately uniformly.

Definition C.7 (Uniform Event). Consider any constant δ ∈ (0, 1), and the number Nδ of arms in A that lie in a δ-
neighborhood of the optimal arm, formally, Nδ =

∣∣{a ∈ A : µa ≥ µmax(A) − δ}
∣∣. We define the uniform event as

Uδ =

{
1

2
C1δk ≤ Nδ ≤

3

2
C2δk

}
.

We show that the uniform event is likely to occur when k is large. This is a direct consequence of the RIM and Assumption
2.1, and its proof is similar to that of Proposition B.3.

Lemma C.8 (Uniform Event is Likely). Suppose δk ≥ 8
C1

log n. Then for any δ ∈ (0, 1) and round t, the uniform event
satisfies P

[
Uδ
]
≤ 2n−1.
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Proof. Index the arms from 1 to k, and denote by f the density of D, the distribution from which the reward rates µi’s are
drawn. We first upper bound P[Ḡ | µmax = 1− γ] for any fixed γ ∈ (0, 1).

We subsequently fix an arbitrary i ∈ [k]. Denote by Zi = 1[µi ≥ µmax − δ] and consider the largest reward rate µmax
−i in

[k]\{i}, i.e.,
µmax
−i = max {µ1, . . . , µi−1, µi+1, . . . , µk} .

Observe that

P [ Zi = 1 | µmax = 1− γ ] = P
[
µi ∈ [1− γ − δ, 1− γ] | µmax

−i − δ
]

=

∫ 1−γ

1−γ−δ
f(z) dz,

where the last identity follows since µi’s are independent, in particular, µmax
−i and µi are independent. Recall by Assumption

2.1 that the density satisfies C1 ≤ f(z) ≤ C2, so

C1δ ≤ P [ Zi = 1 | µmax = 1− γ ] ≤ C2δ.

Note that conditional on the event {µmax = 1− γ}, the random variables Zi are still i.i.d., so by Chernoff’s inequality (see
Lemma C.1) we obtain

P
[
Ḡ
∣∣∣ µmax = 1− γ

]
≤ P

∑
i∈[k]

Zi >
3

2
· C2δk

∣∣∣ µmax = 1− γ

+ P

∑
i∈[k]

Zi <
1

2
· C1δk

∣∣∣ µmax = 1− γ


≤ 2 exp

(
−1

2
·
(

1

2

)2

· C1δk

)

≤ 2 exp

(
−C1

8
· 8

C1
log n

)
= 2k−

C1
8 ·

8
C1ρ = 2n−1.

Therefore,

P[Ḡ] = Eγ
[
P[Ḡ | µmax = 1− γ]

]
≤ 2n−1.

Assuming that Uδ1 and C both occur, we have |S1| ∼ δ1k. Thus, in the second phase, each surviving arm is selected & ε1n
δ1k

times, and hence the confidence intervals have widths .
(
ε1n
δ1k

)−1/2

. We next make these ideas precise.

Definition C.9 (Widths of Confidence Intervals). For any ε0, ε1 ∈ (0, 1), define

δ1 = δ1(ε0) =
8

C1
ε
− 1

2
0

(
k

n

) 1
2

log n and δ2 = δ2(ε0, ε1) = 6
3
2 ·
√

(ρ+ 3)
C2

C1
· ε−

1
4

0 ε
− 1

2
1

(
k

n

) 3
4

log
5
4 n.

For any adaptivity level `, denote by δ?j,` = δj,`(ε
?
0, ε

?
1) for j = 1, . . . , `.

Under the above notations, we can bound the suboptimality of S2, the surviving arms after the second phase as follows.

Lemma C.10 (Suboptimality of S2). Consider the algorithm BSE2(ε0, ε1) such that δ1 = δ1(ε0, ε1) satisfies δ1k >
8
C1

log n. If the clean event C and the uniform event Uδ1 both occur, then

µmax(A)− µmin(S2) ≤ δ2.

Proof. We first upper bound the cardinality of S1. By Lemma C.5, since C occurs, we have µmax (A)− µmin (S1) ≤ δ1.
In other words, for an arm a ∈ A to survive the first phase, its mean reward needs to be δ1-close to µmax(A). Since the
uniform event Uδ1 occurs, by Lemma C.8 the number of such arms can be bounded as

|S1| ≤
3

2
C2δ1k. (11)
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Note that in phase 2, each arm in S1 is selected m1 := ε1n
|S1| times. By definition of the clean event C, the empirical mean

reward of every arm deviates from the mean by at most
√

2(ρ+ 3) ·m−1/2
1 log1/2 n. Thus by the 3∆-inequality (Lemma

C.4), we can bound the suboptimality of arms in S2 as

µmax (A)− µmin (S2) ≤ 3
√

2(ρ+ 3) ·m−1/2
1 log1/2 n.

To further bound the above, we use (11) to lower bound m1 = ε1n
|S1| . Specifically,

µmax (A)− µmin (S2)

≤ 3
√

2(ρ+ 3) ·
(

ε1n
3
2C2δ1k

)− 1
2

log
1
2 n

≤ 3
3
2

√
(ρ+ 3)C2 · ε

− 1
2

1 δ
1
2
1

(
k

n

) 1
2

log
1
4 k · log

1
2 n. (12)

Recall from Definition C.9 that

δ1 =
8

C1
ε
− 1

2
0

(
k

n

) 1
2

log n and δ2 = δ2(ε0, ε1) = 6
3
2 ·
√

(ρ+ 3)
C2

C1
· ε−

1
4

0 ε
− 1

2
1

(
k

n

) 3
4

log
5
4 n,

we can simplify the above inequality as

(12) ≤ 6
3
2 ·
√

(ρ+ 3)
C2

C1
· ε−

1
2

1 ε
− 1

4
0

(
k

n

) 3
4

log
1
4 k · log n = δ2.

We can now bound the average regret of the BSE algorithm for any grid as follows.
Proposition C.11 (Average Regret of BSE with Arbitrary Grid, ` = 2). Suppose 0 < ε0 < ε1 < 1 and δ1k > 8 logn

C1
. Then,

the average regret of the BSE algorithm with grid size ε0, ε1 satisfies

Regavg
n (BSE`=2 (ε0, ε1))≤ ε0 + ε1δ1 + δ2 +O

(
n−1

)
.

Proof. By definition of regret, we have

Regavg
n (BSE` (ε0, ε1)) = ε0 + ε1 · E [µmax(A)− µmin(S1)] + (1− ε0 − ε1) · E [µmax (A)− µmin (S2)] .

We bound each term separatly. By Lemma C.3 and Lemma C.5, the second term can be bounded as

E [µmax(A)− µmin(S1)]

= E [µmax(A)− µmin(S1) | C] · P[C] + E
[
µmax(A)− µmin(S1) | C

]
· P[C]

≤ δ1 · 1 + 2n−1.

By Lemma C.10, if the events Uδ1 and C both occur, then µmax(A) − µmin(S2) ≤ δ2. Further, by Lemma C.8, we have
P [Uδ1 ] ≤ 2n−1 whenever δ1k ≥ 8 logn

C1
. Combining the above facts, we obtain

Regavg
n (BSE` (ε0, ε1)) ≤ ε0 + ε1 ·

(
δ1 + 2n−1

)
+ δ2 + n−1,

and the proof is complete.

The revised geometric grids in Definition 4.4 are motivated by minimizing the above bound. Since we are focusing on ` = 2,
we will suppress ` and write ε?i = ε?i,` for i ≤ ` = 2. Choose ε0 so that

ε0 = ε1 · δ1(ε0) = δ2(ε0, ε1),

then we have

ε0 ∼
(
k

n

) 1
2

and ε1 ∼
(
k

n

) 1
4

,

as specified in Definition 4.4. We obtain the following guarantee for the revised geometric grid by choosing εi = ε?i in
Proposition C.11. The proof is straightforward – we only need to verify that δ?1k ≥

8 logn
C1

.
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Corollary C.12 (Average Regret of BSE?2). If ρ ≥ θ2, then Regn (BSE?`=2) ≤ Õ
((

k
n

)1/2)
.

Proof. Recall from Definition 4.4 that ε?0 =
(
k
n

) 1
2 , and from Definition C.9 that for any ε0 we defined

δ1 = δ1(ε0) =
8

C1
ε
− 1

2
0

(
k

n

) 1
2

log n.

Expanding the expressions for ε?0 and δ?1 = δ1(ε?0), we have

δ?1k ≥
8

C1
ε
− 1

2
0

(
k

n

) 1
2

log n · k =
8

C1
· k 5

4 · n− 1
4 · log n ≥ 8

C1
log n,

where the last inequality follows since ρ ≥ θ2 = 1
5 . By Proposition C.11, we conclude that

Regavg
n (BSE?`=2) ≤ ε?0 + ε?1δ

?
1 + δ?2 +O

(
n−1

)
= O

((
k

n

) 1
2

log
5
4 n

)
.

C.4. Proof of Theorem 4.6

We now extend the analysis to the general ` case. For each available arm, an `-Layer Sieve policy will recursively explore its
reward rate and derive a series of confidence intervals of the following widths.

Definition C.13 (Width of Confidence Interval). Given ε0, . . . , ε`−1, for each i = 1, 2, . . . , `, we define

δi = δi(ε0, . . . , εi−1) = 3 · 15i−1 · C
i−1
2

2 · ε−2−i

0 · ε−2−(i−1)

1 · ... · ε−
1
2

i−1 ·
(
k

n

)1−2−i

· log1+ i−1
4 n.

It is straightforward to verify that the above δi’s satisfy the following recursion. As in the analysis for ` = 2 in Section C.2,
we will show that the loss on the j-th layer is bounded as follows.

Lemma C.14 (Regret on the j-th Layer). Fix integers t, j and suppose the events Gδ1t−1, . . . , G
δj
t−j and Ct occur. Then,

µmax(At−j)− µmin(Sjt−j) ≤ δj and |Sjt−j | ≤ 6C2δjk · log1/2 k.

Proof. Proof. We show this inductively on j. To show the base case j = 1, note that by Lemma C.5, we have µmax(At−1)−
µmin(S1

t−1) ≤ δ1. Moreover, we showed in the first paragraph in the proof of Lemma ?? that |S1
t−1| ≤ 6C2δ1k log1/2 k,

and thus the claim holds for j = 1.

Now consider j ≥ 2. As the induction hypothesis, assume the claim holds for 1, . . . , j − 1. Then, |Sj−1
t−(j−1)| ≤

6C2δj−1k log1/2 k. Consequently, each arm in Sj−1
t−(j−1) is selected

mj−1 =
εjn

|Sj−1
t−(j−1)|

≥ εjn

6C2δj−1k · log1/2 k
(13)

times. Since the clean event Ct occurs, the empirical mean of each arm from Sj−1
t−(j−1) deviates from the mean by

3m
1/2
j−1 log1/2 n. Thus, if an arm a ∈ At−j survives, we have

µmax

(
At−(j−1)

)
− µmin

(
Sj−1
t−(j−1)

)
≤ 9m

− 1
2

j−1 log
1
2 mj−1. (14)

Since the good event Gδjt−j occurs, we have

|Sjt−j | ≤ 6C2 ·
(

3m
− 1

2
j−1 log

1
2 mj−1

)
k log1/2 k.
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To simplify, note that by (13),

3m
− 1

2
j−1 log

1
2 mj−1 ≤ 3 ·

(
εjn

6C2δj−1k · log1/2 k

)− 1
2

log
1
2

(
εjn

6C2δj−1k · log1/2 k

)
≤ δj ,

and hence |Sjt−j | ≤ 6C2δjk log1/2 k.

To simplify (14), we expand mj−1 again and obtain

µmax

(
At−(j−1)

)
− µmin

(
Sj−1
t−(j−1)

)
≤ 3m

− 1
2

j−1 log
1
2 mj−1

≤ 3

(
εjn

6C2δj−1k · log1/2 k

)− 1
2

log
1
2 n

≤ 9
√
C2 · ε

− 1
2

j δ
1
2
j−1 ·

(
k

n

) 1
2

· log
1
4 k · log

1
2 n, (15)

where the last inequality relies on δj−1k > 1. By Definition C.13, we have

δj−1 = 3 · 5j−2 · ε−2−(j−1)

0 · ε−2−(j−2)

1 · · · ε−2−1

j−1 ·
(
k

n

)1−2−(j−1)

log1+ j−2
4 n.

Substituting into (15), we conclude that

µmax

(
At−(j−1)

)
− µmin

(
Sj−1
t−(j−1)

)
≤ 3 · 5j−1C

j−1
2

2 · ε−2−j

0 · ε−2−(j−1)

1 · · · ε−2−1

j

(
k

n

)1−2−j

log1+ j−1
4 n ≤ δ2.

We now have the following regret bound for BSE algorithm with adaptivity `.

Proposition C.15 (Average Regret of BSE, Arbitrary Grid). Consider arbitrary adaptive level ` and grid sizes 0 < ε0 <
· · · < ε`−1 < 1 and δik > 1 for any i ≤ `− 1. Then for any round t,

Regavg
n (BSE` (ε0, · · · , ε`−1)) = Õ

(
ε0 + ε1δ1 + ε2δ2 + · · ·+ ε`−1δ`−1 + δ` + n−ρ

)
.

Proof. Proof. By definition of internal regret,

Regavg
n (BSE` (ε0, · · · , ε`−1)) ≤

`−1∑
j=0

εj · E
[
µmax(At−j)− µmin(Sjt−j)

]
+ E

[
max
j∈[w]

{
µmax (At−j)− µmin

(
S2
t−j
)}]

.

(16)

Note that if the events Ct and Gδjt−j occur, j = 0, . . . , `− 1, then by Lemma C.14, we have

µmax(At−j)− µmin(Sjt−j) ≤ δj for j = 0, . . . , `− 1,

and

max
`≤j≤w

{
µmax(At−j)− µmin(S2

t−j)
}
≤ δ2.

Further, by Lemma C.8 that for each j we have P
[
G
δj
t−j

]
≤ k−2 provided δik ≥ 1 for all j = 0, . . . , `− 1, so

E
[
µmax(At−j)− µmin(Sjt−j)

]
≤ δj · P

Ct ∩ ⋂
`≤j≤w

G
δj
t−j

+
∑

`≤j≤w

P
[
G
δj
t−j

]
+ P

[
Ct
]

≤ δj · 1 + n−2+ρ · w.
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Similarly,

E
[

max
`≤j≤w

{
µmax(At−j)− µmin(S2

t−j)
}]

≤ δ` · P

Ct ∩ ⋂
`≤j≤w

G3δ1
t−j

+
∑

`≤j≤w

P
[
Gδ1t−j

]
+ P

[
Ct
]

≤ δ` + k−2w + n−2+ρw.

When ρ ≤ 1, the above is bounded by δ2 + n−2ρw + o
(

1
n

)
. Combining, we conclude that

Regavg
n (BSE` (ε0, · · · , ε`−1)) ≤ ε0 +

∑̀
j=1

εj
(
δj + n−3

)
+ n−2ρw + o

(
1

n

)

≤ ε0 +
∑̀
j=1

εjδj + n−ρ + o

(
1

n

)
.

D. Proof of Proposition 4.9
To derive the upper bound for SLHVB, we need to compare the asymptotic orders of the two terms in (1). Consider the
following three cases for ρ.

Case 1. Suppose ρ ≤ 1
5 . Consider ` = 1. By Proposition 4.9, we have

Lossn (BSE?1, k) = Õ
(
n−ρ + n(ρ−1)· 13

)
.

When ρ ≤ 1
5 , it holds that n−ρ ≥ n(ρ−1)· 13 , so the above becomes Õ (n−ρ) .

Case 2. Suppose 1
5 < ρ ≤ w

2w+2 . The claimed ` in Step 2 exists11 due to the following elementary fact: for any integer
w ≥ 2, [

1

5
,

w

2w + 2

]
⊆

⋃
2≤`≤w

[
`− 1

2`+ 1
,

`

2`+ 2

]
. (17)

It then follows by Proposition 4.9 that

Lossn (BSE? (`, k)) = Õ
(
n−ρ + n(ρ−1)· `

`+2

)
.

Further, note that when ρ < `
2`+2 , we have n−ρ > n(ρ−1)· `

`+2 , so the above becomes Õ (n−ρ).

Case 3. Suppose ρ ≥ w
2w+2 = θw. Note that the threshold exponent θ` increases in `, in particular, for any ` ≤ w, we have

θ` ≤ θw ≤ ρ. It then follows from Proposition 4.9 that

Lossn (BSE? (w, k)) = Õ
(
n−ρ + n(ρ−1)· w

w+2

)
. (18)

Although this is already sublinear in n, we observe that the two terms in (18) are, in general, not equal, which suggests a
potential improvement. Consider the resampling size k′ = nρ

′
that renders those two terms equal, that is, ρ′ = w

2w+2 ≤ ρ.
Then, due to Proposition 4.8 we obtain

Lossn (BSE?(w, k′)) = Õ
(
n−ρ

′
+ ρ−1n−ρ + n(ρ′−1)· w

w+2

)
≤ Õ

(
n−

w
2w+2 + ρ−1 · n−

w
2w+2 + n−

w
2w+2

)
= Õ

(
ρ−1 · n−

w
2w+2

)
.

where the inequality follows since ρ′ ≤ ρ. We summarize the above discussion in the following theorem.

11Alternatively, one can show this constructively by showing that `∗ = `∗(ρ) =
⌊
ρ+1
1−2ρ

⌋
satisfies θ`∗ ≤ ρ ≤ `∗

2`∗+2
. However, the

proof - which is essentially arithmetic manipulation - is slightly tedious, so we choose not to specify this explicit form.
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E. Field Experiment: Implementation Details
In this section we provide more details about the implementation of the field experiment.

E.1. Randomized BSE: A Thompson Sampling Variant

We implement a variant of semi-adaptive policy for SLHVB induced by the BSE policy (Algorithm 1) with ` = 1. We modify
the policy due to the following practical concerns. The first issue is the lack of knowledge of n. In our implementation, each
round is set to be an hour, so n corresponds to the number of impressions per hour. But in practice, n is unknown. This can
be easily fixed via randomization: for each card slot, we assign a newly-arriving card (for exploration) with probability ε0

and an old card (for exploitation) otherwise.

Algorithm 4 SetPrior(g).
1: Input: a card g and m users
2: Output: α̂, β̂
3: Randomly sample m users u1, . . . , um
4: for i = 1, . . . ,m do
5: µ(ui, g)← DNN-predicted reward on (ui, g)
6: end for
7: Compute the sample mean µ̄ and variance v̄:

µ̄← 1

m

m∑
i=1

µ(ui, g), v̄ ← 1

m− 1

m∑
i=1

(µ(ui, g)− µ̄)
2

8: Return

α̂← µ̄

(
µ̄(1− µ̄)

v̄
− 1

)
and β̂ =

1− µ̄
µ̄

α̂

The second issue is the prior information for the rewards rates of the newly arriving cards. Although the DNN predictions
are sometimes inaccurate, they do provide useful information. To utilize such information, we fit a Beta prior distribution
for each card’s reward rate using the method of moments (see e.g., (Wasserman, 2006)) based on the DNN predictions (see
Algorithm 4). Specifically, recall that the DNN returns a predicted conversion rate for each pair of user and card. For a
fixed card, denote by µ̄, v̄ the mean and variance of the predicted conversion rates on m = 500 randomly sampled users.
The fitted Beta prior B(α̂, β̂) is then given by

α̂ = µ̄

(
µ̄(1− µ̄)

v̄
− 1

)
and β̂ =

1− µ̄
µ̄

α̂.

The final issue is the recommended contents’ diversity. Recall that the basic version of the BSE policy selects the empirically
best arm to “exploit”. However, this is not reasonable in a practical setting where such an extreme promotion of a single
card is undesirable. We thus consider the Thompson Sampling version of the Sieve policy under a Beta-Bernoulli reward
model; see Algorithm 5. Specifically, for each slot we draw a score for each card from its posterior. Then we assign to this
slot the card with the highest score. Note that the posterior can be efficiently updated using the Bayesian rule, since the Beta
distribution is a conjugate prior for the Bernoulli distribution.

E.2. Implementation Details

The firm has maintained a partition of the users into several hundreds of buckets for various online experiments. This
partition is randomly re-generated every six months. We chose three buckets as the treatment group, involving over 600, 000
users and accounting for around 1% of the total traffic. We implemented the randomized BSE policy with ` = 1 on their real
system in the first 14 days of July 2021. For comparison, we also analyzed the interaction data from the first 14 days of May
in the same year.

Using an offline semi-synthetic simulation, we determined the empirically optimal parameter to be around ε0 = 0.2, which
we used in the field experiment. This choice is also consistent with our theoretical analysis. In fact, as we recall from
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Algorithm 5 Randomized One-Layer Sieve Policy
1: Input: ε ∈ [0, 1], θ ≥ 0
2: for each hour t = 1, 2, ... do
3: Receive a set Anew of new cards
4: Update the set A of available cards
5: for each card g ∈ A do
6: if g ∈ Anew then
7: (αg, βg)← SetPrior(g).
8: else
9: ng ← number of interactions of g in the last hour

10: hg ← number of conversions of g in the last hour
11: αg ← αg + hg, βg ← βg + ng − hg
12: end if
13: end for
14: Awell ← {g : αg + βg > θ}
15: for each user u do
16: Receive the number ru of cards requested by u
17: Au ← cards that have never been assigned to u
18: for each card g ∈ Au do
19: Draw Xu,g ∼ Beta(αg, βg)
20: end for
21: Sort Au

⋂
Awell by Xu,g in non-increasing order as g1, g2, ...

22: Sort Au\Awell by Xu,g in non-increasing order as g′1, g
′
2, ...

23: i, i′ ← 1
24: for j = 1, ...ru do
25: Zj ← Ber(ε)
26: if Zj = 1 then
27: Sj ← gi
28: i← i+ 1
29: else
30: Sj ← g′i′
31: i′ ← i′ + 1
32: end if
33: Send to u the cards {Sj : j = 1, ..., ru}
34: end for
35: end for
36: end for

Proposition C.6, the optimal parameter is ε?0;1 ∼ (k/n)1/3. In our scenario, we observed from past data that there were on
average around 11 million impressions per 14 days, so the number n of impressions per hour is ≈ 3.2× 104. Moreover,
there are on average k = 150 cards released per hour, and thus ε?0,1 ≈ 0.14.

F. Field Experiment: Analysis
We now present a detailed statistical analysis of the field experiment, including a bootstrapping hypothesis testing and a
Difference-in-Differences (DID) analysis. Our analysis shows that our policy outperforms the DNN-based recommender by
about 4% in total duration and nearly 7% in the total number of click-throughs per-user-per-day.

We first explain how to eliminate outliers. An outlier is typically introduced in two ways. In practice, users may accidentally
swipe through two cards in a row, without even looking at the first one. We thus remove any impression with duration
less than 0.2 seconds. On the other hand, users may sometimes leave their devices unattended for minutes, generating an
abnormally high duration. Since most cards’ content can be fully consumed within 300 seconds, we remove any impression
with duration over u = 300 seconds.
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Table 1. Types of Data In the Analysis
CT Duration

Per User-Day integral numeric
Per Impression binary numeric

Table 2. Overall Statistics
May July

NN MAB NN MAB

Per-User-Per-Day
Duration

Mean 175.910 175.548 137.059 142.618
SE Mean 0.699 0.659 0.6081 0.597
Median 44.250 44.279 32.973 34.430

#CT Mean 1.275 1.273 0.941 1.010
SE Mean 9.251e-03 8.814e-03 7.276e-03 7.549e-03

Per Impression
Duration

Mean 3.9697 4.0195 4.1183 4.2391
SE Mean 4.529e-03 4.402e-03 5.738e-03 5.599e-03
Median 0.693 0.697 0.702 0.703

CTR Mean 2.887e-02 2.915e-02 2.827e-02 3.001e-02
SE Mean 4.698e-05 4.568e-05 5.804e-05 5.671e-05

F.1. Analysis of 22 = 4 Metrics

The firm is interested in the analysis at the per-user-per-day and per-impression levels, and two measures for user engagement:
duration and click-throughs. So altogether we have four metrics in total, as shown in Table 1. In the per-impression analysis,
we treat each impression as an independent sample. For example, the row for per-impression duration in Table 2 is the ratio
between the total duration and total number of impressions.

However, the firm’s objective is the total user engagement rather than the per-impression engagement, which motivated
our analysis on the per-user-per-day level. At first sight, it seems reasonable to consider the total engagement of a fixed
user over all 14 days during the experiment. However, this metric is flawed since the frequency at which the users enter the
app is affected by many external factors, such as holidays and weekends, which introduces extra noise. We will thus only
consider the days when a user entered the app (i.e., has at least one impression). Formally, for each user u and day d where
this user has at least one impression, we define a tuple (u, d,Dud) where Dud is the total duration. Thus, the number of
tuples associated with each user is between 1 and 14.

Under this definition of total engagement, we summarize12 the experimental results in Table 2 and visualize the per-user-
per-day user engagement in Figure 4 and Figure 5. We observe that in May the user engagement of the two groups are
approximately identical, but in July the MAB group has a significantly higher mean user engagement. Moreover, such
improvement also appeared in median duration, indicating that this improvement is unlikely to be caused by a heavier tail in
the distribution.

It is also worth noting that the user engagement per-user-per-day decreased from May to July. This is because May 2021
was when the Covid-19 pandemic reached its peak in the country where most users were located. During the lockdown, the
users may have had more time to spend on the app, resulting in a higher total engagement. In Section F.2, we perform a DID
analysis which incorporates the underlying change of environment across time.

Finally we emphasize that in our implementation, our policy is not personalized. Despite this disadvantage, our Sieve policy
still outperforms their personalized DNN recommender in all metrics for user-engagement, both at the per-impression and
per-user levels; see Table 2.

F.2. Significance Tests

From Figure 4 and Figure 5 we observe that our policy outperforms the control policy. We now test whether this improvement
is statistically significant.

12The unit of duration in all tables is second
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Figure 4. Number of click-throughs per-user-per-day Figure 5. Duration per-user-per-day

Table 3. Significance Testing
Basic Bootstrap

Z-score p-value Z-score p-value

Per-User-Per-Day Duration 4.610 2.018e-06 4.6197 1.921e-06
CT 4.259 1.027e-05 4.2556 1.042e-05

Per Impression Duration 6.963 1.665e-12 6.972 1.556e-12
CT 12.999 6.127e-39 12.933 1.469e-38

For each month m ∈ {May, July}, denote by Xm, Y m the user engagement (either duration or number of click-throughs) in
the NN and MAB group respectively. Similarly, denote by X

m
, Y

m
be the sample means of Xm, Y m in month m. We are

interested in the difference-in-differences in user engagement before and after our policy was deployed, i.e.,

∆ = (Y July −XJuly)− (Y May −XMay).

Consider the hypotheses
H0 : E[∆] ≤ 0 vs. H1 : E[∆] > 0.

First consider the basic Z-score given by

Z =

(
Y

July
X

July
)
−
(
Y

May −XMay
)

Ŝ
(19)

where

Ŝ = SE
((
Y

July −XJuly
)
−
(
Y

May −XMay
))

=

√
Var

((
Y

July −XJuly
)
−
(
Y

May −XMay
))

is the estimated standard deviation. For Z ∈ {XMay, XJuly, Y May, Y July} we denote by NZ the number of i.i.d. samples
of Z, and let S2

Z be the sample variance. Assuming the samples are independent, we may approximate the above as

Ŝ ≈
√

1

NXMay

S2
XMay +

1

NXJuly

S2
XJuly +

1

NYMay

S2
YMay +

1

NY July

S2
Y July .

As shown in the “Basic” column of Table 3, the p-values for each of the four metrics are very low. We therefore reject the
null hypothesis H0 and conclude that the treatment effect is statistically significant.

However, in reality the samples are not independent, since (1) each user may appear in both months, (2) each user has
multiple data points in a month, and (3) the same set of cards are shown to both the treatment and control group. We
remove the dependence by bootstrapping as follows. From each of these four pools of data points, we randomly draw 106

samples with replacement and redefine each Z̄ as the bootstrap sample mean where Z = XMay, XJuly, Y May, Y July; see
the “Bootstrap” column in Table 2. We still observe very low p-values, which further validates our conclusion.
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Figure 6. Illustration of DID regression for duration per impression

F.3. DID Regression

Now we consider a DID regression analysis. We first illustrate the idea of DID regression in Figure 6 using per-impression
duration as an example. We first vectorize each tuple (u, d, Yud) into a four-dimensional vector (tud, iud, tud · iud, Yud)
where

tud = 1[day d is in July] and iud = 1[user u is in MAB group]

are the time and intervention indicators, and Yud ∈ {Cud, Dud} is the metric under consideration (i.e., click-throughs or
duration of user u on day d). The basic assumption in a DID analysis is that the outcome follows the linear model

Yud = β0 + β1tud + β2iud + β3tud · iud + εud (20)

where εud ∼ N(0, σ2) with unknown variance σ2. Intuitively, β1 measures the effect of being assigned to the treatment
group and β2 captures the overall trend over time. Thus, if there is no treatment effect, the differences between the two
groups should remain unchanged across May and July, and therefore the means of the samples from the four pools (shown
as the red dots in Figure 6) will form a perfect parallelogram.

Now suppose there is indeed a positive treatment effect. Then, the top-right corner of this quadrilateral will be raised; see
the green dot in Figure 6. This lift is measured by the variable β3. To see this, by setting tud = iud = 0, we observe that
β0 is the mean engagement of control group users in May. Further, note that the top-right corner of the parallelogram is
β1 + β2 + β0. In contrast, for day d in July and user u in MAB group, if iud = tud = 1, then the mean outcome satisfies
E[Yud] = β0 + β1 + β2 + β3, which is higher than the top-right red dot by β3.

Assuming the Gaussian noise, we are able to compute confidence intervals and p-values for the coefficients βi’s; see Tables
4. For both duration and CT, the coefficients β3 are positive and have very low p-values. Therefore, it is is indeed significant
whether a user is assigned to the MAB group. Moreover, note that β2 has high p-values, so we conclude that the partition of
users is sufficiently random, at least on the per-user-per-day level.

As shown in the second half of Table 4, we also consider per-impression user engagement. Similar to the above analysis, we
convert each impression j into a three-dimensional binary vector (tj , ij , Yj) where Yj is either the duration or click-through
indicator for impression j. Note that the duration per impression is numerical so we can analyze it using linear regression
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Table 4. Difference-In-Differences Regression
Coef. Std. Dev. t p-value 0.025Q 0.975Q

Per User-Day

Duration

β0 175.9103 0.640 274.941 0.000 174.656 177.164
β1 -38.8514 0.942 -41.263 0.000 -40.697 -37.006
β2 -0.3622 0.887 -0.409 0.683 -2.100 1.375
β3 5.9208 1.303 4.544 2.759e-06 3.367 8.475

#CT

β0 1.2750 0.008 153.851 0.000 1.259 1.291
β1 -0.3341 0.012 -27.394 1.616e-165 -0.358 -0.310
β2 -0.0016 0.011 -0.141 0.888 -0.024 0.021
β3 0.0704 0.017 4.171 1.516e-05 0.037 0.103

Per Impression

Duration

β0 3.9697 0.005 863.796 0.000 3.961 3.979
β1 0.1486 0.007 20.234 2.753e-89 0.134 0.163
β2 0.0497 0.006 7.781 3.597e-15 0.037 0.062
β3 0.0711 0.010 6.998 1.298e-12 0.051 0.091

CTR

β0 -3.5198 0.002 -2092.794 0.000 -3.523 -3.517
β1 -0.0161 0.003 -5.947 1.365e-09 -0.021 -0.011
β2 0.0133 0.002 5.712 5.582e-09 0.009 0.018
β3 0.0474 0.004 12.819 6.417e-38 0.040 0.055

Note: All regression are linear regression except for per impression CT, where we applied logistic regression due to binary
labels.

(20). In contrast, the per impression click-throughs (Yj) are binary, so we instead apply logistic regression: we assume

Yj ∼ Ber
(

ez

1+ez

)
where

z = β0 + β1tj + β2ij + β3tjij .

As opposed to the per-user-per-day regression, in this case all coefficients have tiny p-values for both CT and duration.
In particular, the coefficient β2 for intervention has low p-value, indicating that the initial user partition may not be truly
random in terms of per impression engagement. Nonetheless, this difference is interpretable: our experiment was performed
on random user-groups that Glance has been using for months prior to our field test, on which some previous experiments
have been performed, causing this discrepancy in user behavior.

We next quantify the improvement. For the per-user-day conversion, we observe that the total duration and the number
of click-throughs improved by β3/(β0 + β1) ≈ 4.319% and 7.482% respectively. For the per impression conversion, the
duration improved by 1.726%. Finally, note that the β’s for CTR are based on logistic regression. The improvement in the
odds ratio is eβ3 − 1 ≈ 4.854%.
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