
R-U-SURE? Uncertainty-Aware Code Suggestions
By Maximizing Utility Across Random User Intents

Daniel D. Johnson 1 2 Daniel Tarlow 1 Christian Walder 1

Abstract
Large language models show impressive results
at predicting structured text such as code, but also
commonly introduce errors and hallucinations in
their output. When used to assist software de-
velopers, these models may make mistakes that
users must go back and fix, or worse, introduce
subtle bugs that users may miss entirely. We pro-
pose Randomized Utility-driven Synthesis of Un-
certain REgions (R-U-SURE), an approach for
building uncertainty-aware suggestions based on
a decision-theoretic model of goal-conditioned
utility, using random samples from a generative
model as a proxy for the unobserved possible in-
tents of the end user. Our technique combines
minimum-Bayes-risk decoding, dual decompo-
sition, and decision diagrams in order to effi-
ciently produce structured uncertainty summaries,
given only sample access to an arbitrary genera-
tive model of code and an optional AST parser.
We demonstrate R-U-SURE on three developer-
assistance tasks, and show that it can be applied
different user interaction patterns without retrain-
ing the model and leads to more accurate un-
certainty estimates than token-probability base-
lines. We also release our implementation as
an open-source library at https://github.
com/google-research/r_u_sure.

1. Introduction
Large language models have demonstrated remarkable abili-
ties for generating both natural language (Brown et al., 2020;
Chowdhery et al., 2022) and source code (Svyatkovskiy
et al., 2020; Feng et al., 2020; Chen et al., 2021b; Li et al.,
2022; Nijkamp et al., 2022). These abilities have led them

1Google Research, Brain Team 2University of Toronto, Depart-
ment of Computer Science. Correspondence to: Daniel D. Johnson
<ddjohnson@google.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

import collections
import json
from typing import List

TokenWithConfidence = collections.namedtuple('TokenWithConfidence',
('token', 'confidence'))

def render_suggestion(suggestion: List[TokenWithConfidence]) -> str:
(... definition omitted ...)

def suggestion_to_json(suggestion: List[TokenWithConfidence]) -> str:
"""Converts a suggestion to JSON.

Args:
suggestion: List of tokens and their confidence.

Returns:
JSON representation of the suggestion.

"""
return json.dumps(suggestion)

import collections
import json
from typing import List

TokenWithConfidence = collections.namedtuple(
'TokenWithConfidence', ('token', 'confidence'))

def render_suggestion(suggestion:
List[TokenWithConfidence]) -> str:

(... definition omitted ...)

def suggestion_to_json(suggestion:
List[TokenWithConfidence]) -> str:

"""Converts a suggestion to JSON.

Args:
suggestion: List of tokens and their
confidence.

Returns:
JSON representation of the suggestion.

"""
return json.dumps(<STOP>

"""Visualizing trends using SQLite and Matplotlib
"""
import sqlite3
from matplotlib import pyplot as plt

Open the database
conn = sqlite3.connect('data/budget.db')
c = conn.cursor()

Get the data
c.execute('''SELECT date, SUM(budget)

FROM transactions
GROUP BY date''')

data = c.fetchall()

Close the database
conn.close()

Create the plot
fig, ax = plt.subplots()
ax.plot(data)

Show it
plt.show()

import collections
import json
from typing import List

TokenWithConfidence = collections.namedtuple(
'TokenWithConfidence', ('token', 'confidence'))

def render_suggestion(suggestion:
List[TokenWithConfidence]) -> str:

(... definition omitted ...)

def suggestion_to_json(suggestion:
List[TokenWithConfidence]) -> str:

"""Converts a suggestion to JSON.

Args:
suggestion: List of tokens and their
confidence.

Returns:
JSON representation of the suggestion.

"""
return json.dumps(<STOP>

"""Visualizing trends using SQLite and Matplotlib
"""
import sqlite3
from matplotlib import pyplot as plt

Open the database
conn = sqlite3.connect('data/budget.db')
c = conn.cursor()

Get the data
c.execute('''SELECT date, SUM(budget)

FROM transactions
GROUP BY date''')

data = c.fetchall()

Close the database
conn.close()

Create the plot
fig, ax = plt.subplots()
ax.plot(data)

Show it
plt.show()

Figure 1. Given a partial file as context (bolded black code) and
outputs from a fixed language model (blue code), our approach
can be used to predict parts of generated programs that may need
editing (top, orange background), adjust completion length to
avoid uncertain parts (left, red text), or identify the most relevant
statements from a larger prediction (right, green background), by
searching over a space of uncertainty-augmented suggestions S.
(Examples lightly reformatted to fit this figure; see Appendix A.)

to be incorporated into a number of developer assistance
tools and services, such as GitHub Copilot and Tabnine.

Unfortunately, when faced with novel or unpredictable situ-
ations, large language models have a tendency to guess or
“hallucinate” unwanted outputs (Maynez et al., 2020; Liu
et al., 2021). In the context of software development, these
guesses can slow development by requiring developers to
spend time verifying the suggestion and deleting any incor-
rect parts (Mozannar et al., 2022; Barke et al., 2022; Upad-
hyaya et al., 2022), or worse, lead to undetected problems
and less secure code (Pearce et al., 2021). Compounding
this issue is the presence of automation bias, an effect where

1

https://github.com/google-research/r_u_sure
https://github.com/google-research/r_u_sure
https://github.com/features/copilot
https://www.tabnine.com/

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

Input Query .

LLM

import collections
import json
from typing import List

TokenWithConfidence = collections.namedtuple(
 'TokenWithConfidence',
 ('token', 'confidence'))

...

def suggestion_to_json(

suggestion: List[TokenWithConfidence]) -> str:
 """Converts a suggestion to JSON.

 Args: ...

def suggestion_to_json(suggestion:
 List[TokenWithConfidence]) -> str:
 """Converts a suggestion to JSON .

 Args:
 suggestion: List of tokens and their
 confidence.

 Returns:
 JSON representation of the suggestion .
 """
 return json.dumps(suggestion)

Uncertainty-Aware Suggestion _

suggestion: List[TokenWithConfidence]) -> str:
 """Converts a suggestion to a json string.

 Args: ...
suggestion: List[TokenWithConfidence]) -> str:
 """Renders a suggestion as a JSON object."""

 Args: ...
suggestion: List[TokenWithConfidence]) -> str:
 """Turns suggestion into JSON.

 Args: ...

Coordinate Descent Solver

Utility-Driven
Decision Diagram SystemSuggestion Prototype __

Hypothetical User Intents

Figure 2. Overview of the R-U-SURE system. Given an input context x, we generate a set of samples g(1), . . . , g(K) from a pretrained
generative model. We select one sample g(1) as a suggestion prototype and interpret the full set of samples as hypothetical user intents
(e.g. examples of code the user may want to write), as described in Section 3.1. For each hypothetical intent g(k), we can estimate the
utility u(g(k), s) of showing some concrete suggestion s to a user who intended to write g(k) (discussed in Section 2). We represent this
efficiently using a system of decision diagrams w(1), . . . , w(k) (Section 3.3), and use coordinate descent (Section 3.2) to identify a set of
annotations to insert into the suggestion prototype g(1) to maximize expected utility over these samples, obtaining an uncertainty-aware
suggestion s̃ that is likely to be more useful for the user’s unobserved true intent.

users fail to notice issues in outputs of automated systems
(Madi, 2022; Cummings, 2004; Lyell & Coiera, 2017).

An interesting property of generated code suggestions is that
some parts of the user’s intent (e.g. control flow and API
boilerplate) can be predicted more easily than others (e.g.
edge-case behavior or the signatures of novel functions).
User interaction studies of ML coding assistants have re-
vealed that software engineers would benefit if suggestions
included indicators of model uncertainty (Mozannar et al.,
2022; Weisz et al., 2021) or user-fillable “holes” (Barke
et al., 2022). However, Vasconcelos et al. (2022) have found
that per-token conditional probability estimates are insuffi-
cient to provide good predictions of necessary edits. Guo
et al. (2021) propose a top-down generative model of code
that uses a programming language’s grammar to generate
completions containing holes, but these holes must align
with grammar nonterminals and cannot identify uncertain
subregions within lists of statements or expressions.

In this work, we show that there is a way to harness the
remarkable capabilities of pretrained language models to
both generate high-quality code suggestions and also pro-
duce concise and semantically-meaningful representations
of their own uncertainty, without requiring any fine-tuning.
Our key insight is that, since language models of code are
trained to predict file contents from context, we can rein-
terpret the samples from a well-trained language model as
plausible goal states for the user. We can then use these
samples to estimate how useful our suggestions would be
for a user whose intent we do not know, and to modify those
suggestions to make them useful across a diverse set of
possible user intents.

As a concrete motivating example, consider the task of code
completion under uncertainty, and suppose we wish to high-
light specific regions of a completion suggestion to help
end-users identify the parts of the suggestion they need to

change, as shown at the top of Figure 1. To do this, we can
define a space S of annotated suggestions, where some to-
kens are highlighted as UNSURE. We can then approximate
how helpful a suggestion s ∈ S would be to a user who
actually wants to write code g by computing a confidence-
adjusted edit distance between s and g, assuming that UN-
SURE tokens will be double-checked by the user and thus be
easier to edit if wrong but also save less time (and thus be
less useful) than non-highlighted SURE tokens if they turn
out to be correct. If we can find a set of annotations that has
high utility across many hypothetical goals g(k) drawn from
a language model, then as long as the language model is
well calibrated, the UNSURE annotations should provide a
summary of the model’s uncertainty that is similarly useful
for accomplishing the user’s unknown goal g.

Our contributions are as follows:

• We describe a utility-driven framework (summarized
in Figure 2) for producing uncertainty-aware sugges-
tions given only sample-access to an arbitrary language
model, by interpreting its samples as plausible user in-
tents and using combinatorial optimization to identify
the highest-utility suggestion, extending sample-based
minimum Bayes risk decoding (Eikema & Aziz, 2020).

• We show how to apply dual decomposition to a
novel decision diagram representation of edit-distance-
based utility functions, yielding an efficient coordinate-
descent optimizer and building a bridge between recent
advances in language model decoding and combinato-
rial optimization.

• We construct a number of variants for our utility func-
tions, enabling them to incorporate tree structure from
an error-tolerant syntax-tree parser, account for both
deletions and insertions, and respond to uncertainty by
either annotating or removing the uncertain parts.

2

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

• We demonstrate our approach across three developer-
assistance-inspired tasks (visualized in Figure 1), and
show that our approach yields a better tradeoff between
correct and incorrect predictions than heuristics based
on cumulative or per-token probability.

2. Problem Statement
We tackle the problem of providing contextual, uncertainty-
aware suggestions to assist users of ML-integrated tools
with unobserved goals, with a particular focus on assisting
software development. As we discuss in Section 1, there
may not be enough information to fully determine the user’s
intent given the context. Our strategy is thus to augment the
space of possible suggestions to account for the uncertainty
in the user’s intent in an explicit way. For instance, we can
insert visual markers into a code-completion suggestion to
draw attention to the parts of the suggestion that the user
may wish to change. By doing so, we can avoid silently
introducing incorrect behavior, and produce a suggestion
that is useful regardless of what intent the user actually has.

We formalize this intuition using a decision theoretic frame-
work. We letX be a set of contexts (e.g. the current partially-
written code file and any other relevant IDE state) and G
be a set of goals (e.g. the desired final state of the code
file), with the specific context x ∈ X and goal g ∈ G of
each user being distributed according to some unknown
distribution p(X = x,G = g). We further specify a set S
of possible system suggestions along with a utility metric
u : G × S → R, where u(g, s) measures (or approximates)
how useful suggestion s is toward accomplishing some spe-
cific goal g that the user might have.

Consider again the motivating example introduced in Sec-
tion 1. Letting Σ be a set of tokens, we can define
G = Σ∗ as the set of possible token sequences g =
[g1, g2, . . . , gM] ∈ G the user may wish to write, with
each gi ∈ Σ. We can then define S = (Σ × C)∗ as
a set containing uncertainty-annotated suggestions s =
[(s1, c1), (s2, c2), . . . , (sN , cN)] ∈ S, where each sugges-
tion is a sequence of pairs of tokens si ∈ Σ and confidence
indicators ci ∈ C = {SURE,UNSURE}. Finally, we can
define u(g, s) based on the edit distance from s to g, with a
smaller penalty for deleting incorrect UNSURE tokens but
a smaller reward for keeping correct ones. An example of
how such a u might be implemented using dynamic pro-
gramming is shown in Algorithm 1 of Figure 3, where α
is the reward for keeping correct UNSURE tokens and β is
the penalty for deleting incorrect UNSURE tokens. In Sec-
tion 3.4 we discuss how we extend this idea to account for
program syntax trees and inserted code.

More generally, we can think about each s ∈ S as a possible
suggestion our system could show, and use u to estimate

the usefulness of that suggestion for a particular goal. For a
given context x ∼ p(X), we wish to find a concrete sugges-
tion s∗ which is as useful as possible, e.g. that maximizes
u(g, s∗), in the presence of uncertainty about g. If we knew
the true distribution p(G|X), we might seek the suggestion
that is most useful on average over the user’s likely intents:

s∗ = arg max
s∈S

Eg∼p(G|X=x)[u(g, s)] (1)

This choice is also known as the minimum Bayes risk sug-
gestion, as it minimizes the expected risk (negative utility)
of the action under the conditional distribution p(G|X).

3. Approach
Unfortunately, we do not have access to the distribution in
Equation (1). We now present Randomized Utility-driven
Synthesis of Uncertain REgions (R-U-SURE), a tractable
procedure for approximating s∗ by combining samples from
a model using combinatorial optimization.

3.1. Approximating True Intents With Model Samples

We start by assuming that we have access to a well-
calibrated generative model p̃θ(G|X) that predicts a dis-
tribution of plausible goals in a given context. For instance,
p̃θ(G|X) could be a language model trained to produce
completions of a partial file. Previous work has shown that
samples from such a model can give a good proxy for true
uncertainty in a generative model as long as the model is
well calibrated (Eikema & Aziz, 2020; Ott et al., 2018).

As such, we can treat the model p̃θ(G|X) as a proxy for the
true conditional distribution p(G|X), and try to find

s̃∗ = arg max
s∈S

Eg∼p̃θ(G|X=x)[u(g, s)]. (2)

Intuitively, if we find a suggestion s̃∗ that is reliably useful
across the high-likelihood goals under p̃θ(G|X = x), and
any sample from p should also have high likelihood under
p̃θ (e.g. due to training with the cross-entropy objective),
we can hope that such a suggestion is also useful for the true
user intent (a sample from p(G|X = x)).

It is still intractable to exactly find s̃∗, due to the exponen-
tially large set of possible user intents and possible sugges-
tions. We thus search over a restricted space S(g(1)) ⊂ S
derived from one of the model outputs g(1) (which we call
the suggestion prototype), and use a Monte-Carlo estimate
over K independent samples g(k) ∼ p̃θ(G|X = x) from
the model to estimate utility, similar to the minimum-Bayes-
risk decoding strategy proposed by Eikema & Aziz (2020):

s̃ = arg max
s∈S(g(1))

1

K

K∑
k=1

u(g(k), s), (3)

3

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

Algorithm 1 Sequence edit-distance utility u(g, s)

Input: g = [g1, . . . , gM], s = [(s1, c1), . . . , (sN , cN)], α, β
Initialize T i

j to −∞ for 0 ≤ i ≤M, 0 ≤ j ≤ N
T 0
0 ← 0.0 # Base case for dynamic programming

for i = 0 to M , j = 0 to N do
if i > 0 and j > 0 and gi = sj then # Match sj and gi

if cj = SURE then T i
j ← max(T i

j , T
i−1
j−1 + 1)

if cj = UNSURE then T i
j ← max(T i

j , T
i−1
j−1 + α)

end if
if i > 0 then # Insert gi
T i
j ← max(T i

j , T
i−1
j + 0)

end if
if j > 0 then # Delete sj

if cj = SURE then T i
j ← max(T i

j , T
i
j−1 − 1)

if cj = UNSURE then T i
j ← max(T i

j , T
i
j−1 − β)

end if
end for
return TM

N

Algorithm 2 Decision diagram for w(k)(b)

Input: g(k) = [g1, g2, . . . , gM], g(1) = [s1, s2, . . . , sN], α, β
Initialize an empty decision diagram
Label node (0, 0) as >
for i = 0 to M , j = 0 to N do

if i > 0 and j > 0 and gi = sj then # Match sj and gi
Add edge (i− 1, j − 1)→ (i, j), weight 1, label bj := 0
Add edge (i− 1, j − 1)→ (i, j), weight α, label bj := 1

end if
if i > 0 then # Insert gi

Add edge (i− 1, j)→ (i, j), weight 0
end if
if j > 0 then # Delete sj

Add edge (i, j − 1)→ (i, j), weight −1, label bj := 0
Add edge (i, j − 1)→ (i, j), weight −β, label bj := 1

end if
end for
Label node (M,N) as ⊥
return the diagram

s1 = a s2 = b s3 = c

g
1
=

a
g
2
=

c
g
3
=

b
g
4
=

d
>

⊥

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

b1=0

1b1=1
.7

b2=0

1
b2=1

.7

b3=0

1
b3=1

.7

b1=0
−1

b1=1
−.3

b1=0
−1

b1=1
−.3

b1=0
−1

b1=1
−.3

b1=0
−1

b1=1
−.3

b1=0
−1

b1=1
−.3

b2=0
−1

b2=1
−.3

b2=0
−1

b2=1
−.3

b2=0
−1

b2=1
−.3

b2=0
−1

b2=1
−.3

b2=0
−1

b2=1
−.3

b3=0
−1

b3=1
−.3

b3=0
−1

b3=1
−.3

b3=0
−1

b3=1
−.3

b3=0
−1

b3=1
−.3

b3=0
−1

b3=1
−.3

Figure 3. An example of an uncertainty-aware edit-distance-based utility function, and of the correspondence between dynamic program-
ming and decision diagram construction. Algorithm 1 shows a dynamic programming implementation of the utility function u(g, s)
described in Section 2, taking as input a target goal state g, a fixed suggestion s, and weights α and β for correct and deleted UNSURE

tokens, respectively. We assign positive utility to correctly predicted tokens instead of penalizing inserts so that an empty suggestion has
zero utility. Setting α < 1 and β < 1 allows us to approximate the effect of users double-checking UNSURE regions: UNSURE tokens
provide less utility than SURE tokens if kept but are easier to delete if wrong. Algorithm 2 is an expanded version of this utility function
that enables simultaneously searching over the cj by building a decision diagram, as described in Section 3.3. On the right, we show an
example decision diagram obtained by running Algorithm 2 with g(1) = [a, b, c], g(k) = [a, c, b, d], α = 0.7 and β = 0.3, colored based
on the algorithm steps. Note that our experiments use a more complex utility function, described in Section 3.4 and Appendix C.

Here K is a hyperparameter that determines how many
samples we optimize over. For the space of confidence-
aware suggestions described in Section 2, we can set

S(g(1)) = {[(g(1)1 , c1), . . . , (g
(1)
N , cN)] : ci ∈ C},

which corresponds to taking the suggestion tokens si from
g(1) and just searching over the confidence markers ci.

3.2. Decomposing Into Independent Subproblems

A standard technique for optimizing sums over combinato-
rial discrete spaces such as S(g(1)) is dual decomposition.
We give a brief overview of dual decomposition as it applies
to our problem; see Sontag et al. (2011) and Rush & Collins
(2012) for an in-depth introduction.

We start by choosing an embedding φ of the search space
S(g(1)) into a space of d-dimensional binary vectors, such
that each possible suggestion s ∈ S(g(1)) maps to a unique
vector b = φ(s) ∈ {0, 1}d; here d may depend on g(1)

and the chosen embedding φ. We then rewrite our utility
function u(g(k), s) as a function w(k)(φ(s)) of those binary
vectors b = φ(s), obtaining the equivalent optimization
problem

b̃ = arg max
b∈{0,1}d

K∑
k=1

w(k)(b),

from which we can recover the solution to Equation (3) by
inverting the embedding using information from g(1), i.e.
by setting s̃ = φ−1(b̃).

Note that the embedding function φ will usually depend
on the set of suggestions being considered. Taking the
set S(g(1)) from the previous section as an example, if
g(1) has N tokens we might choose d = N and define
b = φ(s) by setting bi = 1 whenever ci = UNSURE in
the suggestion s = [(g

(1)
1 , c1), . . . , (g

(1)
N , cN)] ∈ S(g(1)).

(Our experiments use a somewhat more complex embedding
function, described in Appendix C.)

Next, we reinterpret constrained optimization problem over
copies of b, i.e. as

U = max
b(1),...,b(K)∈{0,1}d

K∑
k=1

w(k)(b(k)), (4)

subject to b(1) = b(2) = · · · = b(K). Finally, we introduce
a set of Lagrange multipliers λ(k) ∈ Rd with

∑
k λ

(k) = 0
to relax these equality constraints:

W (k)(b(k),λ(k)) = w(k)(bk) + λ(k) · b(k), (5)

L(λ(1:K)) =

K∑
k=1

max
b(k)

W (k)(b(k),λ(k)) ≥ U. (6)

This is known as the Lagrangian dual problem: L(λ(1:K))
is a convex function of λ and an upper bound on U , and our
goal is to find arg minλ L(λ(1:K)). If we can find λ(1:K)

such that b(1) = b(2) = · · · = b(K) in Equation (6), the
bound is tight and we recover the solution to Equation (4).

4

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

(Note that this bound is not necessarily tight: we may have
a nonzero duality gap minλ L(λ) − U > 0.) The key
advantage of this formulation is that the only interaction
between terms in the sum is the constraint

∑
k λ

(k) = 0,
which we can interpret as “messages” between subproblems.
We can thus alternate between independently optimizing
over the b(k) for each W (k) term, and adjusting the λ(k)

(“message-passing”) to tighten the dual bound by increasing
agreement of the b(k).

One efficient optimization algorithm of this form is “max-
marginal-averaging”, a version of coordinate descent de-
scribed by Lange & Swoboda (2021). It works by iterating
through variable indices i, computing the max-marginals

m
(k)
i:=β = max

b(k) s.t. b(k)i =β

W (k)(b(k),λ(k)), β ∈ {0, 1}

(which measure the utility of fixing b(k)i to β = 0 or β = 1),
setting δ(k)i = m

(k)
i:=1 −m

(k)
i:=0, and then updating

λ
(k)
i ← λ

(k)
i − δ

(k)
i +

1

K

∑
k′

δ
(k′)
i (7)

This update ensures δ(k)i = δ
(k′)
i for all k, k′, which implies

that the same choice (b(k)i := 0 or b(k)i := 1) is optimal
for every k and by the same amount. This is a coordinate
descent update for L(λ(1:K)) with respect to the λ(1:K)

i

(Lange & Swoboda, 2021; Werner et al., 2020), and applying
it produces a monotonically decreasing upper bound on U .

3.3. Expanding Utility Functions To Decision Diagrams

It remains to show how to efficiently compute the updates in
Equation (7) corresponding to our objective in Equation (3).
Our key idea is to focus on a family of utility functions
that can be computed using an edit-distance-like dynamic
program, and rewrite them in a form that enables us to simul-
taneously search over edit sequences, which are different for
each subproblem, and confidence annotations, which must
be chosen consistently across all subproblems.

Figure 3 gives an example of this transformation for the
utility function introduced in Section 2. We start with Al-
gorithm 1, which computes an edit-distance-based utility
u(g, s) for a specific suggestion s and a specific vector of
confidence annotations c by searching over possible align-
ments of s and g. We then extend this implementation to
Algorithm 2, which additionally searches over confidence
annotations by embedding both the sequence of edits and
the sequence of confidence annotations into a single binary
decision diagram (BDD). Finding the maximum-utility path
in this diagram simultaneously computes both the optimal
alignment between s and g and the optimal confidence anno-
tations ci, and we can reconstruct the confidence annotations
by following the path and setting ci = UNSURE whenever
we encounter an edge labeled bi := 1 (inverting the original
embedding φ).

We can now build a system of decision diagrams by con-
structing a separate BDD for each model sample g(k), and
use this system to solve the optimization problem in Equa-
tion (6). Specifically, we can compute the max-marginals
m

(k)
i:=β for a given variable bi and subproblem k by travers-

ing the diagram for subproblem k and separately considering
paths that assign bi := 0 and bi := 1. The messages λ(k)

i

can then be incorporated by modifying the costs of all edges
in subproblem k that assign bi := 1, which biases that sub-
problem’s search to prefer confidence annotations that are
consistent with the choices of other subproblems.

In more detail, we follow Lange & Swoboda (2021) and use
the BDD representation to run a sequence of max-marginal-
averaging updates until L(λ(1:K)) stops improving. If all
subproblems agree on the optimal assignment b (e.g. Equa-
tion (6) is tight), the maximum-utility paths for each sub-
problem now correspond to edit sequences for the same sug-
gestion s̃ = φ−1(b) ∈ S(g(1)); we can thus reconstruct the
solution to Equation (3) by combining information from b
and the suggestion prototype g(1). If the subproblems do not
agree, we instead decode an approximate solution to Equa-
tion (4) by greedily committing to the most promising as-
signment for each element of b and updating max-marginals
to be consistent with the fixed assignments, similar to the
heuristic described by Kolmogorov (2014), and then recon-
struct a (possibly suboptimal) suggestion from this guess.
We note that additional subtleties are needed to make the
BDD representation efficient and to avoid unnecessary re-
computation in the dynamic programs; see Appendix B.

3.4. Extending the Utility Function

Our method can be applied to any space of suggestions
S and utility function u(g, s) that can be efficiently rep-
resented as decision diagrams. In this section we briefly
summarize a number of extensions to the basic utility func-
tion presented in Algorithm 1. These extensions, which we
use for our experiments, enable us to adapt the R-U-SURE
system to a variety of tasks without modifying the pretrained
language model. (See Appendix C for details.)

Incorporating tree structure with hierarchical edits. When
data has a natural tree structure (e.g. an abstract syntax tree
for a program), we can incorporate this structure into u(g, s)
by requiring that edits respect the tree hierarchy. In particu-
lar, we implement a recursive utility function under which
entire subtrees are either deleted, inserted, or recursively
matched with other subtrees at the same depth.

Constraining locations of UNSURE regions. Similarly, we
may have prior knowledge about which tokens are appropri-
ate to mark as UNSURE; for instance, we may want to ensure
that UNSURE tokens align with parsed expressions in the
syntax tree. We can enforce this by introducing new binary

5

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

decision variables that track where UNSURE regions start
and stop, and including a “constraint BDD” which ensures
they start and stop in semantically-meaningful positions.

Adding localization and insertion penalties. Identifying
which location to edit may be more difficult than actually
performing the edit, and it may be useful to identify loca-
tions at which more code must be inserted even if all of the
tokens in the suggestion are likely to be kept. To account for
this, we can introduce an additional “localization penalty”
each time an edit starts, independent of the size of the edit.
This encourages our method to group edits into semantically
meaningful chunks and to identify locations where missing
code may need to be inserted, as long as we allow small
UNSURE regions to be added in spaces between tokens.

Searching for prefixes. We may want to extract only a small
portion of the model’s initial suggestion, stopping once the
uncertainty becomes too high. We can account for this by
introducing new decision variables that determine whether
or not to truncate the suggestion at various points, and mod-
ifying u to stop penalizing edits after the truncation point.

4. Related Work
Decoding by maximizing utility. A variety of sampling-
based decoding strategies aiming to minimize Bayes risk
have been proposed, with many works applying it to neural
machine translation (Eikema & Aziz, 2020; Bhattacharyya
et al., 2021; Kumar & Byrne, 2004; Ehling et al., 2007;
Müller & Sennrich, 2021; Eikema & Aziz, 2021; Freitag
et al., 2022) and to code generation (Li et al., 2022; Shi et al.,
2022). These approaches generally use a utility function to
select one sample from a larger generated set. González-
Rubio & Casacuberta (2015) also explore combining parts
of multiple samples to construct a single combined sam-
ple, and Lin & Chen (2010) propose using Bayes risk for
extractive summarization. Although not framed as utility
maximization, self-consistency decoding (Wang et al., 2022;
Huang et al., 2022) also uses samples to identify the most
likely correct answer under a model’s distribution, and has
been shown to improve reasoning ability.

Reinforcement-learning and sequential-decision-making
techniques can also be used to maximize conditional ex-
pected utility, by interpreting tokens as actions and the utility
as a reward (Lampouras & Vlachos, 2016; Sun et al., 2017;
Chen et al., 2018; Prabhavalkar et al., 2018; Keneshloo
et al., 2019; Leblond et al., 2021). Many works maximize
quality metrics such as BLEU or error-rate, although others
have used measures of program correctness (Le et al., 2022)
or learned reward models (Ziegler et al., 2019; Ouyang
et al., 2022; Bai et al., 2022). Others have trained models
to imitate a more expensive reward-driven search process
(Kuncoro et al., 2016; Liu et al., 2018; Sabour et al., 2019).

Selective and multi-choice prediction. One approach to
avoid incorrect predictions under uncertainty is selective
classification, i.e. abstaining from some predictions to
minimize overall risk (Chow, 1957; El-Yaniv et al., 2010;
Geifman & El-Yaniv, 2017; Dong et al., 2018; Ziyin et al.,
2019). Another approach is to output multiple predictions,
e.g. all classifications with confidence above a threshold
(Vovk et al., 2005; Angelopoulos & Bates, 2021), or an
ensemble of structured outputs which approximately covers
the true output (Guzman-Rivera et al., 2012; 2014; Prasad
et al., 2014; Lee et al., 2016; Bhattacharyya et al., 2018;
Firman et al., 2018; Premachandran et al., 2014). When the
space of possible outputs is very large, uncertain predictions
can be compressed by representing multiple sequences as a
lattice (Su et al., 2017; Sperber et al., 2017); lattice represen-
tations have also been used within a Bayes risk framework
(Tromble et al., 2008; Xu et al., 2010).

Generating and identifying partial programs. A number
of works have considered identifying common patterns in
source code (Lozano et al., 2010; Allamanis & Sutton, 2014;
Shin et al., 2019; Sivaraman et al., 2021), as well as gener-
ating programs with holes to aid in program synthesis (Nye
et al., 2019; Ellis et al., 2020). Most relevant to our current
work, Guo et al. (2021) propose GRAMMFORMER, a genera-
tive model for code that produces holes in parts of the syntax
tree that are difficult to predict. GRAMMFORMER gener-
ates code top-down by iteratively expanding nonterminal
nodes of a syntax tree, and is trained via a combination of
random-order pretraining and RL finetuning, using a regular-
expression-based objective that trades off between size and
accuracy. In contrast, our approach requires only sample
access to a pretrained generative model, can adapt to differ-
ent utility functions and suggestion types without retraining
the model, and can identify regions of uncertainty in both
syntax trees and unstructured sequences (e.g. docstrings)
without aligning them to a syntax tree derivation.

Uncertainty quantification and summarization. Past
works have compared model-generated sequences to ground
truth (Ott et al., 2018; Holtzman et al., 2019), studied the
calibration of deep models in general (Carrell et al., 2022),
and proposed new mechanisms for training better-calibrated
models (Tran et al., 2022; Xiao et al., 2022). Kadavath
et al. (2022) find that some large language models can some-
times answer natural-language questions about the accuracy
of their own generated outputs, improving when multiple
sampled outputs are included in the prompt, and Lin et al.
(2022) show that language models can be fine-tuned to out-
put calibrated uncertainty estimates. Our work relies on
the calibration and sample-quality of the base intent model,
but focuses on exposing this uncertainty to end-users. Also
related are works which use attention and saliency maps to
inform users about model behavior (Stevens & Su, 2020;
Tenney et al., 2020), as well as works that visualize per-

6

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

token probabilities to summarize model uncertainty (Stro-
belt et al., 2021; Weisz et al., 2021; Sun et al., 2022). Most
relevant to our work, Vasconcelos et al. (2022) found that
visualizations of predicted locations of edits are strongly
preferred by users over individual token probabilities and
also significantly reduce editing time. They used a separate
model trained to predict edits for a specific coding problem
based on user editing traces; in contrast, our technique can
be used to produce annotations without requiring additional
model training or edit supervision.

Combinatorial optimization. Dual decomposition and
block coordinate descent/ascent solvers have been applied to
a variety of optimization problems, including combinatorial
search (Swoboda et al., 2016), MAP inference (Sontag et al.,
2011), and NLP tasks (Rush et al., 2010). Relevant to our
work, Paul & Eisner (2012) and Peng et al. (2015) use dual
decomposition with n-gram features to combine WFSAs,
with applications to minimizing Bayes risk. There has also
been recent interest in using binary decision diagrams as
representations for combinatorial optimization (Castro et al.,
2022). Our work expands on that of Lange & Swoboda
(2021) by applying dual decomposition to a larger class of
decision diagrams; see Appendix B.

5. Experiments
We evaluate our approach by applying it to three devel-
oper assistance tasks, each of which is visualized in Fig-
ure 1. For all tasks, we generate suggestion prototypes
and hypothetical intents using a 5B-parameter decoder-only
LM trained on 105B tokens of permissively-licensed open-
source code from GitHub, and parse them into trees using
an error-tolerant bracket-matching pseudo-parser (described
in Appendix D). We compare our approach to a number
of task-specific baselines, all of which build suggestions
s ∈ S(g(1)) from the same suggestion prototype, and evalu-
ate how well each method can predict the changes necessary
to obtain the final code state from the dataset, measured by
our utility function as well as token accuracy.

5.1. Localizing Edits In Code Suggestions

Our first task uses R-U-SURE to insert confidence anno-
tations around parts of code completion suggestions that
users are likely to edit. As discussed in Section 2, we config-
ure our utility function so that UNSURE tokens have lower
utility if matched but lower penalties if deleted. We addi-
tionally enforce hierarchical edits and syntactically-valid
UNSURE regions and add extra localization penalties using
the extensions described in Section 3.4; see Appendix E.2
for the specific configuration we use.

To evaluate our approach, we assemble a collection of
5000 held-out code files for each of the languages JAVA,

Utility
(relative)

Est. Util.
(relative)

LOO Util.
(relative)

F1 score
(for UNSURE)

ALL SURE ≡ 0 38.00 30.35 -
MAX UNSURE 81.83 106.08 101.90 12.74
TOKEN PR. 0.5 50.83 82.63 77.10 63.03
TOKEN PR. 0.7 58.42 88.89 83.68 64.38
TOKEN PR. 0.9 66.99 95.64 90.79 61.44
PREFIX PR. 0.5 83.33 108.52 104.29 41.92
PREFIX PR. 0.7 83.45 108.27 104.05 37.26
PREFIX PR. 0.9 83.08 107.61 103.41 29.53
OURS (Region) 84.42 113.82 109.12 72.14

Table 1. Breakdown of edit-localization performance. Methods
that perform well on model samples (Est. and LOO Utility) also
perform well on the ground truth user intent (Utility); we mea-
sure utility relative to labeling the entire suggestion SURE. Our
approach achieves higher utility and also stronger token level F1

score when interpreting UNSURE tokens as predicted edits.

JAVASCRIPT, C++ and PYTHON, and split them into (syn-
thetic) completion contexts c and ground truth intents g
using three strategies. One such scheme is PYTHON spe-
cific, so we obtain 45000 examples in total (see Appendix E
for details). For each example, we sample 31 completions
from the language model, then select the sample with the
highest likelihood as the suggestion prototype, and use R-U-
SURE to mark parts of the parsed tree as UNSURE. We com-
pare our approach to heuristics based on token probabilities,
which insert UNSURE regions around tokens whose condi-
tional probability (TOKEN PROB) or total prefix probability
(PREFIX PROB) is below a threshold; we also try mark-
ing everything SURE, and marking the maximum amount
as UNSURE in our syntax-constrained space S(g(1)). (We
find that annotating based on token probability can miss
high-likelihood tokens that depend on earlier low-likelihood
tokens, as shown in Figures 12 and 14 of Appendix A.)

We first investigate how well our optimizer of the sample-
based approximate objective in Equation (3) succeeds at
producing a good suggestion for the true unobserved intent
g, as measured by our utility metric u. To this end, in Table 1
we report the utility u(g, s) of each method’s annotated
suggestion s based on the true file contents g (Utility), and
also our estimate of utility 1

K

∑K
k=1 u(g(k), s) computed

across K = 31 samples from the model (Est. Util.). We
additionally report the estimated utility u(g(K+1), s) for
a held-out model sample g(K+1) which was not used for
optimization, denoting this “Leave-One-Out Utility” (LOO
Util.). We find that methods with high average utility on
model samples also achieve high average utility against the
true file contents, with our method successfully obtaining
high utility in both settings. A more detailed comparison
in Figure 4 reveals that utility on the model samples g(k)

and utility on the unobserved intent g are highly correlated
for our suggestions, and Figure 5b shows that utility also

7

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

0 10 20 30
Rank of GT among Est. Utility

0.00

0.05

0.10

0.15

No
rm

al
ise

d
Co

un
t

Est. Utility Calibration
Uniform Ideal

Figure 4. Comparison of true and estimated utility for edit local-
ization task, as a scatterplot and as a rank-histogram (Candille &
Talagrand, 2005). The true utility of our approach’s suggestions is
correlated with the estimate from the model samples, and appears
fairly often at any rank within those samples, indicating that the
samples are often a good proxy for the true uncertainty in the user’s
intent. However, some examples have a lower ground-truth utility
than estimated, potentially indicative of model miscalibration.

improves as we optimize over more samples.

Note that our utility metric is only an approximation of the
quality of an uncertainty-annotated suggestion, so having
higher utility does not necessarily imply that our method
produces more useful suggestions. To give more insight
and evaluate how well maximizing our utility function truly
summarizes the uncertainty of the model, we reinterpret un-
certainty region annotations as a binary classification prob-
lem, with UNSURE tokens being predictions of where users
will edit. We then compute the sensitivity (fraction of edited
code correctly marked UNSURE) and specificity (fraction of
unedited code marked SURE) for all methods with respect to
the ground truth g. We visualize how these metrics vary as
we sweep over the per-token utilities and costs of UNSURE
tokens, obtaining the Pareto curve in Figure 5a; we also
summarize the accuracy with F1 scores in Table 1. We find
that our approach is better at identifying locations of edits
than the baselines, indicating that maximizing our utility
metric does produce meaningful uncertainty estimates.

5.2. Selecting Suggestion Lengths

One common use of ML model suggestions for both code
and natural language applications is to show inline grey
“ghost text” suggestions as users type in the editor, and
allow users to quickly accept the suggestion by pressing
a key (often tab) (Svyatkovskiy et al., 2020; Barke et al.,
2022). In this case, showing longer correct suggestions
can accelerate developer productivity, but long incorrect
suggestions can slow developers down (Barke et al., 2022).

To apply our approach to this setting, we disable insertion
of UNSURE annotations, and instead search over prefixes
of the prototype suggestion using the truncation variables
described in Section 3.4; we continue to enforce hierarchical

50 100
Specificity (% Sure of unedited)

0

20

40

60

80

Se
ns

iti
vi

ty
 (%

 U
ns

ur
e

of
 e

di
te

d)

Example Fraction
Prefix Prob
Token Prob
R-U-SURE (Region)

(a) Sensitivity vs Specificity.

0 20 40 60
Number of Base Model Samples

30

40

50

60

70

80

To
ta

l U
til

ity

cpp
java
js
python

(b) Utility vs. sample size K.

Figure 5. Analysis of results for edit localization. (a) Token level
sensitivity / specificity trade-off across methods; our approach
Pareto-dominates the others. (Here “Example Fraction” marks a
fixed fraction as UNSURE.) (b) Mean utility for our approach w.r.t
the ground-truth user intent as a function of the number of samples
used in Equation (3), split by programming language.

20 40 60 80 100 120 140
Incorrect Chars

10

20

30

40

50

Co
rre

ct
 C

ha
rs Token Prob

Prefix Prob
of Characters
of Lines
Intellicode
Max Avg Log Prob
R-U-SURE (Prefix)

Figure 6. Character-level accuracy tradeoff for the suggestion-
length task. R-U-SURE obtains a favourable trade-off. (Note that
for simplicity we did not vary the hyperparameters of R-U-SURE
for this task.)

edits as well (see Appendix E.2). We compare our approach
to a number of heuristics: predicting a fixed number of lines,
predicting until we reach a low-probability token (Token
Prob.) or until the total probability is below a threshold
(Prefix Prob.), using the heuristic described by Svyatkovskiy
et al. (2020) (IntelliCode Compose), and choosing the prefix
that maximizes the ratio between the log-probability of the
sequence and its length (Max Avg. Log Prob) inspired by
the similar heuristics described by Chen et al. (2021a) and
Zhang et al. (2022).

Figure 6 visualizes the tradeoff between correct and incor-
rect characters predicted by each method, and shows that
our approach achieves a better tradeoff than other prefix-
selection baselines. Table 4 in Appendix F shows that our
approach also achieves strong results on our utility metric,
similar to the edit localization task.

5.3. API Discovery

Even if there is not enough information to provide a useful
completion suggestion at a specific location, it may still
be possible to extract useful information from a genera-

8

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

Utility Correct
tokens

Incorrect
tokens

NOVEL CALLS -1.39 1.18 3.04
ALL CALLS -1.39 1.18 3.04

ALL CALLS + LHS + ARGS -8.75 2.02 9.64
OURS (USEFUL CALLS) 5.10 3.56 2.10

Table 2. Comparison of utility and token-level accuracy statistics
for API call sequence task. Our approach achieves higher utility
by selecting a subset of method calls that is likely to appear, and
including the LHS and arguments only when they are predictable.

tive model’s suggestions. As an example of this, we use
our method to identify sequences of function calls that the
user is likely to write, even if the control flow structures
around these calls are not predictable; this could be used to
preemptively show documentation or type signatures.

We adapt our approach to this setting by extracting a se-
quence of function and method calls from the model’s out-
put, choosing S(g1) so that it selects a subset of these calls
as SURE, and defining u(g, s) to find the longest common
subsequence between the desired calls in g and the selected
calls. Since we expect such suggestions to be used as an
auxiliary aid rather than an inline suggestion, we set the
utility of correct predictions to be higher than the penalty
for incorrect ones (e.g. selected calls in s that were not
used in g) and give a bonus for predicting tokens not seen
before; we also assign zero utility to unselected calls. We
implement this by applying the hierarchical edits and region
location constraints described in Section 3.4 to a serialized
representation of the extracted calls; see Appendix E.2 for
the specific configuration we use.

We compare our approach against baselines which use all
calls in the file or which only predict calls that use identifiers
that are not in the context. Results are shown in Table 2;
we again find that our approach both achieves strong perfor-
mance on our utility metric and gives a favorable tradeoff
between correct and incorrect predictions.

6. Discussion
We have demonstrated that R-U-SURE can flexibly incorpo-
rate uncertainty annotations into model suggestions across
a variety of developer-assistance tasks, and that these anno-
tations lead to both improved performance on our estimates
of utility and also accurate predictions of the locations of
edits. Importantly, our approach does not require retraining
or fine-tuning the base generative language model, since
it decouples the action (showing a suggestion) from the
generative prediction task (predicting the user’s intent).

A limitation of our approach is that it is restricted to utility
functions that can be efficiently decomposed into decision
diagrams. This is a good fit for edit-distance-based utility

functions, and we believe the same principles could be ex-
tended to support multiple confidence levels or suggested
alternatives. However, more general types of utility function
(e.g. behavioral equivalence) may be difficult to approx-
imate with our technique. We also assume that the base
generative model is well-calibrated, and that a modest num-
ber of samples from it can summarize the possible edits
required. It would be interesting to study how our system
behaves with less-calibrated models, and how this changes
as the capacity of the base model grows.

Our current implementation of R-U-SURE runs on the CPU
using Numba (Lam et al., 2015), and takes between 1 sec-
ond and 1 minute depending on the number, length, and
complexity of the sampled programs (see Appendix A.1 for
details). Notably, this runtime is dominated by the time to
build the decision diagrams rather than the time to run the
coordinate-ascent optimizer, likely because our utility func-
tion is very general and was designed for flexibility rather
than decision-diagram construction efficiency. Although out
of scope of this paper, we have explored distilling the out-
puts of R-U-SURE into a learned model similar to Kuncoro
et al. (2016) and Kadavath et al. (2022), which can then be
queried in real time with comparable accuracy to the orig-
inal R-U-SURE system. Runtime could also be improved
by rewriting in a lower-level langauge, specializing the util-
ity function to a specific task, or using GPU acceleration
(Abbas & Swoboda, 2021).

More broadly, we are excited by the potential to incorporate
user interaction into minimum-Bayes-risk objectives to mit-
igate harms of model hallucinations. We see our work as a
step toward ML-powered assistants that empower users and
give appropriately conservative predictions in the presence
of uncertainty about user intent and the world at large.

Acknowledgements
We would like to thank Jacob Hegna, Hassan Abolhassani,
Jacob Austin, and Marc Rasi for contributing ideas toward
early designs of the R-U-SURE system, Maxim Tabach-
nyk, Chris Gorgolewski, Vladimir Pchelin, Yurun Chen, Ilia
Krets, Savinee Dancs, Alberto Elizondo, Iris Chu, Ambar
Murillo, Ryan McGarry, Paige Bailey, and Kathy Nix for
useful discussions and for collaborating on code completion
applications of R-U-SURE, and Miltiadis Allamanis for pro-
viding valuable feedback on the paper draft. We would also
like to thank Abhishek Rao, Alex Polozov, Joshua Howland,
Kefan Xiao, and Vedant Misra for providing the language
models and evaluation data used for our experimental re-
sults, and the members of Google Brain’s Machine Learning
for Code team for useful feedback throughout the project.

9

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

References
Abbas, A. and Swoboda, P. FastDOG: Fast discrete op-

timization on GPU. 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
439–449, 2021.

Allamanis, M. and Sutton, C. Mining idioms from source
code. Proceedings of the 22nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineer-
ing, 2014.

Angelopoulos, A. N. and Bates, S. A gentle introduction
to conformal prediction and distribution-free uncertainty
quantification. arXiv preprint arXiv:2107.07511, 2021.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C. J., Terry, M., Le, Q. V.,
and Sutton, C. Program synthesis with large language
models. ArXiv, abs/2108.07732, 2021.

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., Das-
Sarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T.,
et al. Training a helpful and harmless assistant with rein-
forcement learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022.

Barke, S., James, M. B., and Polikarpova, N. Grounded
copilot: How programmers interact with code-generating
models. ArXiv, abs/2206.15000, 2022.

Bhattacharyya, A., Schiele, B., and Fritz, M. Accurate
and diverse sampling of sequences based on a “best of
many” sample objective. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 8485–8493, 2018.

Bhattacharyya, S., Rooshenas, A., Naskar, S., Sun, S., Iyyer,
M., and McCallum, A. Energy-based reranking: Im-
proving neural machine translation using energy-based
models. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pp. 4528–4537, 2021.

Bollig, B. and Buttkus, M. On the relative succinctness
of sentential decision diagrams. Theory of Computing
Systems, pp. 1–28, 2018.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T. J., Child, R., Ramesh, A., Ziegler, D. M.,
Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin,
M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. ArXiv, abs/2005.14165,
2020.

Candille, G. and Talagrand, O. Evaluation of probabilis-
tic prediction systems for a scalar variable. Quarterly
Journal of the Royal Meteorological Society, 131, 2005.

Carrell, A., Mallinar, N. R., Lucas, J., and Nakkiran, P. The
calibration generalization gap. ArXiv, abs/2210.01964,
2022.

Castro, M. P., Ciré, A. A., and Beck, J. C. Decision diagrams
for discrete optimization: A survey of recent advances.
INFORMS J. Comput., 34:2271–2295, 2022.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021a.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Ponde, H., Kaplan,
J., Edwards, H., Burda, Y., Joseph, N., Brockman, G.,
Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf, H.,
Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder, N.,
Pavlov, M., Power, A., Kaiser, L., Bavarian, M., Winter,
C., Tillet, P., Such, F. P., Cummings, D. W., Plappert, M.,
Chantzis, F., Barnes, E., Herbert-Voss, A., Guss, W. H.,
Nichol, A., Babuschkin, I., Balaji, S. A., Jain, S., Carr, A.,
Leike, J., Achiam, J., Misra, V., Morikawa, E., Radford,
A., Knight, M. M., Brundage, M., Murati, M., Mayer, K.,
Welinder, P., McGrew, B., Amodei, D., McCandlish, S.,
Sutskever, I., and Zaremba, W. Evaluating large language
models trained on code. ArXiv, abs/2107.03374, 2021b.

Chen, Y., Li, V. O., Cho, K., and Bowman, S. R. A stable and
effective learning strategy for trainable greedy decoding.
arXiv preprint arXiv:1804.07915, 2018.

Chow, C.-K. An optimum character recognition system
using decision functions. IRE Transactions on Electronic
Computers, (4):247–254, 1957.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko, S.,
Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer, N. M.,
Prabhakaran, V., Reif, E., Du, N., Hutchinson, B. C.,
Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari,
G., Yin, P., Duke, T., Levskaya, A., Ghemawat, S., Dev,
S., Michalewski, H., Garcı́a, X., Misra, V., Robinson,
K., Fedus, L., Zhou, D., Ippolito, D., Luan, D., Lim,
H., Zoph, B., Spiridonov, A., Sepassi, R., Dohan, D.,
Agrawal, S., Omernick, M., Dai, A. M., Pillai, T. S., Pel-
lat, M., Lewkowycz, A., Moreira, E., Child, R., Polozov,
O., Lee, K., Zhou, Z., Wang, X., Saeta, B., Dı́az, M., Fi-
rat, O., Catasta, M., Wei, J., Meier-Hellstern, K. S., Eck,
D., Dean, J., Petrov, S., and Fiedel, N. PaLM: Scaling lan-
guage modeling with pathways. ArXiv, abs/2204.02311,
2022.

10

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

Cummings, M. L. Automation bias in intelligent time criti-
cal decision support systems. 2004.

Dong, L., Quirk, C., and Lapata, M. Confidence modeling
for neural semantic parsing. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 743–753, 2018.

Ehling, N., Zens, R., and Ney, H. Minimum Bayes risk
decoding for bleu. In Proceedings of the 45th Annual
Meeting of the Association for Computational Linguistics
Companion Volume Proceedings of the Demo and Poster
Sessions, pp. 101–104, 2007.

Eikema, B. and Aziz, W. Is MAP decoding all you need?
the inadequacy of the mode in neural machine translation.
In Proceedings of the 28th International Conference on
Computational Linguistics, pp. 4506–4520, 2020.

Eikema, B. and Aziz, W. Sampling-based minimum Bayes
risk decoding for neural machine translation. arXiv
preprint arXiv:2108.04718, 2021.

El-Yaniv, R. et al. On the foundations of noise-free selective
classification. Journal of Machine Learning Research, 11
(5), 2010.

Ellis, K., Wong, C., Nye, M., Sablé-Meyer, M., Cary, L.,
Morales, L., Hewitt, L., Solar-Lezama, A., and Tenen-
baum, J. B. DreamCoder: Growing generalizable, inter-
pretable knowledge with wake-sleep Bayesian program
learning. ArXiv, abs/2006.08381, 2020.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong,
M., Shou, L., Qin, B., Liu, T., Jiang, D., and Zhou, M.
CodeBERT: A pre-trained model for programming and
natural languages. ArXiv, abs/2002.08155, 2020.

Firman, M., Campbell, N. D., Agapito, L., and Brostow,
G. J. Diversenet: When one right answer is not enough.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5598–5607, 2018.

Freitag, M., Grangier, D., Tan, Q., and Liang, B. High
quality rather than high model probability: Minimum
Bayes risk decoding with neural metrics. Transactions of
the Association for Computational Linguistics, 10:811–
825, 2022.

Geifman, Y. and El-Yaniv, R. Selective classification for
deep neural networks. Advances in neural information
processing systems, 30, 2017.

González-Rubio, J. and Casacuberta, F. Minimum Bayes’
risk subsequence combination for machine translation.
Pattern Analysis and Applications, 18(3):523–533, 2015.

Guo, D., Svyatkovskiy, A., Yin, J., Duan, N., Brockschmidt,
M., and Allamanis, M. Learning to complete code with
sketches. In International Conference on Learning Rep-
resentations, 2021.

Guzman-Rivera, A., Batra, D., and Kohli, P. Multiple choice
learning: Learning to produce multiple structured outputs.
Advances in neural information processing systems, 25,
2012.

Guzman-Rivera, A., Kohli, P., Batra, D., and Rutenbar, R.
Efficiently enforcing diversity in multi-output structured
prediction. In Artificial Intelligence and Statistics, pp.
284–292. PMLR, 2014.

Holtzman, A., Buys, J., Forbes, M., and Choi, Y. The
curious case of neural text degeneration. ArXiv,
abs/1904.09751, 2019.

Hooker, J. N. Decision diagrams and dynamic programming.
In International Conference on Integration of Constraint
Programming, Artificial Intelligence, and Operations Re-
search, pp. 94–110. Springer, 2013.

Huang, J., Gu, S. S., Hou, L., Wu, Y., Wang, X., Yu, H., and
Han, J. Large language models can self-improve. ArXiv,
abs/2210.11610, 2022.

Kadavath, S., Conerly, T., Askell, A., Henighan, T. J., Drain,
D., Perez, E., Schiefer, N., Dodds, Z., DasSarma, N.,
Tran-Johnson, E., Johnston, S., El-Showk, S., Jones,
A., Elhage, N., Hume, T., Chen, A., Bai, Y., Bowman,
S., Fort, S., Ganguli, D., Hernandez, D., Jacobson, J.,
Kernion, J., Kravec, S., Lovitt, L., Ndousse, K., Ols-
son, C., Ringer, S., Amodei, D., Brown, T. B., Clark,
J., Joseph, N., Mann, B., McCandlish, S., Olah, C., and
Kaplan, J. Language models (mostly) know what they
know. ArXiv, abs/2207.05221, 2022.

Kanade, A., Maniatis, P., Balakrishnan, G., and Shi, K.
Learning and evaluating contextual embedding of source
code. In International Conference on Machine Learning,
2019.

Keneshloo, Y., Shi, T., Ramakrishnan, N., and Reddy, C. K.
Deep reinforcement learning for sequence-to-sequence
models. IEEE transactions on neural networks and learn-
ing systems, 31(7):2469–2489, 2019.

Kolmogorov, V. A new look at reweighted message pass-
ing. IEEE transactions on pattern analysis and machine
intelligence, 37(5):919–930, 2014.

Kumar, S. and Byrne, W. Minimum Bayes-risk decoding
for statistical machine translation. In Proceedings of the
Human Language Technology Conference of the North
American Chapter of the Association for Computational
Linguistics: HLT-NAACL 2004, pp. 169–176, 2004.

11

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

Kuncoro, A., Ballesteros, M., Kong, L., Dyer, C., and Smith,
N. A. Distilling an ensemble of greedy dependency
parsers into one mst parser. In Conference on Empir-
ical Methods in Natural Language Processing, 2016.

Lam, S. K., Pitrou, A., and Seibert, S. Numba: a llvm-based
python jit compiler. In LLVM ’15, 2015.

Lampouras, G. and Vlachos, A. Imitation learning for lan-
guage generation from unaligned data. In Proceedings
of COLING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pp. 1101–
1112. The COLING 2016 Organizing Committee, 2016.

Lange, J.-H. and Swoboda, P. Efficient message passing
for 0–1 ilps with binary decision diagrams. In Interna-
tional Conference on Machine Learning, pp. 6000–6010.
PMLR, 2021.

Le, H., Wang, Y., Gotmare, A. D., Savarese, S., and Hoi,
S. C. CodeRL: Mastering code generation through pre-
trained models and deep reinforcement learning. arXiv
preprint arXiv:2207.01780, 2022.

Leblond, R., Alayrac, J.-B., Sifre, L., Pislar, M., Lespiau,
J.-B., Antonoglou, I., Simonyan, K., and Vinyals, O. Ma-
chine translation decoding beyond beam search. arXiv
preprint arXiv:2104.05336, 2021.

Lee, S., Purushwalkam Shiva Prakash, S., Cogswell, M.,
Ranjan, V., Crandall, D., and Batra, D. Stochastic multi-
ple choice learning for training diverse deep ensembles.
Advances in Neural Information Processing Systems, 29,
2016.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago,
A., et al. Competition-level code generation with alpha-
code. Science, 378(6624):1092–1097, 2022.

Lin, S. C., Hilton, J., and Evans, O. Teaching models to ex-
press their uncertainty in words. ArXiv, abs/2205.14334,
2022.

Lin, S.-H. and Chen, B. A risk minimization framework for
extractive speech summarization. In Annual Meeting of
the Association for Computational Linguistics, 2010.

Liu, T., Zhang, Y., Brockett, C. J., Mao, Y., Sui, Z., Chen,
W., and Dolan, W. B. A token-level reference-free halluci-
nation detection benchmark for free-form text generation.
In Annual Meeting of the Association for Computational
Linguistics, 2021.

Liu, Y., Che, W., Zhao, H., Qin, B., and Liu, T. Distilling
knowledge for search-based structured prediction. In
Annual Meeting of the Association for Computational
Linguistics, 2018.

Lozano, A., Kellens, A., Mens, K., and Arévalo, G. B.
Mining source code for structural regularities. 2010 17th
Working Conference on Reverse Engineering, pp. 22–31,
2010.

Lozano, L., Bergman, D., and Smith, J. C. On the consistent
path problem. Operations Research, 68(6):1913–1931,
2020.

Lyell, D. and Coiera, E. W. Automation bias and verification
complexity: a systematic review. Journal of the American
Medical Informatics Association, 24:423–431, 2017.

Madi, N. S. A. How readable is model-generated code?
examining readability and visual inspection of github
copilot. In International Conference on Automated Soft-
ware Engineering, 2022.

Maynez, J., Narayan, S., Bohnet, B., and McDonald, R. T.
On faithfulness and factuality in abstractive summariza-
tion. ArXiv, abs/2005.00661, 2020.

Mozannar, H., Bansal, G., Fourney, A., and Horvitz, E.
Reading between the lines: Modeling user behavior and
costs in ai-assisted programming. ArXiv, abs/2210.14306,
2022.

Müller, M. and Sennrich, R. Understanding the properties of
minimum Bayes risk decoding in neural machine transla-
tion. In The Joint Conference of the 59th Annual Meeting
of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language
Processing, pp. 259–272. Association for Computational
Linguistics, 2021.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou,
Y., Savarese, S., and Xiong, C. Codegen: An open large
language model for code with multi-turn program synthe-
sis. 2022.

Nye, M., Hewitt, L. B., Tenenbaum, J. B., and Solar-
Lezama, A. Learning to infer program sketches. ArXiv,
abs/1902.06349, 2019.

Ott, M., Auli, M., Grangier, D., and Ranzato, M. Ana-
lyzing uncertainty in neural machine translation. ArXiv,
abs/1803.00047, 2018.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama,
K., Ray, A., et al. Training language models to fol-
low instructions with human feedback. arXiv preprint
arXiv:2203.02155, 2022.

Paul, M. J. and Eisner, J. Implicitly intersecting weighted
automata using dual decomposition. In North American
Chapter of the Association for Computational Linguistics,
2012.

12

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

Pearce, H. A., Ahmad, B., Tan, B., Dolan-Gavitt, B.,
and Karri, R. An empirical cybersecurity evalua-
tion of GitHub copilot’s code contributions. ArXiv,
abs/2108.09293, 2021.

Peng, N., Cotterell, R., and Eisner, J. Dual decomposition in-
ference for graphical models over strings. In Conference
on Empirical Methods in Natural Language Processing,
2015.

Prabhavalkar, R., Sainath, T. N., Wu, Y., Nguyen, P., Chen,
Z., Chiu, C.-C., and Kannan, A. Minimum word error rate
training for attention-based sequence-to-sequence models.
In 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 4839–4843.
IEEE, 2018.

Prasad, A., Jegelka, S., and Batra, D. Submodular meets
structured: Finding diverse subsets in exponentially-large
structured item sets. Advances in Neural Information
Processing Systems, 27, 2014.

Premachandran, V., Tarlow, D., and Batra, D. Empirical
minimum Bayes risk prediction: How to extract an extra
few % performance from vision models with just three
more parameters. 2014 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1043–1050, 2014.

Rush, A. M. and Collins, M. A tutorial on dual decompo-
sition and Lagrangian relaxation for inference in natural
language processing. Journal of Artificial Intelligence
Research, 45:305–362, 2012.

Rush, A. M., Sontag, D. A., Collins, M., and Jaakkola, T.
On dual decomposition and linear programming relax-
ations for natural language processing. In Conference
on Empirical Methods in Natural Language Processing,
2010.

Sabour, S., Chan, W., and Norouzi, M. Optimal comple-
tion distillation for sequence learning. In International
Conference on Learning Representations, 2019.

Shi, F., Fried, D., Ghazvininejad, M., Zettlemoyer, L., and
Wang, S. I. Natural language to code translation with
execution. arXiv preprint arXiv:2204.11454, 2022.

Shin, R., Allamanis, M., Brockschmidt, M., and Polozov,
O. Program synthesis and semantic parsing with learned
code idioms. In Neural Information Processing Systems,
2019.

Sivaraman, A., Abreu, R., Scott, A. C., Akomolede, T., and
Chandra, S. Mining idioms in the wild. 2022 IEEE/ACM
44th International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pp. 187–
196, 2021.

Sontag, D., Globerson, A., and Jaakkola, T. Introduction
to dual composition for inference. In Optimization for
Machine Learning. MIT Press, 2011.

Sperber, M., Neubig, G., Niehues, J., and Waibel, A. H.
Neural lattice-to-sequence models for uncertain inputs. In
Conference on Empirical Methods in Natural Language
Processing, 2017.

Stevens, S. and Su, Y. An investigation of language model
interpretability via sentence editing. In BlackboxNLP
Workshop on Analyzing and Interpreting Neural Networks
for NLP, 2020.

Strobelt, H., Hoover, B., Satyanarayan, A., and Gehrmann,
S. LMdiff: A visual diff tool to compare language models.
ArXiv, abs/2111.01582, 2021.

Su, J., Tan, Z., Xiong, D., Ji, R., Shi, X., and Liu, Y. Lattice-
based recurrent neural network encoders for neural ma-
chine translation. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 31, 2017.

Sun, J., Liao, Q. V., Muller, M. J., Agarwal, M., Houde, S.,
Talamadupula, K., and Weisz, J. D. Investigating explain-
ability of generative ai for code through scenario-based
design. 27th International Conference on Intelligent User
Interfaces, 2022.

Sun, W., Venkatraman, A., Gordon, G. J., Boots, B., and
Bagnell, J. A. Deeply AggreVaTeD: Differentiable imita-
tion learning for sequential prediction. In International
conference on machine learning, pp. 3309–3318. PMLR,
2017.

Svyatkovskiy, A., Deng, S. K., Fu, S., and Sundaresan, N.
IntelliCode Compose: Code generation using transformer.
In Proceedings of the 28th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp. 1433–
1443, 2020.

Swoboda, P., Kuske, J., and Savchynskyy, B. A dual ascent
framework for Lagrangean decomposition of combina-
torial problems. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4950–4960,
2016.

Tenney, I., Wexler, J., Bastings, J., Bolukbasi, T., Coenen,
A., Gehrmann, S., Jiang, E., Pushkarna, M., Radebaugh,
C., Reif, E., and Yuan, A. The language interpretability
tool: Extensible, interactive visualizations and analysis
for nlp models. In Conference on Empirical Methods in
Natural Language Processing, 2020.

Tran, D., Liu, J., Dusenberry, M. W., Phan, D., Collier,
M., Ren, J. J., Han, K., Wang, Z., Mariet, Z. E., Hu, H.,
Band, N., Rudner, T. G. J., Singhal, K., Nado, Z., van

13

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

Amersfoort, J. R., Kirsch, A., Jenatton, R., Thain, N.,
Yuan, H., Buchanan, E. K., Murphy, K., Sculley, D., Gal,
Y., Ghahramani, Z., Snoek, J., and Lakshminarayanan,
B. Plex: Towards reliability using pretrained large model
extensions. ArXiv, abs/2207.07411, 2022.

Tromble, R. W., Kumar, S., Och, F. J., and Macherey, W.
Lattice minimum Bayes-risk decoding for statistical ma-
chine translation. In Conference on Empirical Methods
in Natural Language Processing, 2008.

Upadhyaya, G., Reinhardt, A., Rajan, H., Kim, M., Glass-
man, E. L., Hartmann, B., and Pinedo, J. Expectation vs.
experience: Evaluating the usability of code generation
tools powered by large language models. CHI Confer-
ence on Human Factors in Computing Systems Extended
Abstracts, 2022.

Vasconcelos, H., Bansal, G., Fourney, A., Liao, Q. V., and
Wortman Vaughan, J. Generation probabilities are not
enough: Improving error highlighting for ai code sug-
gestions. In NeurIPS Workshop on Human-Centered AI,
October 2022.

Vovk, V., Gammerman, A., and Shafer, G. Algorithmic
learning in a random world. Springer Science & Business
Media, 2005.

Wang, X., Wei, J., Schuurmans, D., Le, Q., hsin Chi, E. H.,
and Zhou, D. Self-consistency improves chain of thought
reasoning in language models. ArXiv, abs/2203.11171,
2022.

Weisz, J. D., Muller, M. J., Houde, S., Richards, J. T., Ross,
S. I., Martinez, F., Agarwal, M., and Talamadupula, K.
Perfection not required? human-AI partnerships in code
translation. 26th International Conference on Intelligent
User Interfaces, 2021.

Werner, T., Prusa, D., and Dlask, T. Relative interior
rule in block-coordinate descent. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7559–7567, 2020.

Xiao, Y., Liang, P. P., Bhatt, U., Neiswanger, W., Salakhut-
dinov, R., and Morency, L.-P. Uncertainty quantification
with pre-trained language models: A large-scale empiri-
cal analysis. ArXiv, abs/2210.04714, 2022.

Xu, H., Povey, D., Mangu, L., and Zhu, J. An improved
consensus-like method for minimum Bayes risk decoding
and lattice combination. 2010 IEEE International Con-
ference on Acoustics, Speech and Signal Processing, pp.
4938–4941, 2010.

Zhang, T., Yu, T., Hashimoto, T. B., Lewis, M., Yih, W.-t.,
Fried, D., and Wang, S. I. Coder reviewer reranking for
code generation. arXiv preprint arXiv:2211.16490, 2022.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford,
A., Amodei, D., Christiano, P., and Irving, G. Fine-tuning
language models from human preferences. arXiv preprint
arXiv:1909.08593, 2019.

Ziyin, L., Wang, Z. T., Liang, P. P., Salakhutdinov, R.,
Morency, L.-P., and Ueda, M. Deep gamblers: learn-
ing to abstain with portfolio theory. In Proceedings of
the 33rd International Conference on Neural Information
Processing Systems, pp. 10623–10633, 2019.

14

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

A. Example Outputs of R-U-SURE
In this section we give examples of the outputs produced by R-U-SURE.

(For these examples, we use an 8B-parameter decoder-only LM, a slightly larger model than used for the main set of
experiments, also trained on permissively-licensed open-source code from GitHub. We emphasize that our approach is
model-agnostic and can be combined with any generative model.)

import collections
import functools
import operator
import json
from typing import List

TokenWithConfidence = collections.namedtuple('TokenWithConfidence', ('token', 'confidence'))

def render_suggestion(suggestion: List[TokenWithConfidence]) -> str:
"""Renders confidence annotations for a suggestion.

Args:
suggestion: List of tokens and their confidence.

Returns:
Rendering of tokens with confidence.

"""
result = []
for token_with_conf in suggestion:
if token_with_conf.confidence == "sure":
result.append(token_with_conf.token)

else:
result.append("[" + token_with_conf.token + "]")

return "".join(result)

def suggestion_to_json(suggestion: List[TokenWithConfidence]) -> str:
"""Converts a suggestion to JSON.

Args:
suggestion: List of tokens and their confidence.

Returns:
JSON representation of the suggestion.

"""
♦

return json.dumps(suggestion)

def token_with_conf_to_json(token_with_conf: TokenWithConfidence) -> str:
"""Converts a token and its confidence to JSON.

Args:
token_with_conf: Token and its confidence.

Returns:
JSON representation of the suggestion.

"""
return json.dumps(token_with_conf)

def render_correction(correction: str) -> str:
"""Renders correction annotations for a suggestion.

Args:

Figure 7. Full prompt and output for the example at the top of Figure 1. Note that the model has identified the docstring style from the
context, and our system can identify which of the words in the docstring are boilerplate. Docstrings are represented as sequences of words
and combined using our edit distance utility function. The ‘�’ character denotes a location where additional statements might be inserted.

15

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

def suggestion_to_json(suggestion: List[TokenWithConfidence]) -> str:
"""Converts a suggestion to JSON.

Args:
suggestion: List of tokens and their confidence.

Returns:
JSON representation of the suggestion.

"""
return json.dumps(suggestion)

def token_with_conf_to_json(token_with_conf: TokenWithConfidence) ->
str:

"""Converts a token and its confidence to JSON.

Args:
token_with_conf: Token and its confidence.

Returns:
JSON representation of the suggestion.

"""
return json.dumps(token_with_conf)

def render_correction(correction: str) -> str:
"""Renders correction annotations for a suggestion.

Args:

def suggestion_to_json(suggestion: List[TokenWithConfidence]) -> str:
"""Converts a suggestion to a json string.

Args:
suggestion: List of tokens and their confidence.

Returns:
Rendering of tokens with confidence.

"""
return json.dumps(suggestion)

def suggestion_from_json(json_str: str) -> List[TokenWithConfidence]:
"""Creates a suggestion from a json string.

Args:
json_str: A json string.

Returns:
List of tokens and their confidence.

"""
return json.loads(json_str)

def suggestion_to_dict(suggestion: List[TokenWithConfidence]) -> dict:
"""Converts a suggestion to a dict.

Args:

def suggestion_to_json(suggestion: List[List[TokenWithConfidence]]) ->
str:

"""Renders a list of suggestions in JSON format.

Args:
suggestion: A list of lists of tokens and their confidences.

Returns:
Rendering of tokens with confidence.

"""
result = []
for tokens_with_conf in suggestion:

token_with_conf_json = {
'token': [],
'confidence': [],

}
for token_with_conf in tokens_with_conf:

token_with_conf_json['token'].append(token_with_conf.token)
token_with_conf_json['confidence'].append(

token_with_conf.confidence)
result.append(token_with_conf_json)

return

def suggestion_to_json(suggestion: List[TokenWithConfidence]) -> str:
"""Renders a suggestion as a JSON object."""
return json.dumps([token.token for token in suggestion])

def get_top_n(suggestions: List[List[TokenWithConfidence]], n: int) ->
List[List[TokenWithConfidence]]:

"""Returns the top n suggestions of a list of suggestions.

Args:
suggestions: List of suggestions for a single token.
n: Number of suggestions to return.

Returns:
A list of suggestions of size n, with the highest confidence

first.
"""
return sorted(suggestions, key=lambda s: len(s), reverse=True)[:n]

def join_suggestion(suggestion: List[List[TokenWithConfidence]],

def suggestion_to_json(suggestion: List[TokenWithConfidence]) -> str:
"""Converts a list of tokens and their confidence to JSON.

Args:
suggestion: List of tokens and their confidence.

Returns:
JSON representation of the list.

"""
return json.dumps([dict(token=token_with_conf.token,

confidence=token_with_conf.confidence)
for token_with_conf in suggestion])

def json_to_suggestion(json: str) -> List[TokenWithConfidence]:
"""Parses a suggestion from a JSON string.

Args:
json: JSON representation of the list.

Returns:
List of tokens and their confidence.

"""
return [TokenWithConfidence(token=t["token"],

def suggestion_to_json(suggestion_list: List[List[TokenWithConfidence]])
-> str:

"""Renders a list of suggestions in json format.

Args:
suggestions_list: A list of suggestions to render.

Returns:
The list of suggestions as json string.

"""
return json.dumps(suggestion_list, default=lambda o: o.__dict__,

sort_keys=True, indent=2)

def _is_suggestion_list_equal(a: List[List[TokenWithConfidence]], b:
List[List[TokenWithConfidence]]) -> bool:

"""Checks if two lists of suggestions are equal.

Args:
a: First list of suggestions.
b: Second list of suggestions.

Returns:
True if the lists are equal, otherwise

Figure 8. Six of the hypothetical user intents g(1), g(2), . . . , g(6) for the example at the top of Figure 1, generated by sampling from the
pretrained model. Full context omitted; see Figure 7.

16

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

Utility: 455.15 (vs. 590.0 without UNSURE annotations)
def suggestion_to_json(suggestion: List[TokenWithConfidence]) -> str:
"""Converts a suggestion to JSON.

Args:
suggestion: List of tokens and their confidence.

Returns:
JSON representation of the suggestion.

"""
return json.dumps(suggestion)

def token_with_conf_to_json(token_with_conf: TokenWithConfidence) -> str:
"""Converts a token and its confidence to JSON.

Args:
token_with_conf: Token and its confidence.

Returns:
JSON representation of the suggestion.

"""
return json.dumps(token_with_conf)

def render_correction(correction: str) -> str:
"""Renders correction annotations for a suggestion.

Args:

Utility: 124.65 (vs. 71.0 without UNSURE annotations)
def suggestion_to_json(suggestion: List[TokenWithConfidence]) -> str:
"""Converts a suggestion to JSONa json string.

Args:
suggestion: List of tokens and their confidence.

Returns:
JSON representationRendering of the suggestiontokens with confidence.

"""
return json.dumps(suggestion)

def token_with_conf_to_json suggestion_from_json(json_str: str) -> List([token_with_conf:
TokenWithConfidence)] -> str:
"""ConvertsCreates a suggestion from a token and its confidence to JSONjson string.

Args:
token_with_conf: Token and its confidencejson_str: A json string.

Returns:
JSON representationList of the suggestiontokens and their confidence.

"""
return json.dumps(token_with_conf)loads(json_str)

def render_correction(correction: str) -> str suggestion_to_dict(suggestion:
List[TokenWithConfidence]) -> dict:
"""Renders correction annotations for Converts a suggestion to a dict.

Args:

Utility: -105.35 (vs. -413.0 without UNSURE annotations)
def suggestion_to_json(suggestion: List[TokenWithConfidenceList[TokenWithConfidence]]) -> str:
"""ConvertsRenders a suggestion tolist of suggestions in JSON format.

Args:
suggestion: ListA list of lists of tokens and their confidence.

confidences.

Returns:
JSON representationRendering of the suggestiontokens with confidence.

"""
result = []
for tokens_with_conf in suggestion:
token_with_conf_json = {

'token': [],
'confidence': [],

}
for token_with_conf in tokens_with_conf:
token_with_conf_json['token'].append(token_with_conf.token)
token_with_conf_json['confidence'].append(token_with_conf.confidence)

result.append(token_with_conf_json)
return json.dumps(suggestion)

def token_with_conf_to_json(token_with_conf: TokenWithConfidence) -> str:
"""Converts a token and its confidence to JSON.

Args:
token_with_conf: Token and its confidence.

Returns:
JSON representation of the suggestion.

"""
return json.dumps(token_with_conf)

def render_correction(correction: str) -> str:
"""Renders correction annotations for a suggestion.

Args:

Utility: -102.84 (vs. -356.0 without UNSURE annotations)
def suggestion_to_json(suggestion: List[TokenWithConfidence]) -> str:
"""ConvertsRenders a suggestion to JSON.

Args:
suggestion: List of tokens and their confidence.

Returns:
as a JSON representation of the suggestion.

"""object."""
return json.dumps(suggestion[token.token for token in suggestion])

def token_with_conf_to_json(token_with_conf: TokenWithConfidence) -> str get_top_n(suggestions:
List[List[TokenWithConfidence]], n: int) -> List[List[TokenWithConfidence]]:
"""ConvertsReturns the top n suggestions of a token and its confidence to JSON.

list of suggestions.

Args:
suggestions: List of suggestions for a single token_with_conf: Token and its confidence.
n: Number of suggestions to return.

Returns:
JSON representationA list of suggestions of size n, with the suggestionhighest confidence

first.
"""
return json.dumps(token_with_conf)sorted(suggestions, key=lambda s: len(s), reverse=True)[:n]

def render_correction(correction: str) -> str:
"""Renders correction annotations for a suggestion.

Args:
def join_suggestion(suggestion: List[List[TokenWithConfidence]],

Utility: 115.64 (vs. -89.0 without UNSURE annotations)
def suggestion_to_json(suggestion: List[TokenWithConfidence]) -> str:
"""Converts a suggestionlist of tokens and their confidence to JSON.

Args:
suggestion: List of tokens and their confidence.

Returns:
JSON representation of the suggestionlist.

"""
return json.dumps(suggestion[dict(token=token_with_conf.token,

confidence=token_with_conf.confidence)
for token_with_conf in suggestion])

def token_with_conf_to_json json_to_suggestion(json: str) -> List([token_with_conf:
TokenWithConfidence)] -> str:
"""ConvertsParses a token and its confidence tosuggestion from a JSON string.

Args:
token_with_conf: Token and its confidence.

Returns:
json: JSON representation of the suggestionlist.

Returns:
List of tokens and their confidence.

"""
return json.dumps(token_with_conf)
[TokenWithConfidence(token=t["token"],

def render_correction(correction: str) -> str:
"""Renders correction annotations for a suggestion.

Args:

Utility: -166.35 (vs. -476.0 without UNSURE annotations)
def suggestion_to_json(suggestionsuggestion_list:
List[TokenWithConfidenceList[TokenWithConfidence]]) -> str:
"""ConvertsRenders a suggestion to JSONlist of suggestions in json format.

Args:
suggestion: Listsuggestions_list: A list of tokens and their confidence.

suggestions to render.

Returns:
JSON representationThe list of the suggestionsuggestions as json string.

"""
return json.dumps(suggestionsuggestion_list, default=lambda o: o.__dict__, sort_keys=True,

indent=2)

def token_with_conf_to_json(token_with_conf: TokenWithConfidence) -> str:
"""Converts a token and its confidence to JSON.

Args:
token_with_conf: Token and its confidence.

Returns:
JSON representation of the suggestion.

"""
return json.dumps(token_with_conf)

def render_correction(correction: str) -> str _is_suggestion_list_equal(a:
List[List[TokenWithConfidence]], b: List[List[TokenWithConfidence]]) -> bool:
"""Renders correction annotations for a suggestionChecks if two lists of suggestions are equal.

Args:
Args:
a: First list of suggestions.
b: Second list of suggestions.

Returns:
True if the lists are equal, otherwise

Figure 9. Inferred edits from the output suggestion in Figure 7 to each of the hypothetical user intents in Figure 8, along with the utility
estimates for each when we either insert UNSURE regions as shown or require all tokens to be marked SURE. Constant utility shifts do not
affect relative utility of different suggestions, so for our results in Table 1 and Figure 5b, we report utility relative to marking all tokens as
SURE (i.e. the difference between the two values shown here). Note that utility improves when adding UNSURE regions for all samples
except the first, which was the sample used as the suggestion prototype.

17

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

"""Visualizing trends using SQLite and Matplotlib"""
import sqlite3
from matplotlib import pyplot as plt

Open the database
conn = sqlite3.connect('data/budget.db')
c = conn.cursor()

Get the data
c.execute('''SELECT date, SUM(budget)

FROM transactions
GROUP BY date''')

data = c.fetchall()

Close the database
conn.close()

Create the plot
fig, ax = plt.subplots()
ax.plot(data)

Show it
plt.show()

conn = sqlite3.connect('data/budget.db')
c = conn.cursor()
c.execute('''SELECT date, SUM(budget)

FROM transactions
GROUP BY date''')

data = c.fetchall()
conn.close()
fig, ax = plt.subplots()
ax.plot(data)
plt.show()

Figure 10. Full prompt and output for the example at the right of Figure 1. Above, the full generated output of the model. Below, the
possible calls we extracted by postprocessing the raw output, with highlighting denoting the calls selected by R-U-SURE. (Note that for
this task R-U-SURE operates on this reduced set of calls only.)

18

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

R-U-SURE (Region)
Write a function to convert the given binary number to its decimal equivalent.

def binary_to_decimal(binary):
binary1 = binary
decimal, i, n = 0, 0, 0
while(binary != 0):

dec = (binary % 10) + (binary % 10) * 10 * i
decimal = decimal + dec * (2 ** n)
binary /= 10
i += 1
n += 1

return decimal

Driver code
binary = "1101110011111"
print(binary_to_decimal(binary))

Ground Truth
Write a function to convert the given binary number to its decimal equivalent.

def binary_to_decimal(binary):
binary1 = binary
decimal, i, n = 0, 0, 0
while(binary != 0):

dec = binary % 10
decimal = decimal + dec * pow(2, i)
binary = binary//10
i += 1

return (decimal)

Test cases for intended behavior
assert binary_to_decimal(100) == 4
assert binary_to_decimal(1011) == 11
assert binary_to_decimal(1101101) == 109

Figure 11. Output of R-U-SURE compared to the ground truth for an example in the Mostly Basic Python Problems benchmark dataset
(Austin et al., 2021). We manually selected a location in the MBPP reference solution, then fed the prefix to the model. The model’s
implementation does not exactly match the intended behavior, but all incorrect parts are highlighted. (Note: MBPP examples were not
used in our main experimental results.)

19

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

Token Probability Heatmap
Write a function to convert the given binary number to its decimal equivalent.

def binary_to_decimal(binary):
binary1 = binary
decimal, i, n = 0, 0, 0
while(binary != 0):

dec = (binary % 10) + (binary % 10) * 10 * i ↩

decimal = decimal + dec * (2 ** n) ↩

binary /= 10 ↩

i += 1 ↩

n += 1 ↩

return decimal ↩

↩

Driver code ↩

binary = "1101110011111" ↩

print(binary_to_decimal(binary)) ↩

Baseline: Token Prob 0.7
Write a function to convert the given binary number to its decimal equivalent.

def binary_to_decimal(binary):
binary1 = binary
decimal, i, n = 0, 0, 0
while(binary != 0):

dec = (binary % 10) + (binary % 10) * 10 * i
decimal = decimal + dec * (2 ** n)
binary /= 10
i += 1
n += 1

return decimal

Driver code
binary = "1101110011111"
print(binary_to_decimal(binary))

Baseline: Token Prob 0.9
Write a function to convert the given binary number to its decimal equivalent.

def binary_to_decimal(binary):
binary1 = binary
decimal, i, n = 0, 0, 0
while(binary != 0):

dec = (binary % 10) + (binary % 10) * 10 * i
decimal = decimal + dec * (2 ** n)
binary /= 10
i += 1
n += 1

return decimal

Driver code
binary = "1101110011111"
print(binary_to_decimal(binary))

Figure 12. Per-token conditional probability heatmap and output of token-probability-based baselines for the MBPP example in Figure 11.
Note that low-conditional-prob. tokens (such as the ‘/=’ after ‘binary‘) are frequently followed by high-conditional-prob. tokens that
only make sense in context of the earlier tokens (such as ‘10’).

20

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

R-U-SURE (Region)
Write a python function to count number of substrings with the sum of digits equal to their length.

from collections import defaultdict
def count_Substrings(s,n):

count,sum = 0,0
mp = defaultdict(lambda : 0)
mp[0] += 1
♦
for i in range(0,n):

sum += s[i]
count += mp[sum]
mp[sum] += 1
♦

return count

print(count_Substrings("abc",4))

Ground Truth
Write a python function to count number of substrings with the sum of digits equal to their length.

from collections import defaultdict
def count_Substrings(s,n):

count,sum = 0,0
mp = defaultdict(lambda : 0)
mp[0] += 1
for i in range(n):

sum += ord(s[i]) - ord('0')
count += mp[sum - (i + 1)]
mp[sum - (i + 1)] += 1

return count

Test cases for intended behavior
assert count_Substrings('112112',6) == 6
assert count_Substrings('111',3) == 6
assert count_Substrings('1101112',7) == 12

Figure 13. Output of R-U-SURE compared to the ground truth for another example in the Mostly Basic Python Problems benchmark
dataset (Austin et al., 2021). We manually selected a location in the MBPP reference solution, then fed the prefix to the model. Again, the
model’s implementation does not exactly match the intended behavior. In this case, most incorrect parts are highlighted, but there are
some changes that must also be made outside of highlighted regions. The ‘�’ character denotes a location where additional statements
might be inserted.

21

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

Token Probability Heatmap
Write a python function to count number of substrings with the sum of digits equal to their length.

from collections import defaultdict
def count_Substrings(s,n):

count,sum = 0,0
mp = defaultdict(lambda : 0)
mp[0] += 1↩
for i in range(0,n):↩

sum += s[i]↩
count += mp[sum]↩
mp[sum] += 1↩

return count↩
↩

print(count_Substrings("abc",4))↩

Baseline: Token Prob 0.7
Write a python function to count number of substrings with the sum of digits equal to their length.

from collections import defaultdict
def count_Substrings(s,n):

count,sum = 0,0
mp = defaultdict(lambda : 0)
mp[0] += 1
for i in range(0,n):

sum += s[i]
count += mp[sum]
mp[sum] += 1

return count

print(count_Substrings("abc",4))

Baseline: Token Prob 0.9
Write a function to convert the given binary number to its decimal equivalent.

from collections import defaultdict
def count_Substrings(s,n):

count,sum = 0,0
mp = defaultdict(lambda : 0)
mp[0] += 1
for i in range(0,n):

sum += s[i]
count += mp[sum]
mp[sum] += 1

return count

print(count_Substrings("abc",4))

Figure 14. Per-token conditional probability heatmap and output of token-probability-based baselines for the MBPP example in Figure 13.

22

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

import jax.numpy as jnp
import jax
import optax
import functools

import foo.models

Set up for training
initial_params = foo.models.initial_params()

Configure optimizer
optimizer = optax.adamw(1e-3, b1=0.9, b2=0.999)

Define loss function
def loss_fn(params, batch):

logits = foo.models.apply_fn(*batch, params=params)
loss = jnp.mean(jax.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=batch[2]))
return loss, logits

Create initial model
def init_model(rng_key):

_, params = initial_params(rng_key, (-1,))
return params

Define update rule
@functools.partial(jax.jit, static_argnums=(0,))
def update(params, grads, state, batch):

state, params = state

optimizer = optax.adamw(1e-3, b1=0.9, b2=0.999)
logits = foo.models.apply_fn(*batch, params=params)
loss = jnp.mean(jax.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=batch[2]))
_, params = initial_params(rng_key, (-1,))
@functools.partial(jax.jit, static_argnums=(0,))

Figure 15. Output of R-U-SURE (Useful Calls) for a handwritten prompt involving usage of optax. After postprocessing, the only
calls that appear often enough in the model samples to be extracted are calls to optax.adamw and jnp.mean; these would be good
candidates for preemptively showing documentation.

23

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

A.1. Runtime of R-U-SURE

The wall-clock runtime of our implementation of the R-U-SURE system depends on the number of samples as well as the
complexity of the programs. We demonstrate this by measuring the runtime for the two prompts shown in Figure 7 and
Figure 11, across varying number of model samples and sample lengths. On a GCP n1-standard-8 virtual machine, we
obtain the following results:

• Combining eight model samples, each restricted to eight lines, takes about 20 to 60 milliseconds for the dual
decomposition solver and about 1 to 1.5 seconds for the parsing and diagram construction logic.

• Combining 32 eight-line samples takes between 0.1 and 1.5 seconds for the solver and about 3 to 5 seconds for
parsing/diagram construction.

• Combining 32 longer model samples (with 256 vocabulary tokens, or about 23 lines) can take between 0.5 and 6
seconds for the solver and between 8 and 40 seconds for parsing/diagram construction depending on complexity (with
the example in Figure 7 taking the longest).

We note that, in our current implementation, the parsing/diagram construction logic is designed to be flexible and makes
heavy use of Python dictionaries. This could likely be sped up considerably for a specialized application. The solver can
also be interrupted if necessary to obtain a possibly-suboptimal solution in a fixed amount of time.

In terms of asymptotic complexity, the time and space required to build the system and each iteration of coordinate ascent
scales as O(`2K), where ` is the length of the model suggestions and K is the number of samples.

24

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

B. Decision Diagrams: Definitions and Algorithms
In this section, we discuss our definition of decision diagrams and describe how we use them to enable efficient algorithms.

B.1. Our Definitions

Definition B.1. A (nondeterministic, weighted) binary decision diagram (BDD) D over binary vectors b ∈ {0, 1}d is a
directed acyclic graph consisting of

• a node set N ,

• an arc set A,

• mappings h : A→ N and t : A→ N such that each arc a is directed from node h(a) to node t(a),

• a mapping w : A→ R such that w(a) is the weight of arc a,

• a mapping α : A→ ({1, . . . , d}×{0, 1})t{NONE} such that, if α(a) = (i, β), then this edge can only be used when
bi = β, and if α(a) = NONE, this edge can always be used.

• a source node > ∈ N , which is not the tail of any arc,

• a sink node ⊥ ∈ N , which is not the head of any arc.

Definition B.2. A computation path for a binary vector b ∈ {0, 1}d is a sequence of arcs P = (a1, a2, . . . , an) from > to
⊥ that are consistent with b, e.g. such that h(a1) = >, h(ai+1) = t(ai) for 1 ≤ i < n, t(an) = ⊥, and if α(ai) = (j, β)
for any i then bj = β. The weight of this path is the sum of arc weights

∑
i w(ai), which by abuse of notation we will

denote w(P). We denote the set of all computation paths for a particular vector b as P(D, b).

Definition B.3. A BDD D represents a binary function w : {0, 1}d → R ∪ {−∞} (under max-aggregation) if, for all
b ∈ {0, 1}d, we have

w(b) = max
P∈P(D,b)

w(P),

e.g. this is the weight of the maximum-weight path from > to ⊥ consistent with P , or −∞ if there are no such paths.

Definition B.4. A BDD D is ordered if its nodes can be partitioned into layers according to some partition function
` : N → {0, 1, . . . , d} such that `(>) = 0, `(⊥) = d, and for each arc a ∈ A:

• if α(a) = NONE, then `(h(a)) = `(t(a)),

• if α(a) = (i, β), then `(h(a)) = i− 1 and `(t(a)) = i.

Intuitively, an ordered BDD is a BDD such that any path from > to ⊥ assigns every index of b exactly once, in order of
increasing index.

Definition B.5. A system of BDDs is a collection of BDDs Di over the same set of binary vectors b ∈ {0, 1}d. We say
that a system of BDDs represents a binary function w : {0, 1}d → R ∪ {−∞} if w can be written as a sum

w(b) =
∑
i

w(i)(b)

and Di represents w(i) for each i.

Our approach described in Section 3.3 can now be described more specifically as rewriting our original objective using a set
of binary functions

w(k)(b) =

{
1
Ku(g(k), f(b)) b ∈ B,
−∞ otherwise.

and then representing each such function with an ordered BDD. More generally, we allow representing w(k)(b) as a system
of BDDs (D

(k)
1 , D

(k)
2 , . . . , D

(k)
m), and take advantage of this flexibility to efficiently separate the computation of the utility

25

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

function from constraints, which we describe in more detail in Appendix C. Combining all of the BDDs or BDD systems for
each value of k then yields a system (D1, . . . , DJ) that represents the total utility

U(b) =

K∑
k=1

w(k)(b)

as estimated across the samples g(1), . . . , g(k). (Note that the number K of samples may or may not match the number of
decision diagrams J in general, depending on whether any of the w(k) were represented as more than one diagram).

We note that any function w(k) : B → R can be expressed as a weighted binary decision diagram, but the size of the diagram
may grow exponentially with the number of binary choices d (Hooker, 2013). However, our edit-distance-based utility
functions u(g, s) can be represented as decision diagram whose size grows only quadratically with the number of tokens in
s and g, due to the similarity between decision diagrams and dynamic programming algorithms.

B.2. A comparison to other definitions of decision diagrams

Decision diagrams have seen a number of uses for a variety of combinatorial optimization and search problems; Castro et al.
(2022) gives an overview of many such uses. Here we briefly summarize some of the differences between our definition and
others in the literature.

Determinism Many definitions of decision diagrams (e.g. Lozano et al. (2020); Lange & Swoboda (2021)) focus on
deterministic decision diagrams, which have the additional properties that

• every node n other than ⊥ is associated with a particular decision variable bvar(n) with var(n) ∈ {1, . . . , d},

• there are at most two edges from any given node n (i.e. with h(a) = b): one which assigns α(a) = (var(n), 0) and one
which assigns α(a) = (var(n), 0),

• every arc assigns some variable, e.g. there is no edge with α(a) = NONE.

Nondeterministic decision diagrams are related to deterministic ones in the same way that nondeterministic finite automata
relate to deterministic finite automata: for a deterministic decision diagram, you can read off a single computation path P
for a given vector b if it exists by following the sequence of branches, whereas for a nondeterministic decision diagram, you
may need to search over many consistent sub-paths to identify one or more computation paths for a specific vector.

Some definitions of nondeterministic decision diagrams define them by introducing two types of node: ordinary nodes, which
are associated with variables have two outgoing arcs tagged 0 and 1, and nondeterministic nodes, which have no variable and
any number of outgoing arcs with α(a) = NONE (Bollig & Buttkus, 2018). For simplicity, our definition does not directly
constrain edges based on any assignment of nodes to decision variables, but the two formulations are equivalently expressive,
especially for ordered nondeterministic BDDs (for which ` approximately corresponds to a node-variable association).

Ambiguity Most definitions of nondeterministic BDDs focus on unambiguous nondeterministic BDDs, for which there is
at most one computation path for any binary vector b (Bollig & Buttkus, 2018); these can also be referred to as exactly
representing specific binary functions (Castro et al., 2022). In contrast, we explicitly allow BDDs to be ambiguous, and
resolve conflicts by taking the max over edges. This makes it significantly easier to express our utility functions as decision
diagrams, by essentially interleaving the edit-distance search algorithm with the decision diagram as part of a single
optimization problem.

It turns out to be very straightforward to extend the min-(or max-)marginal averaging technique of Lange & Swoboda (2021)
to work for ambiguous decision diagrams with only minimal changes, as we describe in the next section.

Reduction A common method for obtaining more efficient representations of decision diagrams is to reduce them to a
particular canonical form, collapsing nodes that serve identical roles (Hooker, 2013; Castro et al., 2022). While it may be
possible to reduce our decision diagrams to a more efficient form, we do not attempt to produce reduced decision diagrams
in our implementation.

26

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

Binary v.s. multivalued Some definitions of decision diagrams allow variables to be assigned to values in a larger finite
set V ; these are known as multivalued decision diagrams (Hooker, 2013; Castro et al., 2022). In practice, we implement our
utility functions as multivalued decision diagrams; however, to make derivations simpler for the Lagrangian relaxation, we
encode these multivalued choices as one-hot-encoded binary vectors before running our max-marginal optimization process.

B.3. Efficient algorithms for max-marginal message passing on BDDs

We now describe how to efficiently optimize a Lagrangian relaxation of a BDD system, as described in Sections 3.2 and 3.3.
We consider the objective

U = max
b∈{0,1}d

J∑
j=1

w(j)(b), (8)

where we have changed the indexing to account for situations where the number of decision diagrams J does not equal the
number of model samples K. We then construct the Lagrangian relaxation

W (j)(b(j),λ) = w(j)(b(j)) + λ(j) · b(j), (9)

L(λ(1:J)) =

J∑
j=1

max
b(j)

W (j)(b(j),λ) (10)

where we require that
∑
m λ

(j) = 0. Intuitively, if we have b(j)i 6= b
(j′)
i , we can adjust the λ(j)

i and λ(j′)
i in opposite

directions to remove any utility benefits of violating the equality constraint. (However, this penalty acts independently on
each variable, and may not be able to simultaneously enforce agreement for joint configurations of variables; this is what
causes a nonzero duality gap.) We note that this is the same relaxation described by Lange & Swoboda (2021, Section 3.1),
except for the more general form of w(j) (not just for linear programs) and the use of max rather than min.

The max-marginal coordinate ascent update with respect to the variable block (λ
(1)
i , λ

(2)
i , . . . , λ

(K)
i), as derived by Lange &

Swoboda (2021), is then given by

m
(j)
i:=β = max

b(j) s.t. b(j)i =β

W (j)(b(j),λ), β ∈ {0, 1} (11)

λ
(j)
i ← λ

(j)
i − (m

(j)
i:=1 −m

(j)
i:=0) +

1

J

∑
j′

(
m

(j′)
i:=1 −m

(j′)
i:=0

)
. (12)

Our main requirement for computing this update is that we can efficiently compute the m(j)
i:=β for our current values of λ.

Fortunately, this can be done for nondeterministic weighted BDDs using a straightforward dynamic programming algorithm.
This algorithm maintains two cached dynamic programming tables (PREFIX and SUFFIX) in order to make updates efficient:
PREFIX stores the maximum weight from > to a given node (sorted by level `), and SUFFIX stores the maximum weight
from each node to ⊥. We initialize these tables using Algorithm 3, then run Algorithm 5 to compute desired max marginals.
Then, each time we update values for λ(1:J)

i , we must invalidate the caches for index i by running Algorithm 4.

A key property of this algorithm is that modifying the dual variables for a particular decision variable b(j)i only affects
prefixes and suffixes that include assignments to b(j)i . Thus, if we wish to compute max-marginals for b(j)i−1 or b(j)i+1 next, we

can reuse almost all of the values from the cache, and only update the prefixes that changed due to modifications to λ(j)
i .

We take advantage of this property by running a series of alternating forward and backward sweeps, updating
λ
(1:J)
1 ,λ

(1:J)
2 , . . . ,λ

(1:J)
d during a forward sweep and then λ(1:J)

d ,λ
(1:J)
d−1 , . . . ,λ

(1:J)
1 in a backward sweep. Each of these

sweeps visits every arc twice (once to compute max marginals and once to update the modified prefix or suffix), enabling us
to run an entire min-marginal-averaging cycle with time complexity proportional to the size of the decision diagram.

Note that this algorithm is not guaranteed to find a primal solution if there is a nonzero dual gap, and may get stuck in
certain fixed points even if the dual gap is zero (Werner et al., 2020). In our experiments, however, we find that the bound is
tight (to within machine precision) over 85% of the time.

27

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

Algorithm 3 Stateful dynamic programming algorithm initialization step

Input: BDD Dj = (N,A, h, t, w, α,>,⊥) with order `, caches PREFIX and SUFFIX
Compute initial prefixes
Initialize PREFIX[0,>] = 0.0
for each arc a ∈ A with `(h(a)) = `(t(a)) = 0), in topologically-sorted order do

Set PREFIX[k, t(a)] = max(PREFIX[k, t(a)], PREFIX[k, h(a)] + w(a))
end for
Compute initial suffixes
Initialize SUFFIX[d,>] = 0.0
for each arc a ∈ A with `(h(a)) = `(t(a)) = d), in reverse topologically-sorted order do

Set SUFFIX[k, h(a)] = max(SUFFIX[k, h(a)], SUFFIX[k, t(a)] + w(a))
end for

Algorithm 4 Stateful dynamic programming cache invalidation step

Input: BDD Dj = (N,A, h, t, w, α,>,⊥) with order `, updated index i, caches PREFIX and SUFFIX
for k in [i, i+ 1, . . . , d] do

Delete all entries of PREFIX[k, :]
end for
for k in [0, 1, . . . , i− 1] do

Delete all entries of SUFFIX[k, :]
end for

B.4. Extension to multivalued decision diagrams

In practice, although we analyze and implement our algorithms as if we are optimizing over binary variables, it is more
convenient for our utility functions to be written in terms of assignments to an arbitrary finite set of values V; this is
sometimes known as a “multivalued” decision diagram (Hooker, 2013). We do this by enumerating the values of V , and
treating a particular choice xi = v ∈ V as a collection of “indicator” assignments b(i,v) := 1, b(i,v′) := 0 for v′ 6= v.

We take advantage of our knowledge of this indicator structure when running our max-marginal step, to simplify the
implementation. In particular, we perform simultaneous block updates over all indicator variables, computing

m
(j)
(i,v):=1 = max

b(j) s.t. b(j)
(i,v)

=1,

W (j)(b(j),λ) (13)

λ
(j)
(i,v) ← λ

(j)
(i,v) −m

(j)
(i,v):=1 +

1

J

∑
j′

m
(j′)
(i,v):=1. (14)

which is the update from Equation (12) but dropping the m(j)
(i,v):=0 terms. This works because we know that, for any valid

assignment to the indicator variables, exactly one such indicator will be active. Thus, each of the m(j)
(i,v):=0 terms is equal to

m
(j)
(i,v′):=1 for some alternative assignment v′, which means making the m(j)

(i,v′):=1 agree is sufficient to make the differences

m
(j)
(i,v):=1 −m

(j)
(i,v):=0 agree as well. (Indeed, in our actual implementation of Algorithm 5, we do not bother computing

entries for the m(j)
(i,v):=0 at all, since they are unused in the update Equation (14).)

This indicator representation also allows us to reuse parts of our implementation when decoding a heuristic primal solution,
in the situations where our solver fails to find a setting for the dual variables that makes the dual bound tight. Specifically,
we iterate through all of the variables, and greedily select the best assignment

v∗i = arg maxm
(j)
(i,v):=1

then set
λ
(j)
(i,v′) ← −∞

for each v′ 6= v∗i . This effectively prunes any arc that assigns a different value from the graph, ensuring we decode a single
consistent assignment.

28

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

Algorithm 5 Stateful dynamic programming algorithm for m(j)
i:=β

Input: BDD Dj = (N,A, h, t, w, α,>,⊥) with order `, desired variable index i, λ(j), caches PREFIX and SUFFIX
Compute necessary prefixes
for k in [1, 2, . . . , i− 1] do

if PREFIX does not have values for level k then
for each node n ∈ N with `(n) = k do

Initialize PREFIX[k, n] = −∞
end for
Process edges that assign bk
for each arc a ∈ A with `(h(a)) = k − 1 and `(t(a)) = k, in topologically-sorted order do

Let (v, β) = α(a), assert v = k # a must assign to bk by Definition B.4
if β = 1 then # Need to perturb by λ(j)

k

Set PREFIX[k, t(a)] = max(PREFIX[k, t(a)], PREFIX[k − 1, h(a)] + w(a) + λ
(j)
k)

else
Set PREFIX[k, t(a)] = max(PREFIX[k, t(a)], PREFIX[k − 1, h(a)] + w(a))

end if
end for
Process edges in level k
for each arc a ∈ A with `(h(a)) = k and `(t(a)) = k, in topologically-sorted order do

Set PREFIX[k, t(a)] = max(PREFIX[k, t(a)], PREFIX[k, h(a)] + w(a))
end for

end if
end for
Compute necessary suffixes
for k in [d− 1, d− 2, . . . , i] do

if SUFFIX does not have values for level k then
for each node n ∈ N with `(n) = k do

Initialize SUFFIX[k, n] = −∞
end for
Process edges that assign bk+1

for each arc a ∈ A with `(h(a)) = k and `(t(a)) = k + 1, in reverse topologically-sorted order do
Let (v, β) = α(a), assert v = k + 1 # a must assign to bk+1 by Definition B.4
if β = 1 then # Need to perturb by λ(j)

k+1

Set SUFFIX[k, h(a)] = max(SUFFIX[k, h(a)], SUFFIX[k + 1, t(a)] + w(a) + λ
(j)
k+1)

else
Set SUFFIX[k, h(a)] = max(SUFFIX[k, h(a)], SUFFIX[k + 1, t(a)] + w(a))

end if
end for
Process edges in level k
for each arc a ∈ A with `(h(a)) = k and `(t(a)) = k, in reverse topologically-sorted order do

Set SUFFIX[k, t(a)] = max(SUFFIX[k, t(a)], SUFFIX[k, h(a)] + w(a))
end for

end if
end for
Compute max marginals
Initialize m(j)

i:=0 and m(j)
i:=1 to −∞

for each arc a ∈ A with `(h(a)) = i− 1 and `(t(a)) = i do
Let (v, β) = α(a), assert v = i # a must assign to bi by Definition B.4
Set m(j)

i:=β = max(m
(j)
i:=β , PREFIX[i− 1, h(a)] + w(a) + SUFFIX[i, t(a)] + λ

(j)
i)

end for
return m

(j)
i:=0,m

(j)
i:=1

29

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

C. Utility functions and tree representation
In this section, we give a high level description of our utility function implementation and of the tree representation we use
for combining suggestions. We will also include the code for our utility functions in a later open-source release.

C.1. Tree representation

We represent the model samples and user intents as possibly-nested sequences of nodes of the following types:

• Token nodes represent programming language tokens, which we should try to match between the suggestion and the
target intent. Token nodes contain a source string and optionally a type, and any two nodes with the same string and the
same type will match. We typically use the type to encode information about the AST nodes.

• Decoration nodes denote locations of whitespace or other aspects of the suggestion that do not need to be considered
as part of the edit distance calculation. These are not used during optimization.

• Group nodes contain an arbitrary number of child nodes, which may be token nodes, decoration nodes, or other group
nodes. Each group node has an optional type, and any two group nodes of the same type can be matched together;
matching two group nodes involves running an edit distance calculation on their children subsequences.

The suggestion prototype, usually the model sample with the highest probability, is augmented with a few additional nodes:

• Region start nodes represent locations where we may start a confidence region. Depending on the configuration, such
regions may represent pockets of UNSURE within a default of SURE (e.g. for detecting edit locations), or pockets of
SURE within a default of UNSURE (e.g. for extracting a subsequence of API calls).

• Region end nodes represent locations where we may end a confidence region that we started earlier in the (sub)sequence.
Note that every confidence region that starts inside a group node is required to end within that same group node.

• Truncation nodes represent locations where we may decide to truncate the suggestion.

These nodes are inserted in various locations into the parse tree with a preprocessing step, which gives us a large amount of
control over the space of augmented suggestions S. For instance, for the edit localization task, we do not allow UNSURE
regions to include single parentheses or brackets by placing matched brackets into a group and not allowing regions to start
or end at the boundary of those groups. For the API call task, we use the region start/end nodes to identify SURE calls, but
only allow calls to be selected one at a time by only inserting them inside the relevant call groups.

C.2. Utility function

We now describe our base utility function at a high level; the specific applications are determined by configuring this utility
function with different costs and constraints.

C.2.1. UTILITY CONFIGURATION

Our utility function implementation is configured by a set of edit penalties:

• For each confidence level:

– A per-character or per-token utility for matching tokens in the suggestion with those in the ground truth,

– A per-character or per-token cost for deleting tokens in the suggestion

– A penalty for starting to edit (either inserting or deleting)

• A penalty for changing confidence levels (e.g. to encourage fewer blocks of UNSURE).

30

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

C.2.2. EDIT-BASED DECISION DIAGRAM

Nodes in our decision diagram (which we call “states” to distinguish them from tree nodes, by analogy to finite state
machines) are associated with a tuple of positions, one in the prototype and one in the hypothetical target intent (usually
generated from the model), in a similar way as in Algorithm 2.

We further group our states into a number of types, used to track the progress of edits. The list of state types are:

• PROCESS-PROTOTYPE (ADVANCE): We are advancing past region start/end nodes or truncation nodes in the
prototype. We can either stay in PROCESS-PROTOTYPE and move past one of those nodes in the prototype, or
transition to MATCH to match tokens or groups, or transition to MAY-DELETE if we need to edit at this location,
which incurs an additional penalty.

• MAY-DELETE: We have decided we need to make an edit at this location. We are allowed to delete an arbitrary
number of the prototype; we may also process any region start/end nodes or truncation nodes we see. We then transition
into MAY-INSERT.

• MAY-INSERT: We are allowed to insert an arbitrary number of nodes in the target. We always insert after deleting, to
reduce the number of redundant paths in the graph. Once we have inserted all that we need to, we can transition to
MATCH.

• MATCH: We are prepared to match nodes in the prototype and target, after which we return to PROCESS-
PROTOTYPE; we can also end the subproblem if we are at the end of two group nodes.

• RECURSIVELY-DELETING (FORCED): We have committed to deleting an entire subtree, and are now deleting
each of the nodes in it. We cannot stop until we exit the subtree.

• RECURSIVELY-INSERTING (FORCED): We have committed to inserting an entire subtree, and are now inserting
each of the nodes in it. We cannot stop until we exit the subtree.

Additionally, each node is associated with a confidence level (SURE or UNSURE); the active confidence level determines the
utility associated with each of the state transitions described above.

Token nodes are handled depending on the state; in MATCH we must align two identical tokens to proceed, whereas in
MAY-DELETE or MAY-INSERT we are allowed to delete or insert tokens individually.

Group nodes are handled using a recursive call. If we are processing two group nodes and we are in the MATCH state, we
recursively build a decision diagram for the subsequences of the two nodes. If we delete a group node in the MAY-DELETE
state, we call a recursive helper function that builds a small decision diagram that only deletes nodes and stays in the
RECURSIVELY-DELETING state. Inserts are handled in an analogous way.

We implicitly embed the space of suggestions S(g(1)) into a space of binary vectors by introducing decisions for each of the
control nodes. Here we focus on the version of our task that introduces UNSURE regions into a suggestion.

• At a Region Start node, if we are currently in SURE, we can transition to UNSURE. We track this choice with a decision
variable assignment.

• At a Region End node, if we are currently in UNSURE, we can transition to SURE. We track this choice with a decision
variable assignment.

• At a truncation node, we can choose to immediately jump from our current state to the final state, paying no more
penalties but receiving no additional reward. We track this choice with a decision variable assignment.

We additionally include decision variables that track whether each token was inside a annotated region when we processed it;
this information is redundant with the start/end nodes, but can improve the optimization by providing additional information
in the message passing iterations. We then order these decision variables by their order of appearance in the graph, and
interpret the values of each decision as the embedding φ(s) of each possible suggestion.

Figure 16 shows a rendering of the decision diagram we construct when combining two simple sequences. Note that the
diagrams we use to combine actual model samples are much larger, since every token of the suggestion is represented by
multiple states in the diagram. Also, this diagram is written in terms of negative utility (e.g. as a collection of costs).

31

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

Figure 16. Rendering of the edit decision diagram with all features enabled, for aligning the sequence “a [b [c]] d” with itself.

32

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

➞| ⟪ a ⟫ ➞| ⟪ ⟪ b ⟫ ➞| ⟪ ⟪ c ⟫ ➞| ⟫ ➞| ⟫ ➞| ⟪ d ⟫ ➞|

a

b

c

d

Advance High

Final State

Advance High

Advance Low Advance Low

Delete High

Match High

Delete Low

Match Low

Delete High

Delete Low

Insert High

Insert Low

Insert High

Insert Low

Advance High Advance High

Advance Low Advance Low

Delete High

Match High

Delete Low

Match Low

Delete High

Delete Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert High

Insert Low

Advance High Advance High

Advance Low Advance Low

Delete High

Match High

Delete Low

Match Low

Delete High

Delete Low

Insert High

Insert Low

Advance High Advance High

Advance Low Advance Low

Delete High

Match High

Delete Low

Match Low

Delete High

Delete Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert High

Insert Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Match High

Match Low

Delete High

Delete Low

Insert High

Insert Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert High

Insert Low

Match High

Match Low

Delete High

Delete Low

Insert High

Insert Low

Match High

Match Low

Delete High

Delete Low

Advance Low Advance Low

Advance HighAdvance High

Match High

Match Low

Delete Low

Delete High

Insert High

Insert Low

Insert High

Insert Low

Advance Low

Advance High

Match High

Match Low

Delete Low

Delete High

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert High

Insert Low

Advance Low Advance Low

Advance HighAdvance High

Match High

Match Low

Delete Low

Delete High

Insert High

Insert Low

Advance Low Advance Low

Advance HighAdvance High

Match High

Match Low

Delete Low

Delete High

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert High

Insert Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert High

Insert Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Match High

Match Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low Delete (forced) Low

Delete (forced) High Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low Delete (forced) Low

Delete (forced) High Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low Delete (forced) Low

Delete (forced) High Delete (forced) High

Delete (forced) Low

Delete High

Delete Low

Insert High

Insert Low

Insert High

Insert Low

Match High

Match Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low Delete (forced) Low

Delete (forced) High Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low Delete (forced) Low

Delete (forced) High Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low Delete (forced) Low

Delete (forced) High Delete (forced) High

Delete (forced) Low

Delete High

Delete Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert High

Insert Low

Advance High

Advance Low

Advance High

Advance Low

Delete High

Match High

Delete Low

Match Low

Delete High

Delete Low

Insert High

Insert Low

Insert High

Insert Low

Advance High Advance High

Advance LowAdvance Low

Delete High

Match High

Delete Low

Match Low

Delete High

Delete Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert High

Insert Low

Advance High Advance High

Advance LowAdvance Low

Delete High

Match High

Delete Low

Match Low

Delete High

Delete Low

Match High

Match Low

Delete High

Delete Low

Insert High

Insert Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert High

Insert Low

Match High

Match Low

Delete High

Delete Low

Advance Low Advance Low

Advance HighAdvance High

Match High

Match Low

Delete Low

Delete High

Insert High

Insert Low

Insert High

Insert Low

Advance Low

Advance High

Match High

Match Low

Delete Low

Delete High

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert High

Insert Low

Advance Low Advance Low

Advance HighAdvance High

Match High

Match Low

Delete Low

Delete High

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert High

Insert Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert High

Insert Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Match High

Match Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low Delete (forced) Low

Delete (forced) High Delete (forced) High

Delete (forced) Low

Delete High

Delete Low

Insert High

Insert Low

Insert High

Insert Low

Match High

Match Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low Delete (forced) Low

Delete (forced) High Delete (forced) High

Delete (forced) Low

Delete High

Delete Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert High

Insert Low

Advance High

Advance Low

Advance High

Advance Low

Delete High

Match High

Delete Low

Match Low

Delete High

Delete Low

Insert High

Insert Low

Insert High

Insert Low

Advance High Advance High

Advance LowAdvance Low

Delete High

Match High

Delete Low

Match Low

Delete High

Delete Low

Match High

Match Low

Delete High

Delete Low

Insert High

Insert Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Advance Low Advance Low

Advance HighAdvance High

Match High

Match Low

Delete Low

Delete High

Insert High

Insert Low

Insert High

Insert Low

Advance Low

Advance High

Match High

Match Low

Delete Low

Delete High

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert High

Insert Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Match High

Match Low

Insert High

Insert Low

Insert High

Insert Low

Match High

Match Low

Advance High

Advance Low

Match High

Match Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low Delete (forced) Low

Delete (forced) High Delete (forced) High

Delete (forced) Low

Delete High

Delete Low

Advance Low Advance Low

Advance HighAdvance High

Match High

Match Low

Delete Low

Delete High

Insert High

Insert Low

Insert High

Insert Low

Advance Low Advance Low

Advance HighAdvance High

Match High

Match Low

Delete Low

Delete High

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert High

Insert Low

Advance Low

Advance High

Match High

Match Low

Delete Low

Delete High

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert High

Insert Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Match High

Match Low

Insert High

Insert Low

Insert High

Insert Low

Match High

Match Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert High

Insert Low

Match High

Match Low

Advance High

Advance Low

Match High

Match Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low Delete (forced) Low

Delete (forced) High Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low Delete (forced) Low

Delete (forced) High Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low Delete (forced) Low

Delete (forced) High Delete (forced) High

Delete (forced) Low

Delete High

Delete Low

Insert High

Insert Low

Match High

Match Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low Delete (forced) Low

Delete (forced) High Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low Delete (forced) Low

Delete (forced) High Delete (forced) High

Delete (forced) Low

Delete (forced) High

Delete (forced) Low Delete (forced) Low

Delete (forced) High Delete (forced) High

Delete (forced) Low

Delete High

Delete Low

Advance Low Advance Low

Advance HighAdvance High

Match High

Match Low

Delete Low

Delete High

Insert High

Insert Low

Insert High

Insert Low

Advance Low Advance Low

Advance HighAdvance High

Match High

Match Low

Delete Low

Delete High

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert High

Insert Low

Advance Low

Advance High

Match High

Match Low

Delete Low

Delete High

Insert High

Insert Low

Advance Low Advance Low

Advance HighAdvance High

Match High

Match Low

Delete Low

Delete High

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert High

Insert Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert High

Insert Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Match High

Match Low

Delete High

Delete Low

Insert High

Insert Low

Insert High

Insert Low

Match High

Match Low

Delete High

Delete Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert High

Insert Low

Match High

Match Low

Delete High

Delete Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Advance Low Advance Low

Advance HighAdvance High

Match High

Match Low

Delete Low

Delete High

Insert High

Insert Low

Insert High

Insert Low

Advance Low Advance Low

Advance HighAdvance High

Match High

Match Low

Delete Low

Delete High

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert High

Insert Low

Advance Low Advance Low

Advance HighAdvance High

Match High

Match Low

Delete Low

Delete High

Insert High

Insert Low

Advance Low

Advance High

Match High

Match Low

Delete Low

Delete High

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert High

Insert Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Insert High

Insert Low

Advance High

Advance Low

Match High

Match Low

Delete High

Delete Low

Match High

Match Low

Insert High

Insert Low

Insert High

Insert Low

Match High

Match Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert (forced) High

Insert (forced) Low

Insert High

Insert Low

Match High

Match Low

Insert High

Insert Low

Match High

Match Low

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

1.0

1.0

0.0

0.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

0

0

1.0

1.0

0

0

1.0

1.0

0

0

0

0

0.0

0.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

1.0

1.0

0.0

0.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

0.0

0.0

0.0
start: false

1.0
start: true0.0

start: N/A
5.00.0

1.00.0
0.0

start: false

1.0
start: true0.0

start: N/A

0.0

0.0

1.0

1.0

0.0

0.0

0.0
start: false

1.0
start: true0.0

start: N/A
5.00.0

1.00.0
0.0

start: false

1.0
start: true0.0

start: N/A

0.0

0.0

0

0

1.0

1.0

0

0

1.0

1.0

0

0

0

0

0.0

0.0

0.0
start: false

1.0
start: true0.0

start: N/A
5.00.0

1.00.0
0.0

start: false

1.0
start: true0.0

start: N/A

0.0

0.0

1.0

1.0

0.0

0.0

0.0
start: false

1.0
start: true0.0

start: N/A
5.00.0

1.00.0
0.0

start: false

1.0
start: true0.0

start: N/A

0.0

0.0

0.0

0.0

5.00.0

1.00.0
1.0

in: false

0.5
in: true

0.0

0.0

1.0

1.0

0.0

0.0

-1.0
in: false

-0.5
in: true

5.00.0

1.00.0
1.0

in: false

0.5
in: true

0.0

0.0

0

0

1.0

1.0

0

0

1.0

1.0

0

0

0

0

0.0

0.0

5.00.0

1.00.0
1.0

in: false

0.5
in: true

0.0

0.0

1.0

1.0

0.0

0.0

5.00.0

1.00.0
1.0

in: false

0.5
in: true

0.0

0.0

0.0

0.0

0.0
end: false

0.0
end: true

0.0
end: N/A

5.00.0

1.00.0

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0

0.0

1.0

1.0

0.0

0.0

0.0
end: false

0.0
end: true

0.0
end: N/A

5.00.0

1.00.0

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0

0.0

0

0

1.0

1.0

0

0

1.0

1.0

0

0

0

0

0.0

0.0

0.0
end: false

0.0
end: true

0.0
end: N/A

5.00.0

1.00.0

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0

0.0

1.0

1.0

0.0

0.0

0.0
end: false

0.0
end: true

0.0
end: N/A

5.00.0

1.00.0

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0

0.0

0.0

0.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

1.0

1.0

0.0

0.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

0

0

1.0

1.0

0

0

1.0

1.0

0

0

0

0

0.0

0.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

1.0

1.0

0.0

0.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

0.0

0.0

0.0
start: false

1.0
start: true0.0

start: N/A
5.00.0

1.00.0
0.0

start: false

1.0
start: true0.0

start: N/A

0.0

0.0

1.0

1.0

0.0

0.0

0.0
start: false

1.0
start: true0.0

start: N/A
5.00.0

1.00.0
0.0

start: false

1.0
start: true0.0

start: N/A

0.0

0.0

0

0

1.0

1.0

0

0

1.0

1.0

0

0

0

0

0.0

0.0

0.0
start: false

1.0
start: true0.0

start: N/A
5.00.0

1.00.0
0.0

start: false

1.0
start: true0.0

start: N/A

0.0

0.0

1.0

1.0

0.0

0.0

0.0
start: false

1.0
start: true0.0

start: N/A
5.00.0

1.00.0
0.0

start: false

1.0
start: true0.0

start: N/A

0.0

0.0

0.0

0.0

5.00.0

1.00.0
0

in: false

0
in: true

0.0
start: false

1.0
start: true0.0

start: N/A

1.0
in: false

0.5
in: true

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0
start: false

1.0
start: true0.0

start: N/A

0
in: false

0
in: true

0.0
start: false

1.0
start: true0.0

start: N/A

1.0
in: false

0.5
in: true

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0

0 0.0
end: false

0.0
end: true

0.0
end: N/A

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0

0
0.0

0.0

1.0

1.0

0.0

0.0

5.00.0

1.00.0
0

in: false

0
in: true

0.0
start: false

1.0
start: true0.0

start: N/A

1.0
in: false

0.5
in: true

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0
start: false

1.0
start: true0.0

start: N/A

0
in: false

0
in: true

0.0
start: false

1.0
start: true0.0

start: N/A

1.0
in: false

0.5
in: true

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0

0 0.0
end: false

0.0
end: true

0.0
end: N/A

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0

0
0.0

0.0

0

0

1.0

1.0

0

0

1.0

1.0

0

0

0

0

0.0

0.0

0
in: false

0
in: true 0.0

start: false

1.0
start: true0.0

start: N/A
5.00.0

1.00.0
0.0

start: false

1.0
start: true0.0

start: N/A

0.0

0.0

1.0

1.0

0.0

0.0

0.0
start: false

1.0
start: true0.0

start: N/A
5.00.0

1.00.0
0.0

start: false

1.0
start: true0.0

start: N/A

0.0

0.0

0

0

1.0

1.0

0

0

0.0

0.0

0.0
start: false

1.0
start: true0.0

start: N/A
5.00.0

1.00.0
0.0

start: false

1.0
start: true0.0

start: N/A

0.0

0.0

0.0

0.0

5.00.0

1.00.0
1.0

in: false

0.5
in: true

0.0

0.0

1.0

1.0

0.0

0.0

-1.0
in: false

-0.5
in: true

5.00.0

1.00.0
1.0

in: false

0.5
in: true

0.0

0.0

0

0

1.0

1.0

0

0

0.0

0.0

5.00.0

1.00.0
1.0

in: false

0.5
in: true

0.0

0.0

0.0

0.0

0.0
end: false

0.0
end: true

0.0
end: N/A

5.00.0

1.00.0

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0

0.0

1.0

1.0

0.0

0.0

0.0
end: false

0.0
end: true

0.0
end: N/A

5.00.0

1.00.0

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0

0.0

0

0

1.0

1.0

0

0

0.0

0.0

0.0
end: false

0.0
end: true

0.0
end: N/A

5.00.0

1.00.0

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0

0.0

0.0

0.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

1.0

1.0

0.0

0.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

0

0

1.0

1.0

0

0

0.0

0.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

0.0

0.0

0.0
start: false

1.0
start: true0.0

start: N/A
5.00.0

1.00.0
0.0

start: false

1.0
start: true0.0

start: N/A

0.0

0.0

1.0

1.0

0.0

0.0

0.0
start: false

1.0
start: true0.0

start: N/A
5.00.0

1.00.0
0.0

start: false

1.0
start: true0.0

start: N/A

0.0

0.0

0

0

1.0

1.0

0

0

0.0

0.0

0.0
start: false

1.0
start: true0.0

start: N/A
5.00.0

1.00.0
0.0

start: false

1.0
start: true0.0

start: N/A

0.0

0.0

0.0

0.0

5.00.0

1.00.0
0

in: false

0
in: true

0.0
start: false

1.0
start: true0.0

start: N/A

1.0
in: false

0.5
in: true

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0

0
0.0

0.0

1.0

1.0

0.0

0.0

5.00.0

1.00.0
0

in: false

0
in: true

0.0
start: false

1.0
start: true0.0

start: N/A

1.0
in: false

0.5
in: true

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0

0
0.0

0.0

0

0

1.0

1.0

0

0

0.0

0.0

0
in: false

0
in: true 0.0

start: false

1.0
start: true0.0

start: N/A
5.00.0

1.00.0
0.0

start: false

1.0
start: true0.0

start: N/A

0.0

0.0

1.0

1.0

0.0

0.0

0.0
start: false

1.0
start: true0.0

start: N/A
5.00.0

1.00.0
0.0

start: false

1.0
start: true0.0

start: N/A

0.0

0.0

0.0

0.0

5.00.0

1.00.0
1.0

in: false

0.5
in: true

0.0

0.0

1.0

1.0

0.0

0.0

-1.0
in: false

-0.5
in: true

5.00.0

1.00.0
1.0

in: false

0.5
in: true

0.0

0.0

0.0

0.0

0.0
end: false

0.0
end: true

0.0
end: N/A

5.00.0

1.00.0

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0

0.0

1.0

1.0

0.0

0.0

0.0
end: false

0.0
end: true

0.0
end: N/A

5.00.0

1.00.0

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0

0.0

0.0

0.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

1.0

1.0

0.0

0.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

0.0

0.0

5.00.0

1.00.0

0.0

0.0

1.0

1.0

0.0

0.0

5.00.0

1.00.0

0.0

0.0

0.0

0.0

0

0

5.00.0

1.00.0
0

in: false

0
in: true

0.0
start: false

1.0
start: true0.0

start: N/A

1.0
in: false

0.5
in: true

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0

0
0.0

0.0

0.0

0.0

0.0
end: false

0.0
end: true

0.0
end: N/A

5.00.0

1.00.0

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0

0.0

1.0

1.0

0.0

0.0

0.0
end: false

0.0
end: true

0.0
end: N/A

5.00.0

1.00.0

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0

0.0

0

0

1.0

1.0

0

0

0.0

0.0

0.0
end: false

0.0
end: true

0.0
end: N/A

5.00.0

1.00.0

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0

0.0

0.0

0.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

1.0

1.0

0.0

0.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

0

0

1.0

1.0

0

0

0.0

0.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

0.0

0.0

5.00.0

1.00.0

0.0

0.0

1.0

1.0

0.0

0.0

5.00.0

1.00.0

0.0

0.0

0

0

1.0

1.0

0

0

0.0

0.0

5.00.0

1.00.0

0.0

0.0

0.0

0.0

0

0

5.00.0

1.00.0
0

in: false

0
in: true

0.0
start: false

1.0
start: true0.0

start: N/A

1.0
in: false

0.5
in: true

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0
start: false

1.0
start: true0.0

start: N/A

0
in: false

0
in: true

0.0
start: false

1.0
start: true0.0

start: N/A

1.0
in: false

0.5
in: true

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0

0 0.0
end: false

0.0
end: true

0.0
end: N/A

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0

0
0.0

0.0

1.0

1.0

0.0

0.0

5.00.0

1.00.0
0

in: false

0
in: true

0.0
start: false

1.0
start: true0.0

start: N/A

1.0
in: false

0.5
in: true

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0
start: false

1.0
start: true0.0

start: N/A

0
in: false

0
in: true

0.0
start: false

1.0
start: true0.0

start: N/A

1.0
in: false

0.5
in: true

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0

0 0.0
end: false

0.0
end: true

0.0
end: N/A

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0

0
0.0

0.0

0.0

0.0

0.0
end: false

0.0
end: true

0.0
end: N/A

5.00.0

1.00.0

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0

0.0

1.0

1.0

0.0

0.0

0.0
end: false

0.0
end: true

0.0
end: N/A

5.00.0

1.00.0

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0

0.0

0

0

1.0

1.0

0

0

1.0

1.0

0

0

0

0

0.0

0.0

0.0
end: false

0.0
end: true

0.0
end: N/A

5.00.0

1.00.0

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0

0.0

1.0

1.0

0.0

0.0

0.0
end: false

0.0
end: true

0.0
end: N/A

5.00.0

1.00.0

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0

0.0

0.0

0.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

1.0

1.0

0.0

0.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

0

0

1.0

1.0

0

0

1.0

1.0

0

0

0

0

0.0

0.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

1.0

1.0

0.0

0.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

0.0

0.0

0.0
start: false

1.0
start: true0.0

start: N/A
5.00.0

1.00.0
0.0

start: false

1.0
start: true0.0

start: N/A

0.0

0.0

1.0

1.0

0.0

0.0

0.0
start: false

1.0
start: true0.0

start: N/A
5.00.0

1.00.0
0.0

start: false

1.0
start: true0.0

start: N/A

0.0

0.0

0

0

1.0

1.0

0

0

1.0

1.0

0

0

0

0

0.0

0.0

0.0
start: false

1.0
start: true0.0

start: N/A
5.00.0

1.00.0
0.0

start: false

1.0
start: true0.0

start: N/A

0.0

0.0

1.0

1.0

0.0

0.0

0.0
start: false

1.0
start: true0.0

start: N/A
5.00.0

1.00.0
0.0

start: false

1.0
start: true0.0

start: N/A

0.0

0.0

0.0

0.0

5.00.0

1.00.0
1.0

in: false

0.5
in: true

0.0

0.0

1.0

1.0

0.0

0.0

5.00.0

1.00.0
1.0

in: false

0.5
in: true

0.0

0.0

0

0

1.0

1.0

0

0

1.0

1.0

0

0

0

0

0.0

0.0

5.00.0

1.00.0
1.0

in: false

0.5
in: true

0.0

0.0

1.0

1.0

0.0

0.0

-1.0
in: false

-0.5
in: true

5.00.0

1.00.0
1.0

in: false

0.5
in: true

0.0

0.0

0.0

0.0

0.0
end: false

0.0
end: true

0.0
end: N/A

5.00.0

1.00.0

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0

0.0

1.0

1.0

0.0

0.0

0.0
end: false

0.0
end: true

0.0
end: N/A

5.00.0

1.00.0

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0

0.0

0

0

1.0

1.0

0

0

1.0

1.0

0

0

0

0

0.0

0.0

0.0
end: false

0.0
end: true

0.0
end: N/A

5.00.0

1.00.0

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0

0.0

1.0

1.0

0.0

0.0

0.0
end: false

0.0
end: true

0.0
end: N/A

5.00.0

1.00.0

0.0
end: false

0.0
end: true

0.0
end: N/A

0.0

0.0

0.0

0.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

1.0

1.0

0.0

0.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

0

0

1.0

1.0

0

0

1.0

1.0

0

0

0

0

0.0

0.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

1.0

1.0

0.0

0.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

5.00.0

1.00.0

0.0
exit: true

0.0
exit: false

0.0
exit: true

0.0
exit: false

0.0

0.0

0.0

0.0

5.00.0

1.00.0

0.0

0.0

1.0

1.0

0.0

0.0

5.00.0

1.00.0

0.0

0.0

0

0

1.0

1.0

0

0

1.0

1.0

0

0

0

0

0.0

0.0

5.00.0

1.00.0

0.0

0.0

1.0

1.0

0.0

0.0

5.00.0

1.00.0

0.0

0.0

0.0

0.0

0

Figure 17. Zoomed-in view of a portion of the edit decision diagram in Figure 16

C.2.3. CONSTRAINT DECISION DIAGRAM

The above decision diagram ensures that edits respect the tree structure, but does not by itself ensure that annotated regions
are aligned with that tree structure. We address this by building a second decision diagram, which depends only on the
prototype sequence and which enforces the constraints on the annotated regions.

The second DAG tracks a more fine-grained set of confidence types:

• OUTSIDE-REGION: We are outside of any annotated region.

• IN-REGION-TEMPORARY: We are inside a annotated region that we started at the current nesting level.

• IN-REGION-FORCED: We are inside a annotated region that we started at a previous nesting level (e.g. we started it
and then entered a group node subproblem).

Instead of a tuple of positions in the prototype and in target, we track a tuple of a position in the prototype and a “confidence
nesting level”, which represents how many ancestors of this node are in high-confidence regions rather than low-confidence
regions. This allows us to keep track of how many group nodes we must exit before we are allowed to stop a low-confidence
region.

Figure 18 shows a rendering of the decision diagram we construct when combining two simple sequences. Note that the
utility of this diagram is zero along any path; the purpose of this diagram is to forbid certain subsets of variable assignments
(e.g assign them negative utility, or infinite cost).

33

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

Figure 18. Rendering of the constraint decision diagram with all features enabled, for enforcing constraints in the sequence “a [b [c]] d”.

34

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

➞| ⟪ a ⟫ ➞| ⟪ ⟪ b ⟫ ➞| ⟪ ⟪ c ⟫ ➞| ⟫ ➞| ⟫ ➞| ⟪ d ⟫ ➞|

High

Final State

High

Low Low

High

Low

High

Low Low

High High

Low

High

Low

High High

LowLow

High

Low Low

High High

Low

High

Low

High High

LowLow

High

Low Low

High High

Low

High

Low (forced) Low (forced) Low (forced) Low (forced) Low (forced) Low Low

High High

Low

High

Low (forced) Low (forced) Low (forced) Low (forced) Low (forced) Low (forced) Low (forced) Low (forced) Low (forced) Low (forced) Low (forced) Low (forced) Low (forced) Low (forced) Low Low

High High

Low

High

Low

High

Low Low

High High

Low
0.0
exit: true

0.0
exit: false

0.0
exit: true0.0
exit: false

0
start: false

0
start: true

0
start: N/A

0
in: false

0
in: true

0
end: false

0
end: true0

end: N/A

0.0
exit: true

0.0
exit: false

0.0
exit: true0.0
exit: false

0
start: false

0
start: true

0
start: N/A

0
in: false

0
start: false

0
start: true

0
start: N/A

0
in: false

0
in: true

0
end: false

0
end: true0

end: N/A

0.0
exit: true

0.0
exit: false

0.0
exit: true0.0
exit: false

0
start: false

0
start: true

0
start: N/A

0
in: false

0
start: false

0
start: true

0
start: N/A

0
in: false

0
in: true

0
end: false

0
end: true0

end: N/A

0.0
exit: true

0.0
exit: false

0.0
exit: true0.0
exit: false

0

0
in: true

0
start: N/A

0
in: true

0
end: false

0.0
exit: true0.0
exit: false

0 0
end: false

0
end: true0

end: N/A

0.0
exit: true

0.0
exit: false

0.0
exit: true0.0
exit: false

0

0
in: true

0
start: N/A

0
in: true

0
end: false

0.0
exit: true0.0
exit: false

0
start: N/A

0
in: true

0
start: N/A

0
in: true

0
end: false

0.0
exit: true0.0
exit: false

0 0
end: false

0.0
exit: true0.0
exit: false

0 0
end: false

0
end: true0

end: N/A

0.0
exit: true

0.0
exit: false

0.0
exit: true0.0
exit: false

0
start: false

0
start: true

0
start: N/A

0
in: false

0
in: true

0
end: false

0
end: true0

end: N/A

0.0
exit: true

0.0
exit: false

0.0
exit: true0.0
exit: false

0

Figure 19. Zoomed-in view of a portion of the constraint decision diagram in Figure 18. “Low” refers to being in an annotated region,
which corresponds to low-confidence UNSURE annotations for the edit localization task.

35

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

D. Overview of our Pseudo-Parser
We now provide a high-level overview of our pseudo-parser, which converts code fragments into abstract syntax tree (AST)
like structures. Pairs of these pseudo-parse trees are used by R-U-SURE to construct matching graphs that parameterize the
abstract space over which R-U-SURE searches for minimum Bayes risk solutions. By representing the source code by a
syntactically meaningful tree structure, it is possible for R-U-SURE to produce completion results that respect the nature of
source code and are especially syntactically meaningful.

Although a complete and precise specification of our pseudo-parsing algorithm is beyond the present scope, the full details
will be available soon in our upcoming code release. In anticipation of that release, we now provide a high level description
of our pseudo-parser and give some illustrative examples.

D.1. High Level Desiderata

We developed our bespoke pseudo-parser with two main goals in mind:

• Language independence: our system handles JAVA, JAVASCRIPT and C++ using a unified approach that requires only a
handful of language specific parameters. PYTHON is handled similarly, but with some additional complexity due to
nature of indents and dedents in that language.

• Error tolerance: we cannot assume syntactically valid code.

D.2. Algorithms

Tokenization Before pseudo-parsing, we convert source code text into a sequence of tokens that we identify by regular
expression matching. For example, the following code fragment:

y = func(x)

is split into the following (token type, token) pairs:

ID "y"
WHITE_SPACE " "
PUNC "="
WHITE_SPACE " "
ID "func"
BRACE "("
ID "x"
BRACE ")"
NEWLINE "\n"

Basic Bracket Matching Following tokenization comes the core part of our pseudo-parser, a bracket-matching algorithm
that produces a nested structure. For the example above, this may be rendered as below. While the full details of the
following rendering are not important, the nesting denoted by indentation clearly reveals relevant structure:

GROUP(ROOT): "y = func(x)\n"
GROUP(SPLIT_GROUP): "y = func(x)\n"

TOK(CONTENT_LEAF): "y"
DEC: " "
TOK(CONTENT_LEAF): "="
DEC: " "
TOK(CONTENT_LEAF): "func"
GROUP(MATCH): "(x)"

TOK(MATCH_LEFT): "("
GROUP(MATCH_INNER): "x"

TOK(CONTENT_LEAF): "x"
TOK(MATCH_RIGHT): ")"

DEC: "\n"

36

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

Error Correction How to handle sequences with unmatched brackets? In simple cases, missing closing brackets can be
added to restore balance and recover relevant structure, for example this code:

(x

results in the following tree structure:

GROUP(ROOT): "(x\n)\n"
GROUP(SPLIT_GROUP): "(x\n)\n"

GROUP(MATCH): "(x\n)"
TOK(MATCH_LEFT): "("
GROUP(MATCH_INNER): "x\n"

TOK(CONTENT_LEAF): "x"
DEC: "\n"

TOK(MATCH_RIGHT): ")"
DEC: "\n"

which includes an additional closing brace.

Error Tolerance In some cases, such as the following:

(x])

no correction is made, and the erroneous brace (in this case the right square brace) is treated as a regular token, yielding

GROUP(ROOT): "(x])\n"
GROUP(SPLIT_GROUP): "(x])\n"

GROUP(MATCH): "(x])"
TOK(MATCH_LEFT): "("
GROUP(MATCH_INNER): "x]"

TOK(CONTENT_LEAF): "x"
TOK(CONTENT_LEAF): "]"

TOK(MATCH_RIGHT): ")"
DEC: "\n"

Handling PYTHON indents and dedents Unlike C++, JAVA and JAVASCRIPT, which use curly brackets, the PYTHON
language uses white-space to denote code blocks. To handle this, we apply our pseudo parser twice. In the first step, we
match standard brackets, so that

def f(
x, y):
return x

is parsed as

GROUP(ROOT): "def f(\n x, y):\n return x"
TOK(CONTENT_LEAF): "def"
DEC: " "
TOK(CONTENT_LEAF): "f"
GROUP(MATCH): "(\n x, y)"

TOK(MATCH_LEFT): "("
GROUP(MATCH_INNER): "\n x, y"

DEC: "\n"
DEC: " "
TOK(CONTENT_LEAF): "x"
TOK(CONTENT_LEAF): ","

37

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

DEC: " "
TOK(CONTENT_LEAF): "y"

TOK(MATCH_RIGHT): ")"
TOK(CONTENT_LEAF): ":"
DEC: "\n"
DEC: " "
TOK(CONTENT_LEAF): "return"
DEC: " "
TOK(CONTENT_LEAF): "x"

from which we determine (using a specific algorithm that works with the above tree representation), that since the newline
and subsequent white-space following the opening bracket is contained within a matched bracket pair, it is not to be treated
as a python code block indent. Once we have detected what do appear to be valid python code block indents and dedents,
we handle them with a second pass of our error tolerant bracket matching pseudo-parser, which in this case gives the result:

GROUP(ROOT): "def f(\n x, y):\n return x\n"
GROUP(SPLIT_GROUP): "def f(\n x, y):\n return x\n"

GROUP(SPLIT_GROUP): "def f(\n x, y):\n"
TOK(CONTENT_LEAF): "def"
DEC: " "
TOK(CONTENT_LEAF): "f"
GROUP(MATCH): "(\n x, y)"

TOK(MATCH_LEFT): "("
GROUP(MATCH_INNER): "\n x, y"

DEC: "\n"
DEC: " "
TOK(CONTENT_LEAF): "x"
TOK(CONTENT_LEAF): ","
DEC: " "
TOK(CONTENT_LEAF): "y"

TOK(MATCH_RIGHT): ")"
TOK(CONTENT_LEAF): ":"
DEC: "\n"

GROUP(SPLIT_GROUP): " return x\n"
GROUP(MATCH): " return x"

TOK(MATCH_LEFT): ""
GROUP(MATCH_INNER): " return x"

DEC: " "
TOK(CONTENT_LEAF): "return"
DEC: " "
TOK(CONTENT_LEAF): "x"

TOK(MATCH_RIGHT): ""
DEC: "\n"

in which the matching python indents and dedents are denoted by empty strings.

Subtokenization of string literals To allow fine-grained edits within strings (such as docstrings), we further subtokenize
tokens identified as string literals. This subtokenization process uses a generic lossless tokenizer originally designed by
Kanade et al. (2019) and made available at https://github.com/google-research/google-research/
tree/master/cubert/unified_tokenizer.py.

38

https://github.com/google-research/google-research/tree/master/cubert/unified_tokenizer.py
https://github.com/google-research/google-research/tree/master/cubert/unified_tokenizer.py

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

E. Additional Details on the Experimental Methodology
E.1. Example Generation

In this section we provide further details on the example generation methodology introduced in Section 5.1. An example is
defined by

1. The choice of source code file from which to derive the example. We use permissively licensed code from scientific
computing repositories hosted on GITHUB1.

2. The starting (or cursor) location at which the hypothetical completion should begin, which is an index into the characters
of the raw source code file.

3. The truncation point, which is the assumed ending location of both the ground truth target (taken from the original
source file, and used for evaluation but not seen by R-U-SURE), and each of the K = 31 continuations that are
samples drawn from the language model (and are used to form the minimum Bayes risk objective of R-U-SURE
defined in Equation (3)).

The first two example types, applicable to all four programming languages that we consider, choose the starting location
uniformly at random from the source code file, and only differ by their choice of truncation point as follows.

1. For the untruncated target setting, we simply let the truncation point be the end of the source code file (or the
maximum number of tokens allowed in the model’s completion).

2. For the pseudo-parser heuristic target method, we attempt to construct an evaluation target that is more tailored
to practical settings, by truncating at a heuristically defined point beyond which further continuation may be overly
ambiguous. To this end, we first pseudo parse the example code without truncation, and then find the nearest location
following the starting (or cursor) position which either i) corresponds to the end of the nested sub-tree which contains
the starting location (roughly speaking, the end of the current curly-braced block in JAVA, say), or if this does not exist
because the cursor was not within a nested part of the source code file, ii) terminates at the end of the current statement
(roughly speaking, the next semi-colon in JAVA, say).

The final pydocstring target example type is PYTHON specific and designed to yield a different distribution of examples
that include a significant natural language component. To achieve this we let the starting location of the example be the
beginning of a DOCSTRING comment in the source code file (immediately after the triple quotes) and the truncation point be
immediately after the corresponding closing triple quotes. To identify the DOCSTRING, we again lean on our pseudo-parser:
we search for triple quotes that occur at the beginning of indented code blocks. For the model samples, there is no guarantee
that the DOCSTRING will be correctly closed; in such cases we simply fall back to the untruncated target approach.

Removing the context Finally, we note that due to our dataset construction strategy, and inspired by real-world code
completion systems, our suggestions may begin partway in the middle of an expression. We address this by concatenating
the context (the prefix of the file) and the model suggestions, pseudo-parsing the result, and then removing any node that is
entirely contained in the context after parsing. This enables us to build a tree representation of only the part of the code that
we would actually be suggesting, while still having its tree structure match the parse tree of the final code state.

E.2. Utility function configuration

We configure our base utility function (described in Appendix C) in different ways for each task.

Edit localization task. For this task, we configure the utility function with a per-character utility of 1 per matched SURE
token and α = 0.7 per matched UNSURE, and a per-character cost of 1 per deleted SURE and β = 0.3 per deleted UNSURE;
this setting is such that tokens with a lower-than-70% chance of being kept are optimal to mark as UNSURE. (We vary these
thresholds for the Pareto plot, by setting the UNSURE match utility to α = c and deletion cost to β = 1− c for varying c.)
We also include a localization penalty of 5 per edit inside SURE regions, a penalty of 0.25 in UNSURE regions, and a penalty
of 0.75 for starting a new UNSURE. These costs are also tuned so that, if there is a 30%-or-greater chance of starting to edit
at a given location, it is better to insert a UNSURE region that includes the edit.

1https://github.com

39

https://github.com

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

Prefix task. We use the same configuration as the edit localization task, but additionally insert truncation nodes into the
prototype suggestion, which enables us to search over points to stop the suggestion early. For the R-U-SURE (Prefix) variant,
we do not insert any Region Start / Region End nodes, which forces the solver to label everything as SURE and only search
for prefixes. For the R-U-SURE (Prefix + Region) variant, we include both Region Start/End nodes and truncation nodes.

API call task. For this task, we restrict our attention to Python files, and do additional postprocessing on both the model
samples and the ground truth target in order to compute an estimated utility. We first search through the parsed file in order
to identify statements that look like function calls; in particular, any statement that contains tokens immediately followed by
an open parenthesis, and which does not start with def or class. We then extract a list of such calls and rearrange them
into a shallow tree structure: the top level sequence is a sequence of group nodes, and each group node contains exactly
one call. We further insert region start/end nodes into each call, before and after the parenthesis, respectively; these allow
our method to decide how many attribute accesses to include in the call (e.g. ‘foo.bar.baz(‘ or just ‘bar.baz‘) and whether
or not to include arguments or a left-hand-side assignment. For this task, we reinterpet the regions as being SURE rather
than UNSURE. Since we only care about extracting a useful subsequence, we forbid any token matches outside of extracted
regions, but set the costs of deletion and insertion to zero. We also forbid any deletions or insertions in an extracted region to
ensure that the call matches exactly (instead of just having high token overlap). We implement this by building a simplified
version of our edit distance graph that only includes nodes for the allowed types of edit.

Within an extracted region, we compute per-token weights, which are 1 for tokens we have already seen in the file and 10 for
novel tokens (those not yet seen in the file); we also give 1 bonus point for correctly predicting the entire argument list. We
then scale this base weight by 0.7 to get the utility of correct predictions, and scale it by 0.3 to get the penalty for incorrect
ones. Note that this is the same set of rewards and penalties as in the edit localization task, however, the break-even point is
lower for this version because deleting tokens has a penalty of 0 instead of -1.

40

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

F. Detailed Experimental Results
The additional detailed results provided in the appendix include:

• Figure 20: A detailed breakdown by target type (UNTRUNCATED, HEURISTIC and PYDOCSTRING) for both leave one
out and ground truth targets, of the performance of the R-U-SURE (Region) method.

• Figure 21a: An analysis of the duality gap achieved by our dual decomposition solver, that shows that the optimal
solution is found in the majority of cases.

• Figure 22: A plot of model performance by size of sample K which includes both leave one out and ground truth
utilities.

• Table 3, Table 4 and Table 5: Detailed versions of the tables in the main paper.

41

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

Utility
(relative)

Est. Utility
(relative)

LOO Utility
(relative)

Sensitivity
% UNSURE of edited

Specificity
% SURE of unedited

F1 score

ALL SURE ≡ 0 38.00 30.35 0.00 100.00 -
MAXIMAL UNSURE 81.83 106.08 101.90 90.79 6.85 12.74
TOKEN PROB. 0.5 50.83 82.63 77.10 55.63 72.69 63.03
TOKEN PROB. 0.7 58.42 88.89 83.68 63.81 64.97 64.38
TOKEN PROB. 0.9 66.99 95.64 90.79 73.21 52.93 61.44
PREFIX PROB. 0.5 83.33 108.52 104.29 89.31 27.39 41.92
PREFIX PROB. 0.7 83.45 108.27 104.05 89.89 23.50 37.26
PREFIX PROB. 0.9 83.08 107.61 103.41 90.35 17.65 29.53

OURS (Region) 84.42 113.82 109.12 85.78 62.24 72.14

Table 3. Detailed results for our R-U-SURE (Region) method along with a selection of baselines, on the edit-localization task.

GT Utility
(mean)

Est. Utility
(mean)

LOO
Utility (mean) Correct Chars Incorrect Chars

20 CHARACTERS -7.99 5.15 4.11 13.61 21.60
50 CHARACTERS -8.92 7.12 5.55 23.83 32.75

100 CHARACTERS -14.75 4.96 2.47 34.35 49.10
200 CHARACTERS -29.88 -5.04 -9.20 44.81 74.69
500 CHARACTERS -66.59 -33.18 -40.16 53.66 120.25

1 LINE -10.91 4.00 2.45 16.85 27.76
2 LINES -12.68 4.85 2.88 24.30 36.98
4 LINES -19.85 1.76 -1.04 33.75 53.59
8 LINES -37.75 -9.77 -14.31 43.97 81.72

16 LINES -65.76 -31.32 -38.14 51.82 117.58

TOKEN PROB. 0.00 -84.46 -47.36 -55.52 54.94 139.40
TOKEN PROB. 0.01 -13.46 91.15 6.31 38.85 52.32
TOKEN PROB. 0.02 -7.56 78.02 10.78 35.24 42.80
TOKEN PROB. 0.05 -2.80 63.21 13.56 30.21 33.01
TOKEN PROB. 0.10 -0.58 53.57 14.44 26.50 27.08
TOKEN PROB. 0.20 0.52 44.77 13.09 22.65 22.13
TOKEN PROB. 0.30 0.69 14.35 13.43 20.45 19.76
TOKEN PROB. 0.50 0.19 12.82 12.07 17.30 17.12
TOKEN PROB. 0.70 -1.10 10.72 10.01 14.42 15.52
TOKEN PROB. 0.90 -3.80 7.21 6.54 10.62 14.42

PREFIX PROB.0.01 0.88 48.99 15.50 24.94 24.06
PREFIX PROB.0.02 1.04 46.30 15.25 23.68 22.64
PREFIX PROB.0.05 1.03 42.62 14.64 21.83 20.80
PREFIX PROB.0.10 0.83 39.57 13.99 20.20 19.37
PREFIX PROB.0.20 0.43 36.28 14.36 18.36 17.93
PREFIX PROB.0.30 0.04 34.01 12.26 17.03 16.99
PREFIX PROB.0.50 -1.00 30.50 10.63 14.76 15.75
PREFIX PROB.0.70 -2.40 27.39 8.58 12.50 14.90
PREFIX PROB.0.90 -5.01 23.43 5.52 9.21 14.22

MAX AVG. LOG PROB -17.64 50.96 -4.08 16.66 34.31
INTELLICODE COMPOSE 0.04 12.71 11.90 17.10 17.06

OURS (PREFIX) 7.00 30.49 28.03 38.81 31.81

OURS (PREFIX+REGION) 12.26 37.79 35.18 36.40 22.31

Table 4. Comparison of utility and character-level accuracy statistics for the suggestion-length task; R-U-SURE (Prefix) achieves higher
average utility than the comparable baselines. As an additional comparison, we include results for R-U-SURE (Prefix+Region), a variant
that is also allowed to mark some tokens UNSURE, which improves our utility metric and decreases the number of incorrectly-predicted
characters (where we only count SURE tokens as correct/incorrect).

42

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

GT Utility
(mean)

Est. Utility
(mean)

LOO Utility
(mean)

Corr.
(total)

Corr.
(novel)

Corr.
(not novel)

Incorr.
(total)

Incorr.
(novel)

Incorr.
(not novel)

ALL FULL -8.75 -6.09 -7.15 2.02 0.33 1.68 9.64 3.28 6.36
ALL SHORT -0.58 0.70 0.10 3.00 0.68 2.32 4.60 2.07 2.53

NOVEL SHORT -1.39 -0.36 -0.94 1.18 0.68 0.50 3.04 2.07 0.96
OURS (API) 5.10 6.74 6.53 3.56 0.68 2.88 2.10 0.50 1.60

Table 5. Detailed results for our R-U-SURE (API) method along with a set of baselines.

43

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

100 0 100
Utility

R-U-SURE (Region)

All unsure

Token Prob. Thresh (0.5)

Token Prob. Thresh (0.7)

Token Prob. Thresh (0.9)

Prefix Prob. Thresh (0.5)

Prefix Prob. Thresh (0.7)

Prefix Prob. Thresh (0.9)

50.3

48.1

31.4

35.7

40.5

49.2

49.3

49.0

GT: Pseudoparser Heuristic Target

100 0 100
Utility

R-U-SURE (Region)

All unsure

Token Prob. Thresh (0.5)

Token Prob. Thresh (0.7)

Token Prob. Thresh (0.9)

Prefix Prob. Thresh (0.5)

Prefix Prob. Thresh (0.7)

Prefix Prob. Thresh (0.9)

47.4

42.2

28.8

32.6

36.5

44.2

44.0

43.5

LOO: Pseudoparser Heuristic Target

100 0 100 200
Utility

R-U-SURE (Region)

All unsure

Token Prob. Thresh (0.5)

Token Prob. Thresh (0.7)

Token Prob. Thresh (0.9)

Prefix Prob. Thresh (0.5)

Prefix Prob. Thresh (0.7)

Prefix Prob. Thresh (0.9)

133.5

130.8

79.7

91.7

105.6

132.4

132.5

132.1

GT: Untruncated Target

100 0 100 200
Utility

R-U-SURE (Region)

All unsure

Token Prob. Thresh (0.5)

Token Prob. Thresh (0.7)

Token Prob. Thresh (0.9)

Prefix Prob. Thresh (0.5)

Prefix Prob. Thresh (0.7)

Prefix Prob. Thresh (0.9)

124.5

115.0

73.8

84.3

96.0

117.7

117.4

116.7

LOO: Untruncated Target

100 50 0 50 100
Utility

R-U-SURE (Region)

All unsure

Token Prob. Thresh (0.5)

Token Prob. Thresh (0.7)

Token Prob. Thresh (0.9)

Prefix Prob. Thresh (0.5)

Prefix Prob. Thresh (0.7)

Prefix Prob. Thresh (0.9)

24.5

21.1

13.2

16.1

18.6

23.8

23.7

23.3

GT: PyDocstring Target

100 50 0 50 100
Utility

R-U-SURE (Region)

All unsure

Token Prob. Thresh (0.5)

Token Prob. Thresh (0.7)

Token Prob. Thresh (0.9)

Prefix Prob. Thresh (0.5)

Prefix Prob. Thresh (0.7)

Prefix Prob. Thresh (0.9)

21.6

15.0

10.4

12.5

14.2

18.1

17.8

17.2

LOO: PyDocstring Target

Figure 20. Average utility (higher is better) for our R-U-SURE (Region) and a variety of baseline methods for the uncertainty-regions
task, evaluated on the ground truth (GT, left) user intent as well as a leave-one-out (LOO, right) sample from the model, and the three
target settings (corresponding to the three rows of plots) noted in the figure titles. Note that methods that perform well in the leave-one-out
setting also tend to perform well on the ground truth, but averages are slightly better across the board for leave-one-out.

44

R-U-SURE? Uncertainty-Aware Code Suggestions By Maximizing Utility Across Random User Intents

0.0 0.2 0.4 0.6 0.8 1.0
Normalised Sort Index

10 15

10 11

10 7

10 3

101
Du

al
ity

 G
ap

(L
og

 S
ca

le
)

Sorted Duality Gap by Setting
Pseudoparser Heuristic Target
Untruncated Target
PyDocstring Target

(a) R-U-SURE (Region).

0.0 0.2 0.4 0.6 0.8 1.0
Normalised Sort Index

10 46

10 39

10 32

10 25

10 18

10 11

Du
al

ity
 G

ap
(L

og
 S

ca
le

)

Sorted Duality Gap by Setting
Pseudoparser Heuristic Target
Untruncated Target
PyDocstring Target

(b) R-U-SURE (Prefix).

0.0 0.2 0.4 0.6 0.8 1.0
Normalised Sort Index

10 27

10 21

10 15

10 9

10 3

Du
al

ity
 G

ap
(L

og
 S

ca
le

)

Sorted Duality Gap by Setting
GT
LOO

(c) R-U-SURE (API).

Figure 21. The distribution of duality gaps presented as a log plot of the sorted values, broken down by utility function for each figure
(a)-(c), and with a separate line for each type of prediction target (for (a) and (b)) or prediction target type (i.e. ground-truth or leave
one out, for (c)). We observe that R-U-SURE (Prefix) always obtains practically zero gap (and hence primal optimality), while e.g.
R-U-SURE (Region) does so on around 90-98% of cases, depending on the type of prediction target.

0 20 40 60
Number of Base Model Samples

30

40

50

60

70

80

To
ta

l U
til

ity

cpp
java
js
python

(a) Ground Truth.

0 20 40 60
Number of Base Model Samples

60

80

100

120

To
ta

l U
til

ity

(b) Leave one out.

Figure 22. The dependence of model performance on the number of base model samples combined by R-U-SURE, evaluated with respect
to the ground truth user intent (left) and a leave one out sample from the base model (right). The four lines represent the four programming
languages we considered. We observe that the performance increases dramatically on the left, but that this increase is relatively flat around
our maximum considered 31 samples.

45

