
On Bridging the Gap between Mean Field and Finite Width Deep Random
Multilayer Perceptron with Batch Normalization

Amir Joudaki 1 Hadi Daneshmand 2 3 4 Francis Bach 5

Abstract

Mean-field theory is widely used in theoretical
studies of neural networks. In this paper, we an-
alyze the role of depth in the concentration of
mean-field predictions for Gram matrices of hid-
den representations in deep multilayer perceptron
(MLP) with batch normalization (BN) at initial-
ization. It is postulated that the mean-field predic-
tions suffer from layer-wise errors that amplify
with depth. We demonstrate that BN avoids this
error amplification with depth. When the chain
of hidden representations is rapidly mixing, we
establish a concentration bound for a mean-field
model of Gram matrices. To our knowledge, this
is the first concentration bound that does not be-
come vacuous with depth for standard MLPs with
a finite width.

1. Introduction
There is a growing demand for a theoretical understand-
ing of neural networks to improve their safety, robustness,
computational and statistical effectiveness. Originating in
statistical mechanics for investigating complex systems with
interacting particles, this theory has been repurposed in re-
cent years for exploring neural network dynamics under
the regime of infinite width. By going beyond the micro-
scopic changes of individual neurons, mean field analysis
has revealed the collective neuronal behaviors that emerge
at initialization (Pennington et al., 2018; Yang et al., 2019;
Pennington & Worah, 2017), throughout training (Jacot
et al., 2018; Chizat & Bach, 2018; Lee et al., 2019), and
after training (Chizat & Bach, 2020; Ba et al., 2019).
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In this paper, we delve into the role of mean field theory at
initialization when network weights are allocated randomly.
Pioneering works by Glorot & Bengio (2010) and Saxe et al.
(2013) underscored the impact of initialization on training,
paving the way for mean field theory to uncover a wealth
of insights. Examples include identifying connections be-
tween wide neural networks and Gaussian processes (Neal,
1995; de G. Matthews et al., 2018; Jacot et al., 2018), exam-
ining the concentration of singular values of input-output
Jacobians (Pennington et al., 2018; Feng et al., 2022), and
designing activation functions (Klambauer et al., 2017; Ra-
machandran et al., 2017; Li et al., 2022). Remarkably, Xiao
et al. (2018) introduced an initialization scheme capable of
training convolutional networks comprising 10000 layers.

A common thread among these studies is the dynamics of
inner products between hidden representations, encoded in
their Gram matrix. Mean field theory models these dynam-
ics via a difference equation derived from the infinite-width
limit of the network. However, mean field analysis is in-
herently prone to approximation errors when dealing with
networks of finite width. As de G. Matthews et al. (2018)
observed, this error grows with depth, ultimately leading to
vacuous error bounds in the infinite depth limit. To tackle
this issue, they propose to increase the network width pro-
portional to depth. This idea is echoed in other studies
which propose maintaining a constant ratio between depth
and width (Hanin & Nica, 2019; Li et al., 2021), a regime
in which Hanin (2022) confirmed a constant concentration
bound for mean field estimates.

Can we achieve a bounded mean field error when the width
is finite? We answer this question affirmatively for MLPs
that are endowed with batch normalization. In particular,
we show that under some technical assumption on the un-
derlying dynamics (as formally expressed in Theorem 1),
the mean field estimation error for Gram matrices remains
bounded at infinite depth. Specifically, we demonstrate
that this error is limited by width−1/2 with high probability.
This contrasts with the vacuous concentration bounds at
infinite depth observed in the absence of normalization (Li
et al., 2022). Our results highlight the importance of existing
mean field analyses of batch normalization by Yang et al.
(2019), and demonstrate their high accuracy in the finite
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width scenarios that are relevant for practical applications.1

2. Related works
Numerous studies (Saxe et al., 2013; Feng et al., 2022; Yang
et al., 2019) have provided valuable insights into training
neural networks by studying input-output Jacobians of neu-
ral networks with and without normalization at initialization.
For example, Feng et al. (2022) have shown that the rank
of the input-output Jacobian of neural networks without nor-
malization at initialization diminishes exponentially with
depth, while Yang et al. (2019) have shown that batch
normalization avoids this exponential diminishing.

The spectrum of Jacobians is intimately related to the spec-
tra of Gram matrices. A Gram matrix (G-matrix) contains
inner products of samples within a batch (equation 2). Thus,
a degenerate G-matrix for the penultimate layer implies that
the outputs are insensitive to the inputs (Feng et al., 2022; Li
et al., 2022). Rank collapse in the last hidden layer occurs in
various neural network architectures, including MLPs (Saxe
et al., 2013), convolutional networks (Daneshmand et al.,
2020), and transformers (Dong et al., 2021), and leads to
ill-conditioning of the input-output Jacobian, which slows
training (Daneshmand et al., 2021; Pennington et al., 2018;
Yang et al., 2019). Saxe et al. (2013) have shown that avoid-
ing rank collapse can accelerate the training of deep linear
networks, making it a focus of theoretical and experimental
research (Pennington et al., 2018; Daneshmand et al., 2020;
2021).

A recent line of research (Daneshmand et al., 2020) postu-
lates that batch normalization can enhance the training of
deep neural nets by avoiding the rank collapse. This claim
has been supported by empirical evidence (Yang et al., 2019;
Daneshmand et al., 2020), as well as theoretical studies for
neural networks with infinite widths (Yang et al., 2019) and
linear activation (Daneshmand et al., 2021). It has been
shown that batch normalization prevents degenerate repre-
sentations at initialization (Daneshmand et al., 2020), and
orthogonalizes representations (Daneshmand et al., 2021).
However, these results are limited to linear activations. The
present study extends these findings to neural networks with
finite widths and non-linear activations, under an assump-
tion from Markov chain theory.

3. Problem settings and background
Notation and terminology. In denotes the identity matrix
of size n× n and 1n denotes the all ones vector in Rn. ⊗
refers to Kronecker product. µX refers to the probability
measure of the random variable X . We use f ≲ g, g ≳ f

1Codes available at https://github.com/ajoudaki/
mean-field-normalization.

and f = O(g) to denote the existence of an absolute con-
stant c such that f ≤ c g. ∥v∥ for a vector v denotes the
L2 norm. ∥C∥ for matrix C denotes the L2 operator norm
∥C∥ = supx∈Rn∥Cx∥/∥x∥, ∥C∥F denotes the Frobenius
norm. We use κ(C) to denote the ratio of largest to smallest
eigenvalue. Both hr· and rowr(h) denote row-vector repre-
sentation of the r-th row of h. Finally, X ∼ N (µ, σ2)n×m

denotes X ∈ Rn×m is a Gaussian matrix whose elements
are drawn i.i.d. from N (µ, σ2).

Setup. Let hℓ ∈ Rd×n denote the hidden representation
at layer ℓ, where n corresponds to the size of the mini-batch,
and d denotes the width of the network that is kept constant
across all layers. The sequence {hℓ} is a Markov chain as

hℓ+1 := Wℓσ ◦ ϕ(hℓ), Wℓ ∼ N (0, 1/d)d×d, (1)

where h0 ∈ Rd×n is the input batch, σ is the element-wise
activation function, and ϕ is the batch normalization (Ioffe
& Szegedy, 2015), which applies row-wise centering and
scaling by standard deviation:

ϕ(x) =
x− mean(x)√

Var(x)
, ∀r : rowr(ϕ(h)) = ϕ(rowr(h)).

4. Mean-field models and fixed-point analyses
4.1. Mean-field Gram Dynamics

The Gram matrix Gℓ is defined as the matrix of inner prod-
ucts of hidden representations at layer ℓ as seen in the equa-
tion below:

Gℓ :=
1

d
(σ ◦ ϕ(hℓ))(σ ◦ ϕ(hℓ))

⊤. (2)

Understanding the dynamics of Gℓ is a significant challenge
in deep learning theory, and has been the subject of several
studies (Yang et al., 2019; Pennington et al., 2018; Penning-
ton & Worah, 2017). Due to the randomness of weights,
determining the trajectory of this random process proves to
be arduous. By tending width d to infinity, i.e., the mean-
field regime, we can approximate these stochastic dynamics
with a deterministic dynamics as below:

Gℓ+1 = Eh∼N (0,Gℓ)

σ(√
nMh

∥Mh∥

)⊗2
 , (3)

Where G0 = G0 serves as the input G-matrix and
M = In − 1

n1
⊗2
n applies mean reduction on the preactiva-

tions. The mean-field approach in this context assists in
elucidating the analysis of Gram matrices.

4.2. Fixed point analysis for infinitely deep and wide
Networks

The fixed points of the mean field dynamics, as expressed
in equation 3 may help elucidate the properties of Gℓ as
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Figure 1. Mean field error amplification with(out) batch-
normalization. The horizontal axis represents the number of layers
ℓ (linear), while the vertical axis (log-scale) shows ∥Gℓ −G∗∥F ,
for networks with n = 5, d = 1000. The traces show mean and
shades indicate 90% confidence intervals over 10 independent
simulations.

ℓ → ∞. Yang et al. (2019) provide a comprehensive char-
acterization of these fixed-points, denoted by G∗, for neu-
ral networks with batch normalization. For networks with
linear activations, Yang et al. (2019) establish a global con-
vergence to these well-conditioned fixed-points. While they
empirically observe convergence to these well-conditioned
fixed-point for networks with non-linear activations, that
is not established theoretically. In other words, it is chal-
lenging to describe the properties of Gℓ for finite width and
depth, and it is unclear how the fixed-point Gram matrix G∗
can inform us about Gℓ.

4.3. An observation

Through an empirical observation we can demonstrate that
G∗ may not always provide an accurate estimate for Gℓ. We
observe that for a network without batch normalization and
linear activations (when σ ◦ ϕ = identity in equation 1),
the Frobenius distance between Gℓ and G∗ increases with
ℓ. In contrast, Gℓ converges to a neighborhood of G∗ when
the network includes batch normalization layers. These
observations suggest that the mean field estimate G∗ from
Yang et al. (2019) accurately represents Gℓ when batch
normalization is present.

4.4. The challenge of depth for mean-field theory

Mean field analysis suffers from a systematic estimation er-
ror that increases with depth. Assuming that G0 = G0, then
an error of O(d−1/2) is observed between G1 and G1 due
to the concentration of empirical covariance. Consequently,
the mean-field dynamics in equation 3 incur an error of
O(d−1/2) at each layer (Li et al., 2022). As depth ℓ grows,

these errors are amplified, and the bounds on ∥Gℓ −Gℓ∥F
become vacuous, thus raising questions about the practical
applicability of these fixed-point analyses when width is
finite.

Several studies strive to refine the mean-field model to en-
hance its predictive accuracy (de G. Matthews et al., 2018;
Hanin & Nica, 2019; Li et al., 2022). Li et al. (2022) pro-
pose using a stochastic differential equation to model the
layer-wise O(d−1/2) estimation error for mean-field Gram
dynamics. This approach allows for accurate predictions of
Gram dynamics for MLPs with activation functions but only
in the infinite-width-and-depth regime. Our observations,
however, suggest that for networks with batch normaliza-
tion, the deterministic model of Gram matrices provides a
surprisingly accurate estimate.

Daneshmand et al. (2021) established this observation for
multilayer perceptrons (MLPs) with batch normalization
(BN) and linear activations, subject to specific conditions.
They demonstrated that as ℓ increases, batch normalization
progressively aligns the Gram matrices Gℓ with the iden-
tity matrix, which coincides with G∗ for such networks
(Yang et al., 2019). Yang et al. (2019) further proved a con-
centration bound for ∥Gℓ −G∗∥F in networks with batch
normalization and linear activations. However, both these
findings are limited to linear activations. Our objective is
to extend these results to networks incorporating non-linear
activations.

5. Concentration bounds for Mean-field
Predictions with Batch Normalization

5.1. Geometric ergodic assumption

The chain of hidden representations obeys a non-linear
stochastic recurrence. Despite this non-linearity, the dis-
tribution associated with the representation obeys a linear
fixed-point iteration determined by the Markov kernel K
associated with the chain hℓ. The distribution of hℓ, denoted
by µℓ, obeys

µℓ+1 = T (µℓ), T (µ) :=

∫
K(x, y)dµ(y). (4)

The fixed-points of the above equation are invariant distribu-
tions of the chain, which we denote by µ∗. Recall that the
total variation for distributions over d× n matrices can be
defined as ∥µX−µY ∥tv := supA⊆Rd×n |µX(A)−µY (A)|.
Notably, the above recurrence is non-expansive in total vari-
ation, hence ∥µℓ − µ∗∥tv ≤ ∥µℓ−1 − µ∗∥tv holds for all ℓ.
However, we assume the chain obeys a strong property en-
suring the convergence to a unique invariant distribution.

Assumption 1 (Geometric ergodicity). We assume the chain
of hidden representations admits a unique invariant distri-
bution. Furthermore, there is constant α (α > 0) such
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that

∥µℓ − µ∗∥tv ≤ (1− α)ℓ∥µ0 − µ∗∥tv,

holds almost surely for all h0.

The geometric ergodic property is established for various
Markov chains, such as the Gibbs sampler, state-space mod-
els (Eberle, 2009), hierarchical Poisson models (Rosenthal,
1995), and Markov chain Monte Carlo samplers (Jones,
Galin L. and Hobert, James P., 2001). Doeblin (1938)
provides weak conditions that ensure geometric ergodicity.
Doeblin’s condition holds when the Markov chain can ex-
plore the entire state space (Eberle, 2009). This condition
may hold under weak assumption on the input matrix for
the chain of hidden representations. In particular, when hℓ

has full rank, the Gaussian product Wℓhℓ may explore the
entire Rd×n.

5.2. Main result

The next theorem proves fixed-point G∗ provides an esti-
mate for Gram matrices of sufficiently deep neural networks
with a finite width.

Theorem 1 (BN-MLP Concentration). Assume the Markov
chain of representations {hℓ} obeys Assumption 1 with α >
0, and has non-degenerate fixed-point G∗. If the activation
σ is uniformly bounded |σ(x)| = O(|x|), then Gram matrix
deviation ∥G∗ −Gℓ∥F is bounded by

κ(G∗)O

(
(1− α)

ℓ
2 +

n√
d
α− 1

2 ln
1
2 (

d

n
)

)
, (5)

with high probability in d and ℓ.

Theorem 1 quantifies the accuracy of our mean-field predic-
tions in terms of batch size, width, depth, and conditioning
of G∗. Notably, almost all commonly used activations, e.g.,
ReLU and hyperbolic tangent, satisfy the uniform bounded
condition |σ(x)| = O(|x|). Under Assumption 1, this the-
orem proves the fixed-point Gram matrix G∗ accurately
estimates Gℓ for a sufficiently large ℓ. According to this the-
orem, ∥Gℓ−G∗∥F decays with depth at an exponential rate.
Thus, approximately after a logarithmic number of layers
ℓ ≈ log(width/batch-size), the term O(n/

√
d) dominates

the distance.

Remarkably, this is a considerable improvement compared
to the concentration bounds for neural networks without
batch normalization that become vacuous as the depth in-
creases (Hanin & Nica, 2019; Hanin, 2022). The established
bound in the last theorem holds jointly for all ℓ in that we
do not need to apply union bound.

Let us remark that if the fixed-point Gram matrix is degener-
ate, i.e., if κ(G∗) is unbounded, the bound of the Theorem
becomes vacuous. Therefore, Theorem 1 reinforces the

necessity for a well-conditioned fixed-point for the mean-
field errors to remain within bounds. As long as the fixed-
point Gram is well-conditioned, the Gram matrices Gℓ’s
stay within an O(batch/width1/2) proximity with constant
probability.

When contrasting Theorem 1 with the activation shaping ap-
proach by Li et al. (2022), we observe that while activation
shaping necessitates solving a stochastic differential equa-
tion to track the dynamics of the Gram matrix, BN-MLP
relies solely on the mean-field prediction G∗, which can be
computed in closed-form Yang et al. (2019).

Proof Sketch of Theorem 1. We first construct an approx-
imate invariant distribution, associated with T as defined in
equation 4. For the construction of such distribution, we uti-
lize the mean-field Gram matrix to form an input ĥ ∈ Rd×n,
with rows drawn i.i.d. from rowr(ĥ) ∼ N (0, G∗). The next
lemma proves that the law of ĥ, denoted by µ̂, does not sig-
nificantly change under T.
Lemma 2. Assuming uniformly bounded activation
|σ(x)| = O(|x|), we have

∥T (µ̂)− µ̂∥tv ≲ ∥G−1
∗ ∥n

2

d
ln(d/n). (6)

The proof of the last lemma is based on the fixed-point
property of G∗ (see Appendix for the detailed proof). Using
the last lemma together with Assumption 1, we prove that µ̂
is in a tv-ball around the invariant distribution µ∗. Under
this assumption, we have

∥T (µ̂)− T (µ∗)∥tv = ∥T (µ̂)− µ∗∥tv
≤ (1− α)∥µ̂− µ∗∥tv,

(7)

where we used the invariant property of µ∗ in the above
equation. Using triangular inequality, we get

∥T (µ̂)− µ̂∥tv = ∥T (µ̂)− µ∗ + µ∗ − µ̂∥tv
≥ ∥µ∗ − µ̂∥tv − ∥T (µ̂)− µ∗∥tv
≥ α∥µ̂− µ∗∥tv.

(8)

Plugging the bound from the last lemma into the above
inequality concludes µ̂ lies within a radius n2∥G−1

∗ ∥/dα of
µ∗. This concludes the proof: Since the chain is geometric
ergodic, the distribution µℓ converges to an tv-ball around
µ̂ at an exponential rate. This allows us to characterize the
moments of µℓ using those of µ̂.

5.3. Validation of main theoretical results

Our principal finding suggests a link between the Gram ma-
trices of hidden representations with independent weights.
Assuming κ(G∗) = O(1) this is captured by the relation:

∥Gℓ −G∗∥F = O

(
(1− α)ℓ/2 +

n√
d

)
. (9)
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We test this relationship by numerically estimating G∗ by
tending d and ℓ to sufficiently large values. We then plot
the left-hand side of the above equation versus depth, width,
and batch size in the following figures. These plots illustrate
how the difference in Gram matrices changes with respect
to depth, width, and batch size. This supports our theoret-
ical results and showcases their potential implications for
practical settings.
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Figure 2. ∥Gℓ − G∗∥F vs. depth, ℓ = 1, 2, ..., 20, with a fixed
width of d = 1000 and a batch size of n = 10. The dashed line
shows the theoretical upper bound of Theorem 1.
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Figure 3. ∥Gℓ − G∗∥F vs. width, d = 50, 100, 200, 500, 1000,
with a fixed depth of ℓ = 20 and a batch size of n = 10. The
second term O(n/

√
d) is always dominant, as demonstrated in the

following log-log plot.

6. Applications
The spectral analysis of gram matrices plays a central role in
numerous theoretical and practical machine learning studies.
For instance, these matrices are used to design activations,
contributing to improved conditioning (Klambauer et al.,
2017), and to create novel initialization schemes for train-
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Figure 4. ∥Gℓ − G∗∥F vs. batch size, with a fixed width of
d = 1000 and a depth of ℓ = 20, and varying batch sizes of
n = 10, 20, 30, 40, 50. Dashed line shows upper bound given in
Theorem 1.

ing convolutional networks with 10000 layers (Xiao et al.,
2018). One line of research links the enhanced performance
of neural networks incorporating batch normalization to the
well-conditioning of Gram matrices Gℓ (Yang et al., 2019;
Daneshmand et al., 2020; 2021). Since the existing litera-
ture often uses mean-field approximations, we can leverage
Theorem 1 to evaluate accuracy of these approximations for
finite width and depth settings.

6.1. Well-conditioning with batch normalization

Empirical studies suggest that the conditioning of Gram
matrices, Gℓ, has a substantial impact on the training of deep
neural networks (Xiao et al., 2018; Pennington et al., 2018;
Li et al., 2022; Daneshmand et al., 2020). Experimental
evidence suggests that batch normalization can ensure the
good conditioning of Gℓ (Yang et al., 2019; Daneshmand
et al., 2021), thereby enhancing the training of deep neural
networks.

In a seminal study, Yang et al. (2019) study the fixed points
of the mean-field equation of an MLP with batch normaliza-
tion. In particular, they demonstrate that one fixed point G∗
follows the following form:

G∗ = b∗
(
(1− c∗)In + c∗1n×n

)
, (10)

where c∗ and b∗ are constants determined by the activation
function. Given the distinctive construction for G∗, we
can deduce the structure of its eigenvalues, with the largest
eigenvalue being λ∗

1 = (1 + (n− 1)c∗)b∗, and all others
being equal to λ∗

2 = · · · = λ∗
n = b∗(1− c∗).

While the mean field analysis discussed above holds for
infinitely wide and deep neural networks, it is possible to
utilize Theorem 1 to link the spectrum of G∗ with the spectra
of Gram matrices for networks of finite width. Using the
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Hoffman-Wielandt inequality (Hoffman & Wielandt, 2003),
we can calculate a bound on the deviation of the spectrum of
Gℓ from G∗, using the bound on their Frobenius distance.

Corollary 3 (Spectral concentration). In the same set-
tings as Theorem 1, let λi and λ∗

i denote eigenvalues
of Gℓ and G∗ respectively in a descending order. As-
suming that κ(G∗) = O(1), the deviation of their spectra√

Σn
i=1(λi − λ∗

i )
2 is bounded by

O

(
(1− α)

ℓ
2 +

n√
d
α− 1

2 ln
1
2 (

d

n
)

)
, (11)

with high probability in d and ℓ.

Substituting the spectrum of G∗ characterized by Yang et al.
(2019) into the above concentration, we can estimate the
spectra of Gram matrices Gℓ, encapsulated in the following
proposition.

Proposition 4. In the same setting as Theorem 1, assuming
G∗ complies with equation 10, then for a sufficiently deep
layer ℓ, n − O(1) eigenvalues of Gℓ are within O(

√
n/d)

range of b∗(1− c∗) with high probability in d.

The above proposition provides a characterization for the
“bulk” of eigenvalues of Gℓ, by postulating that majority of
eigenvalues of Gℓ are concentrated around some absolute
constant, up to

√
n/d range. Interestingly, this bears re-

semblance to the Marchenko-Pastur (Pastur & Martchenko,
1967) law on the eigenvalue distribution of Wishart matrices
of comparable size. We observe empirically that the singular
values of hℓ, which are square root of eigenvalues of Gℓ,
accurately follow the Marchenko-Pastur distribution with
γ = n/d, as depicted in Figure 5. Our empirical evaluations
show that this distribution accurately predicts singular val-
ues of hidden representations for commonly used activation
functions with various widths (see Appendix for empirical
evidence).

It is worth noting that only the O(1) singular values are
influenced by the activation function, while the remaining
n−O(1) exhibit a universal behavior. For example in the
case of σ = relu, a single large eigenvalue is associated
with the 1n direction, owing to the non-negativity of relu
outputs.

6.2. Influence of Gram matrix conditioning on training

Having explored the influence of batch normalization on
the spectra of the Gram matrices, we now turn our atten-
tion to its effects during training. It has been hypothesized
that batch normalization facilitates the training of neural
networks at the initialization stage by ensuring the deep
representations are biased towards a uniform prior on class
probabilities (Daneshmand et al., 2021). In contrast, it has
been reported poor Gram matrix conditioning in standard
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Figure 5. BN-MLP with n = 20, d = 1000, ℓ = 20: histogram
shows the empirical distribution of singular values of hℓ, for
σ = relu and σ = tanh . The black curve marks the Marchenko-
Pastur distribution with γ = n/d = 0.02. The singular values are
normalized by their medians in this plot to be aligned at 1.0

MLP leads to the gradual alignment of deep hidden lay-
ers, thereby resulting in highly similar logits across differ-
ent samples in the batch (Daneshmand et al., 2020; 2021).
Batch normalization effectively resolves this issue, ensuring
a more efficient learning process for the network. While
our theoretical studies are limited to initialization, we can
empirically explore conditioning of Gram matrix during
training.

We examined a standard MLP setup consisting of 10 layers
(L = 10) and a width of 1000 (d = 1000). We trained
this network on mini-batches of size 128 (n = 128) using
the CIFAR100 dataset for 50 epochs, using SGD with a
learning rate of 0.001. This process was carried out on MLP
configurations both with and without batch normalization.

We present the distributions of log-eigenvalues for the penul-
timate Gram matrix, represented by log(λi(GL)), during
training in Figure 6. It is noteworthy that the eigenvalues of
the penultimate Gram matrix for the MLP with batch nor-
malization are more concentrated around their mean than
their counterparts in the MLP without batch normalization.
This suggests a collapse in class representations in the ab-
sence of normalization.

To further investigate class representations, we calculated
the frequency of each class in the predictions at different
training stages. We quantified the entropy of the predicted
class probabilities, computed as

∑C
i=1 pi log2(pi). In this

equation, pc := 1
N#{i ≤ N : ỹi = c} designates the pro-

portions of predictions for class c, and ỹi represents the
prediction for sample i. Observe that a uniform distribu-
tion p1 = · · · = pC = 1/C, leads to the highest entropy
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O(log2(C)).

As illustrated in Figure 7, the MLP with batch normalization
closely approximates this uniform prior at initialization. In
contrast, the MLP without normalization exhibits a signifi-
cantly lower initial class entropy. For a balanced dataset like
CIFAR100, an optimal model should have a class entropy
of approximately log2(100) ≈ 6.64, reflecting a uniform
distribution over classes. Hence, batch normalization biases
the initial predictions towards a uniform distribution on the
labels. The observed discrepancy in Figure 7 may thus be
related to the accelerated convergence of training loss as
depicted in Figure 8.

The empirical evidence presented here suggests that while
Theorem 1 was proven for initialization, Gram matrices
of MLP with batch normalization remain well-conditioned
during the entire training process.
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Figure 6. Distribution of log-eigenvalues of penultimate Gram ma-
trix, log(λi(GL)) at initialization (epoch 0) and at the end of
training (epoch 49).
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Figure 7. Predicted class entropy of MLP with (orange) and with-
out (blue) batch normalization.

7. Limitations and Future Directions
In this paper, we presented a theoretical framework that
bridges the gap between the mean-field theory of neural
networks with finite and infinite widths, with a focus on
batch normalization at initialization. Many questions that
were out of the scope for this study, suggesting directions
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Figure 8. Training loss of MLP with (orange) and without (blue)
batch normalization on the CIFAR100 dataset.

for new lines of inquiry.

Rapidly mixing assumption. One limitation of our work
is the rapidly mixing assumption that was used to establish
the concentration of our results. While our experiments
validated our results based on this assumption, it would be
beneficial to prove that this assumption holds for a wide
range of neural networks with batch normalization.

Training and optimization. While our focus of the cur-
rent work was on random neural networks. In an elegant
observation, Feng et al. (2022) demonstrate that the rank
of input-output Jacobian of neural networks without nor-
malization at initialization diminishes at an exponential rate
with depth (Theorem 5), which implies changes in the input
does not change the direction of outputs. In a remarkable
observation, Yang et al. (2019) show the exact opposite for
BN-MLP using a mean-field analysis (Theorem 3.10): any
slight changes in the input lead to unbounded changes in
the output. These results naturally raise the following ques-
tion: Can we arrive at non-trivial results about input-output
Jacobian at the infinite depth finite width regime?

The mean-field approach is also used to analyze the train-
ing mechanism. In particular, Chizat & Bach (2018) prove
that gradient descent globally converges when optimizing
single-layer neural networks in the limit of an infinite num-
ber of neurons. Although the global convergence does not
hold for standard neural networks, insights from this mean-
field analysis can be leveraged in understanding the training
mechanism. For example, Daneshmand & Bach (2022)
proves the global convergence of gradient descent holds
for specific neural networks with a finite width, and two
dimensional inputs in a realizable setting.

Exploring other normalizations. More research is
needed for other normalization techniques, such as weight

7
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normalization (Salimans & Kingma, 2016) or layer nor-
malization (Ba et al., 2016) to understand the impact of
these normalization techniques on the robustness and gen-
eralization of neural networks. Our findings highlight the
power of mean-field theory for analyzing neual networks
with normalization layers.

Extending to other architectures Our analyses are lim-
ited to MLPs. Extending our work to convolutional neural
networks and transformers would enable us to analyze and
enhance initialization for these neural networks. In particu-
lar, recent studies have shown that transformers suffer from
the rank collapse issue when they grow in depth (Noci et al.,
2022). A non-asymptotic mean-field theory may enable us
to tackle this issue by providing a sound understanding of
representation dynamics in transformers.

Overall, our results demonstrate that depth is not necessarily
a curse for mean-field theory, but can even be a blessing
when neural networks have batch normalization. The in-
ductive bias provided by batch normalization controls the
error propagation of mean-field approximations, enabling
us to establish non-asymptotic concentration bounds for
mean-field predictions. This result underlines the power of
mean-field analyses in understanding the behavior of deep
neural networks, thereby motivating the principle develop-
ment of new initialization and optimization techniques for
neural networks based on mean-field predictions.
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A. Proof of main theorems
A.1. A concentration bound for the empirical

covariance matrix

The following analysis pertains to the deviation between the
sample covariance matrix, normalized by the true covari-
ance, and the identity matrix. For a collection of d indepen-
dent identically distributed i.i.d. samples in Rd, represented
as x1, x2, ..., xd ∈ Rn, the sample covariance matrix Cd is
given by:

Cd =
1

d

d∑
i=1

xix
T
i . (12)

The true covariance matrix C is defined as the expected
outer product of the samples, or:

C = E[xix
T
i ]. (13)

We are interested in bounding the deviation of Cd from
the covariance matrix C in terms of their Frobenius
norm (denoted as ∥.∥F ), as outlined in the lemma be-
low. Note that if activation σ is uniformly bounded
σ(x)2 ≤ Bx2, and ϕ is the batch-norm operator, then
∥σ(ϕ(x))2∥ ≤ B∥ϕ(x)∥2 ≤ Bn. Thus, activations applied
after normalization layers obey the condition of Lemma 5.
With this point in mind, we will prove the concentration
result for vectors that are uniformly bounded by the same
quantity.

Lemma 5. Let x1, . . . , xd ∈ Rn be i.i.d. random vectors
with covariance Exix

⊤
i = C and sample covariance Cd :=

1
d

∑d
i=1 xix

⊤
i . If the vector norms are universally bounded

such that ∥xi∥2 ≤ nB holds almost surely, then for t ≲
√
d,

the following is true:

P
(
∥Cd − C∥F ≳ tε

)
≤ exp(−t2), ε :=

Bn√
d
. (14)

Here, the probability is taken over the random vectors
x1, . . . , xd.

We will use the last lemma to prove Theorem 1.

Lemma 6. Under the same conditions as Lemma 5, if the
covariance matrix C is not degenerate, i.e., it does not
possess zero eigenvalues, for t ≲

√
d it holds

P
(
∥C−1Cd − In∥F ≳ tε

)
≤ exp(−t2), ε :=

B∥C−1∥n√
d

.

(15)

Proof of Lemma 5. Recall that Bernstein’s inequality pro-
vides an upper bound on the probability that the sum exceeds

a certain threshold t. Given i.i.d. variables X1, . . . , Xd, it
states that are uniformly bounded |Xi| ≤ B for all i, we
have

P

1

d

d∑
i=1

Xi ≥ t

 ≤ 2 exp

(
− dt2/2

K2 +Kt/3

)
, (16)

where t > 0 and σ2 is the variance of
∑d

i=1 E[X2
i ] ≤ dB2.

Define Xi := ∥xix
⊤
i − C∥2F . We have

∥xix
⊤
i − C∥2F ≤ ∥xixi∥F + ∥C∥F (17)

≤ Bn+ ∥Exix
⊤
i ∥F (18)

≤ Bn+ E∥xixi∥F (19)
≤ 2Bn. (20)

Thus, we can plug K := 2Bn into the Bernstein’s inequality
to get

P

1

d

d∑
i=1

∥xix
⊤
i − C∥F ≥ t

 ≤ (21)

exp

(
− dt2/2

4n2B2 + 2Bnt/3

)
. (22)

Since ∥ · ∥F is convex, Jensen’s inequality which implies
that moving the averaging inside can only decrease its value,
which in turn implies

P

∥1
d

d∑
i=1

xix
⊤
i − C∥F ≥ t

 (23)

≤ exp

(
− dt2

8n2B2(1 + t
6nB )

)
. (24)

We can now rename t
√
d/(

√
8Bn) as t and use definition

of sample covariance to conclude

P

(
∥Cd − C∥F ≥ t

√
8Bn√
d

)
≤ exp

− t2

(1 + t
3
√
2d
)

 ,

(25)

which can be restated as

P
(
∥Cd − C∥F ≳ tε

)
≤ exp(−t2), ε :=

Bn√
d
, (26)

which holds if t ≲
√
d.

Proof of Lemma 6. Consider transformed vectors zi :=
C−1/2xi. Note that we have Eziz⊤i = C−1C = In.
Thus, we can apply Lemma 5 on deviations of sample co-
variance of zi’s from In. Furthermore, we have ∥zi∥2 ≤
∥C−1∥∥xi∥2 ≤ ∥C−1∥Bn. So we can invoke Lemma 5 by
setting B to ∥C−1∥B.
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A.2. Analyzing Gram Dynamics Around Fixed Points

Equipped with the results established so far, we now turn
our attention to the dynamics of Gram matrices in relation
to the total variation of the Multi-Layer Perceptron (MLP)
Markov chain. In particular, we demonstrate a specific
construction based on fixed-point G∗, and show that after
one layer update the total variation distance is bounded.
Lemma 7 (Restated Lemma 2). Let ĥ ∈ Rd×n be con-
structed by drawing its rows i.i.d. from N (0, G∗). Let µ̂
denote the distribution of ĥ. Given that fixed-point Gram
matrix G∗ is non-degenerate and the activation is uniformly
bounded σ(x)2 ≤ Bx2, then

∥µ̂− T (µ̂)∥tv ≲ ε2 ln(1/ε), ε :=
n∥G−1

∗ ∥B√
d

, (27)

holds if B and ∥G−1
∗ ∥ are non-zero.

Under the assumption of geometric contraction, irrespective
of the initial distribution, the total variation distance to the
stationary distribution contracts by 1− α, for some α > 0,
after one transition T . This result, together with Lemma 2,
provides a tool to approximate the stationary distribution by
a matrix constructed from the fixed-point Gram matrix G∗.
Lemma 8. Let µ̂ denote the distribution of a random ma-
trix in Rd×n, whose rows are drawn i.i.d. from N (0, G∗).
Assuming the rapid mixing condition 1 holds with constant
α > 0, then

∥µ̂− µ∗∥tv ≲ α−1ε2 ln(1/ε), ε :=
nB∥G−1

∗ ∥√
d

. (28)

We can finally the results about total variation into the con-
text of Gram matrix dynamics through depth.
Lemma 9. Let µℓ denote the hidden representation of a
BN-MLP, and µ̂ denote the distribution of a matrix whose
rows are drawn from N (0, G∗). If hidden representations
obey the rapidly mixing assumption with rate 1 − α, for
α > 0, then

∥µℓ − µ̂∥tv ≲ (1− α)ℓ + α−1ε2 ln(1/ε), ε :=
nB∥G−1

∗ ∥√
d

.

(29)

With the necessary lemmas in place, we are now ready to
present our main theorem.
Theorem 10 (Restated Theorem 1). For an MLP chain
Gℓ that originates from a non-degenerate input G0, and
that has a non-degenerate fixed point G, and that obeys
the rapidly mixing assumption with α > 0, we have the
following:

P(∥G∗ −G∥F ≥ t) ≲

t−2(∥G∗∥2(1− α)ℓ + α−1ε2 ln(1/ε)), (30)

with ε := nBκ(G∗)/
√
d.

The proof of the theorem relies on the following lemma
bounds Gram matrix deviations by total variation.

Lemma 11. Conditioned on Gram matrices G∗, G ∈
Rn×n, construct h, ĥ ∈ Rd×n by drawing their rows i.i.d.
from N (0, G) and N (0, G∗). If G∗ is non-degenerate, the
following hols for total variation between h and ĥ:

tv(h, ĥ) ≥ t

100
P(∥G−1

∗ G− In∥2F ≥ t), (31)

where the probability is defined over G.

The proof of this theorem follows directly from the lemmas
we have established.

Proof of Theorem 10. We apply the total variation bound
established in Lemma 9 and combine this with the lower
bound stated in Lemma 11

t

100
P(∥G−1

∗ G− In∥2F ≥ t) (32)

≤ tv(hℓ, ĥ) ≲ (1− α)ℓ + α−1ε2 ln(1/ε). (33)

Omitting constants we have

P(∥G−1
∗ G− In∥F ≥

√
t) (34)

≲ t−1((1− α)ℓ + α−1ε2 ln(1/ε)). (35)

By a change of variables we get

P
(
∥G−1

∗ G− In∥F ≥ t
)

(36)

≲ t−2((1− α)ℓ + α−1ε2 ln(1/ε)). (37)

Note that ∥G∗ − G∥F = ∥G∗(G−1
∗ G − In)∥F , which is

bounded by ∥G∗∥∥G−1
∗ G− In∥F . Thus

P
(
∥G∗ −G∥F ≥ t

)
(38)

≤ P
(
∥G−1

∗ G− In∥F ≥ t/∥G∗∥
)

(39)

≤ t−2∥G∗∥2((1− α)ℓ + α−1ε2 ln(1/ε)), (40)

where the last equation is due to equation 33. The above
inequality obtains

ε :=
Bn√
d
∥G∗∥∥G−1

∗ ∥ (41)

P(∥G∗ −G∥F ≥ t) ≲ (42)

t−2
(
∥G∗∥2(1− α)ℓ + α−1ε2 ln(1/ε))

)
.

(43)

Recall that ∥G∗∥∥G−1
∗ ∥ encodes the ratio of largest to small-

est eigenvalue of G∗, which is its condition number κ(G∗).
This finalizes the proof.
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Proof of Lemma 9. First, note that geometric contraction
assumption implies

∥µℓ − µ∗∥tv ≤ (1− α)∥µℓ−1 − µ∗∥tv ≤ (1− α)ℓ, (44)

which by numerical inequality 1 − x ≤ exp(−x) can be
bounded by exp(−αℓ). We can invoke Lemma 8 and trian-
gle inequality for total variation to conclude the proof.

Proof of Lemma 8. Recall that the rapidly mixing assump-
tion implies that ∥T (µ̂)− µ∗∥tv ≤ (1− α)∥µ̂− µ∗∥tv.
Furthermore, invoking Lemma 7, we have

∥T (µ̂)− µ̂∥tv ≲ ε2 ln(1/ε), (45)

=⇒ ∥µ̂− µ∗∥tv ≲ α−1ε2 ln(1/ε), (46)

where the last line is implied by the triangle inequality for
total variation.

Proof of Lemma 7. Let us explicitly construct T (µ̂). Recall
that µ̂ describes distribution of ĥ whose rows are drawn
i.i.d. from N (0, G∗). Define h := Wσ(ϕ(ĥ)), where W
is a Gaussian with i.i.d. elements N (0, 1/d). Thus, by
construction, distribution of h follows T (µ̂). Our main proof
strategy of upper bounding total variation between ĥ and h
is to bound it conditioned on the proximity of G to G∗.

Bounding deviations ∥G−1
∗ G− I∥F . Recall that based on

the fixed-point property of G∗ we have

Ew∼N(0,G∗)σ(ϕ(w))
⊗2 = G∗. (47)

Define sampled Gram of activations G :=
1
dσ(ϕ(ĥ))

⊤σ(ϕ(ĥ)), which is equal in expectation to
EG = G∗. By construction of batch norm operator which
maps every row to

√
n-sphere, and the uniform bound

σ(x)2 ≤ Bx2, we can conclude that rows of σ(ϕ(ĥ)) are
always bounded by

∥ϕ(x)∥ ≤ √
n ∀x ∈ Rn (48)

=⇒ ∥σ(ϕ(x))∥ ≤
√
Bn, ∀x ∈ Rn (49)

=⇒ ∥rowk(σ(ϕ(ĥ)))∥2 ≤ Bn, ∀k. (50)

This allows us to invoke Lemma 6 to conclude:

P(∥G−1
∗ G− In∥F ≥ tε) ≤ exp(−t2), (51)

where ε = B∥G−1
∗ ∥n/

√
d.

Bounding total variation tv(h, ĥ). Define set of matrices
Nt := {M ∈ Rn×n : ∥G∗

−1M − In∥2F ≤ ε2t2}. Observe
that conditioned on G, h is equal in distribution to a matrix
rows are drawn i.i.d. from N (0, G). Thus, we can decom-
pose the total variation based on depending on G belonging

to neighborhood of G∗ or not

tv(h, ĥ) ≤ P
{
∥G∗

−1G− In∥2F ≥ t2ε2
}

(52)
+ sup

G∈Nt

tv(N (0, G),N (0, G∗)) (53)

≲ P
{
∥G∗

−1G− In∥F ≥ tε
}
+

3

2
t2ε2, (54)

where in the last line we use the upper bound on total varia-
tion between two Gaussian matrices from (Devroye et al.,
2018). Plugging our result for deviation of G and G∗ we
have

tv(h, ĥ) ≤ 3

2
t2ε2 + exp(−t2), (55)

which holds for all t ≲
√
d. In particular, we can set t2 :=

ln(2/3ε2) which implies

tv(h, ĥ) ≲
3ε2

2
(1 + ln(2/2ε2)), (56)

which omitting constants can be restated as

tv(h, ĥ) ≲ ε2 ln(1/ε2). (57)

To finish the proof, observe that condition t ≲
√
d

translates to ln(1/ε2) = O(d) which in turn requires
ε ≳ exp(−d/2). Plugging the definition of ε we have
nB∥G−1

∗ ∥ ≳
√
d exp(−d/2). Since the right-hand side

is o(1), and n ≥ 1, this condition will always hold if the
boundedness and conditioning are non-zero B, ∥G−1

∗ ∥ >
0.

Proof of Lemma 11. Define set of matrices Nt := {M ∈
Rn×n : ∥G∗

−1M − In∥2F ≤ t}. We have

tv(h, ĥ) =

∫
G

P(G)tv(N (0, G),N (0, G∗)) (58)

=

∫
G∈Nt

P(G)tv(N (0, G),N (0, G∗)) (59)

+

∫
G/∈Nt

P(G)tv(N (0, G),N (0, G∗))

(60)

≥
∫
G/∈Nt

P(G)tv(N (0, G),N (0, G∗)) (61)

≥ P(G /∈ Nt) inf
G/∈Nt

tv(N (0, G),N (0, G∗))

(62)

≥ t

100
P
(
∥G−1

∗ G− In∥2F ≥ t
)
, (63)

where in the last line we have used the lower bound for total
variation of multivariate Gaussians from (Devroye et al.,
2018).
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B. Empirical Spectral Distribution for various
activations

We repeat the experiment (n = 20, ℓ = 10) in Fig-
ure 5 for various activations and various widths d =
100, 200, 500, 1000, and observe similar results. The results
validate tighter concentration bounds with d established in
the main Theorem.
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