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Abstract
When two different parties use the same learning
rule on their own data, how can we test whether
the distributions of the two outcomes are simi-
lar? In this paper, we study the similarity of out-
comes of learning rules through the lens of the
Total Variation (TV) distance of distributions. We
say that a learning rule is TV indistinguishable
if the expected TV distance between the poste-
rior distributions of its outputs, executed on two
training data sets drawn independently from the
same distribution, is small. We first investigate
the learnability of hypothesis classes using TV
indistinguishable learners. Our main results are
information-theoretic equivalences between TV
indistinguishability and existing algorithmic sta-
bility notions such as replicability and approxi-
mate differential privacy. Then, we provide sta-
tistical amplification and boosting algorithms for
TV indistinguishable learners.

1. Introduction
Lack of replicability in experiments has been a major issue,
usually referred to as the reproducibility crisis, in many
scientific areas such as biology and chemistry. Indeed, the
results of a survey that appeared in Nature (Baker, 2016) are
very worrisome: more than 70% of the researchers that par-
ticipated in it could not replicate other researchers’ experi-
mental findings while over half of them were not able to even
replicate their own conclusions. In the past few years the
number of scientific publications in the Machine Learning
(ML) community has increased exponentially. Significant
concerns and questions regarding replicability have also re-
cently been raised in the area of ML. This can be witnessed
by the establishment of various reproducibility challenges
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in major ML conferences such as the ICLR 2019 Repro-
ducibility Challenge (Pineau et al., 2019) and the NeurIPS
2019 Reproducibility Program (Pineau et al., 2021).

Reproducibility of outcomes in scientific research is a neces-
sary condition to ensure that the conclusions of the studies
reflect inherent properties of the underlying population and
are not an artifact of the methods that scientists used or
the random sample of the population that the study was
conducted on. In its simplest form, it requires that if two
different groups of researchers carry out an experiment us-
ing the same methodologies but different samples of the
same population, it better be the case that the two outcomes
of their studies are statistically indistinguishable. In this
paper, we investigate this notion in the context of ML (cf.
Definition 1.1), and characterize for which learning prob-
lems statistically indistinguishable learning algorithms exist.
Furthermore, we show how statistical indistinguishability,
as a property of learning algorithms, is naturally related to
various notions of algorithmic stability such as replicability
of experiments, and differential privacy.

While we mainly focus on the fundamental ML task of
binary classification to make the presentation easier to fol-
low, many of our results extend to other statistical tasks (cf.
Appendix A.2). More formally, the objects of interest are
randomized learning rules A : (X × {0, 1})n → {0, 1}X .
These learning rules take as input a sequence S of n pairs
from X × {0, 1}, i.e., points from a domain X along with
their labels, and map them to a binary classifier in a ran-
domized manner. We assume that this sequence S is gen-
erated i.i.d. from a distribution D on X × {0, 1}. We
denote by {0, 1}X the space of binary classifiers and by
A(S) the random variable that corresponds to the output
of A on input S1. We also adopt a more algorithmic view-
point for A where we denote it as a deterministic mapping
(X ×{0, 1})n×R → {0, 1}X , which takes as input a train-
ing set S of size n made of instance-label pairs and a random
string r ∼ R (we useR for both the probability space and
the distribution) corresponding to the algorithm’s internal
randomness, and outputs a hypothesis A(S, r) ∈ {0, 1}X .
Thus, A(S) corresponds to a random variable while A(S, r)
is a deterministic object. To make the distinction clear,

1We identify with A(S) the posterior distribution of A on
input S when there is no confusion.
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we refer to A(S) as (the image of) a learning rule and to
A(S, r) as (the image of) a learning algorithm.

Indistinguishability. We measure how much two distribu-
tions over hypotheses differ using some notion of statistical
dissimilarity d, which can belong to a quite general class;
we could let it be either an Integral Probability Metric (IPM)
(e.g., TV or Wasserstein distance, see Definition A.2) or an
f -divergence (e.g., KL or Rényi divergence). For further de-
tails, see (Sriperumbudur et al., 2009). We are now ready to
introduce the following general definition of indistinguisha-
bility of learning rules.

Definition 1.1 (Indistinguishability). Let d be a statistical
dissimilarity measure. A learning rule A is n-sample ρ-
indistinguishable with respect to d if for any distribution D
over inputs and two independent sets S, S′ ∼ Dn it holds
that

E
S,S′∼Dn

[d (A(S), A(S′))] ≤ ρ .

In words, Definition 1.1 states that the expected dissimilarity
of the outputs of the learning rule when executed on two
training sets that are drawn independently from D is small.
We view Definition 1.1 as a general information-theoretic
way to study indistinguishability as a property of learning
rules. In particular, it captures the property that the distribu-
tion of outcomes of a learning rule being indistinguishable
under the resampling of its inputs. Definition 1.1 provides
the flexibility to define the dissimilarity measure according
to the needs of the application domain. For instance, it
captures as a special case the global stability property (Bun
et al., 2020) (see Appendix A.2).

Replicability. Since the issue of replicability is om-
nipresent in scientific disciplines it is important to design a
formal framework through which we can argue about the
replicability of experiments. Recently, various works pro-
posed algorithmic definitions of replicability in the context
of learning from samples (Impagliazzo et al., 2022; Bun
et al., 2023), optimization (Ahn et al., 2022), bandits (Es-
fandiari et al., 2022) and clustering (Esfandiari et al., 2023),
and designed algorithms that are provably replicable under
these definitions. A notion that is closely related to Def-
inition 1.1 was introduced by (Impagliazzo et al., 2022):
reproducibility or replicability2 of learning algorithms is
defined as follows:

Definition 1.2 (Replicability (Impagliazzo et al., 2022)).
Let R be a distribution over random strings. A learning
algorithm A is n-sample ρ-replicable if for any distribution
D over inputs and two independent sets S, S′ ∼ Dn it holds

2This property was originally defined as “reproducibility” in
(Impagliazzo et al., 2022), but later it was pointed out that the
correct term for this definition is “replicability” (see also (Bun
et al., 2023)). We use the term replicability throughout our work.

that
Pr

S,S′∼Dn,r∼R
[A(S, r) ̸= A(S′, r)] ≤ ρ .

The existence of a shared random seed r in the definition of
replicability is one of the main distinctions between Defini-
tion 1.1 and 1.2. This shared random string can be seen as
a way to achieve a coupling (see Definition A.1) between
two executions of the algorithm A. An interesting aspect of
this definition is that replicability is verifiable; replicability
under Definition 1.2 can be tested using polynomially many
samples, random seeds r and queries to A. We remark that
the work of (Ghazi et al., 2021b) introduced the closely re-
lated notion of pseudo-global stability (see Definition 1.7);
the definitions of replicability and pseudo-global stability
are equivalent up to polynomial factors in the parameters.

Differential Privacy. The notions of algorithmic indis-
tinguishability and replicability that we have discussed
so far have close connections with the classical defini-
tion of approximate differential privacy (Dwork & Roth,
2014). For a, b, ε, δ ∈ [0, 1], let a ≈ε,δ b denote the state-
ment a ≤ eεb + δ and b ≤ eεa + δ. We say that two
probability distributions P,Q are (ε, δ)-indistinguishable if
P (E) ≈ε,δ Q(E) for any measurable event E.

Definition 1.3 (Approximate Differential Privacy (Dwork
et al., 2006)). A learning rule A is an n-sample (ε, δ)-
differentially private if for any pair of samples S, S′ ∈
(X × {0, 1})n that disagree on a single example, the in-
duced posterior distributions A(S) and A(S′) are (ε, δ)-
indistinguishable.

We remind the reader that, in the context of PAC learning,
any hypothesis classH can be PAC-learned by an approxi-
mate differentially-private algorithm if and only if it has a
finite Littlestone dimension Ldim(H) (see Definition A.3),
i.e., there is a qualitative equivalence between online learn-
ability and private PAC learnability (Alon et al., 2019; Bun
et al., 2020; Ghazi et al., 2021a; Alon et al., 2022).

Broader Perspective. Our work lies in the fundamen-
tal research direction of responsible ML. Basic concepts
in this area, such as DP, replicability, and different forms
of fairness, are formalized using various forms of stabil-
ity. Therefore, it is natural and important to formally study
the interrelations between different types of algorithmic
stability. Our main purpose is to study statistical indistin-
guishability and replicability as properties of algorithms
and, under the perspective of stability, investigate rigorous
connections with DP.

1.1. TV Indistinguishable Learning Rules

As we discussed, our Definition 1.1 captures the property
of a learning rule having indistinguishable outcomes under
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the resampling of its inputs from the same distribution. In
what follows, we instantiate Definition 1.1 with d being the
total variation (TV) distance, probably the most well-studied
notion of statistical distance in theoretical computer science.
Total variation distance between two distributions P and Q
over the probability space (Ω,ΣΩ) can be expressed as

dTV(P,Q) = sup
A∈ΣΩ

P (A)−Q(A)

= inf
(X,Y )∼Π(P,Q)

Pr[X ̸= Y ] ,
(1)

where the infimum is over all couplings between P and Q
so that the associated marginals are P and Q respectively.
A coupling between the distributions P and Q is a set of
variables (X,Y ) on some common probability space with
the given marginals, i.e., X ∼ P and Y ∼ Q. We think of
a coupling as a construction of random variables X,Y with
prescribed laws.

Setting d = dTV in Definition 1.1, we get the following
natural definition. For simplicity, we use the term TV indis-
tinguishability to capture indistinguishability with respect
to the TV distance.

Definition 1.4 (Total Variation Indistinguishability). A
learning rule A is n-sample ρ-TV indistinguishable if for
any distribution over inputs D and two independent sets
S, S′ ∼ Dn it holds that

E
S,S′∼Dn

[dTV(A(S), A(S′))] ≤ ρ .

For some equivalent definitions, we refer to Appendix A.3.
Moreover, for some extensive discussion about the motiva-
tion of this definition, see Appendix A.5. We emphasize that
the notion of TV distance has very strong connections with
statistical indistinguishability of distributions. If two distri-
butions P and Q are close in TV distance, then, intuitively,
no statistical test can distinguish whether an observation
was drawn from P or Q. In particular, if dTV(P,Q) = ρ,
then ρ/2 is the maximum advantage an analyst can achieve
in determining whether a random sample X came from P
or from Q (where P or Q is used with probability 1/2 each).
In what follows, we focus on this notion of dissimilarity.

As a warmup, we start by proving a generalization result
for TV indistinguishable learners. Recall that if we fix some
binary classifier we can show, using standard concentration
bounds, that its performance on a sample is close to its per-
formance on the underlying population. However, when we
train an ML algorithm using a dataset S to output a classi-
fier h we cannot just use the fact that it has small loss on
S to claim that its loss on the population is small because
h depends on S. The following result shows that we can
get such generalization bounds if A is a ρ-TV indistinguish-
able algorithm. We remark that a similar result regarding
replicable algorithms appears in (Impagliazzo et al., 2022).

The formal proof, stated in a slightly more general way, is
in Appendix F.

Proposition 1.5 (TV Indistinguishability Implies General-
ization). Let δ, ρ ∈ (0, 1)2. Let D be a distribution over
inputs and S = {(xi, yi)}i∈[n] be a sample of size n drawn
i.i.d. from D. Let h : X → {0, 1} be the output of an n-
sample ρ-TV indistinguishable learning rule A with input
S. Then, with probability at least 1 − δ − 4

√
ρ over S, it

holds that,∣∣∣∣ E
h∼A(S)

[L(h)]− E
h∼A(S)

[
L̂(h)

]∣∣∣∣ ≤
√

log(2/δ)

2n
+
√
ρ ,

where L(h) ≜ Pr(x,y)∼D[h(x) ̸= y] and L̂(h) ≜
1
n

∑
(x,y)∈S 1{h(x) ̸= y}.

1.2. Summary Of Contributions

In this work, we investigate the connections between TV
indistinguishability, replicability and differential privacy.

• In Section 2, we show that TV indistinguishability and
replicability are equivalent. This equivalence holds for
countable domains3 and extends to general statistical
tasks (cf. Appendix C.2).

• In Section 3, we show that TV indistinguishability and
(ε, δ)-DP are statistically equivalent. This equivalence
holds for countable4 domains in the context of PAC
learning. As an intermediate result, we also show that
replicability and (ε, δ)-DP are statistically equivalent
in the context of PAC learning, and this holds for gen-
eral domains.

• In Section 4, we provide statistical amplification and
boosting algorithms for TV indistinguishable learn-
ers for countable domains. En route, we improve the
sample complexity of some routines provided in (Im-
pagliazzo et al., 2022).

1.3. Related Work

Our work falls in the research agenda of replicable algo-
rithm design, which was initiated by (Impagliazzo et al.,
2022). In particular, (Impagliazzo et al., 2022) introduced
the notion of replicable learning algorithms, established that
any statistical query algorithm can be made replicable, and
designed replicable algorithms for various applications such
as halfspace learning. Next, (Ahn et al., 2022) studied re-
producibility in optimization and (Esfandiari et al., 2022)
provided replicable bandit algorithms.

3We remark that the direction replicability implies TV indistin-
guishability holds for general domains.

4We remark that the direction (ε, δ)-DP implies TV indistin-
guishability holds for general domains.

3



Statistical Indistinguishability of Learning Algorithms

The most closely related prior work to ours is the recent pa-
per by (Bun et al., 2023). In particular, as we discuss below
in greater detail, an alternative proof of the equivalence be-
tween TV indistinguishability, replicability, and differential
privacy follows from (Bun et al., 2023). In contrast with our
equivalence, the transformations by (Bun et al., 2023) are
restricted to finite classes. On the other hand, (Bun et al.,
2023) give a constructive proof whereas our proof is purely
information-theoretic. In more detail, (Bun et al., 2023)
establish a variety of equivalences between different notions
of stability such as differential privacy, replicability, and
one-way perfect generalization, and the latter contains TV
indistinguishability as a special case:
Definition 1.6 ((One-Way) Perfect Generalization (Cum-
mings et al., 2016; Bassily & Freund, 2016)). A learning
rule A : Xn → Y is (β, ε, δ)-perfectly generalizing if, for
every distribution D over X , there exists a distribution PD
such that, with probability at least 1−β over S consisting of
n i.i.d. samples from D, and every set of outcomes O ⊆ Y

e−ε

(
Pr
PD

[O]− δ

)
≤ Pr[A(S) ∈ O] ≤ eε Pr

PD
[O] + δ .

Moreover, A is (β, ε, δ)-one-way perfectly generalizing if
Pr[A(S) ∈ O] ≤ eε PrPD [O] + δ.

Note indeed that plugging ε = 0 to the definition of perfect
generalization specializes the above definition to an equiv-
alent variant of TV indistinguishability (see also Defini-
tion A.9). (Bun et al., 2023) derives an equivalence between
replicability and one-way perfect generalization with ε > 0.
However, in a personal communication they pointed out to
us that their argument also applies to the case ε = 0, and
hence to TV indistinguishability. In more detail, an interme-
diate step of their proof shows that any (β, ε, δ)-perfectly
generalizing algorithm A is also (β, 0, 2ε+δ)-perfectly gen-
eralizing, which is qualitatively equivalent with our main
definition (see Definition 1.4). As noted earlier our proof
applies more generally to infinite countable domains but is
non-constructive.

Differential Privacy. Differential privacy (Dwork, 2008;
Dwork et al., 2010; Vadhan, 2017; Dwork & Roth, 2014)
is quite closely related to replicability. The first connec-
tion between replicability and DP in the context of PAC
learning was, implicitly, established by (Ghazi et al., 2021b)
(for finite domains X ), via the technique of correlated sam-
pling (see Appendix A.4) and the notion of pseudo-global
stability (which is equivalent to replicability as noticed by
(Impagliazzo et al., 2022)):
Definition 1.7 (Pseudo-Global Stability (Ghazi et al.,
2021b)). Let R be a distribution over random strings. A
learning algorithm A is said to be n-sample (η, ν)-pseudo-
globally stable if for any distribution D there exists a hy-
pothesis hr for every r ∈ supp(R) (depending on D) such

that
Pr
r∼R

[
Pr

S∼Dn
[A(S, r) = hr] ≥ η

]
≥ ν .

The high-level connection between these notions appears to
boil down to the notion of stability (Bousquet & Elisseeff,
2002; Poggio et al., 2004; Dwork et al., 2015; Abernethy
et al., 2017; Bassily et al., 2016; Livni & Moran, 2020)
(see (Alon et al., 2022) for further details between stability,
online learnability and differential privacy). In particular,
(Ghazi et al., 2021a) showed that a class of finite Littlestone
dimension admits a list-globally stable learner (see Theorem
18 in (Ghazi et al., 2021b)). The work of (Ghazi et al.,
2021b) (among other things) showed (i) how to perform a
reduction from list-global stability to pseudo-global stability
via correlated sampling in finite domains (see Theorem 20
in (Ghazi et al., 2021b)) and (ii) how to perform a reduction
from pseudo-global stability to approximate DP via DP
selection (see Theorem 25 in (Ghazi et al., 2021b)). We
highlight that this equivalence between differential privacy
and replicability for finite domains was made formal by
(Bun et al., 2023) and was extended to general tasks.

TV Stability. The definition of TV indistinguishability
has close connections with the definition of TV stability.
This notion has appeared in the context of adaptive data
analysis. The work of (Bassily et al., 2016) studied the fol-
lowing problem: suppose there is an unknown distribution
P and a set S of n independent samples drawn i.i.d. from P .
The goal is to design an algorithm that, with input S, will
accurately answer a sequence of adaptively chosen queries
about the unknown distribution P . The main question is
how many samples must one draw from the distribution, as
a function of the type of queries, the number of queries, and
the desired level of accuracy to perform well? (Bassily et al.,
2016) provide various results that rely on the connections
between algorithmic stability, differential privacy and gen-
eralization. To this end, they think of differential privacy
as max-KL stability and study the performance of other
notions of stability such as TV stability. Crucially, in their
definition, TV stability considers any pair of neighboring
datasets S, S′ and not two independent draws from P . More
concretely, they propose the following definition.

Definition 1.8 (Total Variation Stability (Bassily et al.,
2016)). A learning rule A is n-sample ρ-TV stable if for
any pair of samples S, S′ ∈ (X × {0, 1})n that disagree on
a single example, it holds that dTV(A(S), A(S′)) ≤ ρ.

We underline that for any constant ρ it is not challenging
to obtain a ρ-TV stable algorithm in the learning setting
we are interested in. It suffices to just sub-sample a small
enough subset of the data. Hence, any class with finite VC
dimension is TV stably learnable under this definition. As
it is evident from our results (cf. Theorem 3.2), this is in
stark contrast with the definition we propose. We remind
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the readers that just sub-sampling the dataset is not enough
to achieve differential privacy. This is because it is required
that δ = o(1/n). We remark that the definition of total
variation stability à la (Bassily et al., 2016) also appears in
(Raginsky et al., 2016). The above definition of TV stability
has close connections to machine unlearning. This problem
refers to the ability of a user to delete their data that were
used to train a ML algorithm. When this happens, the ma-
chine learning algorithm has to move to a state as if it had
never used that data for training, hence the term machine
unlearning. One can see that Definition 1.8 is suitable for
this setting since it states that if one point of the dataset
is deleted, the distribution of the algorithm should not be
affected very much. For convex risk minimization problems,
(Ullah et al., 2021) design TV stable algorithms based on
noisy Stochastic Gradient Descent (SGD). Such approaches
lead to the design of efficient unlearning algorithms, which
are based on sub-sampling the dataset and constructing a
maximal coupling of Markov chains for the noisy SGD pro-
cedure.
KL Stability and PAC-Bayes. In Appendix A.3 we pro-
vide some equivalent definitions to TV indistinguishability.
In particular, Definition A.9 has connections with the line
of work that studies distribution-dependent generalization
bounds. To be more precise, if instead of the TV distance we
use the KL divergence to measure the distance between the
prior and the output of the algorithm we get the definition of
the quantity that is used to derive PAC-Bayes generalization
bounds. Interestingly, (Livni & Moran, 2020) show that the
PAC-Bayes framework cannot be used to derive distribution-
free PAC learning bounds for classes that have infinite Lit-
tlestone dimension; they show that for any algorithm that
learns 1-dimensional linear classifiers (thresholds), there
exists a realizable distribution for which PAC-Bayes bounds
are trivial. Recently, a similar PAC-Bayes framework was
proposed in (Amit et al., 2022), where the KL divergence is
replaced with a general family of Integral Probability Met-
rics (cf. Definition A.2).
Probably Eventually Correct Learning. The work of
(Malliaris & Moran, 2022) introduced the Probably Even-
tually Correct (PEC) model of learning. In this model,
a learner outputs the same hypothesis5, with probability
one, after a uniformly bounded number of revisions. In-
tuitively, this corresponds to the property that the global
stability parameter is close to 1. Interestingly, prior work
on global stability (Bun et al., 2020; Ghazi et al., 2021a)
had characterized Littlestone classes as being PAC learn-
able by an algorithm which outputs some fixed hypothesis
with nonzero probability. However, the frequency of this
hypothesis was typically very small and its loss was a priori
non-zero. (Malliaris & Moran, 2022) give a new charac-

5Except maybe for a subset of X that has measure zero under
the data-generating distribution.

terization to Littlestone classes by identifying them with
the classes that can be PEC learned in a stable fashion.
Informally, this means that the learning rule for H stabi-
lizes on some hypothesis after changing its mind at most L
times, where L is the Littlestone dimension ofH (cf. Defini-
tion A.3). Interestingly, (Malliaris & Moran, 2022) manage
to show that the well-known Standard Optimal Algorithm
(SOA) (Littlestone, 1988) is a stable PEC learner, using
tools from the theory of universal learning (Bousquet et al.,
2021; 2022; Kalavasis et al., 2022; Hanneke et al., 2022).
Moreover, they list various different notions of algorithmic
stability and show that they all have something in common:
a class H is learnable by such learners if and only if its
Littlestone dimension is finite. Our main result shows that,
indeed, classes that are learnable by TV indistinguishable
learners fall into that category.

2. TV Indistinguishability and Replicability
Our information-theoretic definition of TV indistinguisha-
bility seems to put weaker restrictions on learning rules than
the notion of replicability in two ways: (i) it allows for arbi-
trary couplings between the two executions of the algorithm
(recall the coupling definition of TV distance, see Eq.(1)),
and, (ii) it allows for different couplings between every pair
of datasets S, S′ (the optimal coupling in the definition of
TV distance will depend on S, S′ of Definition 1.4). In
short, our definition allows for arbitrary data-dependent
couplings, instead of just sharing the randomness across
two executions. TV indistinguishability can be viewed as a
statistical generalization of replicability (cf. Definition 1.2)
since it describes a property of learning rules rather than
learning algorithms.

In this section, we will show that TV indistinguishability and
replicability are (perhaps surprisingly) equivalent in a rather
strong sense: under a mild measure-theoretic condition,
every TV indistinguishable algorithm can be converted into
an equivalent replicable one by re-interpreting its internal
randomness. This will be made formal shortly.

First, we show that any replicable algorithm is TV indistin-
guishable.

Theorem 2.1 (Replicability⇒ TV Indistinguishability). If
a learning rule A is n-sample ρ-replicable, then it is also
n-sample ρ-TV indistinguishable.

Proof. Fix some distribution D over inputs. Let A
be n-sample ρ-replicable with respect to D. For the
random variables A(S), A(S′) where S, S′ ∼ Dn

are two independent samples and using Eq.(1),
we have that ES,S′∼Dn [dTV(A(S), A(S′))] equals
ES,S′∼Dn

[
inf(h,h′)∼Π(A(S),A(S′)) Pr[h ̸= h′]

]
.

Let R be the source of randomness that A
uses. The expected optimal coupling is at most
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ES,S′∼Dn [Prr∼R[A(S, r) ̸= A(S′, r)]]. This inequality
follows from the fact that using shared randomness
between the two executions of A is a particular way
to couple the two random variables. To complete the
proof, it suffices to notice that this upper bound is equal
to PrS,S′∼Dn,r∼R[A(S, r) ̸= A(S′, r)] ≤ ρ. The last
inequality follows since A is ρ-replicable.

We now deal with the opposite direction, i.e., we show
that TV indistinguishability implies replicability. We first
provide some measure-theoretic definitions. Let us recall
the definition of absolute continuity for two measures.

Definition 2.2 (Absolute Continuity). Consider two mea-
sures P,Q on a σ-algebra B of subsets of Ω. We say that P
is absolutely continuous with respect to Q if for any E ∈ B
such that Q(E) = 0, it holds that P (E) = 0.

Since the learning rules induce posterior distributions over
hypotheses, this definition extends naturally to such rules.

Definition 2.3. Given learning rule A, distribution over
inputsD and reference probability measureP , we say that A
is absolutely continuous with respect to P on inputs from D
if, for almost every sample S drawn fromD, the distribution
A(S) is absolutely continuous with respect to P .

In the previous definition, we fixed the data-generating dis-
tribution D. We next consider its distribution-free version.

Definition 2.4. Given learning rule A and reference prob-
ability measure P , we say that A is absolutely continuous
with respect to P if, for any distribution over inputs D, A is
absolutely continuous with respect to P on inputs from D.

IfX is finite, then one can take P to be the uniform probabil-
ity measure over {0, 1}X and any learning rule is absolutely
continuous with respect to P . We now show how we can
find such a prior P in the case where X is countable.

Claim 2.5 (Reference Probability Measure for Countable
Domains). LetX be a countable domain and A be a learning
rule. Then, there is a reference probability measure P such
that A is absolutely continuous with respect to P .

Proof. Since X is countable, for a fixed n, we can con-
sider an enumeration of all the n-tuples {Si}i∈N. Then,
we can take P to be a countable mixture of these prob-
ability measures, i.e., P =

∑∞
i=1

1
2iA(Si). Notice that

since, each A(Si) is a measure and 1/2i > 0 for i ∈ N,
and,

∑∞
i=1 1/2

i = 1, we have that P is indeed a probabil-
ity measure. We now argue that each A(Si) is absolutely
continuous with respect to P . Assume towards contradic-
tion that this is not the case and let E ∈ B be a set such
that P(E) = 0 but A(Sj)(E) ̸= 0, for some j ∈ N. No-
tice that A(Sj) appears with coefficient 1/2j > 0 in the
mixture that we consider, hence if A(Sj)(E) > 0 =⇒

1/2jA(Sj)(E) > 0. Moreover A(Si)(E) ≥ 0,∀i ∈ N,
which means that P(E) > 0, so we get a contradiction.

We next define when two learning rules A,A′ are equivalent.

Definition 2.6 (Equivalent Learning Rules). Two learning
rules A,A′ are equivalent if for every sample S it holds that
A(S) = A′(S), i.e., for the same input they induce the same
distribution over hypotheses.

In the next result, we show that for every TV indistinguish-
able algorithm A, that is absolutely continuous with respect
to some reference probability measure P , there exists an
equivalent learning rule which is replicable.

Theorem 2.7 (TV Indistinguishability⇒Replicability). Let
P be a reference probability measure over {0, 1}X , and let
A be a learning rule that is n-sample ρ-TV indistinguish-
able and absolutely continuous with respect to P . Then,
there exists an equivalent learning rule A′ that is n-sample
2ρ
1+ρ -replicable.

In this section, we only provide a sketch of the proof and
we refer the reader to Appendix C.1 for the complete one.
Let us first state how we can use the previous result when
X is countable.

Corollary 2.8. Let X be a countable domain and let A be
a learning rule that is n-sample ρ-TV indistinguishable.
Then, there exists an equivalent learning rule A′ that is
n-sample 2ρ

1+ρ -replicable.

The proof of this result follows immediately from Claim 2.5
and Theorem 2.7.

Proof Sketch of Theorem 2.7. Let us consider a learn-
ing rule A satisfying the conditions of Theorem 2.7. Fix
a distribution D over inputs. The crux of the proof is that
given two random variables X,Y whose TV distance is
bounded by ρ, we can couple them using only a carefully
designed source of shared randomnessR so that the proba-
bility that the realizations of these random variables differ is
at most 2ρ/(1+ρ). We can instantiate this observation with
X = A(S) and Y = A(S′). Crucially, in the countable X
setting, we can pick the shared randomnessR in a way that
only depends on the learning rule A, but not on S or S′. Let
us now describe how this coupling works. Essentially, it
can be thought of as a generalization of the von Neumann
rejection-based sampling which does not necessarily require
that the distribution has bounded density. Following (Angel
& Spinka, 2019), we pickR to be a Poisson point process
which generates points of the form (h, y, t) with intensity6

6Roughly speaking, a point process is a Poisson point process
with intensity λ if (i) the number of points in a bounded Borel
set E is a Poisson random variable with mean λ(E) and (ii) the
numbers of points in n disjoint Borel sets forms n independent
random variables. For details, we refer to (Last & Penrose, 2017).
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P × Leb × Leb, where P is a reference probability mea-
sure with respect to which A is absolutely continuous and
Leb is the Lebesgue measure over R+. Intuitively, h ∼ P
lies in the hypotheses’ space, y is a non-negative real value
and t corresponds to a time value. The coupling mecha-
nism performs rejection sampling for each distribution we
would like to couple (here A(S) and A(S′)): it checks
(in the ordering indicated by the time parameter) for each
point (h, y, t) whether f(h) > y (i.e., if y falls below the
density curve f at h) and accepts the first point that satis-
fies this condition. In the formal proof, there will be two
density functions; f (resp. f ′) for the density function of
A(S) (resp. A(S′)). We also refer to Figure 1. One can
show (see Theorem A.13) that R gives rise to a coupling
between A(S) and A(S′) under the condition that both mea-
sures are absolutely continuous with respect to P . This
coupling technique appears in (Angel & Spinka, 2019). We
can then apply it and get Prr∼R[A(S, r) ̸= A(S′, r)] ≤
2dTV(A(S),A(S′))
1+dTV(A(S),A(S′)) . Taking the expectation with respect to
the draws of S, S′, we show (after some algebraic ma-
nipulations) that PrS,S′∼Dnr∼R[A(S, r) ̸= A(S′, r)] ≤
2ρ/(1+ ρ). We end this section with the following remarks.

Remark 2.9 (General Equivalence). In Appendix C.2, we
show that this equivalence actually holds for general statisti-
cal tasks. We first generalize the notions of indistinguisha-
bility, replicability and TV indistinguishability for general
input spaces I and output spaces O. We then discuss that
replicability and TV indistinguishability remain equivalent
(under the same measure theoretic conditions) in these more
general abstract learning scenarios.

Remark 2.10 (Implementation of the Coupling). We note
that, in order to implement algorithm A′ of Theorem 2.7, we
need sample access to a Poisson point process with intensity
P×Leb×Leb, whereP is the reference probability measure
from Claim 2.5 and Leb is the Lebesgue measure over R+.
Importantly, P depends only on A. Moreover, we need
full access to the values of the density fi of the distribution
A(Si) with respect to the reference probability measure P ,
for any sample Si. We underline that these quantities do
not depend on the data-generating distribution D (since we
iterate over any possible sample).

Remark 2.11 (TV Indistinguishability vs. Replicability). No-
tice that in the definition of replicability (cf. Definition 1.2)
the source of randomness R needs to be specified and by
changing it we can observe different behaviors for coupled
executions of the algorithm. On the other hand, the defini-
tion of TV indistinguishability (cf. Definition 1.4) does not
require the specification of R as it states a property of the
posterior distribution of the learning rule.

3. TV Indistinguishability and DP
In this section we investigate the connections between TV
indistinguishability and approximate DP in binary classifi-
cation. Consider a hypothesis classH ⊆ {0, 1}X . We will
say thatH is learnable by a ρ-TV indistinguishable learning
rule A if this rule satisfies the notion of learnability under
the standard realizable PAC learning model and is ρ-TV
indistinguishable (see Definition A.5).

The main result of this section is an equivalence between
approximate DP and TV indistinguishability for countable
domains X , in the context of PAC learning. We remark
that the equivalence of differential privacy with the notion
of replicability is formally stated for finite outcome spaces
(i.e., under the assumption that X is finite) due to the use of
a specific correlated sampling strategy for the direction that
“DP implies replicability” in the context of classification
(Ghazi et al., 2021b). Moreover, (Bun et al., 2023) gave a
constructive way to transform a DP algorithm to a replica-
ble one for general statistical tasks and for finite domains.
Thus, combining our results in Section 2 and the result of
(Ghazi et al., 2021b; Impagliazzo et al., 2022; Bun et al.,
2023), the equivalence of TV indistinguishability and DP
for finite domains is immediate. We will elaborate more on
the differences of our approach and (Ghazi et al., 2021b;
Bun et al., 2023) later on. We also discuss our coupling and
correlated sampling in Appendix A.4.

Recall that a learner is (α, β)-accurate if its misclassification
probability is at most α with probability at least 1− β.

Theorem 3.1 ((ε, δ)-DP⇒ TV Indistinguishability). Let X
be a (possibly infinite) domain and H ⊆ {0, 1}X . Let γ ∈
(0, 1/2), α, β, ρ ∈ (0, 1)3. Assume thatH is learnable by an
n-sample (1/2−γ, 1/2−γ)-accurate (0.1, 1/(n2 log(n)))-
differentially private learner. Then, it is also learnable by
an (α, β)-accurate ρ-TV indistinguishable learning rule.

Proof Sketch of Theorem 3.1. The proof goes through the
notion of global stability (cf. Definition A.8). The existence
of an (ε, δ)-DP learner implies that the hypothesis class
H has finite Littlestone dimension (Alon et al., 2019) (cf.
Theorem D.3). Thus, we know that there exists a ρ-globally
stable learner for H (Bun et al., 2020) (cf. Theorem D.4).
The next step is to use the replicable heavy-hitters algorithm
(cf. Algorithm 1, (Impagliazzo et al., 2022)) with frequency
parameter O(ρ) and replicability parameter O(ρ′), where
ρ′ ∈ (0, 1) is the desired TV indistinguishability parameter
of the learning rule. The global stability property implies
that the list of heavy-hitters will be non-empty and it will
contain at least one hypothesis with small error rate, with
high probability. Finally, since the list of heavy-hitters is
finite and has bounded size, we feed the output into the
replicable agnostic learner (cf. Algorithm 2). Thus, we have
designed a replicable learner forH, and Theorem 2.1 shows

7



Statistical Indistinguishability of Learning Algorithms

that this learner is also TV indistinguishable.

The formal proof of Theorem 3.1 is deferred to Ap-
pendix D.2. We also include a result which shows that
list-global stability implies TV indistinguishability for gen-
eral domains and general statistical tasks, which could be of
independent interest (cf. Proposition D.12).

We proceed to the opposite direction where we provide an
algorithm that takes as input a TV indistinguishable learning
rule for H and outputs a learner for H which is (ε, δ)-DP.
In this direction countability of X is crucial.

Theorem 3.2 (TV Indistinguishability⇒ (ε, δ)-DP). Let X
be a countable domain. LetH ⊆ {0, 1}X be learnable by an
(α, β)-accurate ρ-TV indistinguishable learner A, for some

ρ ∈ (0, 1), α ∈ (0, 1/2), β ∈
(
0, 1−ρ

1+ρ

)
. Then, for any

(α′, β′, ε, δ) ∈ (0, 1)4, it is learnable by an (α+ α′, β′)-
accurate (ε, δ)-differentially private learner A′.

We refer to Appendix D.4 for the proof. In the above state-
ments, we omit the details about the sample complexity. We
refer to Proposition D.12 and Proposition D.16 for these
details. Let us now comment on the differences between
(Ghazi et al., 2021b; Bun et al., 2023) which establish a
transformation from a replicable learner to an approximately
DP learner and our result. The high-level idea to obtain both
of these results is similar. Essentially, the proof of (Ghazi
et al., 2021b; Bun et al., 2023) can be viewed as a cou-
pling between sufficiently many posteriors of the replicable
learning rule using shared randomness in order to achieve
this coupling. In our proof, instead of using shared ran-
domness we use the reference measure we described in
previous sections to achieve this coupling. We remark that
we could have obtained the same qualitative result, i.e., that
TV indistinguishability implies approximate DP, by using
the transformation from replicability to approximate DP
of (Ghazi et al., 2021a; Bun et al., 2023) in a black-box
manner along with our result that TV indistinguishability
implies replicability (cf. Theorem 2.7). However, this leads
to worse guarantees in terms of the range of the parame-
ters α, β, δ, ε, ρ than the ones stated in Theorem 3.2. Thus,
we have chosen to do a more careful analysis based on the
coupling we proposed that leads to a stronger quantitative
result. More concretely, the proof in (Ghazi et al., 2021b;
Bun et al., 2023) starts by sampling many random strings
independently of the dataset {Si}i∈[k] and considers many
executions of the algorithm using the same random strings
but different data. In our algorithm we first sample the sets
{Si}i∈[k] and then we consider an optimal coupling along
the {A(Si)}i∈[k] which is also independent of the dataset,
thus it satisfies the DP requirements. Moreover, our proce-
dure covers a wider range of parameters α, β, ρ compared
to (Ghazi et al., 2021b). The reason we need countability of
X is because it allows us to design a data-independent ref-

erence probability measure P , the same one as in Claim 2.5.
Then, using this reference probability measure for the cou-
pling helps us establish the DP properties. Nevertheless, we
propose a simple change to our approach which we conjec-
ture applies to general domains X and we leave it open as an
interesting future direction. For a more detailed discussion,
we refer the reader to Appendix D.5.
Remark 3.3 (Dependence on the Parameters). In the case of
TV indistinguishability⇒ DP, the blowup in the sample
complexity is stated explicitly in Proposition D.16. For the
direction DP⇒ TV indistinguishability it is a bit trickier
to state the exact sample complexity blow-up because we
do not make explicit use of the DP learner. Instead, we use
the fact that the existence of a non-trivial DP learner im-
plies that the class has finite Littlestone dimension and then
we use an appropriate algorithm that is known to work for
such classes. In this case, it suffices to let the parameters of
the DP learner to be ε ∈ (0, 0.1), δ ∈

(
0, 1

n2 log(n)

)
, α ∈

(0, 1/2), β ∈ (0, 1/2) and the parameters of the desired
TV indistinguishable (α′, β′)-accurate learner are uncon-
strained, i.e., ρ ∈ (0, 1), α′ ∈ (0, 1), β′ ∈ (0, 1). If we
denote the Littlestone dimension of the class by L, then, as
shown in Proposition D.12 the sample complexity of the TV
indistinguishable learner is poly(L, 1/ρ, 1/α′, log(1/β′))7.

4. Amplification and Boosting
In this section we study the following fundamental question:
given a weak TV indistinguishable learning rule in terms of
the indistinguishability parameter and the accuracy, can we
amplify its indistinguishability and boost its accuracy?

In the context of approximate differential privacy, a series
of works has lead to (constructive) algorithms that boost the
accuracy and amplify the privacy guarantees (e.g., (Dwork
et al., 2010; Bun et al., 2020; 2023)). This result builds
upon the equivalence of online learnability and approximate
differential privacy. Our result relating DP to TV indistin-
guishability implies the following existential result.

Corollary 4.1. Let X be a countable domain. Suppose that
for some sample size n0, there exists an (α0, β0)-accurate
ρ0-TV indistinguishable learner A for a classH ⊆ {0, 1}X

with α0 ∈ (0, 1/2), ρ0 ∈ (0, 1), β0 ∈
(
0, 1−ρ0

1+ρ0

)
. Then, for

any (α, β, ρ) ∈ (0, 1)3,H admits an (α, β)-accurate ρ-TV
indistinguishable learner A′.

This result relies on connections between learnability by
TV indistinguishable learners and finiteness of the Little-
stone dimension of the underlying hypothesis class that
were discussed in Section 3. In particular, Corollary D.17

7This requires that uniform convergence holds for Littlestone
classes. Otherwise, we get poly(22

L

, 1/ρ, 1/α′, log(1/β′)) sam-
ple complexity (Corollary D.9).
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shows that the existence of such a non-trivial TV indistin-
guishable learner implies that the H has finite Littlestone
dimension, and Proposition D.12, states that the finiteness
of the Littlestone dimension ofH implies the existence of
an (α, β)-accurate ρ-TV indistinguishable learner, for ar-
bitrarily small choices of α, β, ρ. It is not hard to see that
we need to constrain α ∈ (0, 1/2), because the algorithm
needs to have an advantage compared to the random clas-
sifier. Moreover, it should be the case that β ∈ (0, 1− ρ).
If β ≥ 1 − ρ then the algorithm which outputs a constant
classifier with probability β and an α-good one with the
remaining probability is ρ-TV indistinguishable and (α, β)-
accurate. An interesting open problem is to investigate what
happens when β ∈

(
1−ρ
1+ρ , 1− ρ

)
.

We underline that Corollary 4.1 is existential and does not
make actual use of the weak TV indistinguishable learner
that is given as input. Hence, it is natural to try to come
up with sample-efficient and constructive approaches that
utilize the weak learner through black-box oracle calls to it
during the derivation of the strong one. In what follows, we
aim to design such algorithms. We remind the reader that
if we constrain ourselves to work in the setting where X is
countable, then the absolute continuity requirement in the
next theorems comes immediately, due to Claim 2.5.

Indistinguishability Amplification. We first consider the
amplification of the indistinguishability guarantees of an
algorithm. An important ingredient of our approach is a
replicable algorithm for finding heavy hitters of a distribu-
tion, i.e., elements whose frequency is above some given
threshold. This algorithm has appeared in (Ghazi et al.,
2021b; Impagliazzo et al., 2022). However, the dependence
of the number of samples in the confidence parameter in
these works is polynomial. We present a new variant of this
algorithm that has polylogarithmic dependence on the confi-
dence parameter. Moreover, using a stronger concentration
inequality, we improve the dependence of the number of
samples on the error parameter. We believe that this result
could be of independent interest. We also design an ag-
nostic learner for finite hypothesis classes. However, the
dependence of the number of samples on |H| is polynomial.
We believe that an interesting question is to design agnostic
learners with polylogarithmic dependence on |H|. We refer
the reader to Appendix E.

Theorem 4.2 (Indistinguishability Amplification). Let P
be a reference probability measure over {0, 1}X and D
be a distribution over inputs. Consider the source of ran-
domness R to be a Poisson point process with intensity
P × Leb× Leb, where Leb is the Lebesgue measure over
R+. Consider a weak learning rule A that is (i) ρ-TV in-
distinguishable with respect to D for some ρ ∈ (0, 1), (ii)
(α, β)-accurate for D for some (α, β) ∈ (0, 1)2, such that

β < 2ρ
ρ+1 − 2

√
2ρ
ρ+1 + 1, and, (iii) absolutely continuous

with respect to P on inputs fromD. Then, for any ρ′, ε, β′ ∈
(0, 1)3, there exists a learner AMPL(A,R, β′, ε, ρ′) that is
ρ′-TV indistinguishable with respect to D, and (α+ ε, β′)-
accurate for D.

We remark that the above result makes strong use of the
equivalence between replicability and TV indistinguishabil-
ity. Our algorithm is a variant of the amplification algorithm
that appeared in (Impagliazzo et al., 2022), which (i) works
for a wider range of parameters and (ii) its sample complex-
ity is polylogarithmic in the parameter β′.

Accuracy Boosting. Next, we design an algorithm that
boosts the accuracy of an n-sample ρ-TV indistinguishable
algorithm and preserves its TV indistinguishability guaran-
tee. Our algorithm is a variant of the boosting mechanism
provided in (Impagliazzo et al., 2022). Similarly as in the
case of amplification, our variant improves upon the depen-
dence of the number of samples on the parameter β′.
Theorem 4.3 (Accuracy Boosting). Let P be a reference
probability measure over {0, 1}X and D be a distribution
over inputs. Consider the source of randomness R to be
a Poisson point process with intensity P × Leb × Leb,
where Leb is the Lebesgue measure over R+. Consider
a weak learning rule A that is (i) ρ-TV indistinguishable
with respect to D for some ρ ∈ (0, 1), (ii) (1/2 − γ, β)-
accurate for D for some (γ, β) ∈ (0, 1)2, and, (iii) ab-
solutely continuous with respect to P on inputs from D.
Then, for any β′, ε, ρ′ ∈ (0, 1)3, there exists a learner
BOOST(A,R, ε) that is ρ′-TV indistinguishable with re-
spect to D and (ε, β′)-accurate for D.

5. Acknowlegdements
Amin Karbasi acknowledges funding in direct support of
this work from NSF (IIS-1845032), ONR (N00014- 19-1-
2406), and the AI Institute for Learning-Enabled Optimiza-
tion at Scale (TILOS). Shay Moran is a Robert J. Shillman
Fellow; he acknowledges support by ISF grant 1225/20, by
BSF grant 2018385, by an Azrieli Faculty Fellowship, by
Israel PBC-VATAT, by the Technion Center for Machine
Learning and Intelligent Systems (MLIS), and by the the
European Union (ERC, GENERALIZATION, 101039692).
Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the Eu-
ropean Union or the European Research Council Executive
Agency. Neither the European Union nor the granting au-
thority can be held responsible for them. Grigoris Velegkas
is supported by NSF (IIS-1845032), an Onassis Founda-
tion PhD Fellowship, and a Bodossaki Foundation PhD
Fellowship. We thank Mark Bun, Marco Gaboardi, Max
Hopkins, Russell Impagliazzo, Rex Lei, Toniann Pitassi,
Satchit Sivakumar, and Jessica Sorrell for illustrating dis-
cussions regarding the connection of this work with their
recent paper (Bun et al., 2023).

9



Statistical Indistinguishability of Learning Algorithms

References
Abernethy, J. D., Lee, C., McMillan, A., and Tewari, A.

Online learning via differential privacy. 2017.

Ahn, K., Jain, P., Ji, Z., Kale, S., Netrapalli, P., and Shamir,
G. I. Reproducibility in optimization: Theoretical frame-
work and limits. arXiv preprint arXiv:2202.04598, 2022.

Alon, N., Livni, R., Malliaris, M., and Moran, S. Private
pac learning implies finite littlestone dimension. In Pro-
ceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, pp. 852–860, 2019.

Alon, N., Bun, M., Livni, R., Malliaris, M., and Moran,
S. Private and online learnability are equivalent. ACM
Journal of the ACM (JACM), 2022.

Amit, R., Epstein, B., Moran, S., and Meir, R. Integral
probability metrics pac-bayes bounds. arXiv preprint
arXiv:2207.00614, 2022.

Angel, O. and Spinka, Y. Pairwise optimal coupling of mul-
tiple random variables. arXiv preprint arXiv:1903.00632,
2019.

Baker, M. 1,500 scientists lift the lid on reproducibility.
Nature, 533(7604), 2016.

Bartlett, P. L. and Mendelson, S. Rademacher and gaussian
complexities: Risk bounds and structural results. Journal
of Machine Learning Research, 3(Nov):463–482, 2002.

Bassily, R. and Freund, Y. Typicality-based stability and
privacy. arXiv preprint arXiv:1604.03336, 2016.

Bassily, R., Nissim, K., Smith, A., Steinke, T., Stemmer, U.,
and Ullman, J. Algorithmic stability for adaptive data
analysis. In Proceedings of the forty-eighth annual ACM
symposium on Theory of Computing, pp. 1046–1059,
2016.

Bavarian, M., Ghazi, B., Haramaty, E., Kamath, P., Rivest,
R. L., and Sudan, M. Optimality of correlated sampling
strategies. arXiv preprint arXiv:1612.01041, 2016.

Ben-David, S. 2 notes on classes with vapnik-chervonenkis
dimension 1. arXiv preprint arXiv:1507.05307, 2015.

Blum, A., Kalai, A., and Wasserman, H. Noise-tolerant
learning, the parity problem, and the statistical query
model. Journal of the ACM (JACM), 50(4):506–519,
2003.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth,
M. K. Learnability and the vapnik-chervonenkis dimen-
sion. Journal of the ACM (JACM), 36(4):929–965, 1989.

Bousquet, O. and Elisseeff, A. Stability and generalization.
The Journal of Machine Learning Research, 2:499–526,
2002.

Bousquet, O., Hanneke, S., Moran, S., Van Handel, R., and
Yehudayoff, A. A theory of universal learning. In Pro-
ceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, pp. 532–541, 2021.

Bousquet, O., Hanneke, S., Moran, S., Shafer, J., and Tol-
stikhin, I. Fine-grained distribution-dependent learning
curves. arXiv preprint arXiv:2208.14615, 2022.

Broder, A. Z. On the resemblance and containment of
documents. In Proceedings. Compression and Complexity
of SEQUENCES 1997 (Cat. No. 97TB100171), pp. 21–29.
IEEE, 1997.

Bun, M., Nissim, K., and Stemmer, U. Simultaneous private
learning of multiple concepts. In Proceedings of the 2016
ACM Conference on Innovations in Theoretical Computer
Science, pp. 369–380, 2016.

Bun, M., Livni, R., and Moran, S. An equivalence between
private classification and online prediction. In 2020 IEEE
61st Annual Symposium on Foundations of Computer
Science (FOCS), pp. 389–402. IEEE, 2020.

Bun, M., Gaboardi, M., Hopkins, M., Impagliazzo, R.,
Lei, R., Pitassi, T., Sivakumar, S., and Sorrell, J.
Stability is stable: Connections between replicability,
privacy, and adaptive generalization. arXiv preprint
arXiv:2303.12921, 2023.

Charikar, M. S. Similarity estimation techniques from round-
ing algorithms. In Proceedings of the thiry-fourth annual
ACM symposium on Theory of computing, pp. 380–388,
2002.

Chen, S., Koehler, F., Moitra, A., and Yau, M. Classification
under misspecification: Halfspaces, generalized linear
models, and evolvability. Advances in Neural Information
Processing Systems, 33:8391–8403, 2020.

Cummings, R., Ligett, K., Nissim, K., Roth, A., and Wu,
Z. S. Adaptive learning with robust generalization guar-
antees. In Conference on Learning Theory, pp. 772–814.
PMLR, 2016.

Dwork, C. Differential privacy: A survey of results. In
International conference on theory and applications of
models of computation, pp. 1–19. Springer, 2008.

Dwork, C. and Roth, A. The algorithmic foundations of
differential privacy. Foundations and Trends® in Theo-
retical Computer Science, 9(3–4):211–407, 2014.

10



Statistical Indistinguishability of Learning Algorithms

Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., and
Naor, M. Our data, ourselves: Privacy via distributed
noise generation. In Annual international conference on
the theory and applications of cryptographic techniques,
pp. 486–503. Springer, 2006.

Dwork, C., Rothblum, G. N., and Vadhan, S. Boosting and
differential privacy. In 2010 IEEE 51st Annual Sympo-
sium on Foundations of Computer Science, pp. 51–60.
IEEE, 2010.

Dwork, C., Feldman, V., Hardt, M., Pitassi, T., Reingold, O.,
and Roth, A. L. Preserving statistical validity in adaptive
data analysis. In Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, pp. 117–126,
2015.

Esfandiari, H., Kalavasis, A., Karbasi, A., Krause, A., Mir-
rokni, V., and Velegkas, G. Reproducible bandits. arXiv
preprint arXiv:2210.01898, 2022.

Esfandiari, H., Karbasi, A., Mirrokni, V., Velegkas, G.,
and Zhou, F. Replicable clustering. arXiv preprint
arXiv:2302.10359, 2023.

Fotakis, D., Kalavasis, A., Kontonis, V., and Tzamos, C.
Efficient algorithms for learning from coarse labels. In
Conference on Learning Theory, pp. 2060–2079. PMLR,
2021.

Ghazi, B., Golowich, N., Kumar, R., and Manurangsi, P.
Sample-efficient proper pac learning with approximate
differential privacy. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing, pp.
183–196, 2021a.

Ghazi, B., Kumar, R., and Manurangsi, P. User-level pri-
vate learning via correlated sampling. arXiv preprint
arXiv:2110.11208, 2021b.

Goel, S., Gollakota, A., and Klivans, A. Statistical-query
lower bounds via functional gradients. Advances in
Neural Information Processing Systems, 33:2147–2158,
2020.

Gupta, A., Hardt, M., Roth, A., and Ullman, J. Privately
releasing conjunctions and the statistical query barrier. In
Proceedings of the forty-third annual ACM symposium
on Theory of computing, pp. 803–812, 2011.

Hanneke, S., Karbasi, A., Moran, S., and Velegkas, G. Uni-
versal rates for interactive learning. Advances in Neural
Information Processing Systems, 35:28657–28669, 2022.

Holenstein, T. Parallel repetition: simplifications and the no-
signaling case. In Proceedings of the thirty-ninth annual
ACM symposium on Theory of computing, pp. 411–419,
2007.

Impagliazzo, R., Lei, R., Pitassi, T., and Sorrell, J. Repro-
ducibility in learning. arXiv preprint arXiv:2201.08430,
2022.

Kalavasis, A., Velegkas, G., and Karbasi, A. Multi-
class learnability beyond the pac framework: Univer-
sal rates and partial concept classes. arXiv preprint
arXiv:2210.02297, 2022.

Kasiviswanathan, S. P., Lee, H. K., Nissim, K., Raskhod-
nikova, S., and Smith, A. What can we learn privately?
SIAM Journal on Computing, 40(3):793–826, 2011.

Kearns, M. Efficient noise-tolerant learning from statistical
queries. Journal of the ACM (JACM), 45(6):983–1006,
1998.

Kleinberg, J. and Tardos, E. Approximation algorithms
for classification problems with pairwise relationships:
Metric labeling and markov random fields. Journal of the
ACM (JACM), 49(5):616–639, 2002.

Korolova, A., Kenthapadi, K., Mishra, N., and Ntoulas, A.
Releasing search queries and clicks privately. In Proceed-
ings of the 18th international conference on World wide
web, pp. 171–180, 2009.

Last, G. and Penrose, M. Lectures on the Poisson process,
volume 7. Cambridge University Press, 2017.

Levin, D. A. and Peres, Y. Markov chains and mixing times,
volume 107. American Mathematical Soc., 2017.

Littlestone, N. Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm. Machine
learning, 2(4):285–318, 1988.

Livni, R. and Moran, S. A limitation of the pac-bayes
framework. Advances in Neural Information Processing
Systems, 33:20543–20553, 2020.

Malliaris, M. and Moran, S. The unstable formula theorem
revisited. arXiv preprint arXiv:2212.05050, 2022.

McSherry, F. and Talwar, K. Mechanism design via dif-
ferential privacy. In 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’07), pp. 94–
103. IEEE, 2007.

Pineau, J., Sinha, K., Fried, G., Ke, R. N., and Larochelle,
H. Iclr reproducibility challenge 2019. ReScience C, 5
(2):5, 2019.

Pineau, J., Vincent-Lamarre, P., Sinha, K., Larivière,
V., Beygelzimer, A., d’Alché Buc, F., Fox, E., and
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A. Preliminaries and Additional Definitions
A.1. Preliminaries

Probability Theory. We first review some standard definitions from probability theory.

Definition A.1 (Coupling). A coupling of two probability distributions P and Q is a pair of random variables (X,Y ),
defined on the same probability space, such that the marginal distribution of X is P and the marginal distribution of Y is Q.

Definition A.2 (Integral Probability Metric). The Integral Probability Metric (IPM) between two probability measures P
and Q over O is defined as

dF,O(P,Q) = sup
f∈F

∣∣∣∣∫
O
fdP −

∫
O
fdQ

∣∣∣∣ = sup
f∈F

∣∣∣∣ Ex∼P
[f(x)]− E

x∼Q
[f(x)]

∣∣∣∣ ,
where F is a set of real-valued bounded functions O → R.

IPM distance measures are symmetric and non-negative. Note that the KL-divergence is not a special case of IPM, rather it
belongs to the family of f -divergences, that intersect with IPM only at the TV distance. Such measures were recently used
in order to derive PAC-Bayes style generalization bounds (Amit et al., 2022). The definition of an f -divergence will not be
useful in this work and we refer the interested reader to e.g., (Sason & Verdú, 2016).

Learning Theory. We next review some standard definitions in statistical learning theory. We start with the definition of
the Littlestone dimension (Littlestone, 1988).

Definition A.3 (Littlestone Dimension (Littlestone, 1988)). Consider a complete binary tree T of depth d+1 whose internal
nodes are labeled by points in X and edges by {0, 1}, when they connect the parent to the right, left child, respectively. We
say thatH ⊆ {0, 1}X Littlestone-shatters T if for every root-to-leaf path x1, y1, . . . , xd, yd, xd+1 there exists some h ∈ H
such that h(xi) = yi, 1 ≤ i ≤ d. The Littlestone dimension is denoted by Ldim(H) is defined to be the largest d such that
H Littlestone-shatters such a binary tree of depth d+ 1. If this happens for every d ∈ N we say that Ldim(H) =∞.

We work under the well-known PAC learning model that was introduced in (Valiant, 1984). Let us denote the misclassification
probability of a classifier h by errD(h) = Pr(x,y)∼D[h(x) ̸= y]. Also, we say that D is realizable with respect toH if there
exists some h∗ ∈ H such that errD(h∗) = 0. Below, we slightly abuse notation and use the misclassification probability for
distributions over classifiers.

Definition A.4 (PAC Learnability (Valiant, 1984; Shalev-Shwartz & Ben-David, 2014)). An algorithm A is n-sample (α, β)-
accurate for a hypothesis classH ⊆ {0, 1}X if, for any realizable distributionD, it holds that PrS∼Dn [errD(A(S)) > α] ≤
β . A hypothesis class H is PAC learnable if, for any α, β ∈ (0, 1)2, there exist some n0(α, β) ∈ N and an algorithm A
such that A is n-sample (α, β)-accurate forH, for any n ≥ n0(α, β).

For the purposes of this work, an algorithm A should be thought of as a mapping from samples to a distribution over
hypotheses. We want to design algorithms that satisfy two desiderata: they are PAC learners for some given hypothesis
classH and they are total variation indistinguishable. In particular, we consider the following learning setting combining
Definition 1.4 and A.4.

Definition A.5 (Realizable Learnability by TV Indistinguishable Learner). An algorithm A is n-sample (α, β)-accurate
ρ-TV indistinguishable for a hypothesis class H ⊆ {0, 1}X if, for any realizable distribution D, it holds that (i) A is
n-sample ρ-TV indistinguishable and (ii) PrS∼Dn [errD(A(S)) > α] ≤ β. A hypothesis class H is learnable by a TV
indistinguishable algorithm if, for any α, β, ρ ∈ (0, 1), there exist some n0(α, β, ρ) ∈ N and an algorithm A such that A is
n-sample (α, β)-accurate ρ-TV indistinguishable forH for any n ≥ n0(α, β, ρ).

In the above definition, n depends on α, β, ρ (andH), but not on the distribution.

Definition A.6 (Uniform Convergence Property). We say that a domain X and a class H ⊆ {0, 1}X satisfy the uniform
convergence property if there exists a function mUC : (0, 1)2 → N such that for any ε, δ ∈ (0, 1), and for every distribution
D over X × {0, 1} it holds that if S ∼ Dm and m ≥ mUC(ε, δ), it holds that suph∈H |LS(h) − LD(h)| ≤ ε, with
probability at least 1− δ, where LS (resp. LD) is the empirical (resp. population) loss.

The fundamental theorem of learning theory (Vapnik & Chervonenkis, 2015; Blumer et al., 1989) states that the uniform
convergence property is equivalent to the finiteness of the VC dimension ofH. However, one needs to make some (standard)
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measurability assumptions on X ,H to rule out pathological cases. For instance, it is known that there classes with VC
dimension 1 where uniform convergence does not hold (Ben-David, 2015)8. It is known that whenH is countable and has
finite VC dimension uniform convergence holds (Bartlett & Mendelson, 2002).

A.2. General Definition of Indistinguishability

While in the main body of the paper, we focused on binary classification, (most of) our proofs extend to general learning
problems and so we first present a general abstract framework.

For general learning tasks, we can view learning rules (or algorithms) as randomized mappings A : I → ∆O which take as
input instances from a domain I and map them to an element of the output space O. We assume that there is a distribution µ
on I that generates instances.

A second way to view the learning algorithm is via the mapping A : I ×R → O. Then A takes as input an instance I ∼ µ
and a random string r ∼ R (we useR for both the probability space and the distribution) corresponding to the algorithm’s
internal randomness and outputs A(I, r) ∈ O. Thus, A(I) is a distribution over O whose randomness comes from the
random variable r, while A(I, r) is a deterministic object.

The space ∆O is endowed with some statistical dissimilarity measure.

Definition A.7 (Indistinguishability). Let I be an input space, O be an output space and d be some statistical dissimilarity
measure. A learning rule A satisfies ρ-indistinguishability with respect to d if for any distribution µ over I and two
independent instances I, I ′ ∼ µ, it holds that

E
I,I′∼µ

[d (A(I), A(I ′))] ≤ ρ .

To illustrate the generality of our definition, we now show how we can instantiate I,O, µ, d to recover other definitions
about stability of learning algorithms appearing in prior work.

Global Stability. Global stability (Bun et al., 2020) is a fundamental property of learning algorithms that was recently
used to establish an equivalence between online learnability and approximate differential privacy in binary classification.
We show how we can recover the definition of global stability. Let us first recall the definition.

Definition A.8 (Global Stability (Bun et al., 2020)). Let R be a distribution over random strings. A learning rule A is
n-sample η-globally stable if for any distribution D there exists a hypothesis hD such that

Pr
S∼Dn,r∼R

[A(S, r) = hD] ≥ η .

In order to recover Definition A.8 using Definition A.7 we let (S, r) ∈ I, µ = Dn × R and d(A(I, r), A(I ′, r′)) =
1A(I,r)̸=A(I′,r′). Thus, we have that

E
S,S′∼Dn,r,r′∼R

[1A(S,r) ̸=A(S′,r′)] ≤ ρ =⇒

Pr
S,S′∼Dn,r,r′∼R

[A(S, r) ̸= A(S′, r′)] ≤ ρ.

Notice that this gives us a two-sided version of the definition of global-stability. So far we have established that
PrS,S′∼µ,r,r′∼R[A(S, r) = A(S′, r′)] ≥ 1 − ρ > 0. Since two independent draws of the random variable A(S, r)
are the same with non-zero probability it means that it must have point masses. Moreover, there are countably many such

8We note that the proof of the existence of such a class holds under the continuum hypothesis.
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point masses. LetHm = {h ∈ H : PrS∼Dn,r∼R[A(S, r) = h]}. Then,

Pr
S,S′∼µ,r,r′∼R

[A(S, r) = A(S′, r′)] =
∑

h∈Hm

(
Pr

S∼Dn,r∼R
[A(S, r) = h]

)2

≤ max
h∈Hm

Pr
S∼Dn,r∼R

[A(S, r) = h] ·
∑

h∈Hm

Pr
S∼Dn,r∼R

[A(S, r) = h]

≤ max
h∈Hm

Pr
S∼Dn,r∼R

[A(S, r) = h]

= max
h∈H

Pr
S∼Dn,r∼R

[A(S, r) = h]

Thus, by chaining the two inequalities we have established, we get that maxh∈Hm
PrS∼Dn,r∼R[A(S, r) = h] ≥ 1− ρ, so

the algorithm A satisfies the notion of global stability.

A.3. Alternative Definitions of TV Indistinguishability

We now discuss alternative ways to define TV indistinguishability.

A.3.1. TV INDISTINGUISHABILITY WITH FIXED PRIOR

First, observe that the definition we propose is two-sided in the sense that we require drawing two sets of i.i.d. samples. A
different way to view TV indistinguishability is by requiring that the output of the algorithm is close, in TV distance, to
some prior distribution, which depends on the data-generating process D but is independent of the sample. Notice that we
could introduce a similar one-sided general definition as a second viewpoint of Definition 1.1 (named Indistinguishability
with Fixed Prior).

Definition A.9 (TV Indistinguishability with Fixed Prior). A learning rule A is n-sample ρ-fixed prior TV indistinguishable
if for any distribution over inputs D, there exists some prior PD such that for S ∼ Dn it holds that

E
S∼Dn

[dTV(A(S),PD)] ≤ ρ .

Notice that, using the triangle inequality, we can see that this definition is equivalent to Definition 1.4, up to a factor of 2.
Formally, we have the following result.

Lemma A.10. If A is ρ-TV indistinguishable then it is ρ-fixed prior TV indistinguishable. Conversely, if A is ρ-fixed prior
TV indistinguishable then it is 2ρ-TV indistinguishable.

We remark that if A is TV indistinguishable with respect to a distribution over inputs D, one can show that it is also fixed
prior TV indistinguishable with respect to D where the fixed prior is equal to PD =

∫
S
A(S)d(Dn).

Proof. For the first direction, we let PS,S′ be a distribution with the property that dTV(A(S),PS,S′) =
dTV(A(S′),PS,S′) = dTV(A(S), A(S′))/2, e.g., PS,S′ = 1/2 · (A(S) + A(S′)), for every S, S′ ∼ Dn. We now
define PD to be the average of PS,S′ with respect to the measure of the product distribution of S, S′. We have that

PD =

∫
S,S′
Dn(S)Dn(S′)

A(S) +A(S′)

2
dSdS′

=

∫
T

(
Dn(T )1{S = T}A(T )

2

(∫
S′
Dn(S′)

)
+Dn(T )1{S′ = T}A(T )

2

(∫
S

Dn(S)

))
dSdS′ =

=

∫
T

Dn(T )A(T )dT .

This means that ES∼Dn [dTV(A(S),PD)] =
∫
S
Dn(S)dTV

(
A(S),

∫
T
Dn(T )A(T )dT

)
dS ≤ ρ.
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For the converse, notice that

E
S,S′∼Dn

[dTV(A(S), A(S′))] ≤ E
S,S′∼Dn

[dTV(A(S),PD) + dTV(A(S′),PD)]

= E
S,S′∼Dn

[dTV(A(S),PD)] + E
S,S′∼Dn

[dTV(A(S′),PD)]

= 2 E
S∼Dn

[dTV(A(S),PD)]

≤ 2ρ.

A.3.2. WITH HIGH PROBABILITY TV INDISTINGUISHABILITY

A different direction in which we can extend the definition of total variation indistinguishability has to do with replacing the
expectation with a high-probability style of bound. We remark that (Impagliazzo et al., 2022) provide a similar alternative
definition in the context of their work.

Definition A.11 (High-Probability TV Indistinguishability). A learning rule A is n-sample high-probability (η, ν)-TV
indistinguishable if for any distribution D there exists some prior PD such that

Pr
S∼Dn

[dTV(A(S),PD) ≤ η] ≥ 1− ν .

Notice that in the above definition we have used the fixed prior version of TV indistinguishability to reduce the number of
parameters, but it can also be stated in its the two-sided version. It is not hard to see that the “in expectation” and the “with
high probability” versions of the definition are qualitatively equivalent. Moreover, we can establish a quantitative connection
as follows.

Lemma A.12. If a learning rule A is an n-sample ρ-fixed prior TV indistinguishable learner (cf. Definition A.9) then
it is an n-sample high-probability (ρ/ν, ν)-TV indistinguishable learning rule (cf. Definition A.11), for any ρ ≤ ν < 1.
Conversely, if a learnigng rule A is an n-sample high-probability (η, ν)-TV indistinguishable learner then it is an n-sample
(η + ν − η · ν)-fixed prior TV indistinguishable learning rule.

Proof. The proof of the first part of claim is a direct consequence of Markov’s inequality. Notice that dTV(A(S),PD) is
random variable whose expected value is bounded by ρ. Thus, we have that

Pr
S∼Dn

[dTV(A(S),PD) ≥ ρ/ν] ≤ ν .

Hence, we can see that A is a high-probability (ρ/ν, ν)-TV indistinguishable learning rule.

We now move to the second part of the claim. Let E be the event that dTV(A(S),PD) ≥ η. Then, we have that

E
S∼Dn

[dTV(A(S),PD)] = E
S∼Dn

[dTV(A(S),PD)|E ]Pr[E ] + E
S∼Dn

[dTV(A(S),PD)|Ec]Pr[Ec]

≤ 1 · ν + η · (1− ν)

= η + ν − η · ν.

A.4. Coupling and Correlated Sampling

Coupling is a fundamental notion in probability theory with many applications (Levin & Peres, 2017). The correlated
sampling problem, which has applications in various domains, e.g., in sketching and approximation algorithms (Broder,
1997; Charikar, 2002), is described in (Bavarian et al., 2016) as follows: Alice and Bob are given probability distributions
P and Q, respectively, over a finite set Ω. Without any communication, using only shared randomness as the means to
coordinate, Alice is required to output an element x distributed according to P and Bob is required to output an element
y distributed according to Q. Their goal is to minimize the disagreement probability Pr[x ̸= y], which is comparable
with dTV(P,Q). Formally, a correlated sampling strategy for a finite set Ω with error ε : [0, 1] → [0, 1] is specified
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by a probability space R and a pair of functions f, g : ∆Ω × R → Ω, which are measurable in their second argument,
such that for any pair P,Q ∈ ∆Ω with dTV(P,Q) ≤ δ, it holds that (i) the push-forward measure {f(P, r)}r∼R (resp.
{g(Q, r)}r∼R) is P (resp. Q) and (ii) Prr∼R[f(P, r) ̸= g(Q, r)] ≤ ε(δ). We underline that a correlated sampling strategy
is not the same as a coupling, in the sense that the latter requires a single function h : ∆Ω ×∆Ω → ∆Ω×Ω such that for
any P,Q, the marginals of h(P,Q) are P and Q respectively. It is known that for any coupling function h, it holds that
Pr(x,y)∼h(P,Q)[x ̸= y] ≥ dTV(P,Q) and that this bound is attainable. Since {(f(P, r), g(Q, r))}r∼R induces a coupling,
it holds that ε(δ) ≥ δ and, perhaps surprisingly, there exists a strategy with ε(δ) ≤ 2δ

1+δ (Broder, 1997; Kleinberg & Tardos,
2002; Holenstein, 2007) and this result is tight (Bavarian et al., 2016). A second difference between coupling and correlated
sampling has to do with the size of Ω: while correlated sampling strategies can be extended to infinite spaces Ω, it remains
open whether there exists a correlated sampling strategy for general measure spaces (Ω,F , µ) with any non-trivial error
bound (Bavarian et al., 2016). On the other hand, coupling applies to spaces Ω of any size.

(Ghazi et al., 2021b) studied user-level privacy and introduced the notion of pseudo-global stability, which is essentially the
same as replicability as observed by (Impagliazzo et al., 2022). (Ghazi et al., 2021b) showed that pseudo-global stability
is qualitatively equivalent to approximate differential privacy. Their main technique was the use of correlated sampling
that allowed users to output the same learned hypothesis (stability) employing shared randomness. We mention that (Ghazi
et al., 2021b) provide their results for finite outcome space (i.e., X is finite and thusH ⊆ {0, 1}X is too). In particular, they
need finiteness of the domain in order to apply correlated sampling which is used during their “DP implies pseudo-global
stability” reduction. They mention that their results can be extended to the case where X is infinite and that this does require
non-trivial generalization of tools such as correlated sampling and some measure-theoretic details to that setting9; we refer
to a discussion in Section 5.3 of (Bavarian et al., 2016) about the assumptions needed in order to achieve correlated sampling
in infinite spaces. Similarly, the last step of the constructive transformation of a DP algorithm to a replicable one provided in
(Bun et al., 2023) uses correlated sampling and is hence also given for finite domains. For further comparisons between our
coupling and the correlated sampling problem of (Bavarian et al., 2016), we refer to the discussion in (Angel & Spinka,
2019) after Corollary 4.

A very useful tool for our derivations is a coupling protocol that can be found in (Angel & Spinka, 2019).

Theorem A.13 (Pairwise Optimal Coupling (Angel & Spinka, 2019)). Let S be any collection of random variables that are
absolutely continuous with respect to a common probability measure10 µ. Then, there exists a coupling of the variables in S
such that, for any X,Y ∈ S,

Pr[X ̸= Y ] ≤ 2dTV(X,Y )

1 + dTV(X,Y )
.

Moreover, this coupling requires sample access to a Poisson point process with intensity µ× Leb× Leb, where Leb is the
Lebesgue measure over R+, and full access to the densities of all the random variables in S with respect to µ.

An intuitive illustration of how it works can be found in Figure 1.

A.5. Discussion on Definition 1.4

We discuss more extensively the TV Indistinguishability definition. One important motivation for the definition of TV
indistinguishability is to show that replicability can be equivalently defined using the same high-level template like the
well-studied PAC-Bayes framework, where one shows that the outputs of the algorithms are close, under the KL divergence,
with some data-independent priors. In other words, our results show how to organize and view different well-studied notions
of stability using the same template.

Moreover, an interpretation of the replicability definition is that two executions of the algorithm over independent datasets
should be coupled using just shared internal randomness. However, this is one of potentially infinite ways to couple the two
executions. Our definition, which we find quite natural, captures exactly this observation and allows for general couplings
between two random runs. It is also worth noting that, to the best of our knowledge, all the notions of algorithmic stability
that have been proposed in the past do not depend on the source of internal randomness of the algorithm. However, this is
not the case with replicability.

9To be more specific, the proof of Theorem 20 in (Ghazi et al., 2021b) requires to define the correlated sampling strategy over the
space 2X a priori (independently of the observed samples and input algorithm). Hence while the strategy is applied to distributions with
finite support, an extension to infinite domain in that proof would require some modifications.

10This result extends to the setting where µ is a σ-finite measure, but it is not needed for the purposes of our work.
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Figure 1. Our goal is to couple A(S) with A(S′), where these two distributions are absolutely continuous with respect to the reference
probability measure P . A sequence of points of the form (h, y, t) is generated by the Poisson point process with intensity P ×Leb×Leb
where h ∼ P, (y, t) ∈ R2

+ and Leb is the Lebesgue measure over R+ (note that we do not have upper bounds for the densities). Intuitively,
h lies in the hypotheses’ space, y is a non-negative real value and t corresponds to a time value. Let f be the Radon-Nikodym derivate of
A(S) with respect to P . We assign the first (the one with minimum t) value h to A(S) that satisfies the property that f(h) > y, i.e., y falls
below the density curve of A(S). We assign a hypothesis to A(S′) in a similar manner. This procedure defines a data-independent way to
couple the two random variables and naturally extends to multiple ones. In the figure’s example, we set A(S) = h2 and A(S′) = h4

given that t1 < t2 < t3 < t4.

Let us now present a concrete algorithm whose stability property is easier to prove under the new definition. (Ghazi et al.,
2021b) presented a procedure that transforms a list-globally stable algorithm to a replicable one (Algorithm 1, page 9 in
(Ghazi et al., 2021b)). Crucially, in the last step of this algorithm the authors use a correlated sampling procedure to prove
the replicability property. This procedure induces a computational overhead to the overall algorithm, and it is not clear
even if it is computable beyond finite domains. On the other hand, the TV indistinguishability property is immediate. Thus,
the transformation from list-global stability to TV indistinguishability is computationally efficient and holds for general
domains whereas the transformation from list-global stability to replicability is not.

To the best of our knowledge, most of the replicable algorithms that have been developed use their internal randomness over
data-independent distributions. To make this point more clear let us consider the replicable SQ oracle of (Impagliazzo et al.,
2022). In this work, the authors use randomness over distributions that are independent of the input sample S. Thus, no
matter how the internal randomness is implemented, when one shares it across two executions the internal random choices
of the algorithm are the same.

However, there are algorithms, like Algorithm 1 in (Ghazi et al., 2021b), that use internal randomness over a data-dependent
distribution. If the algorithm makes random choices over data-dependent quantities like in (Ghazi et al., 2021b), when
one shares the randomness across two executions the internal random choices are not necessarily the same even if the TV
distance between the two distributions is small, unless one specifies carefully the source of internal randomness (i.e., using
some coupling). This can lead to significant computational overhead when the domain is finite, computability issues when
the domain is countable, and for general domains it is not clear yet that going from TV indistinguishability to replicability is
possible. Hence, one advantage of TV indistinguishability is that it provides a relaxation over the stronger definition of
replicability, which is the notion that our definition builds upon.

B. Useful Replicable Subroutines
In this section we present various replicable subroutines that will be useful in the derivation of our results.
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B.1. Replicability Preliminaries

Recall the Statistical Query (SQ) model that was introduced by (Kearns, 1998) and is a restriction of the PAC learning
model, appearing in various learning theory contexts (Blum et al., 2003; Gupta et al., 2011; Chen et al., 2020; Goel et al.,
2020; Fotakis et al., 2021). In the SQ model, the learner interacts with an oracle in the following way: the learner submits a
statistical query to the oracle and the oracle returns its expected value, after adding some noise to it. More formally, we have
the following definition.
Definition B.1 ((Kearns, 1998)). Let τ, δ ∈ (0, 1)2,D be a distribution over the domain X and ϕ : X → [0, 1] be a
query. Let S be an i.i.d. sample of size n = n(τ, δ). Then, the statistical query oracle outputs a value v such that
|v −Ex∼D[ϕ(x)]| ≤ τ, with probability at least 1− δ.

Essentially, using a large enough number of samples, the SQ oracle returns an approximation of the expected value of a
statistical query whose range is bounded. (Impagliazzo et al., 2022) provide a replicable implementation of an SQ oracle
with a mild blow-up in the sample complexity.
Theorem B.2 (Replicable SQ Learner (Impagliazzo et al., 2022)). Let τ, δ, ρ ∈ (0, 1)3, δ ≤ ρ/3,D be a distribution over
some domain X , and ϕ : X → [0, 1] be a query. Let S be an i.i.d. sample of size

n = O

(
1

τ2ρ2
log(1/δ)

)
.

Then there exists a ρ-replicable SQ oracle for ϕ.

The interpretation of the previous theorem is that we can estimate replicably statistical queries whose range is bounded.

The following result that was proved in (Impagliazzo et al., 2022) is useful for our derivations.
Claim B.3 (ρ-Replicability =⇒ (η, ν)-Replicability (Impagliazzo et al., 2022)). Let A be a ρ-replicable algorithm andR
be its source of randomness. Then for any ν ∈ [ρ, 1), it holds that

Pr
r∼R

[{
∃h ∈ H : Pr

S∼Dn
[A(S, r) = h] ≥ 1− ρ

ν

}]
≥ 1− ν .

Notice that in the definition of replicability (Definition 1.2), the learner shares all the internal random bits across its two
executions. A natural extension is to consider learners that share only part of their random bits, i.e., they have access to
private random bits that are not shared across its executions and public random bits that are shared. A result in (Impagliazzo
et al., 2022) shows that these learners are, essentially, equivalent to the ones that use only private bits. To be more precise,
we say that a learner A is ρ-replicable with respect to rpub if

Pr
S,S′∼Dn,rpriv,r′priv,rpub∼R

[A(S, rpriv, rpub) = A(S′, r′priv, rpub)] ≥ 1− ρ .

The following result states this property formally.
Lemma B.4 (Public, Private Replicability =⇒ Replicability (Impagliazzo et al., 2022)). Let A be an n-sample ρ-replicable
learner with respect to rpub. Then, A is a n-sample ρ-replicable learner with respect to (rpub, rpriv).

This result allows us to think of a replicable learner as having access to two different sources of randomness, one that is
private to its execution and one that is shared across the executions. We will make use of it in transformations from DP
learners to replicable learners and some boosting results.

B.2. Replicable Heavy-Hitters

In the analysis of the replicable heavy-hitter algorithm (cf. Algorithm 1) we will use the Bretagnolle-Huber-Carol inequality
that bounds the estimation error of the parameters of a multinomial distribution from samples.
Lemma B.5 (Bretagnolle-Huber-Carol Inequality (Vaart & Wellner, 1997)). Let p = (p1, . . . , pk) multinomial distribution
supported on k elements. Then, given access to n i.i.d. samples from p we have that

Pr

[
k∑

i=1

|p̂i − pi| ≥ ε

]
≤ 2ke−nε2/2 ,

for every ε ∈ (0, 1), where p̂i is the empirical frequency of item i in the sample S.
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The replicable heavy-hitters algorithm is depicted in Algorithm 1. As we alluded before, this approach is very similar
to (Ghazi et al., 2021b; Impagliazzo et al., 2022). However, in our approach we treat the confidence parameter and the
reproducibility parameters differently. Moreover, since we make use of Lemma B.5, we are able to reduce the sample
complexity of the algorithm.

Algorithm 1 Replicable Heavy-Hitters
1: Input: Sample access to a distribution D over some domain X
2: Parameters: Threshold v, error ε, confidence δ, replicability ρ
3: Output: List of elements L in X
4: n1 ← log(2/(min{δ,ρ}(v−ε)))

v−ε
5: S1 ← n1 i.i.d. samples. from D
6: Xh ← unique elements of S1 {Notice that |Xh| ≤ n1.}
7: n2 ← 32(ln(2/min{δ,ρ})+|X |+1)

ρ2ε2

8: S2 ← n2 i.i.d. samples from D
9: p̂x ← freqS(x),∀x ∈ Xh {p̂x is the empirical frequency of every potential heavy hitter}

10: v′ ← U [v − ε/2, v + ε/2] {Set the threshold for acceptance of a heavy-hitter.}
11: L← {x ∈ Xh : p̂x ≥ v′} {Drop the elements of Xh that fall below the threshold.}
12: Output L

Lemma B.6. Let D be distribution supported on some domain X and denote by D(x) the mass that it puts on x ∈ X . For
any ε, δ, ρ, v ∈ (0, 1)4 such that (v − ε, v + ε) ⊆ (0, 1), Algorithm 1 is ρ-replicable and outputs a list L such that, with
probability 1− δ, for all x ∈ X :

• If D(x) < v − ε then x /∈ L.

• If D(x) > v + ε then x ∈ L.

Its sample complexity is at most O
(

log(1/(min{δ,ρ}(v−ε)))
(v−ε)ρ2ε2

)
.

Proof. We first prove the correctness of the algorithm with the desired accuracy ε and confidence δ. For simplicity,
let us assume that δ ≤ ρ/4. Otherwise, we can simply set δ = ρ/4. After we pick n1 points, the probability that a
(v − ε)-heavy-hitter of the distribution is not included in S1 is at most

(1− (v − ε))n1 ≤ e−(v−ε)·n1 ≤ δ · (v − ε)

2
.

Since there are at most 1/(v − ε) such heavy-hitters, we can see that with probability at least δ/2 all of the are included in
S1. Let us call this event E1 and condition on it for the rest of the proof.

Let us consider a distribution D̂ that puts the same mass on every element of Xh as D and the remaining mass on a new
special element e. We can sample from D̂ in the following way: we draw a sample from D and if it falls in Xh we return it,
otherwise we return e. Thus, we can see that if we draw n samples from D̂, they are distributed according to a multinomial
distribution supported on Xh ∪ {e}. Thus, Lemma B.5 applies to this setting which means that if we draw n2 i.i.d. samples
from D̂ we have that

Pr

[
k∑

i=1

|p̂i − pi| ≥
ερ

4

]
≤ 2ke−n2ε

2ρ2/32 ≤ eke−n2ε
2ρ2/32 = ek−n2ε

2ρ2/32 ,

where k = |Xh| + 1. Thus, ek−n2ε
2ρ2/32 = e− ln(2/δ) ≤ δ

2 . We call this event E2 and condition on it for the rest of the
proof. Notice that under this event we have that |p̂x − px| ≤ ερ

4 < ε
2 ,∀x ∈ Xh. Since v′ ≥ v − ε/2 it means that if

p̂x ≥ v′ ≥ v− ε/2 =⇒ px+ ε/2 > v− ε/2 =⇒ px > v− ε. Similarly, we get that if p̂x < v′ =⇒ px < v+ ε. Hence,
we see that the algorithm is correct with probability at least 1− δ/2− δ/2 = 1− δ. This concludes the correctness proof.

We now focus on the replicability of the algorithm. Let X 1
h be the unique elements at Algorithm 1 of the algorithm in the first

run and X 2
h in the second run. Notice that if x ∈ (X 1

h \X 2
h )∪(X 2

h \X 1
h ) then, with probability at least 1−δ/2−δ/2 = 1−δ,
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the element x is not a (v − ε)-heavy-hitter, so, with probability at least 1− δ/2, it will not be included in the output of the
execution that it appears in. Let E = X 1

h ∩ X 2
h and denote by L1, L2, the outputs of the first, second execution, respectively.

We need to bound the probability of the event E = {∃x ∈ E : x ∈ L1 \L2 ∪L2 \L1}. Let p̂1x, p̂
2
x the empirical frequencies

of x in the first, second execution, respectively. Due to the concentration inequality we have used, we have that∑
x∈X1∩X2

|p̂ix − px| ≤
ερ

4
, i ∈ {1, 2} ,

with probability at least 1− δ. Under this event, using the triangle inequality, this means that∑
x∈X1∩X2

|p̂1x − p̂2x| ≤
ερ

2
, i ∈ {1, 2} ,

Notice that since pick a number uniformly at random from an interval with range ε, for some given x ∈ X1 ∩ X2, we have
that Pr[x ∈ L1 \ L2 ∪ L2 \ L1] ≤ |p̂1x − p̂2x|/ε. Thus, taking a union bound over x ∈ X1 ∩ X2, we see that

Pr[E ] ≤
∑

x∈X1∩X2
|p̂1x − p̂2x|

2ε
≤ ερ

2ε
=

ρ

2
.

Putting everything together, we see that the probability that the two outputs of the algorithm differ is at most δ+δ/2+ρ/2 <
ρ.

B.3. Replicable Agnostic PAC Learner for FiniteH

In this section we present a replicable agnostic PAC learner for finite hypothesis classes, i.e., a learner whose output is a
hypothesis that has error rate close to the best one in the class. Our construction relies on the replicable SQ oracle from
(Impagliazzo et al., 2022) (see Theorem B.2). The idea is simple: since the error rate of every h ∈ H can be replicably
estimated using Theorem B.2, we do that for every h ∈ H and then we return the one that has the smallest estimated value.

Algorithm 2 Replicable Agnostic Learner for FiniteH
Input: Hypothesis class H, sample access to a distribution D over X × {0, 1}
Parameters: accuracy ε, confidence δ, replicability ρ
Output: Classifier h that is ε-close to the best one in H and its estimated
error on D
α̂h ← ReprErrorEst(ε/2, δ/|H|, ρ/|H|),∀h ∈ H {Theorem B.2.}
ĥ∗ ← argminh∈H âh {Break ties arbitrarily in a consistent manner.}
Output (ĥ∗, α̂ĥ∗)

It is not hard to see that Algorithm 2 is ρ-replicable and returns a hypothesis whose error is ε-close to the best one.

Claim B.7. Let H be a finite hypothesis class and ε, δ, ρ ∈ (0, 1)3. Given O
(

|H|3
ε2ρ2 log

(
|H|
δ

))
i.i.d. samples from D,

Algorithm 2 is ρ-replicable and returns a classifier ĥ∗ with err(ĥ∗) < minh∈H err(h) + ε, with probability at least 1− δ.

Proof. The replicability of the algorithm follows from the fact that we estimate each âh replicably with parameter ρ/|H|
and we make |H| such calls.

Notice that for each call to the replicable error estimator we need nh = O
(

|H|2
ε2ρ2 log

(
|H|
δ

))
samples and we make |H| such

calls.

Since the accuracy parameter of the statistical query oracle is ε/2, using the triangle inequality, we have that |âĥ∗ −
minh∈H ah| ≤ ε.

Finally, the correctness of the algorithm follows from a union bound over the correctness of every call to the oracle.

C. TV Indistinguishability and Replicability
In this section, we will study the connection between TV indistinguishability and replicability.
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C.1. The Proof of Theorem 2.7

We are now ready to establish the connection between TV indistinguishability and replicability. The upcoming result is
particularly useful because it provides a data-independent way to couple the random variables.

Proof of Theorem 2.7. LetR be Poisson point process with intensity P × Leb× Leb, where Leb is the Lebesgue measure
over R+ (cf. Theorem A.13, Figure 1). The learning rule A′ is defined in the following way. For every S ∈ ({X × {0, 1})n,
let r = {(hi, yi, ti)}i∈N be an infinite sequence of the Poisson point processR and let j = argmini∈N{ti : fS(hi) > yi}.
The output of A′ is hj and we denote it by A′(S, r). We will shortly explain why this is well-defined, except for a measure
zero event. The fact that A′ is equivalent to A follows from the coupling guarantees of this process (cf. Theorem A.13).
In particular, we can instantiate this result with the single random variable {A(S)}. We can now observe that, except for
a measure zero event, (i) since A is absolutely continuous with respect to P , there exists such a density fS , (ii) the set
over which we are taking the minimum is not empty, (iii) the minimum is attained at a unique point. This means that A′ is
well-defined, except for a measure zero event11, and, by the correctness of the rejection sampling process (Angel & Spinka,
2019), A′(S) has the desired probability distribution.

We now prove that A′ is replicable. Since A is ρ-TV indistinguishable, it follows that

E
S,S′∼Dn

[dTV(A(S), A(S′))] ≤ ρ.

We have shown that A′ is equivalent to A, so we can see that ES,S′∼Dn [dTV(A
′(S), A′(S′))] ≤ ρ. Thus, using the

guarantees of Theorem A.13, we have that for any datasets S, S′

Pr
r∼R

[A′(S, r) ̸= A′(S′, r)] ≤ 2dTV(A
′(S), A′(S′))

1 + dTV(A′(S), A′(S′))
.

By taking the expectation over S, S′, we get that

E
S,S′∼Dn

[
Pr
r∼R

[A′(S, r) ̸= A′(S′, r)]
]
≤ E

S,S′∼Dn

[
2dTV(A

′(S), A′(S′))

1 + dTV(A′(S), A′(S′))

]
≤ 2ES,S′∼Dn [dTV(A

′(S), A′(S′))]

1 +ES,S′∼Dn [dTV(A′(S), A′(S′))]

≤ 2ρ

1 + ρ
,

where the first inequality follows from Theorem A.13 and taking the expectation over S, S′, the second inequality follows
from Jensen’s inequality, and the third inequality follows from the fact that f(x) = 2x/(1 + x) is increasing. Now notice
that since the source of randomnessR is independent of S, S′, we have that

E
S,S′∼Dn

[
Pr
r∼R

[A′(S, r) ̸= A′(S′, r)]
]
= Pr

S,S′∼Dn,r∼R
[A′(S, r) ̸= A′(S′, r)] .

Thus, we have shown that

Pr
S,S′∼Dn,r∼R

[A′(S, r) ̸= A′(S′, r)] ≤ 2ρ

1 + ρ
,

so the algorithm A′ is n-sample 2ρ
1+ρ -replicable, which concludes the proof.

C.2. A General Equivalence Result

In this section, we focus on the following two stability/replicability definitions.

Definition C.1 (Replicability (Impagliazzo et al., 2022)). LetR be a distribution over random strings. A learning rule A is
ρ-replicable if for any distribution µ over I and two independent instances I, I ′ ∼ µ it holds that

Pr
I,I′∼µ,r∼R

[A(I, r) ̸= A(I ′, r)] ≤ ρ .

11Under the measure zero event that at least one of these three conditions does not hold, we let A′(S, r) be some arbitrary classifier.
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Definition C.2 (Total Variation Indistinguishability). A learning rule A is ρ-TV indistinguishable if for any distribution µ
and two independent instances I, I ′ ∼ µ it holds that

E
I,I′∼µ

[dTV(A(I), A(I ′))] ≤ ρ .

A learning rule A is ρ-fixed prior TV indistinguishable if for any distribution µ, there exists some prior Pµ such that for
I ∼ µ it holds that

E
I∼µ

[dTV(A(I),Pµ)] ≤ ρ .

Definition C.3 (Pseudo-Global Stability). Let R be a distribution over random strings. A learning rule A is said to be
(η, ν)-pseudo-globally stable if for any distribution µ there exists an element or ∈ O for every r ∈ supp(R) (depending on
µ) such that

Pr
r∼R

[
Pr
I∼µ

[A(I, r) = or] ≥ η

]
≥ ν .

Our general equivalence result follows.

Proposition C.4 (TV Indistinguishability ≡ Replicability). Let I be an input space and O be an output space.

• If a learning rule A is ρ-replicable, then it is also ρ-TV indistinguishable.

• Consider a prior distribution P over O. Consider a learning rule A that is ρ-TV indistinguishable and absolutely
continuous with respect to P . Then, there exists a learning rule A′ that is equivalent to A and A′ is 2ρ/(1 + ρ)-
replicable.

We remark that one can adapt the proofs of Theorem 2.1 and Theorem 2.7 by setting I = (X × {0, 1})n, µ = Dn and
O = {0, 1}X . Moreover, when I is countable, the design of the reference probability measure works in a similar way.
Hence, we get the following corollary.

Corollary C.5. Let I be a countable domain and let A be a learning rule that is ρ-TV indistinguishable. Then, there exists
a 2ρ

1+ρ -replicable learning rule A′ that is equivalent to A.

D. TV Indistinguishability and Differential Privacy
D.1. DP Preliminaries

We introduce some standard tools from the DP literature. We start with the Stable Histograms algorithm (Korolova
et al., 2009; Bun et al., 2016). Let X be some domain and let S ∈ Xn be a (multi)set of its elements. We denote by
freqS(x) =

1
n · |{i ∈ [n] : xi = x}|, i.e., the fraction of times that x appears in S. The following result holds. It essentially

allows us to privately publish a short list of elements that appear with high frequency in a dataset.

Lemma D.1 (Stable Histograms (Korolova et al., 2009; Bun et al., 2016)). Let X be some domain. For

n ≥ O

(
log(1/(ηβδ))

ηε

)
there exists an (ε, δ)-differentially private algorithm StableHist which, with probability at least 1 − β, on input
S = (x1, . . . , xn) ∈ Xn, outputs a list L ⊆ X and a sequence of estimates a ∈ [0, 1]|L| such that

• Every x with freqS(x) ≥ η appears in L.

• For every x ∈ L, the estimate ax satisfies |ax − freqS(x)| ≤ η.

We also recall the agnostic private learner for finite classes that was proposed in (Kasiviswanathan et al., 2011) and is based
on the Exponential Mechanism of (McSherry & Talwar, 2007).
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Lemma D.2 (Generic Private Learner (Kasiviswanathan et al., 2011)). LetH ⊆ {0, 1}X . There is an (ε, 0)-differentially
private algorithm GenPrivLearner which given

n = O

(
log(|H|/β) ·max

{
1

εα
,
1

α2

})
samples from D, outputs a hypothesis h such that

Pr

[
errD(h) ≤ min

h′∈H
errD(h

′) + α

]
≥ 1− β .

Finally, we state a result relating weak learners and privacy.

Theorem D.3 (Weakly Accurate Private Learning =⇒ Finite Littlestone Dimension (Alon et al., 2019)). Let X be some
domain and H ⊆ {0, 1}X be a hypothesis class with Littlestone dimension d ∈ N ∪ {∞} and let A be a weakly accurate
learning algorithm (i.e., (α, β)-accurate with α = 1/2− γ, β = 1/2− γ) for H with sample complexity n that satisfies
(ε, δ)-differential privacy with (ε, δ) = (0.1, 1/(n2 log(n))). Then, n ≥ Ω(log⋆(d)).

In particular any class that is privately weakly-learnable has a finite Littlestone dimension.

We remark that this theorem appears in (Alon et al., 2019) with accuracy constant 0.1. However, it is known from (Dwork
et al., 2010) that a DP algorithm with error 1/2− γ can be boosted to one with arbitrarily small error with negligible loss in
the privacy guarantees.

The following result that appears in (Bun et al., 2020) shows that ifH has finite Littlestone dimension, then there exists a
ρ-globally stable learner for this class.

Theorem D.4 (Finite Littlestone Dimension =⇒ Global Stability (Bun et al., 2020)). Let X be some domain and
H ⊆ {0, 1}X be a hypothesis class with Littlestone dimension d <∞. Let α > 0 be the accuracy parameter and define

n = 22
d+2+14d+1 ·

⌈
2d+2

α

⌉
. Then, there exists a randomized algorithm A : (X × {0, 1})n ×R → {0, 1}X such that for

any realizable distribution D there exists a hypothesis fD for which

Pr
S∼Dn,r∼R

[A(S, r) = fD] ≥
1

(d+ 1)22d+1
, Pr

(x,y)∼D
[fD(x) ̸= y] ≤ α ,

whereR is the source of internal randomness of A.

We also include a result from (Ghazi et al., 2021b; Bun et al., 2023) which states that replicability implies differential privacy
under general input domains12.

Theorem D.5 (Replicability =⇒ Differential Privacy (Ghazi et al., 2021b; Bun et al., 2023)). LetH ⊆ {0, 1}X , where
X is some input domain. IfH is learnable by an n-sample (α, β)-accurate ρ-replicable learner A, for α ∈ (0, 1/2), ρ ∈
(0, 1), β ∈

(
0, 2ρ

ρ+1 − 2
√

2ρ
ρ+1 + 1

)
, then, for any (α′, β′, ε, δ) ∈ (0, 1)4 it is learnable by an (α + α′, β′)-accurate

(ε, δ)-differentially private learner. Moreover, its sample complexity is

n · poly(1/α′, 1/ε, log(1/δ), log(1/β′)) .

D.2. The Proof of Theorem 3.1

In this section we show that Global Stability (cf. Definition A.8) implies TV indistinguishability in the context of PAC
learning. In particular, we show that given black-box access to a ρ-globally stable learner A whose stable output is α-accurate,
e.g., the one described in Theorem D.4, we can transform it to a ρ-TV indistinguishable learner which is (α+α′, β)-accurate,
with a multiplicative poly(1/ρ, 1/α′, log(1/β) blow-up in its sample complexity. We remark that this transformation is not
restricted to countable domains X . As an intermediate result, we show that global stability implies replicability.

12In fact, this result holds for general statistical tasks. The parameters stated in (Bun et al., 2023) are slightly looser, but using our
boosting results we can generalize them and use the ones that appear in the statement.
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Lemma D.6 (Global Stability =⇒ Replicability). Let A be an n-sample ρ-globally stable learner whose stable hypothesis
is α-accurate. Then, for every ρ′, α′, β ∈ (0, 1)3, there exists a learner A′ (Algorithm 3) that is ρ′-replicable and
(α+ α′, β)-accurate. Moreover, A′ needs

Õ

(
log(1/β)

ρ′2ρ3

)
oracle calls to A and uses

Õ

(
log(1/β)

ρ2ρ′3
·
(
n+

1

α′2

))
samples.

Proof. We first argue about the accuracy and the confidence of the algorithm. Let hA be the hypothesis such that
PrS∼Dn [A(S) = h] ≥ 1 − ρ. The replicable heavy hitters algorithm (Algorithm 1) guarantees that, with probability at
least 1− β/2, hA will be contained in the output list L (Lemma B.6). We call this event E0 and we condition on it. In the
next step, we call the replicable agnostic learner on L (Algorithm 2). Since there is a hypothesis whose error rate is at most
α, we know that the output of the agnostic learner will have error rate at most α + α′, with probability at least 1 − β/2
(Lemma D.2). Let us call this event E1. Thus, we see that by taking a union bound over the probabilities of these two events,
the error rate of the output of our algorithm will be at most α+ α′, with probability at least 1− β.

We now shift our focus to the replicability of our algorithm. First, notice that because of the guarantees of the replicable
heavy hitters (Lemma B.6) the list L will be the same across two executions when the randomness is shared, with probability
at least 1− ρ′/2. Let us call this event E2. Similarly, under the event E2, the output of the agnostic learner will be the same
across two executions with probability 1− ρ′/2. Let us call this event E3. By taking a union bound over E2, E3, we see that
the algorithm is ρ′-replicable.

The sample complexity of the algorithm follows by the sample complexity of the replicable heavy hitters and the replicable
agnostic learner (Lemma B.6, Lemma D.2). In particular, we need

Õ

(
n · log(1/β)

ρ2ρ′3

)
,

samples for this step and since the list has size O(1/ρ′) we need

Õ

(
log(1/β)

α′2ρ2ρ′3

)
,

for the replicable agnostic learner.

Algorithm 3 From Global Stability to Replicability
1: Input: Black-box access to a n-sample ρ-globally stable learner A with

α-accurate stable hypothesis, sample access to distribution D
2: Parameters: ρ′, α′, β ∈ (0, 1)3

3: Output: Classifier h : X → {0, 1}
4: D′ ← distribution induced by drawing S ∼ Dn and running A(S)
5: L← output of ReplicableHeavyHitters (Algorithm 1) with threshold ρ/2, error ρ/4, confidence β/2, replica-

bility ρ′/4
6: Output AgnosticReplicableLearner (Algorithm 2) on hypothesis class L, with accuracy α′, confidence β′/2

and replicability ρ′/2

Corollary D.7. Let A be an n-sample ρ-globally stable learner whose stable hypothesis is α-accurate. Then, for every
ρ′, α′, β ∈ (0, 1)3, there exists a learner A′ (Algorithm 3) that is ρ′-TV indistinguishable and (α + α′, β)-accurate.
Moreover, A′ needs

Õ

(
log(1/β)

ρ′2ρ3

)
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oracle calls to A and uses

Õ

(
log(1/β)

ρ2ρ′3
·
(
n+

1

α2

))
samples.

Proof. The proof follows immediately from Lemma D.6 and the fact that a ρ′-replicable algorithm is ρ′-TV indistinguishable
(Theorem 2.1).

We now explain how we can use the previous results in the previous section to design a replicable algorithm for a class
H ⊆ {0, 1}X when we know thatH admits a DP learner, for general domains X . Formally, we prove the following result.

Lemma D.8 (Differential Privacy =⇒ Replicability in General Domains). LetH ⊆ {0, 1}X be a hypothesis class, where
X is some input domain. Let A be an n-sample (0.1, 1/(n2 log(n)))-differentially private (1/2 − γ, 1/2 − γ)-accurate
learner for H, for some γ ∈ (0, 1/2]. Then, for every ρ, α, β ∈ (0, 1)3 there exists a learner A′ that is ρ-replicable and
(α, β)-accurate. Moreover, A′ uses

Õ

(
(d+ 1)323·(2

d+1) log(1/β)

ρ2
·
(
22

d+2+14d+1 ·
⌈
2d+2

α

⌉
+

1

α2

))

samples, where d is the Littlestone dimension ofH.

Proof. The first step in the proof is to notice that the existence of such a DP learner for H implies that its Littlestone
dimension d is finite ((Alon et al., 2019), Theorem D.3). Then, we instantiate Algorithm 3 with the globally stable algorithm
from (Bun et al., 2020) (Theorem D.4) with accuracy α/2. Notice that since the random bits for the globally stable need
to be different across two executions of the algorithm, we use two different sources of randomness, one that is public,
i.e., shared across two executions, and one that is private, i.e., not shared across two executions. Due to Lemma B.4, this
is equivalent to the original definition of replicability (Definition 1.2). For the remaining two steps, i.e., the replicable
heavy-hitters and the replicable agnostic learner, we use public random bits. The sample complexity of the algorithm follows
from the sample complexity of Theorem D.4 and Lemma D.6.

Corollary D.9 (Differential Privacy =⇒ TV Indistinguishability in General Domains). LetH ⊆ {0, 1}X be a hypothesis
class, where X is some input domain. Let A be an n-sample (0.1, 1/(n2 log(n)))-differentially private (1/2− γ, 1/2− γ)-
accurate learner for H, for some γ ∈ (0, 1/2]. Then, for every ρ, α, β ∈ (0, 1)3 there exists a learner A′ that is ρ-TV
indistinguishable and (α, β)-accurate. Moreover, A′ uses

Õ

(
(d+ 1)323·(2

d+1) log(1/β)

ρ2
·
(
22

d+2+14d+1 ·
⌈
2d+2

α

⌉
+

1

α2

))

samples, where d is the Littlestone dimension ofH.

Proof. The proof of this result follows immediately by Lemma D.8 and the fact that replicable learners are also TV
indistinguishable learners (Theorem 2.1).

D.3. List-Global Stability =⇒ TV Indistinguishability

In this section we provide a different TV indistinguishable learner for classes with finite Littlestone dimension that has
polynomial sample complexity dependence on the Littlestone dimension of the class. This learner builds upon the results
of (Ghazi et al., 2021a;b). In particular, (Ghazi et al., 2021a) show that a class with finite Littlestone dimension admits a
list-globally stable learner (Definition D.10). This learner constructs a sequence of hypothesis classes whose Littlestone
dimension is at most that ofH, and part of the proof requires that uniform convergence (Definition A.6) holds for all of them.
In order to avoid making measurability assumptions on the domain X and the hypothesis classH that would imply such a
claim, we only state the results for countableH. Nevertheless, we emphasize that they hold for more general settings.

We underline that the result in (Ghazi et al., 2021b) which designs a pseudo-globally stable learner for classes with finite
Littlestone dimension, holds in the setting where X is finite because it relies on correlated sampling. The reason behind
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this fact is that they have to convert a DP learner to a pseudo-globally stable one. In our case, we have to show that ifH is
learnable by a DP algorithm, it also admits a TV indistinguishable one. The proof of Theorem 3.1 follows almost directly
from a result appearing in (Ghazi et al., 2021b).

Definition D.10 (List-Global Stability (Ghazi et al., 2021b)). A learning algorithm A is said to be m-sample α-accurate
(L, η)-list-globally stable if A outputs a set of at most L hypotheses and there exists a hypothesis h (that depends on D)
such that Pr(x1,y1),...,(xm,ym)∼Dn [h ∈ A((x1, y1), . . . , (xm, ym))] ≥ η and errD(h) ≤ α.

(Ghazi et al., 2021b) showed the following result regarding list m-list-globally stable learners, which is a modification of a
result of (Ghazi et al., 2021a).

Lemma D.11 (Finite Littlestone⇒ List-Global Stability (Ghazi et al., 2021b;a)). Let α, ζ > 0. and H ⊆ {0, 1}X be a
countable hypothesis class with Ldim(H) = d <∞, where X is an arbitrary domain. Then, there is a (d log(1/ζ)/α)O(1)-
sample α-accurate

(
exp

(
(d/α)O(1)

)
,Ω(1/d)

)
-list-globally stable learner forH such that, with probability at least 1− ζ,

every hypothesis h′ in the output list satisfies errD(h′) ≤ 2α.

Algorithm 4 List-Global Stability =⇒ TV Indistinguishability (Essentially Algorithm 1 in (Ghazi et al., 2021b))
1: Input: Black-box access to list-globally stable learner A
2: Parameters: α, β, ρ, η, L
3: Output: Classifier h : X → {0, 1}
4: τ ← 0.5η

5: γ ← 106 log(L/(ρτ))
τ

6: k1 ← 106 log(L/(ρτ))
τ2

7: k2 ←
⌈
106γ2 log(L/(ρτ))

ρ2

⌉
8: m ← (d log(k1/β)/α)

O(1) {Number of samples to run list-globally stable learner with parameters (α, β/k1)
(Lemma D.11)}

9: for i← 1 to k1 do
10: Draw Si ∼ Dm, run A on Si to get a set Hi

11: end for
12: Let H be the set of all h ∈ H that appear in at least τ · k1 of the sets H1, . . . ,Hk1

13: for j ← 1 to k2 do
14: Draw Tj ∼ Dm, run A on Tj to get a set Gj

15: end for
16: for h ∈ H do
17: Let Q̂H,G1,...,Gk2

(h) =
|{j∈[k2]|h∈Gj}|

k2

18: end for
19: Let P̂H,G1,...,Gk2

be the probability distribution onH defined by

P̂H,G1,...,Gk2
(h) =


exp(γQ̂H,G1,...,Gk2

(h))∑
h′∈H exp(γQ̂H,G1,...,Gk2

(h′))
, h ∈ H,

0, otherwise.

20: Output h ∼ P̂H,G1,...,Gk2

Proposition D.12 (Adaptation from (Ghazi et al., 2021b)). Let H ⊆ {0, 1}X be a countable hypothesis class with
Ldim(H) = d < ∞ and X be an arbitrary domain. Then, for all α, β, ρ ∈ (0, 1)3, there exists an n-sample ρ-TV
indistinguishable algorithm (Algorithm 4) that is (α, β)-accurate with respect to the data-generating distribution D, where

n = poly(d, 1/α, 1/ρ, log(1/β)) .

Proof. First, Lemma D.11 guarantees the existence of a list-globally stable learner A forH. We will borrow some notation
from (Ghazi et al., 2021b). We remark that the proof is a simple adaptation of the proof of Theorem 20 in (Ghazi et al.,
2021b) but we include it for completeness. We will use Algorithm 4 essentially appearing in (Ghazi et al., 2021b) (this
algorithm is the same as Algorithm 1 in (Ghazi et al., 2021b); their algorithm has an additional last step which performs
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correlated sampling). We will show that Algorithm 4 satisfies the conclusion of Proposition D.12 and is the desired TV
indistinguishable learner.

Sample Complexity. The number of samples used by Algorithm 4 is m · (k1 + k2), where m is the number of samples
used for the black-box list-globally stable learner A. In particular, we have that

n(α, β, ρ) = poly(d, 1/α, 1/ρ, log(1/β)) .

Accuracy Analysis. By the guarantees of algorithm A, we get that the output of A consists only of hypotheses with
distributional error at most α with probability 1− β/k1, a union bound implies that this holds for all hypotheses in H with
probability 1− β. This implies the accuracy guarantee for Algorithm 4.

TV Indistinguishability Analysis. Let us set Q(h) = PrS∼Dn [h ∈ A(S)], let H≥0.9τ = {h ∈ 2X : Q(h) ≥ 0.9τ} and
H≥1.1τ = {h ∈ 2X : Q(h) ≥ 1.1τ}. First, Algorithm 4 creates the set H that contains all h ∈ H that appear in at least
τ · k1 of the realizations A(S1), . . . , A(Sk1

).

The first lemma controls the probability that H contains hypotheses that are ”heavy hitters” for A and does not contain
hypotheses h whose Q(h) is small.

Lemma D.13 (Adaptation of Lemma 22 in (Ghazi et al., 2021b)). Let E denote the good event that H1.1τ ⊆ H ⊆ H0.9τ .
Then Pr[E ] ≥ 1− ρ, where the randomness is over the datasets S1, ..., Sk1

and A.

Proof. We will first show that Pr[H1.1τ ⊆ H] ≥ 1− ρ/2. Since A outputs a list of size at most L, H1.1τ ≤ L
1.1τ ≤ L/τ .

For any f ∈ H1.1τ , we have that 1{f ∈ H} is an i.i.d. Bernoulli random variable with success probability Q(f) ≥ 1.1τ .
Hoeffding’s inequality implies that

Pr[f /∈ H] ≤ exp(−0.02τ2k1) ≤ 0.01ρτ/L .

A union bound over all hypotheses in H1.1τ , implies the desired inequality. The other direction follows by a similar argument
and we refer to (Ghazi et al., 2021b) for the complete argument.

The next step is to define the distribution P with density P(h) ∝ exp(γQ(h))1{h ∈ H≥0.9τ}. We can also define
PH(h) ∝ exp(γQ((h))1{h ∈ H}, where γ is as in Algorithm 4. The next lemma relates the two distributions.

Lemma D.14 (Adaptation of Lemma 23 in (Ghazi et al., 2021b)). Under the event E , it holds that dTV(P,PH) ≤ ρ/2.

Proof. The proof is exactly the same as the one of Lemma 23 in (Ghazi et al., 2021b) with the single modification that we
pick γ to be of different value, indicated by Algorithm 4.

Given a list-globally stable learner A (which exists thanks to Lemma D.11), we can construct the distribution over hypotheses
P̂H,G1,...,Gk2

appearing in Algorithm 4. We can then relate the empirical distribution P̂H,G1,...,Gk2
with its population

analogue PH .

Lemma D.15 (Adaptation of Lemma 24 in (Ghazi et al., 2021b)). It holds that E[dTV(PH , P̂H,G1,...,Gk2
)] ≤ ρ/2, where

the expectation is over the sets T1, ..., Tk2
and the randomness of A.

Proof. The proof is exactly the same as the one of Lemma 24 in (Ghazi et al., 2021b) with the single modification that we
pick k2 to be of different value, indicated by Algorithm 4.

Combining the above lemmas (as in (Ghazi et al., 2021b)), we immediately get that E[dTV(P, P̂H,G1,...,Gk2
)] ≤ ρ, where

the expectation is over all the sets S1, ..., Sk1
and T1, ..., Tk2

given as input to the learner A and A’s internal randomness.
Note that P is independent of the data and depends only on A. Both P and P̂H,G1,...,Gk2

are supported on a finite domain.
Note that Algorithm 4 that, given a training set S, outputs the distribution over hypotheses P̂H,G1,...,Gk2

(obtained by
Algorithm 4) satisfies TV indistinguishiability with parameter 2ρ using triangle inequality. Hence, two independent runs of
Algorithm 4 will be 2ρ-close in total variation in expectation and the algorithm is TV indistinguishable, as promised.
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D.4. The Proof of Theorem 3.2

We are now ready to show that TV indistinguishability implies approximate DP. We first start by showing that a non-trivial
TV indistinguishable learner for a class H gives rise to a non-trivial DP learner for H. The algorithm is described in
Algorithm 5. The result then follows from the fact that classes which admit non-trivial DP learners have finite Littlestone
dimension (Theorem D.3).

Algorithm 5 From TV Indistinguishability to Differential Privacy
1: Input: Black-box access to (α, β)-accurate ρ-TV Indistinguishable Learner A,

Sample S
2: Parameters: α′, β′, ε, δ
3: Output: Classifier h : X → {0, 1}
4: k ← Oβ,ρ

(
log(log(1/β′)/(β′δ))

ε

)
, k′ ← Oβ,ρ(log(1/β

′))

5: Break S into disjoint {Sj
i }i∈[k],j∈[k′] with |Sj

i | = n, ∀i ∈ [k], j ∈ [k′]
6: P ← data-independent reference probability measure from Claim 2.5
7: (Xj

1 , . . . , X
j
k)← ΠR(A(Sj

1), . . . , A(Sj
k)),∀j ∈ [k′] using the Poisson point processR with intensity P × Leb× Leb

{A(Sj
i ) is a distribution over classifiers, the coupling ΠR is described in Theorem A.13.}

8: Compute list Lj ← StableHist(Xj
1 , . . . , X

j
k), with η = Oβ,ρ(1/ log(1/β

′)), correctness β′/3, privacy
(ε/2, δ),∀j ∈ [k′] {Lemma D.1}

9: L̃j ← Remove elements from Lj that appear less than η/2 times, ∀j ∈ [k′]

10: Output GenPrivLearner(L̃1, . . . , L̃k′
) with accuracy (α′/2, β′/3) , privacy (ε/2, 0) {Lemma D.2}

Before we state the result formally, let us first provide some intuition behind the approach. On a high level it resembles
the approaches of (Bun et al., 2020; Ghazi et al., 2021b; Bun et al., 2023) to show that (pseudo-)global stability implies
differential privacy. We consider k′ different batches of k datasets of size n. For each such batch, our goal is to couple the k
different executions of the algorithm on an input of size n, so that most of these outputs are, with high probability, the same.
One first approach would be to use a random variable as a “pivot” element in each batch: we first draw A(S1

1) according to
its distribution and the remaining {A(S1

i )}i∈[k]\{1} from their optimal coupling with A(S1
1), given its realized value. Even

though this coupling has the property that, in expectation, most of the outputs will be the same, it is not robust at all. If the
adversary changes a point of S1

1 , then the values of all the outputs will change! This is not privacy preserving. For this
reason, we use the coupling that is described in Theorem A.13. We use the fact that X is countable to design a reference
probability measure P that is independent of the data. This is the key step that leads to privacy-preservation. Then, we can
argue that if we follow this approach for multiple batches, there will be a classifier whose frequency and performance are
non-trivial. The next step is to feed all these hypotheses into the Stable Histograms algorithm (cf. Lemma D.1), which will
output a list of frequent hypotheses that includes the non-trivial one we mentioned above. Finally, we feed these hypotheses
into the Generic Private Learner (cf. Lemma D.2) and we get the desired result.

Proposition D.16. Let H ⊆ {0, 1}X where X is countable. Assume that H is learnable by an (α, β)-accurate ρ-TV
indistinguishable learner A using nTV samples, where ρ ∈ (0, 1), α ∈ (0, 1/2), β ∈ (0, (1− ρ)/(1 + ρ)). Then, for any
(α′, β′, ε, δ) ∈ (0, 1)4, it is also learnable by an (α+ α′, β′)-accurate (ε, δ)-differentially private learner and the sample
complexity is

nDP = Oβ,ρ

(
log(1/β′) · log(log(1/β′)/(β′δ))

ε
+ log(1/ηβ′) ·max

{
1

εα′ ,
1

α′2

})
· nTV .

Proof. Let A be the TV indistinguishable algorithm. We need to argue that the output of Algorithm 5 is (α+ α′, β′)-accurate
and (ε, δ)-DP. We start with the former property.

Performance Guarantee. Let us consider the following experiment. We draw k samples, each one of size n = nTV. Let
S1
1 , . . . , S

1
k be these samples and A(S1

1), . . . , A(S1
k) be the distributions of the outputs of the algorithm on these samples.

We denote by X1
i the random variable that follows the distribution A(S1

i ). Let us consider a coupling of this collection of
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variables. Then, we have that

E
coupling

[
min
j∈[k]

k∑
i=1

1X1
i ̸=X1

j

]
≤ E

coupling

[
k∑

i=1

1X1
i ̸=X1

1

]

=

k∑
i=1

E
coupling

[
1X1

i ̸=X1
1

]
=

k∑
i=1

Pr
coupling

[X1
i ̸= X1

1 ] .

Note that the above hold for any coupling between the random variables (X1
i )i∈[n]. Let us fix the DP parameters (ε, δ).

We will use the coupling protocol of Theorem A.13 with Ω = {0, 1}X , P the probability measure described in Claim 2.5,
andR the Poisson point process with intensity P × Leb× Leb. We remark that this choice of P satisfies two properties:
the collection A(S1

i ) is absolutely continuous with respect to P and P is data-independent, so it will help us establish the
differential privacy guarantees. The guarantees of the coupling of Theorem A.13 imply that

Pr
R
[X1

i ̸= X1
1 ] ≤

2dTV(X
1
i , X

1
1 )

1 + dTV(X1
i , X

1
1 )

,

for all i ∈ [k]. Thus, we have that

E
R

[
min
j∈[k]

k∑
i=1

1X1
i ̸=X1

j

]
≤

k∑
i=1

2dTV(X
1
i , X

1
1 )

1 + dTV(X1
i , X

1
1 )

.

By taking the expectation over the random draws of the samples S1, . . . , Sk, we see that

E
S1
1 ,...,S

1
k,R

[
k∑

i=1

1X1
i ̸=X1

1

]
≤ E

S1
1 ,...,S

1
k

[
k∑

i=1

2dTV(X
1
i , X

1
1 )

1 + dTV(X1
i , X

1
1 )

]

=

k∑
i=1

E
S1
1 ,...,S

1
k

[
2dTV(X

1
i , X

1
1 )

1 + dTV(X1
i , X

1
1 )

]

≤
k∑

i=1

2ES1
1 ,...,S

1
k
[dTV(X

1
i , X

1
1 )]

1 +ES1
1 ,...,S

1
k
[dTV(X1

i , X
1
1 )]

≤ 2ρ

1 + ρ
· k,

where the second to last step follows by Jensen’s inequality since the function f(x) = 2x/(1 + x) is concave in (0, 1)
and the last step because ES1

1 ,...,S
1
k
[dTV(X

1
i , X

1
1 )] ≤ ρ and f is increasing in (0, 1). To make the notation cleaner, we let

ρ′ = 2ρ
1+ρ . Notice that if ρ < 1 then ρ′ < 1. Now using Markov’s inequality we get that

Pr

[
k∑

i=1

1X1
i ̸=X1

1
≥ νkρ′

]
≤ 1

ν
=⇒ Pr

[
k∑

i=1

1X1
i =X1

1
≥ (1− νρ′)k

]
≥ 1− 1

ν
,

where the probability is with respect to the randomness of the samples and the coupling.

We denote by E1ν =
{∑k

i=1 1X1
i =X1

1
≥ (1− νρ′)k

}
the event that a (1− νρ′)-fraction of the outputs has the same value.

Let us now focus on the number of classifiers in a single experiment that are correct, i.e., their error rate is at most α < 1/2.
Let Y 1

i = 1err(X1
i )≥1/2. Notice that because of the coupling we have used, {Y 1

i }ki=1 are not independent, so we cannot
simply apply a Chernoff bound to get concentration. Let E1β be the event that the classifier X1

1 is correct. We know that
Pr[E1β ] ≥ 1− β, where the probability is taken with respect to the random draws of the input and the randomness of the
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algorithm. Now notice that under the event E1ν ∩ E1β at least (1− νρ′)k classifiers are correct and have the same output. By
a union bound we see that

Pr[E1ν ∩ E1β ] ≥ 1− β − 1

ν
.

We now pick ν so that

1− β − 1

ν
=

1− β − ρ′

2
> 0 =⇒ ν =

2

ρ′ − β + 1
.

Thus, under E1ν ∩ E1β there are 1−β−ρ′

1−β+ρ′ k classifiers that are equal to one another and are correct. We let q = 1−β−ρ′

1−β+ρ′ . As we

discussed, the probability of this event is at least 1−β−ρ′

2 = p, so if we execute it k′ times we have that with probability at

least 1− e−pk′
it will occur at least once, i.e., Pr

[
∪j∈[k′]{Ejν ∩ E

j
β}
]
≥ 1− e−pk′

. We pick k′ = 1/p · log(3/β′). Thus,
with probability at least 1− β′/3 there is a correct classifier that appears at least qk times. We condition on this event for
the rest of proof and we let Sj

i , X
j
i ∼ A(Sj

i ) be the i-th sample, classifier of the j-th batch, respectively.

The next step is to feed these classifiers into the Stable Histograms algorithm (cf. Lemma D.1). We have shown that there
exists a good classifier whose frequency is at least η = qk

k·k′ =
q
k′ . Thus, our goal is to detect hypotheses with frequency at

least η/2. We pick the correctness parameter of the algorithm to be β′/3 and the DP parameters to be (ε/2, δ). In total, we
need

n′ = O

(
log(1/(ηβ′δ))

ηε

)
= O

(
log(1/β′) · log (log(1/β′)/(qpβ′δ))

qpε

)
,

hypotheses in our list. Since n′ = k · k′ it suffices to pick

k = O

(
log (log(1/β′)/(qpβ′δ))

qε

)
.

Hence, with probability at least 1 − β′/3, the output of the algorithm will be a list L that contains all the hypotheses
with frequency at least η/2 along with estimates ax such that |ax − freqS(x)| ≤ η/2. Let x∗ be the correct and frequent
hypothesis whose existence we have established. We know that ax∗ ≥ η/2. Since this algorithm is DP, we can drop from its
output all the elements x ∈ L for which ax < η/2 without affecting the privacy guarantees. Thus, we end up with a new list
L′ whose size is O(1/η).

The last step of the algorithm is to feed this list into the Generic Private Learner (cf. Lemma D.2) with privacy parameters
(ε/2, 0) and accuracy parameters (α′/2, β′/3). The total number of samples we need for this step is

n′′ = O

(
log(1/ηβ′) ·max

{
1

εα′ ,
1

α′2

})
.

Since there is an element in the list whose error is at most α, the guarantees of the algorithm give us that with probability at
least 1− β′/3 the output has error at most α+ α′.

Thus, by taking a union bound over the correctness of the three steps we described, we see that with probability 1− β′ the
algorithm outputs a hypothesis whose error is at most α+ α′. We now argue that the algorithm is (ε, δ)−DP.

Privacy Guarantee. First we need to show that the coupling step is differentially private. This is a direct consequence
of the coupling protocol that we have provided (cf. Theorem A.13) and the fact that the reference probability measure is
data-independent. If the adversary changes an element in Sj

i , i ∈ [k], j ∈ [k′], then the coupling is robust, in the sense that if
we fix the internal randomness, then at most one of the elements that the coupling outputs will change. The result for the
privacy preservation of this step follows by integrating over the internal randomness.

For the remaining two steps, i.e., the Stable Histograms and the Exponential Mechanism the privacy guarantee follows from
their definition. Using the privacy composition, we get that overall our algorithm is (ε/2, δ)+(ε/2, 0) = (ε, δ)-differentially
private.

Corollary D.17. Let H ⊆ {0, 1}X , where X is a countable domain. If H is learnable by a (α, β)-accurate ρ-TV
indistinguishable learner using nTV samples, where ρ ∈ (0, 1), α ∈ (0, 1/2), β ∈ (0, (1−ρ)/(1+ρ)), then Ldim(H) <∞.

Proof. The proof follows directly by combining Proposition D.16 and Theorem D.3.
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D.5. Going Beyond Countable X

We now propose an approach that we believe can lead to a generalization of the algorithm beyond countable domains. The
only change that we make in the algorithm has to do with Algorithm 5, where for every batch j we pickPj =

1
k

∑k
i=1 A(Sj

i ).

Notice that for every j ∈ [k′] the {A(Sj
i )}i∈[k] are absolutely continuous with respect to Pj . However, it is not immediate

now that the choice of {Pj}j∈[k′] leads to a DP algorithm. We believe that it is indeed the case that the algorithm is
approximately differentially private and we leave it as in interesting open problem.

E. Amplification and Boosting
E.1. The Proof of Theorem 4.2

Let us first restate the theorem along with the sample complexity of the algorithm.

Theorem (Indistinguishability Amplification). Let P be a reference probability measure over {0, 1}X and D be a distri-
bution over inputs. Consider the source of randomness R to be a Poisson point process with intensity P × Leb × Leb,
where Leb is the Lebesgue measure over R+. Consider a weak learning rule A that is (i) ρ-TV indistinguishable with

respect to D for some ρ ∈ (0, 1), (ii) (α, β)-accurate for D for (α, β) ∈ (0, 1)2, β < 2ρ
ρ+1 − 2

√
2ρ
ρ+1 + 1, and, (iii)

absolutely continuous with respect to P on inputs from D. Then, for any ρ′, ε, β′ ∈ (0, 1)3, there exists an algorithm
IndistAmpl(A,R, β′, ε, ρ′) (Algorithm 6) that is ρ′-TV indistinguishable with respect to D and (α+ ε, β′)-accurate
for D.
Let nA(α, β, ρ) denote the sample complexity of the weak learning rule A with input β′, ε, ρ′. Then, the learning rule
IndistAmpl(A,R, β′, ε, ρ′) uses

Õ

 log3
(

1
β′

)
(

2ρ
ρ+1 − 2

√
2ρ
ρ+1 + 1− β

)2 (
1−

√
2ρ
ρ+1

)
ε2ρ′2

· nA(α, β, ρ)


i.i.d. samples from D.

Algorithm 6 Amplification of Indistinguishability Guarantees
1: Input: Black-box access to (α, β)-accurate ρ-TV Indistinguishable Learner

A, Sample access to D, Access to Poisson point process R with intensity
P × Leb× Leb {P is the reference probability measure from Claim 2.5.}

2: Parameters: β′, ε, ρ′

3: Output: Classifier h : X → {0, 1}
4: η, ν ←

√
2ρ
1+ρ ,

√
2ρ
1+ρ

5: P ← data-independent reference probability measure from Claim 2.5
6: k ← log(3/β′)

1−ν−β/(1−η)

7: ri ← an infinite sequence of the Poisson Point ProcessR, ∀i ∈ [k] {cf. Theorem A.13.}
8: Dri ← the distribution of hypotheses that is induced by A(S, ri) when S ∼ Dn,∀i ∈ [k]
9: Li ← HeavyHitters

(
Dri ,

3
4 (1− η), 1

4 (1− η), ρ′/(2k), β′/(3k)
)
,∀i ∈ [k] {Algorithm 1.}

10:
(
ĥi, êrr(ĥi)

)
← AgnosticLearner(Li, ε/2, ρ

′/(2k), β′/(3k)),∀i ∈ [k] {Algorithm 2.}
11: for i← 1 to k do
12: if êrr(ĥi) ≤ α+ ε/2 then
13: Output ĥi

14: end if
15: end for
16: Output the all 1 classifier

Proof. Since A is ρ-TV indistinguishable there is an equivalent learning rule A′ that is 2ρ
1+ρ -replicable (cf. Theorem 2.7)

and uses randomnessR, whereR is a Poisson point process with intensity P × Leb× Leb, with Leb being the Lebesgue
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measure over R+. Let
Rη =

{
r ∈ R : ∃h ∈ H s.t. Pr

S∼Dn
[A′(S, r) = h] ≥ 1− η

}
,

We have that Prr∼R[r ∈ Rη] ≥ 1 − ν, for η =
2ρ

1+ρ

ν , ν ∈
[

2ρ
1+ρ , 1

)
(cf. Claim B.3). For each r ∈ Rη let hr ∈ H be an

element that witnesses its inclusion inRη
13. Notice that since A′ is (α, β)-accurate there is at most a β

1−η -fraction of r ∈ R
such that r ∈ Rη, err(hr) > α. Let R∗

η = {r ∈ Rη : err(hr) ≤ α} . Now notice that Prr∼R[r ∈ R∗
η] ≥ 1 − ν − β

1−η .

Thus, by picking k = log(3/β′)
1−ν−β/(1−η) i.i.d. samples fromR we have that with probability at least 1− β′/3 there will be some

ri∗ ∈ R∗
η. We denote this event by E1 and we condition on it for the rest of the proof.

Let us now focus on the call to the replicable heavy hitters subroutine. We have that, with probability at least 1− β′/(3k),
every call will return a list that contains all the (1− η)-heavy-hitters and no elements whose mass is less than (1− η)/2. By
a union bound, this happens with probability at least 1− β′/3 for all the calls. Let us call this event E2 and condition on it
for the rest of the proof. Notice that under these two events, the list Li∗ that corresponds to ri∗ will be non-empty and will
contain a classifier whose error is at most α.

We now consider the calls to the replicable agnostic learner. Notice that every list that this algorithm takes as input has size at
most 2

1−η . Moreover, with probability at least 1− β/3′, the estimated error of every classifier will be at most ε/2 away from

its true error. We call this event E3 and condition on it. Hence, for any ĥj , j ∈ [k], that passes the test in the “if” statement,
we have that err(ĥj) ≤ α+ ε. In particular, the call to Li∗ will return ĥi∗ , with estimated error êrr(ĥ∗

i ) ≤ α+ ε/2, which
means that err(ĥ∗

i ) ≤ α+ ε. Hence, the algorithm will such a classifier and, by a union bound, the total probability that this
event happens is at least 1− β′.

The replicability of the algorithm follows from a union bound over the replicability of the calls to the heavy hitters and the
agnostic learner (cf. Lemma B.6, Claim B.7). In particular, since we call the replicable heavy hitters algorithm k times with
replicability parameter ρ′/(2k) and the replicable agnostic leaner k times with replicability parameter ρ′/(2k), we know
that with probability at least 1− ρ′ all these calls will return the same output across two executions of the algorithm.

For the sample complexity notice that each call to the replicable heavy hitters algorithm requires O
(

k2 log(k/β′(1−η))
(1−η)3ρ′2

)
(cf.

Lemma B.6.) Under the events we have conditioned on, we see that |Li| = O(1/(1− η)),∀i ∈ [k], hence each call to the
agnostic learner requires O

(
k2

(1−η)3ε2ρ′2 log
(

k(1−η)
β′

))
(cf. Claim B.7). Substituting the value of k gives us that the sample

complexity is at most

O

 log3
(

log(1/β′)
β′((1−η)(1−ν)−β)

)
((1− η)(1− ν)− β)

2
(1− η)ε2ρ′2

 .

Plugging in the values of η, ν we get the stated bound.

E.2. The Proof of Theorem 4.3

Let us first recall the result we need to prove along with its sample complexity.

Theorem (Accuracy Boosting). Let P be a reference probability measure over {0, 1}X and D be a distribution over inputs.
Consider the source of randomnessR to be a Poisson point process with intensity P×Leb×Leb, where Leb is the Lebesgue
measure over R+. Consider a weak learning rule A that is (i) ρ-TV indistinguishable with respect to D for some ρ ∈ (0, 1),

(ii) (1/2 − γ, β)-accurate for D for some γ ∈ (0, 1/2), β ∈
(
0, 2ρ

ρ+1 − 2
√

2ρ
ρ+1 + 1

)
, and, (iii) absolutely continuous

with respect to P on inputs from D. Then, for any ρ′, ε, β′ ∈ (0, 1)3, there exists an algorithm IndistBoost(A,R, ε)
(Algorithm 7) that is ρ′-TV indistinguishable with respect to D and (ε, β′)-accurate for D.
If nA(γ, β, ρ) is the sample complexity of the weak learning rule A with input γ, β, ρ, then IndistBoost(A,R, ε) uses

Õ

(
nA(γ, β

′εγ2/6, ρεγ2/(3(1 + ρ))) log(1/β′)

ε2γ2
+

log(1/β′)

(2ρ/(1 + ρ))2ε3γ2

)
i.i.d. samples from D.

13If there are multiple such elements then we pick an arbitrary one using a consistent rule.
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Algorithm 7 Boosting of Accuracy Guarantee
1: Input: Black-box access to weak ( 12 − γ, β)-accurate ρ-TV Indistinguishable

Learner A, Sample S ∼ Dn, Access to Poisson point process R with intensity
P × Leb× Leb {P is the reference probability measure from Claim 2.5.}

2: Target : ε, β′

3: Output: Classifier h : X → {0, 1}
4: IndistBoost() {This algorithm appears in (Impagliazzo et al., 2022)}
5: ρ′ = 2ρ/(1 + ρ)
6: T = 100/(εγ2)
7: µ1(x) = 1

8: nw = nA

(
γ, β′

3T ,
ρ′

6T

)
9: for t = 1..T do

10: Dµt(x) =
µt(x)DX(x)

d(µt)

11: St ← nw/ε · log(T/β′)

12: S′
t ← RejectionSampling

(
St, nw, µt,R(1)

t

)
13: ht ∼ A

(
S′
t,R

(2)
t

)
14: Update µt+1(x) using smooth boosting trick of (Servedio, 2003).
15: Draw S′′

t = O(1/(ρ′2ε3γ2)) i.i.d. samples from D
16: If IndistingTestMeasure

(
µt+1, S

′′
t ,R

(3)
t , ρ′/(3T ), β′/(3T )

)
≤ 2ε/3 then output sgn (

∑
i hi)

17: end for
18: RejectionSampling(Sin, size out, µ,R)
19: Sout = ∅
20: for (x, y) ∈ Sin do
21: Pick b ∈ [0, 1] usingR
22: If µ(x) ≥ b then Sout ← append(Sout, (x, y))
23: If |Sout| > size out then output Sout

24: end for
25: IndistingTestMeasure(µ, S,R, ρ′, β)
26: Call Algorithm 1 in (Impagliazzo et al., 2022) (see Theorem B.2) with source of randomnessR and dataset S, error

ε/3, confidence β, replicability ρ and query function µ

Proof of Theorem 4.3. In the sample complexity bound of Theorem 4.3, we remark that the first term is the number of
samples used by the RejectionSampling mechanism (appearing in (Impagliazzo et al., 2022)) in the T rounds and the
second term controls the number of samples used for the IndistingTestMeasure procedure (appearing in (Impagliazzo
et al., 2022)) for the T rounds (see Algorithm 7). Let [T ] = {1, ..., T}. As in (Impagliazzo et al., 2022)[Theorem 6.1],
we consider that the shared randomness between the two executions consists of a collection of 3T tapes with uniformly
random bits. We denote the j-th tape in round t byR(j)

t for j ∈ [3] and t ∈ [T ]. Since A is n-sample ρ-TV indistinguishable
there is an equivalent learning rule A′ that is n-sample 2ρ

1+ρ -replicable (cf. Theorem 2.7) and uses randomnessR, where
R is a Poisson point process with intensity P × Leb × Leb, with Leb being the Lebesgue measure over R+. Let us set
ρ′ = 2ρ/(1 + ρ). The boosting algorithm that we provide below interprets the random strings as follows: for any t ∈ [T ],
we set R(2)

t = R (these will be the tapes used by the equivalent learning algorithm A′) and the remaining tapes R(j)
t

corresponds to random samples from the uniform distribution in [0, 1] for j ∈ {1, 3} (these will be the tapes used by our
sub-routines RejectionSampling and IndistingTestMeasure.

The boosting algorithm works as follows:

1. As in (Servedio, 2003), it uses a measure µt to assign different scores to points of X . First, µ1(x) = 1 for any point.
We will not delve into the details on how this step works. For details we refer to (Servedio, 2003) (as in (Impagliazzo
et al., 2022) since this step is not crucial for the proof).

2. At every round t, the algorithm performs rejection sampling on a fresh dataset St using the routine
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RejectionSampling. This algorithm is TV indistinguishable since it uses the source of randomness R(1)
t that

provides uniform samples in [0, 1] (it is actually replicable).

3. The part of the dataset that was accepted from this rejection sampling process is given to replicable learner A′, which
is equivalent to the TV indistinguishable weak learner A. This algorithm uses the shared Poisson point processR(2)

t

with intensity P × Leb× Leb, where P is the reference probability measure from Claim 2.5, and outputs the same
hypothesis with probability 1− ρ′/(6T ).

4. Then we use the smooth update rule of (Servedio, 2003) to design the new measure µt+1 for the upcoming iteration.
This step is deterministic.

5. Last we check whether the boosting procedure is completed. To this end, we check whether µt is in expectation small.
This step again uses a uniformly random threshold in [0, 1] and so makes use of the sourceR(3)

t .

The algorithm runs for T = C
εγ2 rounds for some numerical constant C > 0. Hence, we will assume access to 3T tapes of

randomness, T with points from the Poisson point process and 2T with uniform draws from [0, 1]. The correctness of the
algorithm follows from (Servedio, 2003) and (Impagliazzo et al., 2022)[Theorem 6.1]. As for the TV indistinguishability,
this is implied by the replicability of the whole procedure. We have that the weak learner A′ is called T times with TV
indistinguishability parameter ρ′/(6T ), the rejection sampler is called T times so that it outputs ⊥ with probability ρ′/(6T )
and the indistinguishable measure tester is ρ′/(3T )-TV indistinguishable and called T times. A union bound gives the
desired result. For further details, we refer to (Impagliazzo et al., 2022) since the analysis is essentially the same.

For the failure probability β′, the algorithm can fail if the rejection sampling algorithm outputs ⊥, if the weak learner
fails, and if the replicable SQ oracle (Theorem B.2) fails. We have that the probability that the rejection sampling gives ⊥
using nw/ε · log(T/β′) is at most β′/T (which can be considered much smaller than ρ′/(6T )). Since each one of the three
probabilities are upper bounded by β′/(3T ), the indistinguishable boosting algorithm succeeds with probability 1− β′.

E.3. Tight Bound Between β, ρ

As we alluded before, Proposition D.16 shows that if we have a ρ-TV indistinguishable (α, β)-accurate learner with ρ ∈
(0, 1), α ∈ (0, 1/2), β ∈

(
0, 1−ρ

1+ρ

)
, then the class H has finite Littlestone dimension. The reason we need β ∈

(
0, 1−ρ

1+ρ

)
is because, in expectation over the random draws of the samples and the randomness of the coupling, this is the fraction
of the executions of the algorithm that will give the same output. The results of (Angel & Spinka, 2019) show that under
certain conditions, if we want to couple k random variables whose pairwise TV distance is at most ρ, then under the
pairwise optimal coupling the probability that the realization of a pair of them differs is 2ρ

1+ρ . However, it is unclear what the
implication of this result is in the setting we are interested in.

E.4. Beyond Countable X

The barrier to push our approach beyond countable X is very closely related to the one we explained in the DP section.
To be more precise, it is not clear how one can design a data-independent reference probability measure P when X is
uncountable. Hence, one idea would be to use some data-dependent probability measure P . This would affect our algorithm
in the following way: instead of first sampling the random Poisson point process sequence independently of the data, we
first sample S1, . . . , Sk and let the reference probability measure be P = 1

k

∑k
i=1 A(Si). The difficult step is to show that

this algorithm is TV indistinguishable. When we consider a different execution of the algorithm we let S′
1, ..., S

′
k be the

new samples and P ′ = 1
k

∑k
i=1 A(S′

i) be the new reference probability measure. A natural approach to establish the TV
indistinguishability property of the algorithm is to try to couple P,P ′ and show that under this coupling, the expected TV
distance of two executions of the new algorithm is small. We leave this question open for future work.

E.5. Amplification and Boosting

We can combine the amplification and boosting results for a wide range of parameters and get the next corollary.

Corollary E.1. Let X be a countable domain and A be an n-sample ρ-TV indistinguishable (α, β)-accurate algorithm,

for some ρ ∈ (0, 1), α ∈ (0, 1/2), β ∈
(
0, 2ρ

ρ+1 − 2
√

2ρ
ρ+1 + 1

)
. Then, for any ρ′, α′, β′ ∈ (0, 1)3, there exists a ρ′-TV

indistinguishable (α′, β′)-accurate learner A′ that requires at most O (poly (1/ρ, 1/α′, log(1/β′)) · n) samples from D.
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The proof of this result follows immediately from Theorem 4.2, Theorem 4.3, and from the fact that we can design the
reference probability measure P for countable domains (cf. Claim 2.5). This result leads to two natural questions: what
is the tightest range of β for which we can amplify the stability parameter ρ and under what assumptions can we design
such boosting and amplification algorithms for general domains X ? For a more detailed discussion, we refer the reader to
Appendix E.3, Appendix E.4.
Remark E.2 (Dependence on the Parameters). We underline that the polynomial dependence on ρ in the boosting result
is not an artifact of the algorithmic procedure or the analysis we provide, but it is rather an inherent obstacle in TV
indistinguishability. (Impagliazzo et al., 2022) show that in order to estimate the bias of a coin ρ-replicably with accuracy
τ one needs at least 1/(τ2ρ2) coin tosses. Since ρ-TV indistinguishability implies (2ρ/(1 + ρ))-replicability as we have
shown (without any blow-up in the sample complexity), we also inherit this lower bound. Our main goal behind the
study of the boosting algorithms is to identify the widest range of parameters α, ρ, β such that coming up with a ρ-TV
indistinguishable algorithm switches from being trivial to being difficult. For example, in PAC learning we know that if the
accuracy parameter is strictly less than 1/2, then there are sample-efficient boosting algorithms that can drive it down to any
ε > 0. In the setting we are studying, it is crucial to understand the relationship between β, ρ, see Appendix E.3.

F. TV Indistinguishability and Generalization
Recall that in Proposition 1.5 we claimed that the generalization bound can shave the dependence on the VC dimension by
paying an overhead in the confidence parameter. A similar result appears in (Impagliazzo et al., 2022) relating replicability
to generalization. We now present its proof.

Proof of Proposition 1.5. Let S be a sample from Dn. Since A is ρ-TV indistinguishable, it is also ρ-fixed prior TV
indistinguishable and let PD be the sample-independent prior. Consider two samples h1 ∼ A(S) and h2 ∼ PD. We consider
the following quantities:

• L̂(h1) =
1
n

∑
(x,y)∈S 1{h1(x) ̸= y} is the empirical loss of h1 in S.

• L̂(h2) =
1
n

∑
(x,y)∈S 1{h2(x) ̸= y} is the empirical loss of h2 in S.

• L(h1) = Pr(x,y)∼D[h1(x) ̸= y] is the population loss of h1 with respect to D.

We will show that all these three quantities are close to each other. First, let us consider the space of measurable functions
F = {f : ∥f∥∞ ≤ 1}. We have that

dTV(P,Q) = sup
f∈F

∣∣∣∣ Ex∼P
[f(x)]− E

x∼Q
[f(x)]

∣∣∣∣ .
This means that the total variation distance between two distributions is essentially the worst case bounded distinguisher f .
Since L̂ : {0, 1}X → [0, 1], we have that∣∣∣∣ E

h1∼A(S)

[
L̂(h1)

]
− E

h2∼PD

[
L̂(h2)

]∣∣∣∣ ≤ dTV(A(S),PD) .

Similarly, we get that ∣∣∣∣ E
h1∼A(S)

[L(h1)]− E
h2∼PD

[L(h2)]

∣∣∣∣ ≤ dTV(A(S),PD) .

Now, since A is ρ-fixed prior TV indistinguishable, using Markov’s inequality, we have that ∀ε1 > 0,

E
S∼Dn

[∣∣∣∣ E
h1∼A(S)

[
L̂(h1)

]
− E

h2∼PD

[
L̂(h2)

]∣∣∣∣] ≤ ρ⇒ Pr
S∼Dn

[∣∣∣∣ E
h1∼A(S)

[
L̂(h1)

]
− E

h2∼PD

[
L̂(h2)

]∣∣∣∣ > ε1

]
≤ ρ

ε1
.

In a similar manner, we get

Pr
S∼Dn

[∣∣∣∣ E
h1∼A(S)

[L(h1)]− E
h2∼PD

[L(h2)]

∣∣∣∣ > ε1

]
≤ ρ

ε1
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We note that, since PD is sample-independent, we have that the statistic

E
h2∼PD

[L̂(h2)] =
1

n

∑
(x,y)∈S

Pr
h2∼PD

[h2(x) ̸= y]

is a sum of independent random variables with expectation Eh2∼PD [L(h2)]. We can use standard concentration of
independent random variables and get

Pr
S∼Dn

[∣∣∣∣ E
h2∼PD

[
L̂S(h2)

]
− E

h2∼PD
[LD(h2)]

∣∣∣∣ ≥ ε2

]
≤ 2e−2nε22 ,

for any ε2 > 0. This means that

Pr
S∼Dn

[∣∣∣∣ E
h1∼A(S)

[
L̂S(h1)

]
− E

h1∼A(S)
[LD(h1)]

∣∣∣∣ ≥ 2ε1 + ε2

]
≤ 2ρ/ε1 + 2e−2nε22 ,

so we have that, with probability at least 1− 4ρ/ε− δ,∣∣∣∣ E
h1∼A(S)

[
L̂S(h1)

]
− E

h1∼A(S)
[LD(h1)]

∣∣∣∣ ≤ ε+

√
ln(2/δ)

2n
.

We note that we obtain the result of Proposition 1.5 by taking ε =
√
ρ.

G. Open Questions
Our work leaves the following open problems:

1. Does the equivalence between TV indistinguishability and replicability hold for general spaces, i.e., when the input
domain is not countable?

2. Does the equivalence between TV indistinguishability and (ε, δ)-DP hold for general spaces?

3. How can we boost the correctness and amplify the indistinguishability parameter of a weak TV indistinguishable
learner to a strong one in general spaces?

4. What is the minimal condition that characterizes TV indistinguishable PAC learnability? This is closely related to
understanding the limits of TV indistinguishable boosting algorithms.
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