
Deep Generative Symbolic Regression with Monte-Carlo-Tree-Search

Pierre-Alexandre Kamienny 1 2 Guillaume Lample 1 Sylvain Lamprier 3 Marco Virgolin 4

Abstract
Symbolic regression (SR) is the problem of
learning a symbolic expression from numerical
data. Recently, deep neural models trained on
procedurally-generated synthetic datasets showed
competitive performance compared to more clas-
sical Genetic Programming (GP) algorithms.
Unlike their GP counterparts, these neural ap-
proaches are trained to generate expressions from
datasets given as context. This allows them to pro-
duce accurate expressions in a single forward pass
at test time. However, they usually do not bene-
fit from search abilities, which result in low per-
formance compared to GP on out-of-distribution
datasets. In this paper, we propose a novel method
which provides the best of both worlds, based
on a Monte-Carlo Tree Search procedure using
a context-aware neural mutation model, which is
initially pre-trained to learn promising mutations,
and further refined from successful experiences
in an online fashion. The approach demonstrates
state-of-the-art performance on the well-known
SRBench benchmark.

1. Introduction
Symbolic Regression (SR) is the problem of simultaneously
finding the structure (operators, variables) and optimising
the parameters (constants) of an expression that describes
experimental data in an interpretable manner. SR can pro-
duce human-readable expressions that are particularly use-
ful in natural sciences, e.g., materials sciences (Wang et al.,
2019; Kabliman et al., 2021; Ma et al., 2022) or physics
(Schmidt & Lipson, 2009; Vaddireddy et al., 2020; Sun
et al., 2022; Cranmer et al., 2020; Hernandez et al., 2019;
Udrescu & Tegmark, 2020). The recent benchmarking ef-
fort SRBench (La Cava et al., 2021) has shown that SR

1Meta AI, Paris, France 2ISIR MLIA, Sorbonne Université,
France 3LERIA, Université d’Angers, France 4Centrum Wiskunde
& Informatica, the Netherlands. Correspondence to: Pierre-
Alexandre Kamienny <pakamienny@meta.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

algorithms can additionally outperform over-parametrized
models, e.g., decision-tree ensembles or neural networks,
on a set of real-world and synthetic datasets.

SR is a challenging task, which implies composing inher-
ently discrete objects (operators and variables) to make the
resulting expression fit well the given data. As seeking the
optimal composition is intractable (Virgolin & Pissis, 2022),
typical approaches to SR are based on heuristics. In fact,
the leading algorithms on SRBench are modern versions of
genetic programming (GP) (Koza, 1994), a class of genetic
algorithms where evolving solutions need to be executed
to determine their quality (i.e., SR expressions need to be
evaluated on the data to determine their quality of fit).

Lately, there has been a growing interest in the SR com-
munity for neural network-based approaches. For example,
Udrescu & Tegmark (2020) use neural networks (NNs) to ex-
plicitly detect data properties (e.g., symmetries in the data)
useful to reduce the search space of SR. Other approaches,
which we group together under the name of Deep Genera-
tive Symbolic Regression (DGSR), have used NNs to learn
to generate expressions directly from the data. Similarly
to GP, DSR (Petersen et al., 2019) and (Mundhenk et al.,
2021) faces a tabula rasa setup of the problem for each new
dataset. On the other hand, several DGSR approaches are
inductive: they are pre-trained to predict an expression in
a single forward pass for any new dataset, by feeding the
dataset as input tokens (Biggio et al., 2021; Valipour et al.,
2021; Kamienny et al., 2022). As such, these approaches
have the appeal of generating expressions extremely quickly.
However, their lack of a search component makes them un-
able to improve for the specific dataset at hand. This aspect
can be particularly problematic when the given data is out-
of-distribution compared to the synthetic data the NN was
pre-trained upon.

A promising direction to cope with the limitations of in-
ductive DGSR is therefore to include a suitable search strat-
egy. The use of neural policies in Monte-Carlo Tree Search
(MCTS) has led to improved exploration via long-term plan-
ning in the context of automated theorem proving with for-
mal systems (Polu & Sutskever, 2020; Lample et al., 2022),
algorithm discovery (Fawzi et al., 2022), and also games
(Silver et al., 2016; 2018). In the context SR, search tree
nodes are expressions (e.g., x1 + x2), and edges between

1



Deep Generative Symbolic Regression with MCTS

them represent mutations (e.g., x2 → (7× x3), leading
to the expression x1 + 7 × x3). White et al. (2015); Sun
et al. (2022) proposed a classic formulation of MCTS for
SR, where possible mutations are pre-defined along with
prioritization rules to decide which nodes to mutate in pri-
ority. Li et al. (2019) use a recurrent neural network to
produce possible mutations, which is conditioned on shape
constraints for the expressions, but not on the dataset. Most
similar to our approach is the study of Lu et al. (2021), that
uses a pre-trained model to sample promising but rather
simple mutations (up to one expression term). However, the
model is not fine-tuned on the specific dataset at hand as
the search progresses. In our proposal, MCTS is augmented
with neural policies that are both pre-trained and fine-tuned.
Existing works have only showed good performance on sim-
ple benchmark problems (e.g., no observed competitive per-
formance on SRBench real-world problems). Furthermore,
we found in preliminary experiments that the combination
of NN within MCTS with pre-training is key to achieve
good performance.

Summary of the approach. In this paper, we seek to over-
come the limitations of DGSR, by proposing a synergistic
combination, which we call DGSR-MCTS, where MCTS
is seeded with pre-trained DGSR, and DGSR is fine-tuned
over time on multiple datasets simultanously as the search
progresses. A mutation policy is responsible for producing
mutations that expand expressions from the tree search. A
selection policy prioritizes which expression to mutate next,
by trading-off between exploration (low number of visits)
and exploitation (most promising expressions) using a critic
network. The mutation policy first undergoes a pre-training
phase. Then, both the mutation policy and the critic network
are updated in online fashion, by leveraging results from
search trials on new provided datasets.

We first position our approach in an unifying view of SR,
that encapsulates both earlier work in GP and more recent
deep learning-based approaches. Then, we describe our
approach in detail, and evaluate it on the SRBench bench-
mark. We show that our approach achieves state-of-the-art
performance, and discovers expressions that are both simple
and accurate.

2. Unifying View of of SR
Let us denote by F the family of symbolic expressions1 that
form the search space of the SR problem. Generally speak-
ing, F is defined by the set of building blocks from which
expressions can be composed (Virgolin & Pissis, 2022).

1Note that even though different expressions may be function-
ally equivalent, this is normally not taken into account in existing
approaches, as determining functional equivalence can be undecid-
able (Buchberger & Loos, 1982).

These usually include constants (possibly sampled from
a distribution, e.g., N (0, 1)), variables, and basic opera-
tors as well as trigonometric or transcendental ones (e.g.,
+,−,×,÷, sin, cos, exp, log).

A common formulation of SR poses to seek a well-fitting ex-
pression for the dataset at hand. We now generalize this idea
to the case where good performance is sought across mul-
tiple datasets (as one usually seeks a generally-competent
search algorithm rather than a dataset-specific one). Given
Ω a distribution over datasets D = {(xi, yi)}i≤N , with
(xi, yi) ∈ Rd × R a given point (descriptor, image) from a
specific dataset D, and a limited budget for the exploration
process T , the general objective of SR is to define an algo-
rithm that produce distributions of expressions f ∈ F , that
minimize the following theoretical risk at step T :

RΩ,F = ED∼Ω(D)Ef∼PT
f (D)[L(f,D)] (1)

with PTf (D) the final distribution over expressions provided
by the considered algorithm. A typical loss function L
considered in the SR literature is the negative R2:

R2(f,D) = 1− MSE(y, f(x))
VAR(y)

= 1−
∑
i (yi − f(xi))

2∑
i(yi − yi)2

.

(2)
where yi = (1/N)

∑
i≤N yi.

Considering algorithms that start from P 0
f (D) to incremen-

tally build PTf (D), the problem can be decomposed into
two main steps: 1) define an accurate starting point P 0

f (D)
for the search process; 2) specify the exploration process
that allows to update P 0

f (D) to form PTf (D) in a maximum
of T iterations (search trials). Some approaches in the lit-
erature only consider the first step (i.e., PTf (D) = P 0

f (D)
—no search process). Others only investigate step 2 (i.e.,
P 0
f (D) = P 0

f (∅) —no inductive context), as described in
the following.

There are many ways to define P 0
f . For example, tradition-

ally in GP, the dataset does not play a role (i.e., it is P 0
f (∅)),

but there exist different strategies to randomly initialize the
population (Looks, 2007; Pawlak & Krawiec, 2016; Ahmad
& Helmuth, 2018). Since we deal with DGSR, we focus on
P 0
f (D) that entail pre-training from here on. Note that Ω is

unknown during this pre-training, and that we only observe
its datasets at search time (datasets from SRBench in our
experiments).

2.1. Pre-training: How to define P 0
f (D)

The formulation of Equation (1) is reminiscent of meta-
learning or few-shot learning where the goal is to train a
model on a set of training tasks such that it can solve new
ones more efficiently (Schmidhuber, 1987; Thrun & Pratt,
2012; Finn et al., 2017). In that vein, many approaches focus

2



Deep Generative Symbolic Regression with MCTS

Table 1. Unifying view of SR. θ represents weights of a probabilistic neural network that embodies Pf . ψ is parameters of a critic
network (see Section 3).

Algorithm Pre-train of P 0
f P tf conditioned by Update of P tf

GP (Poli et al., 2008) No Population & Genetic operators Selection operators
EDA (Kim et al., 2014) No Explicit Factorization Selection operators

E2E (Kamienny et al., 2022) SSL on synthetic data D & θ0 No
DSR(Petersen et al., 2019) No θt Update θt with policy gradients

uDSR (Landajuela et al., 2022) SSL on synthetic data D & θt Update θt with policy gradients

DGSR-MCTS (Ours) SSL and MCTS MCTS Update θt & ψt

on synthetic data using D & θt & ψt via Selection & Imitation

on learning a generative model to induce an implicit form of
P 0
f . However, since Ω is unknown during pre-training, those

models are usually trained on large synthetic datasets built
from randomly generated expressions (Lample & Charton,
2019).

Rather than focusing on the accuracy of the sampled expres-
sions regarding some criteria such as Equation (2), the vast
majority of these approaches are neural language models
(and thus belong to the DGSR family) trained to express P 0

f

by auto-regressively predicting a given ground truth expres-
sion from the training data (e.g., using a recurrent neural
network or a transformer).

Although these methods tend to produce expressions similar
to the synthetic ones seen during pre-training, they have the
advantage of explicitly considering the dataset as an input:
Pf is conditioned on D (Biggio et al., 2021; Valipour et al.,
2021; Kamienny et al., 2022). Consequently, pre-training
approaches for DGSR can produce expressions as a one-shot
inference process by the simple action of sampling, elim-
inating the need for search iterations. However, sampling
from P 0

f is limited as the accuracy improvement stops after
a small number of samples (50 in (Kamienny et al., 2022)),
and can perform badly on out-of-domain datasets given at
test-time.

2.2. Search Process: How to build PTf (D)

Given a datasetD, the aim of any process at search time is to
define a procedure to build an accurate distribution PTf (D)
from the starting one P 0

f (D), via a mix of exploration and
exploitation. Most approaches seek the maximization of
Ef∼PT

f
[R2(f,D)]. Several approaches additionally include

in that objective a functional C(f) that penalizes overly-
complex expressions (Vladislavleva et al., 2008; Chen et al.,
2018). Even though there exists different definition of com-
plexity (Kommenda et al., 2015; Virgolin et al., 2020), we
consider expression size (i.e., the number of operators, vari-
ables and constants in the expression) as complexity mea-
sure.

In that aim, the learning process of different SR algorithms

can be unified into a general, iterative framework: until
the termination condition is not met (e.g., runtime budged
exceeded or satisfactory accuracy reached),

(i) sample one or more symbolic expressions f ∈ F using
the current probability distribution P tf at step t;

(ii) update P tf using statistics of the sample, such as the
accuracy of the expression.

Steps (i) and (ii) constitute an iteration of the framework.
Different SR algorithms have considered various definitions
of P tf and strategies to update it. Its definition can be im-
plicit, explicit, or learned, and be biased towards certain
expression structures. Table 1 provides a non-exhaustive
summary of popular algorithms, which we elaborate upon
in the following paragraphs.

Genetic Programming (GP) is a meta-heuristic inspired by
natural evolution and is a popular approach to SR (Koza,
1994; Poli et al., 2008). GP implements step (i) by maintain-
ing a population of expressions which undergoes stochastic
modifications (via crossover and mutation), and step (ii) by
selection, i.e., stochastic survival of the fittest, where better
expressions are duplicated and worse ones are removed. In
other words, sampling and updating P tf is implicitly defined
by the heuristics that are chosen to realize the evolution.

Estimation of Distribution Algorithms (EDAs) attempt to
be more principled than GP by explicitly defining the form
of P tf (Salustowicz & Schmidhuber, 1997; Hemberg et al.,
2012; Kim et al., 2014). Normally, P tf is factorized accord-
ing to the preference of the practitioner, e.g., expression
terms can be modelled and sampled independently or jointly
in tuples, or chosen among multiple options as the search
progresses, using, e.g., the minimum description length
principle (Harik et al., 1999). EDAs use methods similar to
those of GP to realize step (ii).

DSR (Petersen et al., 2019) proposed an approach where
P tf is realized by an NN, whose parameters θ are updated
using policy gradients with the accuracy of sampled
expressions as rewards. Though being very general and

3



Deep Generative Symbolic Regression with MCTS

only biased by the model parametrization θ, this approach
was found to generate very short expressions with low
accuracy on SRBench (see Section 4). This is likely due
to sparse reward and credit assignment issues typical of
reinforcement learning (Sutton, 1984). (Mundhenk et al.,
2021) adds GP search samples on top of DSR. Very recently,
the work by Petersen et al. (2019) was integrated with a
pre-training component (Landajuela et al., 2022), albeit in a
large pipeline that also includes GP, NNs for search space re-
duction (Udrescu & Tegmark, 2020), and linear regression.

In the recent benchmarking effort SRBench by La Cava
et al. (2021), modern GP algorithms have shown to be the
most successful. An interesting property that distinguishes
GP from other DGSR approaches is that its crossover and
mutation operators tend to edit existing expressions (thus
preserving substantial parts of them), rather than sampling
them from scratch (Koza, 1994; Poli et al., 2008). The
algorithm we develop in Section 3 expands expressions over
time, similarly to GP. At the same time, our algorithm is
powered by pre-training and its ability to learn over time, a
feature missing from GP and other approaches.

3. Method
Following the unified framework of SR detailed in previous
section, we derive our method, DGSR-MCTS, as an
expert-iteration algorithm (Anthony et al., 2017), which
iteratively 1) samples expressions from P tf and 2) updates
P tf by improving the distribution via imitation learning (i.e.,
log-likelihood maximization of solution expressions).

Recall that in DGSR methods, sampling expressions from
P tf involve producing tokens step-by-step by sampling from
a next-token distribution with techniques such as Monte-
Carlo sampling or Beam-search. Turning pre-trained DGSR
methods into ones that can update P tf with expert-iteration is
a challenging task as 1) reward signal can be very sparse (i.e.,
very few sequences may correspond to accurate expressions
for the given dataset); 2) such left-to-right blind way of
decoding does not allow for accurate planning; 3) using
accuracy objectives to guide the decoding would be difficult
with such auto-regressive approaches, since intermediate
sequences of tokens are not valid expressions in that setting.

Rather, we propose to derive P tf as the distribution induced
by a Monte-Carlo Tree Search (MTCS) process (Browne
et al., 2012), which we iteratively refine via imitation learn-
ing on samples it produces that solve the problem. Our
MCTS process also considers expression mutations, follow-
ing a mutation policy M t

θ which deals with transformations
of existing expressions, rather than a greedy concatenation
of tokens from a given vocabulary, allowing a more system-
atic evaluation of intermediate solutions for a more guided
exploration. This section first explains our MCTS search

process then the way we pre-train the mutation policy from
synthetic data.

3.1. MCTS Sampling

Our sampling process of new expressions is derived from
an MCTS process, where each node of the search tree2

corresponds to an expression f ∈ F . Following a similar
process as in (Lample et al., 2022), our MCTS process is
made of three steps: 1) Selection, 2) Expansion, 3) Back-
propagation, that we detail below. In our MCTS,Mθ is used
to sample promising mutations that populate the MCTS
search tree via expansions (described below). Besides Mθ,
we additionally leverage a critic network Cψ to assess how
likely an expression can lead to a solution. We use the same
NN (weights are shared) to realize Mθ and Cθ, with the
exception that Cθ includes an additional head that is trained
during the process to output a value in R. These three steps
are iteratively repeated 1000 times, a period3 that we call
search trial, before Mθ and Cψ is updated.

Selection The selection step of MCTS aims at following
a path in the search tree, from its root, i.e. the empty ex-
pression, to a leaf in the search tree, that trades off between
exploration and exploitation. Following PUCT (Silver et al.,
2016), at each new node f , we select its child f ′ that maxi-
mizes:

V (f ′) + puctE(f ′)Mθ(f
′|f,D, θ) (3)

with E(f ′) =

√∑
f′∈child(f)N(f ′)

1+N(f ′) . puct ∈ R+ is the ex-
ploration coefficient, N(f) is the number of times f was
selected so far during the search, and V (f) is an esti-
mate of the expected value of the expression, expressed
as v(f)/N(f), with v(f) accumulating values of all the
nodes depending on f in the tree search. This selection
criteria balances exploration and exploitation, controlled by
hyper-parameter puct.

Expansion Once the selection step reaches a leaf f of
the tree, this leaf is expanded to produce new child nodes
by applying K mutations to f , sampled from Mθ(D, f, θ).
This leads to modified expressions {f ′k}k≤K . In our case,
the distribution Pf (f ′|f,D, θ) is induced by the application
of m ∼Mθ on f , resulting in f ′ = m(f). For each k ≤ K,
we add a node f ′k to the search tree, as well as an edge
between f ′k and f , labeled mk.

Each expression resulting from an expansion is evaluated
(with or without constant optimization as discussed in Sec-
tion 4.1) to check whether it solves the SR problem. Here,

2Not to be confused with tree-based representations of expres-
sions, which we discussed in the previous section.

3This corresponds to a single step i) in the unifying framework
of Section 2.

4



Deep Generative Symbolic Regression with MCTS

Figure 1. Example of data generation to train the mutation model. Given a starting ground-truth expression (e.g., f∗(x0, x1, x2) =
6.67x1x2/x

2
0 as a tree, we procedurally dismantle the tree until no node is left. This is done by, at each step (red arrows), a) picking a

node (dashed contour), b) removing the picked node and, if the operator is binary, additionally remove the subtree rooted in one of the two
child nodes B, c) adding an edge (black dotted line) between the parent node and the remaining child node A to obtain a well-formed
expression. When the picked node is the root node, the entire tree is removed, and the dismantling stops. Then, we train the mutation
model to assemble the tree back via subsequent mutations (green arrows), which revert the dismantling process. The mutation model is
conditioned on the current tree (initially empty) as well as the dataset D.

we assess whether a relatively high accuracy is reached to
determine whether the expression is a solution for the given
dataset (we use R2 ≥ 0.99 in our experiments). Nodes that
solve the problem obtain a value v(f) = 1. Others obtain
an estimate from the critic network: v(f) = Cψ(D, f). We
remark that a simpler strategy is to define v(f) as the ac-
curacy of f , i.e. v(f) = R2(f,D). However, this strategy
usually induces deceptive rewards, because a few mutations
that lead to less accurate expressions (e.g., akin to sacrific-
ing pieces in chess) may be needed before a very accurate
expression is found (resp., we obtain a winning position).
We confirmed that our strategy outperforms the naive use of
accuracy in preliminary experiments

Back-Propagation After each expansion, the value of
every ancestor f ′ of any new node f is updated as V (f ′)←
V (f ′) + v(f). Note that this form of back-propagation
regards weighing the nodes of the MCTS search tree, and
should not be confused with the algorithm used to train
NNs.

As mentioned before, selection, expansion, and back-
propagation are repeated 1000 times, after which the search
trial is completed. At completion, the parameters of Mθ

and Cψ are updated as described in Section 3.2. Finally, the
MCTS search tree is reset, and built anew using updated
Mθ and Cψ during the next trial.

3.2. Learning critic Cψ and Mθ

After each search trial, we update the two parametrized
components Cψ and Mθ. To that end, training samples
from the previous search trials are stored in two separate
first-in-first-out queues: a buffer stores mutation sequences
(f (τ),mt) that produced a solution expression f∗ to update

Mθ
4, the other contains V values of nodes. For the latter,

nodes that lead to a solution expression f∗ are assigned
a score of 1.0. Others are considered for training only if
their visit count is higher than a given threshold Nmin

visits , in
order to focus training on sufficiently reliable estimates. At
each training step, batches containing an equal proportion of
mutation and critic data points are sampled from the queues
to train Mθ and Cψ respectively. Both training objectives
are weighted equally. To prevent any mode collapse, we
continue sampling training examples from the supervised
data used to pre-train the mutation model Mθ, as described
in Section 3.3.

Note that even though the pre-training data generation is
biased in different ways, stochasticity of Mθ enables its
adaptation over search trials thanks to its updates; for in-
stance, even if Mθ was trained to output mutations with
arguments of size B ≈ 10 can learn mutations of size 1,
and vice-versa. As a result, Mθ can automatically learn
the appropriate (and dataset-dependent) size of mutations
through MCTS search.

We set up our MCTS search to simultaneously operate on
multiple datasets at the same time, so that Mθ and Cψ can
leverage potential information that is shared across different
SR instances (transfer learning). Given a set of datasets,
a controller schedules a queue of datasets that includes a
proportion of unsupervised (i.e. the ground-truth expres-
sion is not known) datasets to send to workers in charge of
handling search trials. To avoid catastrophic forgetting, we
also continue training on pre-training examples from syn-
thetic datasets i.e. with example mutations as described in
Section 3.3, in the spirit of AlphaStar (Vinyals et al., 2019)

4If multiple such sequences exist, we select the one with the
smallest number of mutations.

5



Deep Generative Symbolic Regression with MCTS

or HTPS (Lample et al., 2022) with human annotated data.
Mθ and Cψ updates are tackled by trainers.

3.3. Mutation Policy

Our search process relies on a mutation policy M t
θ , a dis-

tribution over promising mutations of a given expression
f ∈ F . In what follows, we drop the t index from Mθ for
clarity. Expressions are represented as a tree structure and
mutations act by modifying it.

Definition of Mθ. We define mutations as transforma-
tions that can be applied on any node of a given expression
tree. Table 2 contains the list of considered transformations,
where A stands for an existing node of the expression tree
and B stands for a new (sub-)expression to be included in
the tree. The −→ symbol represents the replacement opera-
tion, e.g.,A −→ A+B means that node A from f is replaced
by a new addition node with A as its left child and B its
the right one. Thus, a valid mutation from Mθ is a triplet
< A, op,B >, where A is a node from the expression tree,
op is an operation from Table 2 and B is a new expression
whose generation is described below. A constant optimiza-
tion step, detailed in Appendix E.2, can be performed after
the mutation to better fit the data; we explore in Section 4
whether including constant optimization improves the per-
formance. We call mutation size the size of the expression
B.

Table 2. Set of operators that can be applied on a sub-expression A
of a function, with optional argument B as a new sub-expression
to include in the tree structure. 0 refers to the root node of the
function.

Unary A −→ cos(A), A −→ sin(A), A −→ tan(A)
A −→ exp(A), A −→ log(A)

A −→ A0.5, A −→ A−1, A −→ A2, 0 −→ B
Binary A −→ A+B,A −→ A−B

A −→ A ∗B,A −→ A/B
A −→ B +A,A −→ B −A
A −→ B ∗A,A −→ B/A

The mutation policy Mθ provides a distribution over pos-
sible mutations. Rather than having B be generated com-
pletely at random, we parameterize Mθ so that it is Mθ :
Ω×F , i.e. the mutations conditions on the dataset D and
on the current expression f . The dependance from D is
akin to the approach in inductive DGSR works, while the
dependence on f is novel. Both are passed as inputs to Mθ

as a sequence of tokens, f by its prefix notation and D as
in (Kamienny et al., 2022). We use the transformer-based
NN architecture from Kamienny et al. (2022) but task the
model to decode token-by-token a sequence ω (flattened
version of < A, op,B >) until a EOS token is reached. A
is represented in ω as the index of that node (i.e., ∈ [[1, n]]

for an expression that contains n nodes). While this may
allow to output an invalid mutation expression, this happens
very rarely in practice as shown in Appendix D, thanks to
an efficient pre-training of the policy (described below).

We remark that our mutation distribution is different from
those that are commonly used in GP, in that the latter are
not conditioned on D nor parameters (i.e., they are not
updated via learning), and they can also shrink the size of
an expression or keep it as is, whereas our mutations strictly
increase the expression. Note that it is possible to consider
mutations that remove and/or replace parts of the expression,
but we left exploring this to future work. We also restrict
our mutation process to only generate expressions with less
than 60 operators and without nesting operations other than
the basic arithmetic ones (+,−,×,÷).

Pre-training of Mθ. Since our mutation policy Mθ is ex-
pected to produce mutations for a given expression, and not
the final expression directly (as it is the case in the majority
of DGSR approaches), it requires a specifically designed pre-
training process. To that end, pre-training labeled examples
(dataset & ground-truth expression with up to 10 features)
are first sampled from a hand-crafted generator (Lample
& Charton, 2019) as done in most pre-training NSR ap-
proaches (c.f. Appendix A). Next, given a ground-truth
expression f∗, we extract a sequence of mutations [ml]≤L
that iteratively map the empty expression f (0) to the final
expression f∗. As illustrated in Figure 1, starting from the
ground-truth expressions f∗, we deconstruct f∗ by proce-
durally removing a node (and if the node is binary also one
of its child subtree B) from the current f until we get to
the empty expression f (0). After reversing this sequence,
we obtain a training sequence of expressions and mutations
f (0)

m1−−→ f (1)
m2−−→ f (2)

m3−−→ . . .
mL−−→ f (L) = f∗ (more

details in Appendix A). After tokenization, every mutation
ml serves as target for the pre-training process: Mθ is clas-
sically trained as a sequence-to-sequence encoder-decoder,
using a cross-entropy loss, to sequentially output each token
wel fromml, given the considered datasetD, the previous ex-
pression f (l−1), and the sequence of previous tokens w(<e)

l

from the target operator ml.

4. Experiments
In this section, we present the results of DGSR-MCTS. We
begin by studying the performance on test synthetic datasets.
Then, we present results on the SRBench datasets.

4.1. Analysis on synthetic datasets

In this sub-section, we consider a set of 1000 unseen syn-
thetic expressions of which half are in-domain (exactly
same generator described in Section 3 and Appendix A)
and half are out-of-domain (bigger expressions with up-to

6



Deep Generative Symbolic Regression with MCTS

40 operators instead of 25). We provide a set of explo-
rative experiments to bring insights on how different hyper-
parameters contribute to the performance, as well as to select
a good configuration of hyper-parameters for evaluation on
SRBench. In what follows, we always select the best ex-
pression on a given dataset by evaluating the accuracy of
each expression on the training set; as mentioned before,
we consider a dataset to be solved if the R2 achieved by
the best expression is greater than 0.99. Pre-training was
performed on 8 GPUs for a total time of 12 days. We con-
trolled overfitting on the training set of expressions by i)
using a sufficiently large training dataset, ii) controlling the
cross-entropy loss and prediction accuracy on a held-out
validation set of expressions. Each run in this subsection
was obtained by MTCS search trials (which fine-tune Mθ

and Cψ) with a time limit of 24 hours, using 4 trainers (1
GPU/CPU each), 4 MCTS workers (1 GPU/CPU each).

Breadth or depth? First, we analyze whether, given a
pre-trained Mθ, it is more desirable to explore in breadth
or in depth the search tree. The number of samples implic-
itly influences the breadth/depth trade-off; the larger the
number of samples, the more it will be encouraged to ex-
plore, whereas when there is little number of samples K, it
is forced to go deep. We run a single search trial of 2000
iterations for different values of K ∈ {1, 2, 8, 16, 32}.

To compare these different configurations in a fair manner,
we make a few design choices that we justify here. First,
as shown in earlier work (Dick et al., 2020; Kommenda
et al., 2020; Kamienny et al., 2022) and later in this section,
optimization of constants contained in the expression can be
important to reach high accuracy levels in SR. The deeper
in the search tree an expression is, the bigger the expression
is, as well as the larger the number of constants it includes,
which can add degrees of freedom to the optimization. Be-
cause of this, depth can be expected to outperform breadth.
For this reason and also because we consider constant opti-
mization in a following ablation, we choose not to optimize
constants in this experiment. Secondly, we impose that each
configuration considers the same number of expressions.
We realize this by allowing only a subset of K expressions
to be visited out of the 32 that are sampled during expansion.
As shown in Table 3, a choice of K that is between 8 and 16
seems to be the best compromise in both in-domain and out-
of-domain datasets, therefore we will sample K ∈ [[8, 16]]
before each expansion in what follows.

Big or small mutation sizes? Secondly, we do ablations
on three Mθ models pre-trained on mutation examples gen-
erated via different strategies with varying mutation sizes
(as defined in Section 3.3); the higher in the expression tree
a node is picked (as described in step a) of the caption of
Figure 1), the bigger the mutation tends to be. We consider

Table 3. Percentage of solved datasets for different K

K In-Domain Out-of-domain

1 (greedy) 9.6 0.8
2 10.8 2.4
8 44.6 19.6

16 54.0 18.4
32 42.8 10.2

DGSR-MCTS@1 (respectively DGSR-MCTS@10), a model
pre-trained on mutation sizes 1 (respectively approximately5

10), and finally DGSR-MCTS@∞, a model trained to out-
put the target expression in a single iteration. Note that
DGSR-MCTS@∞ is essentially reduces to approaches like
those in (Biggio et al., 2021; Kamienny et al., 2022), as Mθ

is tasked to predict the entire expression f∗ from scratch
f (0), while updating Mθ with expert-iteration as described
in Section 3.

Interestingly, Table 4 shows mutation size of 10 performs
better than size 1 both in-domain and out-of-domain and that
the DGSR-MCTS@∞ does not generalize to ouf-of-domain
datasets, confirming the importance of search.

Table 4. % of solved datasets for different mutation sizes.
Model In-Domain Out-of-domain

DGSR-MCTS@1 52.2 26.8
DGSR-MCTS@10 74.8 44.0
DGSR-MCTS@∞ 72.4 16.8

How important is constant optimization? As shown
in (Kamienny et al., 2022), optimizing constants predicted
by a NN model with an optimizer like BFGS greatly im-
proves performance on SRBench. Similarly, we study
whether including constants optimization is important for
DGSR-MCTS in the context of search. We remark that while
we use constant optimization to compute accuracy, we store
the non-optimized expression in the MCTS search tree. We
make this choice because optimized constants may be out-
of-distribution w.r.t. the pre-trainedMθ, which can lower its
performance. As shown in Table 5, optimizing expression
constants improves performance substantially. However,
constant optimization comes at the price of speed, espe-
cially if done after every mutation.

4.2. SRBench results

We evaluate DGSR-MCTS on the regression datasets of the
SRBench benchmark (La Cava et al., 2021), in particu-

5Exact mutation size cannot be guaranteed without special
expression tree structures.

7



Deep Generative Symbolic Regression with MCTS

Figure 2. Performance on test splits of SRBench, respectively the median R2 over black box datasets and the proportion of Feynman
datasets where the R2 is larger than 0.99. To nicely visualize the trade-off between accuracy and expression size, we use a linear scale
for expression size values up to 100 then a logarithm scale. Note that AI-Feynman (Udrescu & Tegmark, 2020) was removed from the
black-box plot for readability (scores R2 = −0.6 and expression size 744).

Table 5. % of solved datasets for different constant optimization
strategies. We compare constant optimization done: never, only
on the best expression of each trial and after each mutation.

Constant optimization In-Domain Out-of-domain

Never 74.8 44.0
Only best expression 77.2 59.4

All expressions 79.6 66.2

lar the “black-box” datasets (no ground-truth expression
is given) and the “Feynman” datasets (conversely, the un-
derlying physics’ equation is given). As our approach is
trained on datasets with up to 10 features, its use on higher-
dimensional datasets requires feature selection. Following
(Kamienny et al., 2022), we consider only datasets with at
most 10 features so that our results are independent of the
quality of a feature selection algorithm. This leads to 57
black-box datasets and 119 Feynman datasets. Each dataset
is split into 75% training data and 25% test data using sam-
pling with a random seed (we use 3 seeds per dataset, giving
a total of 528 datasets). We consider all baselines provided
as part of SRBench, which includes GP algorithms, e.g
GP-GOMEA (Virgolin et al., 2021), Operon (Burlacu et al.,
2020), ITEA (de Franca & Aldeia, 2020), DGSR algorithms,
DSR (Petersen et al., 2019) and E2E (Kamienny et al., 2022)
as well as classic machine learning regression models, e.g.,
multi-layer perceptron (Haykin, 1994) and XGBoost (Chen
& Guestrin, 2016).

We run DGSR-MCTS with a budget of 500, 000 evaluations
(equivalently mutations) and a maximum time limit of 24
hours. SRBench imposes to use at most 500000 evalua-
tions per hyper-parameter configuration, and allows for six
configurations, yet we provide a single configuration (re-
sulting from Section 4.1); we use the pre-trained Mθ with

mutation size 10, with K ∈ [[8, 16]] and alternate search
trials with and without constants optimization.

Figure 3. Mean ± confidence interval performance on the black-
box datasets over the number of evaluated expressions for
DGSR-MCTS and its closest competitor, GP-GOMEA, on the
black-box datasets. Thanks to pre-training, DGSR-MCTS achieves
high-levels of R2 (and larger expressions) much more quickly
than GP-GOMEA. On the training set, DGSR-MCTS is consis-
tently superior across the entire search process. On the test set
and towards the end of the search, DGSR-MCTS and GP-GOMEA
achieve similar results, due to a larger generalization gap for larger
expressions.

The performance of all SR algorithms is illustrated in Fig-
ure 2 along two metrics, accuracy on the test data (as mea-
sured by R2) and expression size computed by counting all
operators, variables and constants in an expression, after
simplification by SymPy (Meurer et al., 2017). Results are
aggregated by taking the average over seeds for each dataset,
then the median for black-box datasets and mean for Feyn-
man as done in (La Cava et al., 2021). We visualize the
trade-off between accuracy and simplicity of expressions
obtained by the different algorithms; the lower and righter
the better. We compute front ranks by Pareto-dominance.
An algorithm Pareto-dominates another if it is not worse in
all metrics and it is strictly better in at least one of them. The
definition of ranks is then recursive: an algorithm is at rank

8



Deep Generative Symbolic Regression with MCTS

0 if there exists no algorithm that Pareto-dominates it; for
successive ranks, an algorithm is at rank i if, when exclud-
ing the algorithms up to rank i− 1, there exist no algorithm
that Pareto-dominates it. DGSR-MCTS is placed on the
rank 0-front on both black-box and Feynman datasets. GP-
GOMEA and DGSR-MCTS seem to be the best approaches
for achieving simple-yet-accurate models, and interestingly
switch place in their trade-off between the two metrics on
the black-box and Feynman datasets. We additionally plot
the performance over time on the black-box datasets against
this baseline in Figure 3. Another interesting point is the
difference between DGSR-MCTS and E2E; DGSR-MCTS
achieve better test accuracy (0.846 and 0.797 respectively)
with less complex expressions (41 and 61 respectively) on
the black-box datasets. On 80% (resp. 87% for E2E) of
Feynman datasets, we achieve R2 ≥ 0.99 with expression
sizes of 33 (resp. 121).

Ablations. Finally, we present several ablations in Table 6.
Namely, we observe whether using synthetic datasets for
training Cψ and fine-tuning Mθ is better than not doing
so, and whether our strategy of training DGSR-MCTS si-
multaneously on multiple datasets is better than training
iteratively, i.e., one dataset at the time. Our findings sug-
gest that utilizing synthetic datasets has a positive effect
on the performance of our model, particularly on the Feyn-
man datasets, which may be attributed to the similarities
between the synthetic and Feynman datasets (similar ex-
pression sizes, non-noisy observations...) On the black-box
dataset (real-world scenarios), training on all datasets simul-
taneously appears to result in better performance than using
synthetic datasets alone, likely due to the sharing of gradi-
ents across multiple datasets. Overall, our results indicate
that both components play a significant role in the strong
performance of DGSR-MCTS.

Table 6. Ablations for different training configurations. We
report the same performance metrics used in Figure 2. Respective
expression sizes (not shown here) remain similar.

Use synthetic
datasets

Simultaneous
training Black-box Feynman

no no 0.801 0.655
yes no 0.812 0.748
no yes 0.823 0.689
yes yes 0.846 0.796

5. Limitations
Our approach is subject to the known limitations of the
Transformer models as in (Kamienny et al., 2022). For
instance, learning on large context lengths is challenging
and necessitates significant GPU memory resources. This

limitation could be circumvented by the use of Transformers
specifically designed for large inputs, such as LongFormer
(Beltagy et al., 2020). The main source of latency in our
algorithm comes from sampling mutations (i.e. forwarding
the Transformer model), an aspect shared by other DGSR
methods that use large pre-trained transformers. While GP
approaches can run on CPU only, GPUs can be useful to
batch computations (to generate mutations in our case) for
DGSR methods.

6. Conclusion
In this work, we introduced a competitive SR algorithm
that address the limits of DGSR by incorporating search as
a tool to further improve performance of inductive DGSR
approaches. We positioned our method within a unify-
ing view of SR algorithms that, we hope, will shed light
on inner workings of different class of algorithms. We
showed DGSR-MCTS performs on par with state-of-the-art
SR algorithms such as GP-GOMEA in terms of accuracy-
complexity trade-off, while being more efficient in terms of
number of expression evaluations.

Future work may concern the extension of the proposed ap-
proach in a meta-learning framework (Schmidhuber, 1987;
Thrun & Pratt, 2012; Finn et al., 2017), where pre-training
is performed, either via self-supervised or reinforcement
learning, with the objective to reduce the required search
budget on a broad family of target datasets.

7. Acknowledgments
We acknowledge Fabricio Olivetti de França from Univer-
sidade Federal do ABC for providing the code to produce
Figure 2.

9



Deep Generative Symbolic Regression with MCTS

References
Ahmad, H. and Helmuth, T. A comparison of semantic-

based initialization methods for genetic programming. In
Proceedings of the Genetic and Evolutionary Computa-
tion Conference Companion, pp. 1878–1881, 2018.

Anthony, T., Tian, Z., and Barber, D. Thinking fast and slow
with deep learning and tree search. Advances in neural
information processing systems, 30, 2017.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A., and Paras-
candolo, G. Neural symbolic regression that scales, 2021.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M.,
Cowling, P. I., Rohlfshagen, P., Tavener, S., Perez, D.,
Samothrakis, S., and Colton, S. A survey of monte carlo
tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in games, 4(1):1–43, 2012.

Buchberger, B. and Loos, R. Algebraic simplification. In
Computer Algebra, pp. 11–43. Springer, 1982.

Burlacu, B., Kronberger, G., and Kommenda, M. Operon
c++: An efficient genetic programming framework
for symbolic regression. In Proceedings of the 2020
Genetic and Evolutionary Computation Conference
Companion, GECCO ’20, pp. 1562–1570, New York,
NY, USA, 2020. Association for Computing Machin-
ery. ISBN 9781450371278. doi: 10.1145/3377929.
3398099. URL https://doi.org/10.1145/
3377929.3398099.

Chen, Q., Zhang, M., and Xue, B. Structural risk
minimization-driven genetic programming for enhancing
generalization in symbolic regression. IEEE Transactions
on Evolutionary Computation, 23(4):703–717, 2018.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd inter-
national conference on knowledge discovery and data
mining, pp. 785–794, 2016.

Cranmer, M., Sanchez Gonzalez, A., Battaglia, P., Xu, R.,
Cranmer, K., Spergel, D., and Ho, S. Discovering sym-
bolic models from deep learning with inductive biases.
Advances in Neural Information Processing Systems, 33:
17429–17442, 2020.

de Franca, F. O. and Aldeia, G. S. I. Interaction-
Transformation Evolutionary Algorithm for Symbolic Re-
gression. Evolutionary Computation, pp. 1–25, 12 2020.
ISSN 1063-6560. doi: 10.1162/evco a 00285. URL
https://doi.org/10.1162/evco_a_00285.

Dick, G., Owen, C. A., and Whigham, P. A. Feature stan-
dardisation and coefficient optimisation for effective sym-
bolic regression. In Proceedings of the 2020 Genetic
and Evolutionary Computation Conference, pp. 306–314,
2020.

Fawzi, A., Balog, M., Huang, A., Hubert, T., Romera-
Paredes, B., Barekatain, M., Novikov, A., R Ruiz, F. J.,
Schrittwieser, J., Swirszcz, G., et al. Discovering
faster matrix multiplication algorithms with reinforce-
ment learning. Nature, 610(7930):47–53, 2022.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional conference on machine learning, pp. 1126–1135.
PMLR, 2017.

Harik, G. et al. Linkage learning via probabilistic modeling
in the ECGA. IlliGAL report, 99010, 1999.

Haykin, S. Neural networks: a comprehensive foundation.
Prentice Hall PTR, 1994.

Hemberg, E., Veeramachaneni, K., McDermott, J., Berzan,
C., and O’Reilly, U.-M. An investigation of local patterns
for estimation of distribution genetic programming. In
Proceedings of the Genetic and Evolutionary Computa-
tion Conference, pp. 767–774, 2012.

Hernandez, A., Balasubramanian, A., Yuan, F., Mason,
S. A., and Mueller, T. Fast, accurate, and transferable
many-body interatomic potentials by symbolic regression.
npj Computational Materials, 5(1):1–11, 2019.

Kabliman, E., Kolody, A. H., Kronsteiner, J., Kommenda,
M., and Kronberger, G. Application of symbolic regres-
sion for constitutive modeling of plastic deformation. Ap-
plications in Engineering Science, 6:100052, 2021.

Kamienny, P.-A., d’Ascoli, S., Lample, G., and Charton, F.
End-to-end symbolic regression with transformers. arXiv
preprint arXiv:2204.10532, 2022.

Kim, K., Shan, Y., Nguyen, X. H., and McKay, R. I. Proba-
bilistic model building in genetic programming: A critical
review. Genetic Programming and Evolvable Machines,
15(2):115–167, 2014.

Kommenda, M., Beham, A., Affenzeller, M., and Kron-
berger, G. Complexity measures for multi-objective sym-
bolic regression. In Computer Aided Systems Theory–
EUROCAST 2015: 15th International Conference, Las
Palmas de Gran Canaria, Spain, February 8-13, 2015,
Revised Selected Papers 15, pp. 409–416. Springer, 2015.

Kommenda, M., Burlacu, B., Kronberger, G., and Affen-
zeller, M. Parameter identification for symbolic regres-
sion using nonlinear least squares. Genetic Programming
and Evolvable Machines, 21(3):471–501, 2020.

10

https://doi.org/10.1145/3377929.3398099
https://doi.org/10.1145/3377929.3398099
https://doi.org/10.1162/evco_a_00285


Deep Generative Symbolic Regression with MCTS

Koza, J. R. Genetic programming as a means for program-
ming computers by natural selection. Statistics and Com-
puting, 4(2):87–112, 1994.

La Cava, W., Orzechowski, P., Burlacu, B., de Franca, F. O.,
Virgolin, M., Jin, Y., Kommenda, M., and Moore, J. H.
Contemporary symbolic regression methods and their
relative performance. arXiv preprint arXiv:2107.14351,
2021.

Lample, G. and Charton, F. Deep learning for symbolic
mathematics. arXiv preprint arXiv:1912.01412, 2019.

Lample, G., Lachaux, M.-A., Lavril, T., Martinet, X., Hayat,
A., Ebner, G., Rodriguez, A., and Lacroix, T. Hypertree
proof search for neural theorem proving. arXiv preprint
arXiv:2205.11491, 2022.

Landajuela, M., Lee, C., Yang, J., Glatt, R., Santiago, C. P.,
Aravena, I., Mundhenk, T. N., Mulcahy, G., and Petersen,
B. K. A unified framework for deep symbolic regression.
In Advances in Neural Information Processing Systems,
2022.

Li, L., Fan, M., Singh, R., and Riley, P. Neural-guided
symbolic regression with asymptotic constraints. arXiv
preprint arXiv:1901.07714, 2019.

Looks, M. On the behavioral diversity of random programs.
In Proceedings of the 9th annual conference on Genetic
and evolutionary computation, pp. 1636–1642, 2007.

Lu, Q., Tao, F., Zhou, S., and Wang, Z. Incorporating actor-
critic in monte carlo tree search for symbolic regression.
Neural Computing and Applications, 33(14):8495–8511,
2021.

Ma, H., Narayanaswamy, A., Riley, P., and Li, L.
Evolving symbolic density functionals. arXiv preprint
arXiv:2203.02540, 2022.

Meurer, A., Smith, C. P., Paprocki, M., Čertı́k, O., Kirpichev,
S. B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J. K.,
Singh, S., et al. Sympy: symbolic computing in python.
PeerJ Computer Science, 3:e103, 2017.

Mundhenk, T. N., Landajuela, M., Glatt, R., Santiago, C. P.,
Faissol, D. M., and Petersen, B. K. Symbolic regres-
sion via neural-guided genetic programming population
seeding. arXiv preprint arXiv:2111.00053, 2021.

Pawlak, T. P. and Krawiec, K. Semantic geometric ini-
tialization. In Genetic Programming: 19th European
Conference, EuroGP 2016, Porto, Portugal, March 30-
April 1, 2016, Proceedings 19, pp. 261–277. Springer,
2016.

Petersen, B. K., Larma, M. L., Mundhenk, T. N., Santi-
ago, C. P., Kim, S. K., and Kim, J. T. Deep symbolic
regression: Recovering mathematical expressions from
data via risk-seeking policy gradients. arXiv preprint
arXiv:1912.04871, 2019.

Poli, R., Langdon, W. B., and McPhee, N. F. A field guide
to genetic programming, 2008.

Polu, S. and Sutskever, I. Generative language model-
ing for automated theorem proving. arXiv preprint
arXiv:2009.03393, 2020.

Salustowicz, R. and Schmidhuber, J. Probabilistic incre-
mental program evolution. Evolutionary computation, 5
(2):123–141, 1997.

Schmidhuber, J. Evolutionary principles in self-referential
learning. on learning now to learn: The meta-meta-
meta...-hook. Diploma thesis, Technische Universitat
Munchen, Germany, 14 May 1987. URL http://www.
idsia.ch/˜juergen/diploma.html.

Schmidt, M. and Lipson, H. Distilling free-form natural
laws from experimental data. science, 324(5923):81–85,
2009.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., et al. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Sci-
ence, 362(6419):1140–1144, 2018.

Sun, F., Liu, Y., Wang, J.-X., and Sun, H. Symbolic physics
learner: Discovering governing equations via monte carlo
tree search. arXiv preprint arXiv:2205.13134, 2022.

Sutton, R. S. Temporal credit assignment in reinforcement
learning. University of Massachusetts Amherst, 1984.

Thrun, S. and Pratt, L. Learning to learn. Springer Science
& Business Media, 2012.

Udrescu, S.-M. and Tegmark, M. Ai feynman: A physics-
inspired method for symbolic regression. Science Ad-
vances, 6(16):eaay2631, 2020.

Vaddireddy, H., Rasheed, A., Staples, A. E., and San, O.
Feature engineering and symbolic regression methods for
detecting hidden physics from sparse sensor observation
data. Physics of Fluids, 32(1):015113, 2020.

11

http://www.idsia.ch/~juergen/diploma.html
http://www.idsia.ch/~juergen/diploma.html


Deep Generative Symbolic Regression with MCTS

Valipour, M., You, B., Panju, M., and Ghodsi, A. Sym-
bolicgpt: A generative transformer model for symbolic
regression. arXiv preprint arXiv:2106.14131, 2021.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 575
(7782):350–354, 2019.

Virgolin, M. and Pissis, S. P. Symbolic regression is
NP-hard. Transactions on Machine Learning Research,
2022. URL https://openreview.net/forum?
id=LTiaPxqe2e.

Virgolin, M., De Lorenzo, A., Medvet, E., and Randone,
F. Learning a formula of interpretability to learn inter-
pretable formulas. In Parallel Problem Solving from
Nature–PPSN XVI: 16th International Conference, PPSN
2020, Leiden, The Netherlands, September 5-9, 2020,
Proceedings, Part II 16, pp. 79–93. Springer, 2020.

Virgolin, M., Alderliesten, T., Witteveen, C., and Bosman,
P. A. Improving model-based genetic programming for
symbolic regression of small expressions. Evolutionary
computation, 29(2):211–237, 2021.

Vladislavleva, E. J., Smits, G. F., and Den Hertog, D. Order
of nonlinearity as a complexity measure for models gen-
erated by symbolic regression via pareto genetic program-
ming. IEEE Transactions on Evolutionary Computation,
13(2):333–349, 2008.

Wang, Y., Wagner, N., and Rondinelli, J. M. Symbolic
regression in materials science. MRS Communications, 9
(3):793–805, 2019.

White, D. R., Yoo, S., and Singer, J. The programming
game: evaluating mcts as an alternative to gp for sym-
bolic regression. In Proceedings of the Companion Pub-
lication of the 2015 Annual Conference on Genetic and
Evolutionary Computation, pp. 1521–1522, 2015.

12

https://openreview.net/forum?id=LTiaPxqe2e
https://openreview.net/forum?id=LTiaPxqe2e


Deep Generative Symbolic Regression with MCTS

A. Data generation
Ground-truth expressions. To generate a large synthetic
dataset with examples (D, f∗), we first sample N observa-
tions/features X ∈ RN×D where D is uniformly sampled
between 1 and 10 with a mixture of Gaussians as in (Kami-
enny et al., 2022), then consider sampling: a) an empty
unary-binary tree from (Lample & Charton, 2019) generator
with between 5 and 25 internal nodes, b) assign a random
operator on nodes and either a variable {xd}d≤D or float
constant drawn from a normal distribution on leaves. We
then simplify the ground-truth expression with SymPy.

The only difference with (Kamienny et al., 2022) lies in the
fact that the generated expressions are much smaller by not
enforcing all variables to appear sampled expressions, there-
fore letting the model learn the ability to do feature selection,
as well as to having much less constants (they apply linear
transformations with probability 0.5 on all nodes/leaves),
therefore providing more interpretable expressions (model
size is divided by 2).

Example mutations. From a ground-truth expression f∗,
we generate a sequence of example mutations that go from
the empty expression to f∗ by iteratively removing parts
of the expression tree. To do so, at any given step, we
randomly pick an internal node such that the size of the
subtree argumentB is large enough, and apply the backward
mutation, i.e. adding an edge between the parent node and
the remaining child nodeA. When the remaining expression
is too small, the mutation’s operator becomes 0 −→ B where
B is the remaining expression.

B. Data representation
As done in most (Kamienny et al., 2022), floats are repre-
sented in base 10 foating-point notation, rounded to four
significant digits, and encoded as sequences of 3 tokens:
their sign, mantissa (between 0 and 9999), and exponent
(from E-100 to E100). Expressions are represented by
their Polish notations, i.e. the breadth-first search walk, with
numerical constants are represented as explained above. A
dataset is represented by the concatenation of all tokenized
(xi, yi) pairs where vectors representation is just the flatt-
enized tokens of each dimension value. The combination
of both the expression and dataset yields the representation
of states by concatenating both representations and using
special separators between the expression f and dataset
D. Actions are represented by the concatenation (with spe-
cial separators) of i) the node index (integer in base 10) on
which to apply the mutation, ii) the operator token, iii) the
tokenized expression B if the operator is binary.

C. Model details
Since the number of tokens transformers can use as context
is limited by memory considerations and possible learnable
long-range dependencies, we restrict to 100 the number
of input data points used as input to M , the subset being
sampled at each expansion. We also train our model on
datasets with at most 10 variables, as in (Kamienny et al.,
2022).

D. Exceptions detected ablations
Earlier DGSR work has showed that Transformer models
(Vaswani et al., 2017) were able to learn almost perfect se-
mantics of symbolic expressions, resulting in 99% of valid
expressions in (Kamienny et al., 2022). In this work, we
noticed that our policy model was also able to manipulate
the expression structure quite well as around 90% of sam-
pled mutations resulted in valid expressions. Similarly we
noticed that malformed mutations, e.g., invalid index on
which expression node to apply an operation, argument B
that cannot be parsed or or absentB when operator is binary,
represent less than 1% of errors.

As mentioned in Section 3.3, we constrain our model to
discard expressions that are too complex (more than 60
operators/variables/constants) or have nested complicated
operators (e.g. cos(cos(X)), log(log(X))), in order to pro-
mote simpler expressions as explained, resulting in a great
trade-off between accuracy and complexity as shown in Sec-
tion 4.2. Note that it would be possible to enforce a greater
trade-off between accuracy and complexity, e.g. using strate-
gies mentioned in (La Cava et al., 2021). This results in 9%
of expressions being discarded because these constraints are
violated.

E. Search details
E.1. Definition of satisfactory expressions

We concluded from preliminary experiments that consider-
ing f∗ to be satisfactory if R2 ≥ 0.99 performed best as it
provided high-quality samples while dramatically reducing
search times compared to perfect fitting. Systematically
estimating what accuracy can be achieved with a given com-
plexity is not possible without, e.g., resorting to another
algorithm that operates under the same complexity con-
straints and can act as an oracle. We also tried estimating
accuracy on validation set of points by running XGBoost
on a train set, however for SRBench datasets, accuracy can
greatly vary according to the way the dataset is split.

E.2. Constant optimization

We use Broyden–Fletcher–Goldfarb–Shanno algorithm
(BFGS) with batch size 256, early stopping if accuracy does

13



Deep Generative Symbolic Regression with MCTS

not improve after 10 iterations and a timeout of 1 second.

E.3. Search hyper-parameters

In this work, we employ a distributed learning architecture,
similar to that proposed in (Lample et al., 2022). Since
the optimal hyper-parameters of search are not necessarily
the same for all datasets, the controller samples these hyper-
parameters from pre-defined ranges for each different search
trial:

The proposed model depends on many of hyper-parameters,
specifically those pertaining to the decoding of the mutation
model and the search process. Determining the optimal
values for these hyper-parameters poses a significant chal-
lenge in practice for several reasons. Firstly, the model is in
a state of continual evolution, and thus the optimal hyper-
parameter values may also change over time. For instance,
if the model exhibits an excessive level of confidence in its
predictions, it may be necessary to increase the decoding
temperature to promote diversity in mutations. Secondly,
the optimal values of the hyper-parameters may be specific
to the dataset under consideration. Finally, the sheer num-
ber of hyper-parameters to be tuned, coupled with the high
computational cost of each experiment, renders the task of
determining optimal values infeasible. To circumvent these
issues, rather than fixing the hyper-parameters to a specific
value, they are sampled from predefined ranges at the begin-
ning of each search trial. The specific decoding parameters
and the distribution utilized are as follows:

• Number of samples K per expansion. Distribution:
uniform on range [8,16].

• Temperature used for decoding. Distribution: uniform
on range [0.5, 1.0].

• Length penalty: length penalty used for decoding. Dis-
tribution: uniform on range [0, 1.2].

• Depth penalty: an exponential value decay during the
backup-phase, decaying with depth to favor breadth or
depth. Distribution: uniform on discrete values [0.8,
0.9, 0.95, 1].

• Exploration: the exploration constant puct. 1

14


