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Abstract
Generative models have grown into the workhorse
of many state-of-the-art machine learning meth-
ods. However, their vulnerability under poisoning
attacks has been largely understudied. In this
work, we investigate this issue in the context of
continual learning, where generative replayers
are utilized to tackle catastrophic forgetting. By
developing a novel customization of dirty-label
input-aware backdoors to the online setting, our
attacker manages to stealthily promote forgetting
while retaining high accuracy at the current task
and sustaining strong defenders. Our approach
taps into an intriguing property of generative mod-
els, namely that they cannot well capture input-
dependent triggers. Experiments on four standard
datasets corroborate the poisoner’s effectiveness.

1. Introduction
The vulnerability of machine learning systems must be scru-
tinized before they can be deployed to security-critical ap-
plications. The common evasion attack assumes that clean
target instances can be manipulated at test time, which can
be unrealistic in many scenarios. In contrast, poisoning at-
tacks only make malicious and imperceptible modifications
to the training set, so that the prediction on test examples
can be mistaken. The threat models may insert poison ex-
amples (Chen et al., 2017), flip the training labels (Xiao
et al., 2012; Levine & Feizi, 2021), or modify the training
example inputs (Biggio et al., 2012; Shafahi et al., 2018).

Although poisoning attacks have been extensively studied
under discriminative learning, their potential risk in gen-
erative learning has been largely understudied. Ding et al.
(2019) poisons the training examples so that the learned
generator covertly changes some important part of the out-
put image, e.g., turning a red light into green. Salem et al.
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(2020) enables the adversary to control the output image
by planting a trigger in the input image or noise. Both are
backdoor attacks requiring write access to test data, and
work in batched learning scenarios.

The increasing penetration of generative models in machine
learning urges the investigation of poisoning attacks in a
broader range of learning paradigms. In this work, we focus
on continual learning, a prominent setting where tasks arrive
in streams and each of them corresponds to a discriminative
learning problem such as classification (Chen & Liu, 2018).
Since the tasks are streamed and cannot be stored, the run-
ning classifier often suffers from catastrophic forgetting,
where the performance on older tasks gradually deteriorates
(McCloskey & Cohen, 1989).

Deep generative replay (DGR) is a natural tool to bring back
the memory of the previous tasks by learning a generative
model to fit the data of these tasks (Shin et al., 2017; Cong
et al., 2020). Despite their effectiveness, new vulnerabil-
ities are also opened up where misleading examples can
be injected to the training data Dt for the current task t,
so that catastrophic forgetting can be promoted when such
poisoned Dt is used for training both the replayer Gt and
the classifier. In this work, we seek practical and stealthy
poisoning attacks on DGR that achieve three objectives:

• Oeff (effective): After moving past task t, the classifier
will soon forget what was learned from it (i.e., perform
poorly on clean test examples drawn from it) despite
using a replayer for all the tasks seen so far.

• Oste (stealthy): During task t, the classifier trained from
poisoned data does not suffer degradation of test accuracy
on task t itself. This is important because poor perfor-
mance on the current task raises immediate suspicion. In
contrast, by promoting forgetting, the harm will manifest
itself only after the victim has moved on to the next task,
by which time it will have become too late because access
to the samples of task t is already lost.

• Orob (robust): The poisoned data should be robust to solid
defenses deployed by both the classifier and the replayer.

The main difficulty lies in two folds. Firstly, although both
Oeff and Oste are straightforward to fulfill individually, they
are at odds with each other and are hard to fulfill simultane-
ously. Secondly, since the tasks are streamed, the adversary
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must make irrevocable attacks at task t before future tasks
arrive, i.e., before catastrophic forgetting takes place. Due to
this difficulty, poisoning attacks have been much less stud-
ied in an online setting. Mladenovic et al. (2022) addressed
the online decision problem of selecting k examples for
evasion attack. Zhang et al. (2020) assumed the instances
are drawn i.i.d. from a time-invariant distribution, which
conflicts with continual learning. Other works require mul-
tiple passes of the data stream (Gong et al., 2019; Lin et al.,
2017; Sun et al., 2020), or clairvoyant knowledge of future
data (Burkard & Lagesse, 2017; Wang & Chaudhuri, 2018).

Our contribution, hence, is to overcome these challenges
and to reveal the vulnerability of generative replayers – their
training data can be poisoned stealthily such that a task can
be learned well at present but be forgotten soon in the future.
Noting that simple label-flipping poisoning can be easily
detected, we resort to dirty-label backdoor/Trojan attack
(Liu et al., 2018) to attain Oste: the trained classifier per-
forms correctly on clean examples, but errs if the example
is planted with a trigger. To further achieve Oeff and Orob,
we capitalize on the input-aware backdoor (Nguyen & Tran,
2020), which allows the trigger to vary depending on the
image. As a result, it can not only withstand stronger de-
fense (§4), but also enjoys higher variation and stealthiness,
hence much harder for a generative model to capture. So
the replayed images do not well preserve the trigger (we
call it trigger-discarding property in §3.3) while retaining
the incorrect label, leading naturally to forgetting (§3). The
problem is set up in §2, and experiments are provided in §5
to show the effectiveness of the attack. Our innovations are
summarized as follows:

• Proposing the first poisoning attack that promotes catas-
trophic forgetting in continual learning.

• Achieving poisoning (no trigger is needed at test time)
through a novel way of leveraging backdoor attack that is
effective for exacerbating catastrophic forgetting.

• Identifying a trigger-discarding property of generative
models that is intriguing for backdoor attack.

Related work Generative models have been pervasive
in machine learning (Murphy, 2023, Part IV), reaching far
beyond the original role of density estimation and serving
as a key infrastructure in supervised, unsupervised, and
reinforcement learning. We contend that their vulnerabil-
ity needs to be examined in the context of their use. In
the vanilla density estimation, Condessa & Kolter (2020)
learned robust variational auto-encoder (VAEs) that retain
high likelihood for the data points under adversarial pertur-
bation. The underlying threat is evasion attack, and along
similar lines, Tabacof et al. (2016) and Kos et al. (2018)
studied attacks that promote reconstruction error of the de-
coder in a VAE. Some recent works address attacks on mem-
bership inference (Hayes et al., 2019; Chen et al., 2020;

Hilprecht et al., 2019), model extraction (Hu & Pang, 2021),
and attribute inference (Stadler et al., 2022). However, poi-
soning attacks on generative models are still understudied.

Our aim is to poison a generative model instead of learning
a generative model to produce poisons for another (discrim-
inative) model (Yang et al., 2017; Muñoz-González et al.,
2019). We also leave it as future work to defend the pro-
posed attack, noting that (certifiable) defense and detection
have been well studied for poisoning attack on batch dis-
criminative models (Peri et al., 2019; Steinhardt et al., 2017;
Levine & Feizi, 2021; Jagielski et al., 2018).

2. Generative Models in Continual Learning
We consider the continual learning setting, where tasks ar-
rive sequentially. The goal is to keep updating a classifier
that predicts accurately not only on the current task, but also
on the previous tasks. Each task t is indeed a joint distri-
bution Pt(X,Y ), where X ∈ X is the input from a feature
space X , and Y ∈ Yt is the label whose domain Yt may
change with the task. For example, Y1 consists of digits 0
and 1, and Y2 encompasses 2 and 3. Even in the case where
the domains remain constant, the distribution Pt can shift.
The goal of continual learning is to find a classifier Ct, such
that the overall risk across all tasks seen so far is minimized:

Ct ≈ argmin
C

t∑
i=1

E
(X,Y )∼Pi

[ℓ(C(X), Y )]. (1)

Here ℓ is a loss function, and we will focus on multi-class
classification with cross-entropy loss.

Unfortunately, the growing volume of data easily dwarfs the
storage capacity, and other concerns such as privacy may
even preclude storing past data altogether. So the perfor-
mance on previous tasks may deteriorate significantly, a phe-
nomenon known as catastrophic forgetting. For generality,
we will follow many continual learning literature by consid-
ering the setting where no data from past tasks is stored.
Among many solutions in such a regime, DGR-based ap-
proaches resort to learning a DGR model Gt that approxi-
mately replicates Pt. Then at each task t, samples of (X,Y )
pairs are drawn from not only the current Pt, but also from
the replayers for the previous tasks G1:t−1 := {Gi}t−1

i=1 .
Their union is subsequently used to update the classifier
into Ct. The whole process of vanilla DGR-based continual
learning is illustrated in Algorithm 1.

DGR models can be simplified into a single running re-
player G that is updated over time, as opposed to multiple
replayers (one per task). However, our contribution is the
poisoner, not the replayer. Employing multiple replayers
only brings more challenges to our attacker, because we
are now tasked to poison many of them, each of which can
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Algorithm 1 DGR to combat forgetting (continual learning)

Input: Tasks 1, 2, . . . represented as P1, P2, . . .
1: Initialize classifier C0

2: for t = 1, 2, . . . do
3: for i ∈ [t− 1] := {1, 2, . . . , t− 1} do
4: Si ← SampleFromDGR(Gi) (X,Y pairs)
5: Sample Dt from task Pt ▷ To be poisoned
6: Ct ← TrainClassifier(Ct−1,Dt ∪ S1:t−1)
7: Gt ←TrainReplayer(Dt), e.g. conditional GAN

only be poisoned once at its current task. In contrast, if
we simply keep a single running replayer, then we enjoy
opportunities of repeatedly poisoning it at any time and our
objectives will become much easier to achieve. To conclude,
multiple replayers constitute a more stringent benchmark
for testing our poisoner. A natural choice of the replayer
is a conditional generative model such as conditional GAN
(cGAN), which first samples the label Y from a discrete
distribution, and then generates the feature X via a cGAN.

2.1. Attackers and learners

We first set up the two parties involved in the process. The
victim learner/user consists of a classifier, a replayer, and
a defender. We assume none of them has access to the
original clean data, and can only access the poisoned data.
Further, the replayer must perform well, i.e., the generated
samples match the distribution of data presented to it for
training. Otherwise, the replayer would not be adopted by
the user in the first place, and can spare any need of attack
by, e.g., generating random images with random labels.

A defender is employed by a learner to scrutinize and prune
the possible poisons in the training data. In DGR, it means
examining the data collected from the current task t, as well
as the replayed samples from previous Gi in step 4. This
is known as pre-training defense, whereas post-training
defense patches up the learned model (Wang et al., 2019).

The attacker is only allowed to poison (modify) the samples
Dt in step 5 of Algorithm 1. It has no access to the internal
mechanism or weights of the classifier, replayer, or defender.
Nor can it access the replayed data. Following the common
practice such as Witches’ brew (Geiping et al., 2021), we
assume that the attacker internally trains a surrogate classi-
fier Ĉt and a surrogate replayer Ĝt that closely reflect the
architecture of the victim model (Goldblum et al., 2023),
and queries them to construct the poisons. We will pursue
a dirty-label backdoor attack, i.e., a small portion ρb of Dt

will flip their label, along with a trigger of size ρa planted
to their input image (more details in §3.2).

2.2. Achieving poisoning through backdoor

In continual learning, an attacker generally does not have
the liberty of planting a trigger on test examples. So we will
address in Oeff and Oste a much more challenging setting
(from an attacker’s perspective) where such access is not
available. It is important to note that although our method
leverages backdoor attacks, it only serves as a means of
achieving the overall goal, which is poisoning the genera-
tor/replayer instead of backdooring. In backdoor attacks, a
classifier predicts poorly only on backdoored examples with
triggers, while remaining well performing on clean test ex-
amples. In contrast, (non-backdoor) poisoning attacks aim
to predict poorly on all examples, even without a “trigger”.

2.3. Difficulties in the attack

Since most of the existing poisoning algorithms are in the
batch setting, the extension to continual learning brings
about new and significant challenges.

Firstly, the poison cannot compromise the current classi-
fier, but should sufficiently poison the DGR so that the
samples drawn from it during the later tasks will be detri-
mental enough to forget the previously learned tasks. This
rules out adding random images with random labels, or
simply flipping the label of some examples inDt, because
they are easy to detect (Levine & Feizi, 2021) and the result-
ing classifier Ct will perform poorly on task t. Empirical
demonstrations are available in Appendix G, where a base-
line naive attack of flipping 25% labels on split-MNIST
is considered, and the test accuracy of current tasks drops
below 20% from the second task, failing the objective Oste.

Secondly, since the future tasks have not been witnessed
yet at task t and the training of Ct+1 has not started, it is
infeasible to optimize the forget-inducing distortion on Dt

via back-propagation based optimization – the context and
objective are not yet available for future forgetting.

3. The Attack Algorithm
Our poisoning attack proposes evading the defense by lever-
aging the input-aware backdoor attack (Nguyen & Tran,
2020), so that mislabeled data points carrying a trigger can
be injected to Dt in a small amount. In particular, our ap-
proach achieves Oeff, Oste, and Orob through the following
effects:

1. Since the triggers depend on (hence vary across) the
input data, the defender can hardly detect it.

2. Since the mislabeled examples for the current task all
carry an input-aware trigger, the learned backdoored
classifier for task t makes mistakes only for backdoored
examples. As such, it predicts accurately on pristine test
examples for task t which carry no trigger. This will be
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demonstrated in Section 5.1. For example, in Figure 1c,
the first task (blue line) has nearly 100% accuracy with
clean testing inputs on the first 100 epochs.

3. As generative models essentially represent a lossy com-
pression, it is generally unable to capture the triggers that
change with the input. When replayed later for a future
classifier at task t+ 1, t+ 2, . . ., the triggers go absent
while the incorrect label is retained. So the classifier
will be trained on mislabeled examples of task t with no
backdoor, hence misclassifying clean test examples.

3.1. Backdoor attacks

Our solution is based on backdoor attacks, which despite the
marked resemblance to poisoning attacks, do not misclassify
a test example unless a pre-designed trigger is inserted to it.
Backdoor attacks such as BadNets (Gu et al., 2019) plant a
pre-selected or learned trigger into some training images at a
pre-selected or varying location. A number of variations are
available such as soft blending and multi-channel. Adding
the resulting image to the training data along with a flipped
label (randomly selected for an untargeted attack, and pre-
specified for a targeted attack), a classifier can be trained
that enjoys two important properties:

Peff Once a test image is also backdoored with a trigger,
the predicted label will change to the pre-specified (or
random) one in a targeted (or untargetted) attack.

Pste However, the test accuracy on pristine images (without
a trigger) can remain very high.

Our inspiration originates from this trigger-based mod-
ulation. Suppose we plant the trigger on Dt in step 5 of
Algorithm 1, and denote the resulting training set as D̃t.
Then the resulting Ct will perform well on pristine test
examples of task t, because they do not carry the trigger.
After moving to task t+1, the replayer will (approximately)
reproduce D̃t, at which point two cases can be considered:

• If the replayer works purely by rote, then D̃t will be
exactly replayed and the resulting classifier Ct+1 will be
backdoored in the same way as Ct. As a result, it will still
predict accurately on clean samples from task t, i.e., the
attack fails in promoting forgetting.

• If the replayer is lossy and is unable to capture or repro-
duce the trigger, then the replayed examples might no
longer carry the trigger. However, they still carry the
flipped label. As a result, Ct+1 will now be trained on
mislabeled examples without a trigger, and will there-
fore perform poorly on task t. In this case, the attacker
successfully promoted forgetting.

The requirement on the replayer in the second case may
appear unrealistic, because firstly the replayer is supposed
to faithfully preserve the salient information in the inputs to

Algorithm 2 InputAwareBackdoor
Input: Data generation distribution P (X,Y ), which will

the invoked with P = Pt at task t
1: (D̃, Ldiv)← InputAwareBackdoor–Obj(P,B[Y])

Output: argminC,B[Y]
{Lcl(C)+λdivLdiv}, whereLcl(C)

is the classification risk
∑

(x,y)∈D̃ ℓ(C(x), y).

Algorithm 3 InputAwareBackdoor–Obj
Input: P as in InputAwareBackdoor, and backdoor gen-

erators B[Y] := {By : y ∈ Y}
1: Initialize D̃ = ∅ which will contain clean and poisoned

examples. Set Ldiv = 0 (diversity loss).
2: for (x, y) sampled from P for task t do
3: sample d ∼ U(0, 1), sample y′ from Y\{y},
4: sample (x̂, ŷ) from P excluding (x, y),
5: Ldiv += ∥x− x̂∥ / ∥By′(x)−By′(x̂)∥ ▷ diversity
6: if d < ρb then ▷ make a backdoor example
7: x′ ← x⊙By′(x), D̃ += (x′, y′)
8: else if d < ρb + ρc then ▷ make a cross example
9: x′ ← x⊙By′(x̂), D̃ += (x′, y)

10: else D̃ += (x, y) ▷ clean example
Output: D̃ and Ldiv

address catastrophic forgetting. Secondly, a user (who con-
structs and trains the replayer) obviously has no motivation
to collaborate with an attacker. Therefore, the key challenge
for the attacker is to design delicate triggers that are as likely
to be overlooked and disregarded as possible under gener-
ative modeling, while retaining the good performance on
clean test data during task t (property Pste ).

This is indeed challenging as we experimented. Static back-
door (BadNet) can be easily replayed by a generative model.
Along with Trojan attack, it can be easily defended by neu-
ral cleansing. We also tested static backdoor with changing
location, which again, turned out easily detected and fixed
by neural cleansing. Witches’ Brew (Geiping et al., 2021)
and other gradient matching based methods need to know
the target before deploying the attack, while future tasks are
unknown in continual learning. Eventually, it turns out the
input-aware backdoor satisfies our need, where a trigger is
customized for each example through a learnable genera-
tive model, hence exhibiting much less regularity for the
replayer to capture.

3.2. Input-aware backdoor

We first recap the input-aware backdoor (IAB, Nguyen &
Tran, 2020) as shown in Algorithm 2 under a given data dis-
tribution P , and then detail how to utilize it for our purpose.
Here, the classifier C and class-wise backdoor generating
networks By are jointly optimized over an objective con-
structed in Algorithm 3, where each (x, y) sampled from P
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contributes in one of the following modes:

• As a backdoor example with probability ρb: a wrong label
y′ is randomly picked, and then a trigger that depends on
x is generated by By′(x) and injected to x in line 7 via
elementwise product ⊙.

• As a cross-trigger example with probability ρc. To ensure
that a trigger synthesized for one example x is not effec-
tive for another, a different x̂ is sampled from P . Then x
is poisoned with the trigger generated from x̂ for a wrong
label y′, followed by pairing with the true label y (line 9).

• As a clean example otherwise (line 10).

In Algorithm 2, B[Y] is explicitized in line 1 to stress
that both the diversity loss Ldiv and classification risk Lcl

(through D̃) are functions of B[Y], which is then optimized
along with the classifier C. As observed in our experiment,
IAB proffers the following property (Nguyen & Tran, 2020):

Prob The backdoor in IAB can be hardly detected by state-
of-the-art methods such as neural cleansing.

To summarize, we fulfilled Oste by Pste, and Orob by Prob.
To meet Oeff, we require a trigger-discarding property as
follows, which plays a key role in our method and will be
discussed in the next subsection:

Pdis The replayer cannot well capture the trigger generation
network of IAB, in the sense that the replayed examples
do not well preserve the triggers.

3.3. Trigger-discarding generative models

Property Pdis depends on both the replayer and the trigger.
If the trigger is a constant small white square at the image
center, most standard generative models tested in our ex-
periments managed to preserve it. Section 5.2 will show
that static backdoors are preserved while the dynamic ones
are dropped. Same is true if the replayer only replicates
the training set. In general, it is supposed to capture the
salient features of the input, and one might presume that
triggers are likely to be discarded if they vary a lot across
examples. It turns out not true. For example, we placed a
square/triangle/round in random colors at random positions
of the images, and a WGAN easily reproduced them with
these (interpolated) color, shape, and position.

Formally, let Px be the data distribution, and suppose
given an input x, the trigger is generated by a learnable
network fθ(x) and is added to x by a pre-specified op-
eration g(x, fθ(x)). It induces a distribution of back-
doored examples as a push-forward of Px: Qθ

x := (x 7→
g(x, fθ(x)))#Px. Let a generative learning algorithm A
map a set of examples {xi}i to a distribution. Then the
trigger is intended to demote some divergence (e.g., KL and
Wasserstein) between

Px and Exi∼Qθ
x
A({xi}i). (2)

Algorithm 4 Operation of the user, attacker, and defender
during task t (in place of line 3 to 7 of Algorithm 1)

Input: Pt for task t, classifier Ct−1, replayers G[t−1], sur-
rogate classifier Ĉt−1, surrogate replayers Ĝ[t−1], and
backdoor generators B[Y]

1: Initialize surrogate classifier Ĉt with Ĉt−1.
2: for i ∈ [t− 1] do ▷ Sample from the surrogate replayer
3: Ŝi ← SampleFromReplayer(Ĝi) ▷ X, Y pairs
4: for number of iteration (run in mini-batches) do
5: D̃t,Ldiv ← InputAwareBackdoor–Obj(Pt, B[Y])

▷ Both D̃t and Ldiv are functions of B[Y]

6: Lcl ← sum of ℓ(Ĉt(x), y) over (x, y) ∈ D̃t∪Ŝ1:t−1

▷ Lcl is a function of Ĉt and B[Y]

7: Update Ĉt to reduce Lcl

8: Update B[Y ] to reduce Lcl + λdivLdiv

9: Set D̃t by using the learned B[Y].
10: Train a surrogate replayer Ĝt based on D̃t.
11: for i ∈ [t− 1] do
12: User: Si ← SampleFromReplayer(Gi)
13: Defender: Apply ν-SVM on the replayed data S1:t−1

14: User: Ct ← TrainClassifier(Ct−1, D̃t ∪ S1:t−1)
15: User: Gt ← TrainReplayer(D̃t)
16: Defender: Neural Cleansing on Ct

Output: Ct, Gt,Ĉt, Ĝt, and B[Y]

Directly computing the gradient in θ is expensive and infea-
sible, because A is assumed inaccessible in §2.1.

Fortunately, our experiments show that Pdis is well achieved
(but not perfectly) when IAB is applied in conjunction with
several SOTA generative models such as conditional Wasser-
stein GAN (cWGAN, Engelmann & Lessmann, 2021) and
conditional VAE (Sohn et al., 2015). This is because these
models have limited capacity, and the trigger’s dependency
on the input, which is more involved than just random, sig-
nificantly increases sample complexity for generative learn-
ing. A theoretical analysis is left for future work, and §5.2
empirically illustrates this intriguing property.

3.4. Poisoning the replayer via IAB

We are now ready to apply IAB to poison the DGR and
to promote forgetting. We will call our method Continual
Input-Aware Poisoning (CIAP). It does not backdoor test
images. Algorithm 4 demonstrates the operation of all par-
ticipants during task t – attacker in black, user in blue, and
defender in red (reserved for Section 4). It corresponds to
the loop under a given t in Algorithm 1 (line 3 to 7 therein).

In line 6, the poisoned data D̃t is joined with Ŝ1:t−1 from
the surrogate replayers to construct the classification risk
Lcl. The attacker is then trained in the same way as in
Algorithm 2, using a surrogate classifier Ĉt. The surrogate
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(a) Baseline: no replayer (b) Clean with replay (c) Attacked with replay

Figure 1: Test accuracy on clean test images for split-MNIST

replayer Ĝt is additionally learned in line 10. The user
trains its victim classifier and replayer in lines 14 and 15,
respectively.

4. The Defender
We consider two defenses against the CIAP attack. The
first is neural cleansing (Wang et al., 2019), which has been
inserted in line 16 of Algorithm 4. If it were successful, then
the backdoor planted in Ct would be detected and removed,
thereby defeating our robustness objective Orob.

Neural cleansing reverse engineers a universal trigger pat-
tern that can turn every image into one specific label. There-
fore, it will not work when the IAB attack enforced the non-
reusability of triggers by having “cross” poisons. Nguyen &
Tran (2020) provided more details and experiments, and we
will thus not investigate neural cleansing in experiments.

Our second defense is aimed at objective Oeff. To this end,
we apply an outlier detector ν-SVM to S1:t−1, which is in
line 13 of Algorithm 4. If it managed to filter out mislabeled
replayed samples, then the attacker would fail to bolster
catastrophic forgetting. Here ν is a hyperparameter con-
trolling the fraction of outliers. Since its value is unknown
in practice, our experiment will enumerate a range of ν
values, and demonstrate the extent to which the learner’s
performance can be saved respectively.

It is crucial to recognize that the replayed examples
are not simply label-flipped poisons (i.e., clean images
with a wrong label), although the replayer is poisoned with
label-flipped and backdoored examples. This is for two
reasons. Firstly, since the examples of a class y′ is fed to
the replayer to train for the class y, the generation of the
features/images for class y is contaminated. Secondly, the
input-dependent triggers introduce additional complications
to the generative model. Indeed, we tested by directly gen-
erating label-flipped examples based on clean images, and
ν-SVM easily filtered them out. However, this is not the
case when ν-SVM is applied to our replayed images (§5.3).

5. Experimental Results
We next experiment on CIAP to verify: i) it attains the two
objectives Oeff and Oste; ii) the trigger-discarding property
introduced in §3.3 holds true for commonly used generative
models; iii) CIAP remains effective under strong defenders
(Orob). The code is available at Online Supplementary.

5.1. Effectiveness of the attack for Oeff and Oste

We tested CIAP on five datasets: split-MNIST (Ciresan
et al., 2011), split-CIFAR-10 (Krizhevsky & Hinton, 2009),
FashionMNIST-MNIST (Xiao et al., 2017), permuted-
MNIST (Goodfellow et al., 2014), and split-EMNIST (Co-
hen et al., 2017). We used SpinalVGG as the victim classi-
fier (Kabir et al., 2020) for the four MNIST datasets, and
ResNet (He et al., 2016) for split-CIFAR-10. The results
shown here use cWGAN with gradient penalty as the re-
player, and results for cVAE are deferred to Appendix F. The
poison ratio ρb = 0.25, and the cross ratio ρc = 0.15. Each
trigger was allowed to change 5% of the image’s pixels.

split-MNIST We separated the entire dataset of MNIST
into five tasks, each consisting of images from two disjoint
classes in MNIST – the first task includes classes 0 and 1;
the second task includes 2 and 3; and so on. The victim
model was trained for 100 epoch in each task.

Figure 1a shows the baseline result without a replayer, where
the blue line represents the test accuracy of the first task, or-
ange line for the second, etc. As expected, the test accuracy
for each task drops rapidly to 0% after the victim model
proceeds to a new task. It is 0% because the new task has
no overlap with the previous ones in the label space. Figure
1b shows the result of DGR-facilitated training, where the
forgetting is significantly mitigated, and the test accuracy
remains high on all trained tasks. This confirms the effec-
tiveness of DGR and the sufficient capacity of the cWGAN.

Figure 1c shows the result after our attack CIAP is enacted.
The test accuracy of each current task can still achieve
nearly 100%, corroborating the achievement of objective
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(a) 25% backdoor and 15% cross (b) 15% backdoor and 10% cross (c) 5% backdoor and 5% cross

Figure 2: Test accuracy on clean test images for split-MNIST under different poison ratios

(a) Baseline: no replayer (b) Clean with replay (c) Attacked with replay

Figure 3: Test accuracy on clean test images for split-MNIST using a surrogate classifier with a different architecture

(a) Clean 0 (b) Poisoned 0 (c) Clean 1 (d) Poisoned 1

Figure 4: The clean and poisoned images used to train the
replayer for split-MNIST.

Oste. When the learner moves to the next task, the accu-
racy on the previous tasks falls significantly to around 25%
despite some fluctuations. This confirms that the objective
Oeff (forgetting) has also been attained.

To study the impact of poison rate, we also tested with ρb =
0.15 and ρc = 0.1. As shown in Figure 2, the attack brings
clean test accuracy on past tasks down to 30% (Figure 2b).
Further reducing the poison ratio to ρb = ρc = 0.05 leaves
the clean test accuracy above 70% (Figure 2c).

Additionally, we set up experiments on Split-MNIST where
the surrogate classifier is different from the victim classifier
in model architecture. We also used the reduced the poison
ratio ρb = ρc = 0.05. As shown in Figure 3, test accuracy

on past tasks has been reduced from 90% (Figure 3b) to
35% (Figure 3c), while the test accuracy on current tasks
remains high. This further illustrated the proposed attack’s
effectiveness under lower poison ratio and without access to
either the gradient or the architecture of the victim networks.

Finally, we plot in Figure 4 some example clean images of
class 0 and 1 from the first task of split-MNIST, along with
their corresponding poisoned images constructed by IAB
(before label flipping). The poisons are quite inconspicuous.

split-CIFAR-10 To illustrate the effectiveness of CIAP in
colored space, we repeated the experiment on CIFAR-10,
with the same setup of five disjoint tasks. Here the victim
model was trained for 50 epochs on each task.

Similar to the split-MNIST, the victim model completely
forgets the earlier trained tasks after a new task starts, as
shown in Figure 5a. After DGR is introduced in Figure
5b, although forgetting is not as well mitigated as in split-
MNIST, solid improvement is still made on the test accuracy
for all trained tasks. However, the improvements brought by
DGR were completely eliminated by the CIAP attack. As
Figure 5c shows, the test accuracy on past tasks drops to 0%
after being poisoned. During the current task, however, the
accuracy can still achieve the same level as in Figure 5a.
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(a) Baseline: no replayer (b) Clean with replay (c) Attacked with replay

Figure 5: Test accuracy on clean test images for split-CIFAR-10

Figure 6: Poison rate of replayed images

We also tested on the split-EMNIST dataset with 10 tasks,
and the results are similar; see Appendix C. The results
of FashionMNIST-MNIST and permuted-MNIST are in
Appendix A and B, respectively.

5.2. Investigation of the trigger-discarding property

To better illustrate property Pdis, we set up two experiments
on split-MNIST using cWGAN. The first one studies the
percentage of backdoored images (images with a trigger)
generated by the replayer, when a varying portion of the
training images are backdoored. Our goal is to show that
such a percentage is much lower for IAB than for a static
backdoor, i.e., the triggers of IAB are much less likely to
survive the generative learning. A static backdoor refers
to a white square on the image’s top left corner. To this
end, we trained a binary poison detector based on a training
set that is backdoored with the IAB network learned from
the first task. Another detector was trained analogously for
static backdoor. This allows us to measure the percentage
of backdoored images from the replayer. The two detectors
achieve 97% accuracy, and similar ideas have been used
in evaluating generative models such as inception score
(Salimans et al., 2016).

As shown in Figure 6, the static backdoor maintains almost
the same percentage of backdoored images used for training,
while that for IAB grows much more slowly, producing only

(a) Static backdoor (b) Input-aware backdoor (IAB)

Figure 7: ASR for static backdoor and IAB

40% backdoored images when 90% of the training images
are backdoored. This shows that IAB is far more likely to
be discarded by the replayer.

Our second experiment examines the chance of replaying a
backdoored image by using the attack success rate (ASR).
In the same setting as the above experiment, we backdoored
25% images in the first 30 epochs with flipped labels, and
used them to train a replayer. Then we generated exam-
ples from it in the second 30 epochs, and used them to
incrementally train a new classifier. This classifier is tested
on backdoored images, and the proportion of misclassified
images is calculated as the ASR.

If the triggers are preserved by the replayer, then a classifier
learned from the replayed images should permit a high ASR.
This is confirmed in Figure 7a where the ASR remains at
100% for static backdoor. The drop in the middle is because
the new classifier was trained from scratch. In contrast, the
ASR drops to zero for IAB in Figure 7b, confirming that the
newly trained classifier is not backdoored, i.e., the replayed
images do not preserve triggers sufficiently well for training
a backdoored classifier.

5.3. Assessing CIAP under defense (objective Orob)

We next study how well our attack withstands defenses. To
this end, a ν-SVM with a radial basis kernel was applied to
the output of the convolutional layer of SpinalVGG. This
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(a) ν = 0.15 (b) ν = 0.25 (c) ν = 0.35

Figure 8: Test accuracy after defense with different ν values for split-MNIST

(a) Clean replay (b) Poisoned replay (c) Poisoned replay after ν-SVM

Figure 9: Replayed images on split-MNIST with label "1" from (a) clean replayer, (b) poisoned replayer, and (c) poisoned
replayer after filtered with ν-SVM (ν = 0.25).

allows a portion of replayed samples to be filtered out, and
the proportion is controlled by ν ∈ (0, 1).

As shown in Figure 8 where ν is varied in {0.15, 0.25, 0.35}
on the split-MNIST dataset, the filtering by ν-SVM does
help a little, especially when ν is set around the poison ratio
(ρb = 0.25). However, it remains unable to well remove the
impact of the attack, and the test accuracy on past tasks still
falls below 50%. Similar results on the other datasets are
relegated to Appendix D.

The limited improvement could be partially ascribed to the
compromised image quality due to the backdoors. To better
visualize the consequence of poisoning on the replayer, we
compare in Figure 9 the replayed images before and after
the attack. Figure 9a presents example images generated by
a replayer that is trained on clean images only. In contrast,
Figure 9b shows that the poisoned replayer can often gen-
erate images from an incorrect class, i.e., another class that
is incorrectly labeled as "1". Although the replayer cannot
reproduce the input-aware backdoor, it tends to turn the
backdoors into some random noise, making it harder for the
filter to identify those poisons. As a result, the remaining
replayed images are only slightly improved by the ν-SVM
filtering as shown in Figure 9c.

We finally investigated the proportion of mislabeled exam-
ple pairs generated by the replayer. The resulting confusion

matrix is shown in Table 1 in Appendix E, using the re-
players after completing task 5 on split-MNIST. The total
“wrong pair ratio" turns out not high.

6. Conclusion and Future Work
We proposed a novel poisoning attack on the generative
replayer in continual learning, so that forgetting can be pro-
moted while the accuracy at the current task is not hurt. Our
approach takes advantage of input-aware backdoor attacks,
whose triggers cannot be well captured by normal generative
models thanks to their input dependency. In future work, we
will delve more into the theoretical analysis of the trigger-
discarding property. We will also extend the approach to
continual learning without known task boundaries.

Societal impact. We revealed important vulnerabilities
in continual learning methods that are based on generative
rehearsal. Similar to many works that identify an attack
without effective countermeasures available in the existing
literature, we will address this defense issue in the future.
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Supplementary Material
A. Results of FashionMNIST-MNIST on cWGAN
There are two tasks in this task-incremental experiment: FashionMNIST followed by MNIST. Both tasks have 10 classes,
and the victim model’s goal is to classify images from them into a shared set of labels – "T-shirt" and "hand written 0" are
both associated with "class 0". The victim model was trained for 100 epochs with samples from the first task, followed
by 100 epochs on the second task. Since the two tasks share the same label space, the victim model will still achieve 10%
testing accuracy on the past task even after its been completely forgotten.

Figure 10a shows the baseline result without a replayer, where the blue and orange lines represent the test accuracy of the
first and second tasks, respectively. As expected, the test accuracy for FashionMNIST declines rapidly from 92% to 14% as
the training on MNIST progresses to 100 epochs.

Figure 10b shows the result of DGR-facilitated training. Although the test accuracy of FashionMNIST still drops a bit after
MNIST starts to be trained on, it stabilizes at 66%, which illustrates the effectiveness of DGR and the sufficient capacity of
the cWGAN.

Figure 10c shows the result after our attack is introduced. In the first task (epochs 0-100), the test accuracy remains very
similar to that of Figure 10a and 10b, corroborating the achievement of objective Oste. When the continual learning moves
on to the second task, the test accuracy on the earlier task falls significantly to 17%, much lower than the 93% achieved at
the end of the first task. This confirms that the objective Oeff (forgetting) has also been attained.

(a) Baseline: no replayer (b) Clean with replay (c) Attacked with replay

Figure 10: Test accuracy on clean testing images for FashionMNIST-MNIST
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B. Results of permuted-MNIST on cWGAN
In this dataset, each task consists of images from all the 10 classes of MNIST. However, each task also employs a unique
pixel-level permutation, applied to all the images. The performance is similar to split-MNIST. In Figure 11a where no
replayer is used, the test accuracy drops to 20% after new tasks start. Similar to FashionMNIST-MNIST in Appendix A,
since all the tasks in permuted-MNIST share the same label space, even random guessing would give 10% accuracy. So this
20% is already very close to complete forgetting. Replay ameliorated the problem, but the gain is much obliterated by the
CIAP attack in Figure 11c.

(a) Baseline: no replayer (b) Clean with replay (c) Attacked with replay

Figure 11: Test accuracy on clean test images for permuted-MNIST

C. Results of split-EMNIST on cWGAN
Our experiment setup largely follows Shin et al. (2017). Although many continual learning literature also evaluates on 5
tasks or fewer, it is of interest to study more tasks. Note that there are only 10 classes in the split-MNIST dataset, and we
have already used up all the classes in the five tasks. Although additional tasks can be constructed by grouping new pairs
of classes, it will not serve our investigation well because the sixth task would then include two classes that have already
been witnessed before. Although our attacker has promoted catastrophic forgetting, it is still much easier than starting from
scratch like in tasks 1-5, i.e., exhibiting no struggle.

As such, we developed a new experiment with the EMNIST dataset (balanced split), which consists of handwritten digits
and letters in 47 classes. Since some classes looks alike (i.e. "C" and "c", "S" and "s"), Cohen et al. (2017) merged those
similar classes, and balanced the merged classes. We constructed 10 disjoint binary tasks out of it, and the test accuracy on
clean test images is shown in Figure 12.

Clearly, the replayer is helpful in alleviating catastrophic forgetting (Figure 12b), and our attacker is able to exacerbate
forgetting in all tasks by reducing the test accuracy (Figure 12b). In particular, with the poisoned replayers, all tasks achieve
very high accuracy during its own training (Figure 12b). It is noteworthy that in this dataset the help of replayer is not
sufficient enough to completely eliminate forgetting. This, however, does not diminish our contribution as an attacker,
because the attacker only needs to further impair the accuracy on top of the performance achieved by the replayer.

(a) Baseline: no replayer (b) Clean with replay (c) Attacked with replay

Figure 12: Test accuracy on clean test images for split-EMNIST
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D. Results of ν-SVM defense on split-CIFAR-10
Similar to the experiment on split-MNIST in Section 5.3, we tested the attack with ν-SVM defense on CIFAR-10. As shown
in Figure 13, with three different values of ν, the test accuracy on past tasks dropped to almost 0 after switching to a new
task. This confirms that our CIAP remains effective under the defense of ν-SVM.

(a) ν = 0.15 (b) ν = 0.25 (c) ν = 0.35

Figure 13: Test accuracy after defense with different ν values for split-CIFAR-10

E. Proportion of mislabeled pairs in replayed data

Table 1: Proportion of mislabeled pairs in replayed data

0 1 2 3 4 5 6 7 8 9
0 6.25 0.15 0.89 0.18 0.61 0.23 0.7 0.09 0.21 0.63
1 0.01 8.19 0.31 0.02 0.1 0.08 0.01 0.49 0.63 0.1
2 0.03 0.14 6.26 0.98 0.07 0.67 0.39 0.42 0.62 0.36
3 0.01 0.08 0.65 7.45 0.74 0.1 0.18 0.26 0.12 0.35
4 0.02 0.09 0.05 0.04 7.49 0.46 0.22 0.53 0.44 0.62
5 0.03 0.04 0.03 0.19 0.48 7.09 1.21 0.04 0.46 0.39
6 0.1 0.11 0.07 0.04 0.04 0.23 8.92 0.11 0.06 0.27
7 0.13 0.36 0.2 0.09 0.13 0.16 0.02 7.42 0.21 1.22
8 0.01 0.01 0.0 0.0 0.3 0.0 0.04 0.01 9.08 0.49
9 0.0 0.0 0.0 0.04 0.15 0.11 0.01 0.01 1.62 8.02

Since the poisoned generator itself does not provide a flag indicating whether a generated feature-label pair is wrong, we
trained a classifier C∗ on clean MNIST data and applied it to the generated data pairs. The resulting confusion matrix is
shown in Table 1 in percentage, using the replayers after completing task 5 on split-MNIST. The columns are the labels
produced by C∗, while the rows are the labels used to invoke the generator, i.e., used as the label for the replayed data. The
total “wrong pair ratio" is 24% (sum of off-diagonal values), which is not that high.
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F. Results of FashionMNIST-MNIST on cVAE
Similar to the experiment with cWGAN in Appendix A, we tested the attack with cVAE replayer on FashionMNIST-MNIST.
As shown in Figure 14, the testing accuracy on the earlier task dropped from 91% to 27% after attack. This indicates that
cVAE is also vulnerable to the proposed attack.

(a) Baseline: no replayer (b) Clean with cVAE replay (c) Attacked with cVAE replay

Figure 14: Test accuracy on clean test images for FashionMNIST-MNIST based on cVAE

G. Baseline attack on Split-MNIST
To better illustrate the effectiveness of our attack, we conducted a baseline naive attack on Split-MNIST by flipping 25%
labels without changing the corresponding images. As shown in Figure 15b, starting from the second task (orange line), the
test accuracy of current tasks drops to below 20%, compared with 100% without attack (Figure 15a). Thus the baseline
attack will be discerned by the victim during training of the current task, violating objective Oste.

(a) Baseline performance: clean with re-
play. Same as Figure 1b.

(b) Baseline attack with simple label flipping:
naive attack with replay

(c) CIAP attack with replay. Same as Figure
1c.

Figure 15: Test accuracy on clean test images for Split-MNIST
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H. Replayed images on Split-MNIST
Following the experiment in Appendix ??, we also printed out examples of replayed images with label "1" before and after
the attack in Figure 16. With reduced poison ratio, the poisoned replay in Figure 16b contains less images from other classes
than it was in Figure 9b.

(a) Clean replay (b) Poisoned replay

Figure 16: Replayed images on split-MNIST with label "1" from (a) clean replayer, (b) poisoned replayer
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