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Abstract
The goal of this paper is open-vocabulary object
detection (OVOD) — building a model that can
detect objects beyond the set of categories seen
at training, thus enabling the user to specify cat-
egories of interest at inference without the need
for model retraining. We adopt a standard two-
stage object detector architecture, and explore
three ways for specifying novel categories: via
language descriptions, via image exemplars, or
via a combination of the two. We make three
contributions: first, we prompt a large language
model (LLM) to generate informative language
descriptions for object classes, and construct pow-
erful text-based classifiers; second, we employ
a visual aggregator on image exemplars that can
ingest any number of images as input, forming
vision-based classifiers; and third, we provide
a simple method to fuse information from lan-
guage descriptions and image exemplars, yield-
ing a multi-modal classifier. When evaluating
on the challenging LVIS open-vocabulary bench-
mark we demonstrate that: (i) our text-based clas-
sifiers outperform all previous OVOD works; (ii)
our vision-based classifiers perform as well as
text-based classifiers in prior work; (iii) using
multi-modal classifiers perform better than either
modality alone; and finally, (iv) our text-based and
multi-modal classifiers yield better performance
than a fully-supervised detector.

1. Introduction
In this paper, we consider the problem of open-vocabulary
object detection (OVOD), which aims to localise and clas-
sify visual objects beyond the categories seen at training
time. One may consider its usefulness from the perspec-
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Figure 1. Overview of the architecture for generating text-based,
vision-based, or multi-modal classifiers for OVOD. Vision (top
left): A frozen visual encoder ingests image exemplars of falcon
producing an embedding per exemplar. A trained aggregator takes
these embeddings as input and produces a vision-based classifier.
Text (top right): A text completion LLM is prompted to give de-
scriptions of a falcon which are then encoded by a text encoder and
averaged yielding a text-based classifier. Multi-Modal (middle):
Multi-Modal classifiers are generated by adding the vision-based
and text-based classifiers together. OVOD (bottom): The multi-
modal classifier is used to detect the falcon in a standard model.
Note, all three types of classifier: vision-based, text-based and
multi-modal, can be used on the detector head for OVOD.

tive of online inference, when users want to freely specify
categories of interest at inference time without the need or
ability to re-train models. To specify categories of interest,
three obvious ways exist, namely: (1) text-based, e.g. name
the category or describe it in text form; (2) vision-based,
e.g. give image examples; (3) multi-modal, e.g. indicate the
category jointly with text and image.

Existing works (Bansal et al., 2018; Gu et al., 2022; Zareian
et al., 2021; Zhou et al., 2022; Feng et al., 2022) have ex-
plored replacing the learnt classifiers in a traditional detector
with text embeddings, that are computed by passing the class
name into a pre-trained text encoder with manual prompts,
such as “a photo of a dalmatian”, however, this design can
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be sub-optimal from three aspects: first, the discriminative
power of generated text embeddings relies entirely on the
internal representation of the pre-trained text encoder, po-
tentially leading to lexical ambiguities — e.g. “nail” can
either refer to “the hard surface on the tips of the fingers” or
“a small metal spike with a flat tip hammered into wood to
form a joint” — simply encoding the class name will not be
able to distinguish the two concepts; second, the class name
for objects of interest may be unknown to the user, while
exemplar images can be easily acquired — e.g. “dugong”
refers to a herbivorous marine mammal with an adorable,
plump appearance, a dolphin tail, round head and downward
snout (an example is in Section I of the Appendix); third, in
cases where multi-modal information is preferable to spec-
ify the category of interest, e.g. a species of butterfly with
a distinctive wing pattern — language descriptions can be
unsuitably long to capture all the intricacies of a given cate-
gory, while an exemplar image can “tell a thousand words”
and act as an effective complement to text.

To tackle these limitations, we propose a multi-modal open-
vocabulary object detector, with the classifier of the de-
tector for a particular category being constructed via nat-
ural language descriptions, image exemplars or a combi-
nation of the two. Specifically, we establish an automatic
approach for sourcing visual descriptions of the object cate-
gories, by prompting a large language model with questions,
e.g. “What does a dalmatian look like?”, yielding “A dal-
matian is typically a large dog with a short coat of black
spots on a white background”. Such a description provides
additional visual cues to enhance the discriminative power
of the classifier generated from a text encoder. For cases
where collecting suitable informative language descriptions
may be difficult or require unnecessarily long descriptions
to establish the differences between classes, e.g. the dog
breeds “pug” and “bulldog” have similar descriptions, we
can generate classifiers from image exemplars — RGB im-
ages of the class of interest. Finally, we suggest a simple
method to fuse both language descriptions and image exem-
plars, yielding multi-modal classifiers that perform better
than either modality individually.

We explore the issue of how best to combine the set of
language descriptions and the set of image exemplars into
a classifier, by comparing the performance of aggregation
methods on a standard detector architecture. By evaluat-
ing on the challenging LVIS (Gupta et al., 2019) open-
vocabulary object detection benchmark we show that: (i)
our automated method for sourcing rich natural language
descriptions yields text-based classifiers superior to those
of previous work that rely entirely on the class name; (ii)
vision-based classifiers can be effectively constructed by a
visual aggregator, enabling novel categories to be detected
by specifying image exemplars; (iii) natural language de-
scriptions and image exemplars can be simply combined to

produce multi-modal classifiers, which perform better than
either modality individually, and achieve superior results to
existing approaches.

2. Related Work
Closed-Vocabulary Object Detection is one of the classi-
cal computer vision problems, making a full overview here
impossible. Therefore, we outline some key milestones.
In general, modern object detection methods can be cast
into two sets: one-stage and two-(multi-)stage detectors.
One-stage detectors directly classify and regress bound-
ing boxes by either densely classifying a set of predefined
anchor boxes (Redmon et al., 2016; Redmon & Farhadi,
2018; Liu et al., 2016; Lin et al., 2017; Tan et al., 2020),
each which may contain an object, or densely searching for
geometric entities of objects e.g. corners, centre points or
boxes (Law & Deng, 2018; Zhou et al., 2019; Tian et al.,
2019). Conversely, most two-stage detectors first propose
class-agnostic bounding boxes that are pooled to fixed size
region-of-interest (RoI) features and classified by a sub-
network in the second stage (Girshick, 2015; Ren et al.,
2016; Li et al., 2019). Two-stage detectors are extended to
multi-stage detectors in which the additional stages refine
predictions made by the previous stage (Cai & Vasconce-
los, 2018; Chen et al., 2019; Zhou et al., 2021). A unique
work in this area is that of (Carion et al., 2020) which uses
the Transformer architecture (Vaswani et al., 2017) to treat
object detection as a set prediction problem. Note that,
the classifiers in these object detectors are jointly learnt on
a training set, therefore only objects seen at training time
can be detected during inference time, thus termed closed-
vocabulary object detection.

Open-Vocabulary Object Detection goes beyond closed-
vocabulary object detection and enables users to ex-
pand/change the detector vocabulary at inference time, with-
out the need for model re-training. Recently, OVOD has
seen increased attention and progress primarily driven by the
emergence of large-scale vision-language models (VLMs)
e.g. CLIP and ALIGN (Radford et al., 2021; Jia et al., 2021),
which jointly learn image and natural language representa-
tions.

ViLD (Gu et al., 2022) distills representations from VLMs.
First, groundtruth bounding boxes are used to crop an
image and an embedding for the box is sourced from a
frozen VLM image encoder. An object detection model
is learnt by matching overlapping region-of-interest (RoI)
features with the embedding for the relevant box from the
VLM image encoder using a L1 reconstruction loss. Re-
gionCLIP (Zhong et al., 2022) uses image-caption data to
construct region-wise pseudo-labels, followed by region-
text contrastive pre-training before transferring to detection.
GLIP and MDETR (Li et al., 2022; Kamath et al., 2021)
use captions to cast detection as a phrase grounding task
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and use early fusion between the image and text modal-
ities, increasing complexity. OVR-CNN (Zareian et al.,
2021) uses large image-caption data to pre-train a detector
to learn a semantic space and finetunes on smaller detec-
tion data. OWL-ViT (Minderer et al., 2022) follows OVR-
CNN but makes use of large transformer models and even
larger image-caption data. OV-DETR (Zang et al., 2022)
modifies the DETR framework for closed-vocabulary ob-
ject detection (Carion et al., 2020) to make it suitable for
the open-vocabulary setting. We note that OV-DETR can
condition object detection on image exemplars, but only
provides some qualitative examples, whereas we quantita-
tively benchmark our method using vision-based classifiers.
Detic and PromptDet (Zhou et al., 2022; Feng et al., 2022)
improve open-vocabulary detection by making use of image
classification data to provide weak supervision on a large
set of categories. Our work uses Detic as a starting point
in experiments, and we investigate different methods for
constructing the classifiers.

Low-shot Object Detection. Despite garnering less atten-
tion in recent literature, some low/few-shot object detec-
tion works make use of image-conditioned object detec-
tion (Kang et al., 2019; Hsieh et al., 2019; Osokin et al.,
2020; Chen et al., 2021) in which image exemplars of novel
categories are encoded at inference time and used to de-
tect novel category instances. These works focus on ar-
chitectural advances usually leveraging attention between
the novel class image exemplars and the inference time
image (Chen et al., 2021; Hsieh et al., 2019).

There are an increasing number of low/few-shot object de-
tection works based on finetuning detector parameters on
limited groundtruth data for novel categories (Wang et al.,
2020; Sun et al., 2021; Qiao et al., 2021; Kaul et al., 2022).
These works finetune the detector on limited groundtruth
novel instances and so are not related to open-vocabulary
object detection using vision-based classifiers, where no
novel instances are available for re-training/finetuning.

Natural Language for Classification. Natural language
is a rich source of semantic information for classification.
CLEVER (Choudhury et al., 2021) matches descriptions
of images in simple text form with descriptions from ex-
pert databases e.g. Wikipedia to perform fine-grained clas-
sification. ZSLPP (Elhoseiny et al., 2017) extracts vi-
sual information from large-scale text to identify parts of
objects and perform zero-shot classification. The work
by (Menon & Vondrick, 2023) uses class descriptions from
GPT-3 (Brown et al., 2020) for classification, analysing
which parts of the description contribute to classification
decisions. CuPL (Pratt et al., 2022) uses a GPT-3 model
to provide detailed descriptions enabling improved zero-
shot image classification. The learnings from this work
inform our use of natural language descriptions sourced
from LLMs.

3. Method
In this section, we start by providing background on open-
vocabulary object detection (OVOD), then outline the pro-
posed methods for constructing classifiers from language de-
scriptions of a category (text-based classifiers, Section 3.2)
and image exemplars (vision-based classifiers, Section 3.3).
Our final method combines the classifiers found from lan-
guage descriptions and image exemplars, yielding multi-
modal classifiers (Section 3.4).

3.1. Preliminaries

Problem Scenario. Given an image (I ∈ R3×H×W ) fed
input to an open-vocabulary object detector, two outputs
are generally produced: (1) classification, in which a class
label, cj ∈ CTEST, is assigned to the jth predicted object
in the image, and CTEST refers to the category vocabulary
desired at inference time; (2) localisation, with bounding
box coordinates, bj ∈ R4, denoting the location of the jth

predicted object. In accordance with the setting introduced
by Detic (Zhou et al., 2022), two datasets are used at training
time: a detection dataset, DDET, containing bounding box
coordinates, class labels and associated images, addressing
a category vocabulary, CDET; and an image classification
dataset, DIMG, containing images with class labels only,
addressing a category vocabulary, C IMG. In the most general
case there are no restrictions on the overlap or lack thereof
between the sets CTEST, CDET and C IMG.

Architecture Overview. In this work, we make use of a
popular multi-stage detector based on CenterNet2 (Zhou
et al., 2021) as done in Detic. This detector, with outputs
{cj ,bj}Mj=1, can be formulated as (for simplicity we con-
sider the two-stage variant below):

{fj}Mj=1 = ΦROI ◦ ΦPG ◦ ΦENC (I) (1)

{bj , cj}Mj=1 = {ΦBBOX (fj) ,ΦCLS ◦ ΦPROJ (fj)}Mj=1 (2)

where, each input image is first sequentially processed by a
set of operations: an image encoder (ΦENC); a proposal gen-
erator (ΦPG); a region-of-interest (RoI) feature pooling mod-
ule (ΦROI), yielding a set of RoI features, {fj}Mj=1. The RoI
features are processed by a bounding box module (ΦBBOX)

to infer position of objects, {bj}Mj=1. Additionally, the RoI
features are processed by a classification module, consisting
of a linear projection (ΦPROJ), and C classification vectors
or classifiers (ΦCLS), yielding a set of class labels, {cj}Mj=1
(C is the size of the category vocabulary).

In closed-vocabulary object detection all parameters listed
above are learnt during training on DDET. While in the open-
vocabulary scenario, the classifiers (ΦCLS) are not learnt
during training but are instead generated separately from
an alternative source, e.g. a pre-trained text encoder. This
allows CTEST ̸= CDET, as the classifiers, ΦCLS, for a specific
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Figure 2. Generating powerful text-based classifiers. A LLM (GPT-3)
is used to generate multiple rich descriptions of the class of interest.
These descriptions are then encoded with the CLIP (Radford et al.,
2021) VLM text encoder. The descriptions are more informative than
the simple phrases, such as “(a photo of) a dog” or “(a photo of) a cat”,
used in previous work such as Detic and ViLD. Additional examples of
class descriptions are given in the Appendix (Section F).
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Figure 3. Generating an OVOD vision-based classifier from a
set of image exemplars. A stack of transformer blocks is used
to combine embeddings of multiple exemplars belonging to the
same category.

set of user defined classes can be generated at inference time.
In the following sections, we describe different options for
constructing such classifiers: from natural language, from
image exemplars, or from a combination of the two.

3.2. Text-based Classifiers from Language Descriptions
Existing OVOD approaches, e.g. Detic (Zhou et al., 2022)
and ViLD (Gu et al., 2022), make use of simple text-based
classifiers by encoding the category name with a man-
ual prompt, e.g. a photo of a(n) {class name}
or a(n) {class name}, using an appropriate encoder
— e.g. a CLIP text encoder, thereby yielding a set of clas-
sifiers for CTEST. This method relies on the text encoder
to produce a text-based classifier entirely from its internal
understanding of class name.

Instead, we make use of natural language descriptions of cat-
egories sourced from a large language model (LLM). Such
a design choice gives additional details like visual attributes,
leading to increased discriminative information in the clas-
sifier. This alleviates lexical confusion — class name
may have two different meanings, and effectively prevents
the need for human efforts to manually write descriptions
or spend time searching external sources for them.

Figure 2 outlines our method for generating informa-
tive text-based classifiers. Specifically, we start by
prompting an autoregressive language model with a
question: “What does a(n) {class name} look
like?”, and sample multiple descriptions per class. We
use OpenAI’s API for GPT-3 (Brown et al., 2020) and gener-
ate 10 descriptions per class with temperature sampling (Fig-
ure 2 shows 3 descriptions per class for clarity, more exam-

ples can be found in Section F of the Appendix), yielding
multiple descriptions of the format {class name} is
a ... or similar. Given a set of M plain text descriptions
{sci}

M
i=1 for class c, we encode each element of the set with

a CLIP text encoder (Radford et al., 2021), fCLIP-T(·), and
the text-based classifier for class c is obtained from the mean
of these text encodings:

wc
TEXT =

1

M

M∑
i=1

fCLIP-T (s
c
i ) (3)

At detector training time, text-based classifiers for cate-
gories of interest (c ∈ CDET and c ∈ C IMG) are pre-computed
and kept frozen, the rest of detector parameters are updated
i.e. all parameters in Equations 1-2, except ΦCLS. At infer-
ence time, classifiers for testing categories are computed
similarly to enable open-vocabulary object detection.

Discussion. In this paper, we only consider a single straight-
forward question as a prompt to the LLM: “What does
a(n) {class name} look like?”. However, it is
also feasible to use alternative question prompts, e.g. “How
can you identify a(n) {class name}?” or
“Describe what a(n) {class name} looks
like?”, and obtain visual descriptions with the same or
similar concepts (Pratt et al., 2022).

We investigated using a transformer architecture to aggre-
gate text embeddings from natural language descriptions,
but we found this was not beneficial to OVOD performance
over simply using the mean vector. In general, each text
embedding of a natural language description summarises
the category of interest very well and so the contrastive task,
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which is used to train the aggregator (explained in detail
for the visual case below), is very easy with text embed-
dings yielding no improvement in text-based classifiers for
OVOD.

3.3. Vision-based Classifiers from Image Exemplars
In addition to constructing classifiers with natural language
descriptions, another natural option is to use image exem-
plars, especially in cases where a good description of the
category is prohibitively long (such as the painted lady but-
terfly or Vanessa cardui which has an intricate wing pattern),
or occasionally the class name is not known beforehand,
e.g. “Deerstalker cap” refers to the hat often worn by Sher-
lock Holmes.

In such scenarios, we propose to construct classifiers by
using image exemplars, as shown in Figure 3. Specifically,
given a set of K RGB image exemplars for category c,
{xc

i}
K
i=1, we encode each exemplar with a CLIP visual en-

coder, fCLIP-IM(·), yielding K image embeddings, which
are then passed to a multi-layer Transformer (Vaswani et al.,
2017) with learnable [CLS] token, tCLS:

wc
IMG = Transformer

(
{fCLIP-IM (xc

i )}
K
i=1 ; tCLS

)
(4)

The Transformer architecture acts to best aggregate the K
image exemplars, and the output from the [CLS] token is
used as the vision-based classifier for OVOD. When train-
ing the transformer aggregator, all exemplars are sourced
from ImageNet-21k-P (Ridnik et al., 2021). When gener-
ating vision-based classifiers for OVOD, where possible,
we source our exemplars from ImageNet-21k (Deng et al.,
2009) — where this is not possible, we use LVIS and/or
VisualGenome training data to source image exemplars. Ad-
ditional details on how we collate exemplars for training
and testing are provided in the Appendix (Section D). This
transformer architecture will be referred to as the visual
aggregator and its training procedure is described next.

Offline Training. The visual aggregator is trained offline
i.e. it is not updated during detector training. The training
procedure needs to learn an aggregator which combines
multiple image exemplars to produce effective vision-based
classifiers for OVOD — a classifier for a given class needs
to be discriminative w.r.t. other classes. A CLIP image
encoder is used to provide initial embeddings for each ex-
emplar. We keep the CLIP image encoder frozen during
training to improve training efficiency and prevent catas-
trophic forgetting in the CLIP representation. To provide
discriminative vision-based classifiers, contrastive learning
is utilised. For a given class, the output embedding from
the visual aggregator is trained to minimise similarity with
the output embedding from other classes and maximise the
similarity with an output embedding from the same class.
To do this, the contrastive InfoNCE (van den Oord et al.,

2018) loss is used. The visual aggregator should generalise
well and not be trained for a specific downstream OVOD
vocabulary, therefore it is trained with the ImageNet-21k-P
dataset (Ridnik et al., 2021) for image classification, which
contains ∼11M images across ∼11K classes. For category
c during visual aggregator training, at each iteration, two
distinct sets of K exemplars are sampled, augmented and
encoded by the frozen CLIP image encoder. The two sets
are input separately to visual aggregator, outputting 2 em-
beddings from the learnable [CLS] token for class c. Given
a batch size B, the InfoNCE contrastive loss ensures sets
formed from the same class have similar embeddings and
those of different classes are separated. Once trained, the
visual aggregator and visual encoder are frozen and provide
vision-based classifiers for categories in CDET ∪ C IMG/CTEST

during detector training/testing. Additional details on how
the visual aggregator is trained are provided in the Appendix
(Section C).

Discussion. Using image exemplars for open-vocabulary
detection may share some similarity to few-shot object detec-
tion, however, there is a key distinction. In few-shot object
detection, the given “novel/rare” annotations (albeit few) are
available for training, e.g. recent works have found that fine-
tuning a pre-trained object detector on few-shot detection
data yields the best results (Wang et al., 2020; Qiao et al.,
2021; Kaul et al., 2022), while in open-vocabulary detec-
tion, there are no bounding box annotations for “novel/rare”
categories. Image exemplars (i.e. the wholes image without
bounding boxes) are used to specify the categories of inter-
est; we do not update any parameters based on “novel/rare”
category bounding box data, unlike in few-shot object de-
tection.

During ablation experiments in Section A, we compare the
visual aggregator to a simple mean operator, when obtain-
ing a vision-based classifier from multiple image exemplar
embeddings, and show the benefit of the trained aggregator
in this case.

3.4. Constructing Classifiers via Multi-Modal Fusion
To go one step further, a natural extension to the aforemen-
tioned methods is to construct classifiers from multi-modal
cues; intuitively, natural language descriptions and image
exemplars may contain complementary information. For a
given class, c, with text-based classifier, wc

TEXT, and vision-
based classifier, wc

IMG, the multi-modal classifier, wc
MM, is

computed by a simple fusion method based on addition:

wc
MM =

wc
TEXT

∥wc
TEXT∥2

+
wc

IMG

∥wc
IMG∥2

(5)

Figure 1 demonstrates our entire pipeline for generating text-
based, vision-based and multi-modal classifiers, showing
how any of the three classifiers can be used with an open-
vocabulary detector to detect a “falcon”.
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Discussion. Section 3.3 provides details of the visual ag-
gregator, which yields our vision-based classifiers, but for
multi-modal classifiers we simply compute the vector sum
of our l2-normalised text-based and vision-based classi-
fiers. We investigated using a unified multi-modal aggrega-
tor which ingests both text and visual embeddings, sourced
from class descriptions and image exemplars, respectively.
Such a model did not generate good multi-modal classifiers
for OVOD — distinguishing between sets of text and im-
age embeddings for different classes becomes trivial as the
text embeddings alone are sufficient to solve the contrastive
learning task, thereby ignoring the visual embeddings alto-
gether. Attempts to modify the training for a unified multi-
modal aggregator by using Dropout (Srivastava et al., 2014)
on the text embeddings were not fruitful.

4. Experiments
In this section, we first introduce the standard dataset and
benchmark used in the literature (Gu et al., 2022; Zhou et al.,
2022; Feng et al., 2022). Section 4.2 provides implementa-
tion and training details for our OVOD models, which use
classifiers constructed from natural language descriptions,
visual exemplars or the combination of both. We compare
our models with existing works in Section 4.3, demonstrat-
ing state-of-the-art performance. Additionally, Section 4.3
provides results for cross-dataset transfer. Section 4.4 pro-
vides an ablation study regarding our design choices.

4.1. Datasets and Evaluation Protocol

Standard LVIS Benchmark. In this work, most experi-
ments are based on the LVIS object detection dataset (Gupta
et al., 2019), containing a large vocabulary and a long-
tailed distribution of object instances. Specifically, the
LVIS dataset contains class, bounding box and mask annota-
tions for 1203 classes across 100k images in the MS-COCO
dataset (Lin et al., 2014). Annotations are collected in a
federated manner, i.e. manual annotations for a given image
are not necessarily exhaustive. The classes are divided into
three sets — rare, common and frequent — based on the
number of training images containing a given class.

Training Datasets. To develop open-vocabulary object de-
tectors, we follow the same setting as proposed in ViLD (Gu
et al., 2022) and used in Detic (Zhou et al., 2022). Specif-
ically, the original LVIS training set (LVIS-all) is slightly
changed by removing all annotations belonging to the “rare”
categories. This removes the annotations of 317 rare classes
but not the associated images, in other words, objects be-
longing to rare categories appear in the training set but are
unannotated. This subset of LVIS training data containing
only “common” and “frequent” annotations is referred to as
LVIS-base. LVIS-base serves as DDET using notation from
Section 3.1, unless stated otherwise. When using image

classification data, DIMG, as extra weak supervision, we use
the subset of categories in ImageNet-21K (Deng et al., 2009)
that overlap with the LVIS vocabulary and denote this subset
as IN-L, as in Detic. IN-L covers 997 of the 1203 classes in
the LVIS vocabulary.

Evaluation Protocol. For evaluation, previous work evalu-
ates OVOD models on the LVIS validation set (LVIS-val) for
all categories — treating “rare” classes as novel categories as
it is guaranteed that no groundtruth box annotations whatso-
ever are provided at the training stage. The main evaluation
metric is the standard mask AP metric averaged over the
“rare” classes and is denoted as APr. The mask AP averaged
across all classes is also reported, indicating overall class
performance and is denoted as mAP. The latter metric is an
important consideration as a good model should improve
both APr and mAP; a model should not improve APr at the
cost of worse performance in terms of mAP.

4.2. Implementation Details

Object Detector Architecture. The architecture we use is
almost identical to that in Detic, using the CenterNet2 (Zhou
et al., 2021) model with a ResNet-50 backbone (He et al.,
2016) pre-trained on ImageNet-21k-P (Ridnik et al., 2021).
In addition to exploring different ways for constructing
classifiers (ΦCLS), as described in Section 3, we also add
a learnable bias before generating final confidence scores,
the effect of this bias term is investigated in the Appendix
(Section A).

Detector Training. The training recipe is the same as Detic
for fair comparison, using Federated Loss (Zhou et al., 2021)
and repeat factor sampling (Gupta et al., 2019). While train-
ing our OVOD model on detection data only, DDET, we use a
4× schedule (∼58 LVIS-base epochs or 90k iterations with
batch size of 64). When using additional image-labelled
data (IN-L), we train jointly on DDET ∪ DIMG using a 4×
schedule (90k iterations) with a sampling ratio of 1 : 4 and
batch sizes of 64 and 256, respectively. This results in ∼15
IN-L epochs and an additional ∼11 LVIS-base epochs. For
mini-batches containing images from DDET and DIMG we
use input resolutions of 6402 and 3202, respectively. We
conduct our experiments on 4 32GB V100 GPUs.

For image-labelled data, DIMG, an image with class label is
given, but no groundtruth bounding box is available. Fol-
lowing Detic, the largest class-agnostic box proposal is used
to produce an RoI feature for the given image, enabling
detector training. See the Detic paper for more details.

Text-based Classifier Construction. To generate plain text
class descriptions we use the GPT-3 DaVinci-002 model
available from OpenAI. For each class in LVIS, we generate
10 descriptions and compute the classifier with the text
encoder from a CLIP ViT-B/32 model (Radford et al., 2021),
as detailed in Section 3.2. We follow the standard method

6
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from CLIP and use the output embedding corresponding to
the final token in the input text.

Vision-based Classifier Construction. The visual aggre-
gator, detailed in Section 3.3, should be general and not
specific to any class vocabulary. To fulfil this goal, we use
the curated ImageNet-21-P dataset (Ridnik et al., 2021) as
training data for the aggregator. This dataset, designed
for pre-training visual backbones, filters out classes with
few examples from the original ImageNet-21k (Deng et al.,
2009) dataset, leaving ∼11M images across ∼11K classes.

To generate a visual embedding from a given image ex-
emplar, we use a CLIP ViT-B/32 visual encoder. For the
aggregator, we use N = 4 transformer blocks, with dimen-
sion 512 (the same as the output dimension of the CLIP
visual encoder) and a multilayer perceptron dimension of
2048. Comprehensive details of aggregator training is pro-
vided in the Appendix (Section C). To test the effectiveness
of our visual aggregator, we generate baseline vision-based
classifiers by taking the vector mean of the CLIP visual
embeddings from the K image exemplars.

When constructing vision-based classifiers for OVOD, we
find making use of test-time augmentation (TTA) improves
performance. Note, TTA here refers to augmentation of the
image exemplars used to build vision-based classifiers not
test-time augmentation of the test image on which OVOD
is performed. In our work, each image exemplar is aug-
mented 5 times and input separately to the visual encoder.
Therefore, given K image exemplars, we generate 5K vi-
sual embeddings to be ingested by our visual aggregator.
More details on the use of TTA in constructing vision-based
classifiers are found in the Appendix (Section A).

For total clarity regarding when datasets are used — the
visual aggregator is trained using ImageNet-21k-P (Ridnik
et al., 2021) and the vision-based classifiers for OVOD are
generated from relevant image exemplars using the trained
aggregator (see Section D of the Appendix for details on
sourcing the image exemplars). Detection data (e.g. LVIS-
base) is only used to train the open-vocabulary object detec-
tor and image-level data (e.g. IN-L) may be used as an extra
source of weak supervision as in Detic (Zhou et al., 2022).

Multi-Modal Classifier Construction. When computing
multi-modal classifiers, we simply compute the category-
wise l2-normalised classifier from each modality, regardless
of method used to compute them, and take the vector sum.
In all cases the text-based classifiers are sourced from class
descriptions as described in Section 3.2. We combine our
text-based classifiers with our vision-based classifiers, using
the trained visual aggregator. However, once again, to test
the effectiveness of our visual aggregator, we also combine
our text-based classifiers with the baseline vision-based
classifiers described in the previous paragraph.

Model Backbone Extra APr mAPData

ViLD (Gu et al., 2022) ResNet-50 16.1 22.5
Detic (Zhou et al., 2022) ResNet-50 16.3 30.0
ViLD-ens (Gu et al., 2022) ResNet-50 16.6 25.5
OV-DETR (Zang et al., 2022) ResNet-50 + DETR 17.4 26.6
F-VLM (Kuo et al., 2022) ResNet-50

✗

18.6 24.2

Ours (Text-Based) 19.3 30.3
Ours (Vision-Based) 18.3 29.2
Ours (Multi-Modal)

ResNet-50 ✗
19.3 30.6

RegCLIP (Zhong et al., 2022) ResNet-50 CC3M 17.1 28.2
OWL-ViT (Minderer et al., 2022)† ViT-B/32 LiT 19.7 23.3
Detic (Zhou et al., 2022) ResNet-50 IN-L 24.6 32.4

Ours (Text-Based) 25.8 32.7
Ours (Vision-Based) 23.8 31.3
Ours (Multi-Modal)

ResNet-50 IN-L
27.3 33.1

Fully-Supervised (Zhou et al., 2022) ResNet-50 ✗ 25.5 31.1

Table 1. Detection performance on the LVIS Open Vocabulary
Detection Benchmark using our three types of classifier compared
with previous works. Best and second-best performing models are
coloured blue and red, respectively. We split models into those
which only use LVIS-base as training data (top) and those which
use additional image-level data (bottom). Furthermore, we show
results for a fully-supervised model from Detic trained on LVIS-all
in grey . † OWL-ViT reports bbox AP metrics and was trained
on Objects365 (Shao et al., 2019) and VisualGenome (Krishna
et al., 2017) not LVIS-base, therefore it is possible LVIS-defined
“rare” classes are contained in the detection training data of OWL-
ViT. Due to limited compute resources we present and compare
to models which use ResNet-50 (He et al., 2016) backbones or
similar. We report mask AP metrics except for †.

4.3. Open-Vocabulary Detection Results

LVIS OVOD Benchmark. Table 1 shows results on LVIS-
val for our work, which uses text-based, vision-based and
multi-modal classifiers, compared to a range of prior work.
We report overall mask AP performance and mask AP for
“rare” classes only. The latter metric is the key measure
of OVOD performance. We separate the comparisons into
those models which do not use additional image-level data
(top half of Table 1) and those which do (bottom half of
Table 1). For a fair evaluation, we compare to models from
prior works which use a ResNet-50 (He et al., 2016) back-
bone. There are two exceptions: (1) OWL-ViT (Minderer
et al., 2022) which only investigates using Vision Trans-
formers for OVOD (Dosovitskiy et al., 2021) – we compare
ResNet-50 models to the ViT-B/32 OWL-ViT model as it re-
quires similar compute during inference in terms of GLOPs
(141.5 and 139.6, respectively); (2) OV-DETR (Zang et al.,
2022) which uses a DETR-style architecture (Carion et al.,
2020) consisting of a ResNet-50 CNN backbone and modi-
fied transformer encoder and decoder.

In the experiments without using extra data (DIMG = ∅),
our models with text-based or multi-modal classifiers obtain
the best performance on both APr and overall mAP, while
F-VLM and Detic only performs strongly on APr and mAP,
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Model Extra Objects365 Objects365 Objects365
Data mAP AP50 APr

Detic (Zhou et al., 2022)
✗

13.9 19.7 9.5
Ours (Text-Based) 14.8 21.0 10.1

Detic (Zhou et al., 2022) IN-L 15.6 22.2 12.4
Ours (Text-Based) 16.6 23.1 13.1

Table 2. Detection performance when training on LVIS-all (i.e. all
LVIS training data) and evaluating on Objects365 (Shao et al.,
2019), where the least frequent 1

3
of classes are defined as “rare”.

Best performing models are coloured blue. Our text-based clas-
sifiers outperform Detic when transferring to Objects365 across
all classes and “rare” classes only. Note the Detic (Zhou et al.,
2022) models we compare to on Objects365 are not the same as
the models listed in the Detic paper, which use a large Swin-B
backbone and all of ImageNet-21k as extra data for weak supervi-
sion. We use a fair comparison Detic model which uses the same
training data (see text for more details). We report box AP metrics
for Objects365.

respectively. Our model with text-based classifiers is most
directly comparable to Detic and our model outperforms
Detic by 3.0 APr. When using extra data, we make use of a
ImageNet-21k subset as in Detic (IN-L). Models with text-
based and multi-modal classifiers outperform Detic (previ-
ous state-of-the-art) by 1.2 and 2.7 APr respectively. Note
that, our models trained with IN-L even outperform the
fully-supervised baseline using CenterNet2, i.e. trained on
“rare” class box annotations. To the best of our knowl-
edge, this is the first work on open-vocabulary detection that
outperforms a comparable fully-supervised model on the
challenging LVIS benchmark. Note, some other works use
larger vision backbones, e.g. Swin-B (Liu et al., 2021), but
due to limited computation resources we only present and
compare to models with ResNet-50 backbones or similar.
Our models with text-based and multi-modal classifiers sur-
pass state-of-the-art performance when using a ResNet-50
backbone or similar.

Cross-dataset Transfer. Table 2 shows results for cross-
dataset transfer from LVIS to Objects365 (Shao et al., 2019)
when using our text-based classifiers. We compare our
work to equivalent models from Detic, reporting box AP
metrics as standard in Objects365. In all cases, these mod-
els are trained on LVIS-all and the models in the bottom
two rows use IN-L as extra weak supervision. The trained
open-vocabulary detectors are evaluated on the Objects365
validation set. Following Detic, we define “rare” classes in
Objects365 as the 1

3 of classes with the lowest frequency
in the Objects365 training set. Note the Detic models we
compare to in Table 2 are not the same as those listed in
Table 4 of the Detic paper, which use a large Swin-B back-
bone and all of ImageNet-21k as extra data. Instead, we
compare to other Detic models publicly available which
are trained on LVIS-all (and IN-L). For ease, we provide
links to the Detic configuration and checkpoint files used

in this cross-dataset transfer evaluation 1 2. Evaluation on
Objects365 after training on LVIS is easily done with Detic
or with our text-based classifiers. In the case of Detic, the
simple classifiers based on LVIS class names are replaced
with equivalent simple classifiers based on Objects365 class
names. For our text-based classifiers, plain text descrip-
tions are generated for each of the Objects365 classes and
are encoded as described in Section 3.2 and replace the
text-based classifiers for LVIS. In both models, Detic and
ours, all other parameters of the open-vocabulary detector
remain the same. In all cases, using our text-based classi-
fiers gives performance improvements over the equivalent
Detic model. Considering all classes, our method with extra
data outperforms Detic by 1.0 mAP and 0.9 AP50. For
“rare” classes as defined above, our method with extra data
outperforms the equivalent Detic model by 0.7 APr. These
results demonstrate that our method, which uses text-based
classifiers generated from rich class descriptions, provides
additional information compared to using a simple classifier
based on the class name only, even when the training and
testing class vocabularies are disjoint.

4.4. Ablation Study
Results with Vision-Based Classifiers. Using vision-based
classifiers for OVOD is an under-explored area and so we
compare our method, detailed in Section 3.3, to baseline
classifiers in which the same visual encoder is used, but the
action of the aggregator is replaced by performing simple
vector mean. The orange rows of Table 3 compares the
use of our visual aggregator to performing simple vector
mean across visual embeddings instead. When no additional
image-level data is used (top two orange rows) our aggrega-
tor (Model B) boosts performance by 3.5 APr compared to
the vector mean baseline (Model A). For models which train
on additional image-level data (IN-L) our aggregator (Model
G) boosts performance by 2.2 APr compared to the baseline
(Model F). This comparison demonstrates the utility of our
visual aggregator in constructing better vision-based classi-
fiers rather than naı̈vely averaging the K visual embeddings.
Note our vision-based classifiers and the baseline classifiers
both utilise TTA as mentioned in Section 4.2 (see Section A
of the Appendix for details on TTA). The results in Table 3
use K = 5. Further results for K = 1, 2, 10 are found in
the Appendix (Section E).

Results with Multi-Modal Classifiers. To evaluate the
effectiveness of multi-modal classifiers we perform similar
experiments as those using vision-based classifiers, except
for each model we combine the vision-based classifiers with
the text-based classifiers, as described in Section 3.4. Re-
sults for multi-modal classifiers are shown in grey rows of
Table 3. With no additional image-level data, the vector

1Detic Configuration Checkpoint Extra Data: ✗
2Detic Configuration Checkpoint Extra Data: IN-L

8

https://github.com/facebookresearch/Detic/blob/main/configs/BoxSup-C2_L_CLIP_R5021k_640b64_4x.yaml
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vulture.n.01 puffin.n.01 ferret.n.01 barbell.n.01fishbowl.n.02

Figure 4. Some qualitative detection examples using our model with text-based classifiers, detecting “rare” category instances in LVIS-val.
Our text-based classifiers are sourced from rich natural language descriptions of a given class by prompting an GPT-3 LLM.

Visual Visual Text Extra
Model Mean? Agg.? Cls.? Data? APr mAP

A ✓ 14.8 28.8
B ✓

✗ 18.3 29.2

C ✓ ✗ 19.3 30.3

D ✓ ✓ 20.7 30.5
E ✓ ✓

✗
19.3 30.6

F ✓ 21.6 31.3
G ✓

IN-L 23.8 31.3

H ✓ IN-L 25.8 32.7

I ✓ ✓ 26.5 32.8
J ✓ ✓

IN-L 27.3 33.1

Table 3. Detection performance on the LVIS OVOD benchmark
comparing all three of our methods: (1) orange — vision-based
classifiers; (2) blue — text-based classifiers; (3) grey — multi-
modal classifiers. Results for models trained only on LVIS-base
and LVIS-base+IN-L are shown in the top and bottom halves,
respectively. Visual Mean?: simple vector mean is used to combine
visual embeddings of image exemplars, Visual Agg.?: our visual
aggregator is used to combine visual embeddings, Text Cls.?:
text-based classifiers are used. Models which use text-based and
vision-based classifiers represent our models with multi-modal
classifiers. We report mask AP metrics.

mean baseline (Model D) outperforms the use of our ag-
gregator (Model E) by 1.4 APr. However, for models with
image-level data (IN-L) our aggregator (Model J) boosts
performance by 0.8 APr compared to the baseline (Model I).
Furthermore, comparing the multi-modal classifiers (grey
rows in Table 3) with text-based classifiers (blue rows in
Table 3) demonstrates that in all cases adding information
from image exemplars yields improved OVOD performance
— our best multi-modal model improves performance over
our best text-based model by 1.5 APr confirming that com-
bining the vision and text modalities utilises complementary
information between the two.

Relationship between IN-L and LVIS “rare” classes. Sec-
tion B of the Appendix splits the APr metric into two based
on the “rare” LVIS categories contained in IN-L. One may
expect improvements in APr performance when training on
IN-L to only come from “rare” categories found in IN-L.
Our evaluation finds this not to be the case. Detailed results
can be found in the Appendix (Section B) which breaks the
APr metric into “rare” categories found in IN-L and those
not.

Additional Ablation Experiments. Section A of the Ap-
pendix presents ablation experiments which demonstrate:
(1) applying a learnable bias before calculating the final de-
tection score for a region improves OVOD performance; (2)
improvements in OVOD performance using our text-based
classifiers is orthogonal to applying this learnable bias; (3)
applying TTA on image exemplars yield better vision-based
classifiers for OVOD; (4) comparisons between our text-
based classifiers and those generated from manual prompts.
Please refer to Section A of the Appendix for details and
evaluation results for these experiments.

5. Conclusion
In this paper, we tackle open-vocabulary object detection
by investigating the importance of the method used to gen-
erate classifiers for open-vocabulary detection. This work
goes beyond the very simple methods used in prior work
to generate such classifiers — with the class name only.
We present a novel method which combines a large lan-
guage model (LLM) and a visual-language model (VLM)
to produce improved classifiers. Moreover, we investigate
using image exemplars to provide classifiers for OVOD
and present a method for generating such classifiers us-
ing a large classification dataset and a simple transformer
based architecture. Finally, we combine our classifiers from
the two modalities to produce multi-modal classifiers for
OVOD. Our experiments show that our method using natural
language only outperforms current state-of-the-art OVOD
works, especially in cases where no extra image-level data
is used. Furthermore, our multi-modal classifiers set new
state-of-the-art performance with a large improvement over
prior work.
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A. Ablation Studies
We now ablate some of the key components using the open-vocabulary LVIS benchmark without any extra image classi-
fication data i.e. DIMG = ∅, unless stated otherwise. All metrics have the standard LVIS definition and we report mask
AP metrics in all cases. For reference APr, APc and APf represent mean average precision across “rare”, “common” and
“frequent” classes, respectively, as defined in LVIS. Moreover, mAP, AP50 and AP75 represent mean average precision
across all classes but for all intersection-over-union (IoU) criteria, IoU= 0.5 and IoU= 0.75, respectively.

Bias? Init. Value mAP AP50 AP75 APr APc APf

✗ N/A 29.7 43.7 31.6 15.6 30.5 35.0
✓ -2.0 29.9 43.5 32.0 17.7 30.1 35.0

Table 4. The effect of including a learnable bias on detections scores for OVOD. The top row does not use a learnable bias, as in Detic.
The bottom row applies a learnable bias prior to computing final detection scores with logistic sigmoid. Applying a learnable bias
improves performance on novel/rare categories (APr). We report mask AP metrics.

Effect of Detection Score Bias. Table 4 shows the effect of adding a learnable bias to the detection scores before applying a
logistic sigmoid to get a final detection score in the range [0, 1] To evaluate the effect of the learnable bias only, our proposed
text-based classifiers sourced from rich class descriptions, as described in Section 3.2, are not used and instead the same
simple text-based classifiers used in Detic, of form “a(n) {class name}”, are used in this comparison. We observe
adding a learnable bias improves open-vocabulary detection by 2.1 AP on rare categories compared to not using a bias, as
done in Detic. Without the use of a bias, class-agnostic proposals are not biased towards being labelled as background. With
respect to a given class, a proposal is most likely to be negative, therefore use of a bias makes intuitive sense to reflect this
and stabilises early training of the detector. Similar findings were found in RetinaNet (Lin et al., 2017).

Model mAP AP50 AP75 APr APc APf

Detic 30.2 44.2 32.1 16.4 31.0 35.4
Ours (w/o bias) 30.4 44.4 32.3 18.6 30.8 35.2
Ours (w/ bias) 30.3 44.2 32.2 19.3 30.5 35.0

Table 5. The effect of using our text-based classifiers sourced from rich descriptions. In contrast, Detic uses simple classifiers based on
class names only (top row). Results for a detector trained using our text-based classifiers but no learnable bias is shown in the middle row.
Our proposed model makes use of text-based classifiers sourced from rich descriptions and a learnable bias (bottom row). Our method for
text-based classifiers improves performance on novel/rare categories (APr) by a large amount. We report mask AP metrics.

Natural Language Descriptions. Table 5 shows the effect of using rich class descriptions, sourced from a LLM, rather than
forming text-based classifiers from simple text prompts of the format “a(n) {class name}” as in Detic. To compare
fairly to Detic with detection data only (top row), we report a set of results which do not make use of the learnable bias
on the detection scores as detailed above (middle row). Using our text-based classifiers without a learnable bias improves
performance on rare categories by 2.2 APr compared to the public Detic model. Using rich class descriptions, a learnable
bias and our method (bottom row) further improves open-vocabulary detection on novel/rare categories by 2.9 and 0.7 APr
compared to the public Detic model and our method without a learnable bias, respectively.

Visual Encoder TTA? mAP APr APc APf

CLIP ViT-B/32
✗ 29.0 16.3 29.1 34.4

✓, harsh 29.0 17.2 28.7 34.6
✓, gentle 29.2 18.3 28.7 34.4

Table 6. The effect of using test-time augmentation (TTA) when generating classifier embeddings from image exemplars using a
CLIP image encoder. Both TTA recipes use two common augmentations — ColorJitter and RandomHorizontalFlip. For
harsh/gentle TTA — min scale of RandomResizedCrop = 0.5/0.8. Both harsh and gentle TTA perform better than no TTA in terms
of performance on novel/rare categories (APr). We report mask AP metrics.

Test-Time Augmentation on Image Exemplars for Vision-Based Classifiers. Table 6 shows the effect of using test-
time augmentation (TTA) on image exemplars to produce vision-based classifiers with our trained aggregator. For each
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image exemplar we generate 5 augmentations. As in the main paper, we use the case of K = 5 — for each class
in the LVIS vocabulary we are have 5 RGB image exemplars. As mentioned in Section 4.2, we augment each exem-
plar 5 times when using TTA. We consider two augmentation variations, with each containing ColorJitter and
RandomHorizontalFlip. The ‘harsh’ variation uses RandomResizedCrop(scale=(0.5,1.0)) and the ‘gen-
tle’ variation uses RandomResizedCrop(scale=(0.8,1.0)). We find adding ‘gentle’ TTA performs best, improv-
ing open-vocabulary detection by 2.0 AP on rare categories compared to no use of TTA. In the main paper, when using
vision-based classifiers we utilise ‘gentle’ TTA on the image exemplars.

Prompt mAP APr APc APf

a/an class name 29.9 17.7 30.1 35.0
a photo of a/an class name 29.5 15.9 30.0 34.9

a photo of a/an class name in the scene 29.4 16.2 29.7 34.8

Our LLM descriptions 30.3 19.3 30.5 35.0

Table 7. The effect of using manually crafted prompts against our rich class descriptions sourced from LLMs. All models use a learnable
bias on the detection scores and text-based classifiers. Using our class descriptions improves performance on “rare” classes compared to
manually crafted prompts.

Comparing our LLM Descriptions to Manually Designed Text Prompts. Table 7 compares the detector performance
between using simple manually crafted prompts (first three rows) and our rich class descriptions sourced from an LLM (final
row), for constructing text-based classifiers. We report results for the case where the detector is trained on LVIS-base only
(i.e. no additional image-level data is used). In all cases we apply the learnable bias on the detection score. We note that
of the manual prompts, the simplest one, of the form “a(n) {class name}”, performs best across all metrics. Using
our text-based classifiers generated from LLM descriptions improves performance on rare classes by 1.6 APr and by 0.4
mAP across all classes. Performance on “common” and “frequent” classes is largely similar as the availability of labelled
detection data for these classes renders the quality of the classifier less important.
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B. A Closer Look at “rare” Class Performance

Model DIMG mAP APr APr-w APr-z

Detic (Zhou et al., 2022)
✗

30.2 16.3 15.7 19.7
Ours (Text-Based) 30.3 19.3 19.2 19.4

Ours (Multi-Modal) 30.6 19.2 18.5 22.2

Detic (Zhou et al., 2022)
✓

32.4 24.9 25.4 23.0
Ours (Text-Based) 32.6 25.8 26.7 21.7

Ours (Multi-Modal) 33.1 27.3 27.8 24.9

Table 8. Comparison between Detic and our models using text-based classifiers and multi-modal classifiers on LVIS. As IN-L does not
cover all classes in the LVIS vocabulary, we split the rare class metric APr into APr-w and APr-z which represent rare classes with and
without weak annotations from IN-L, respectively. Best performing models are shown in bold. We report mask AP metrics.

Section 4.1 detailed the data used to train our detector. IN-L contains images from the 997 classes from LVIS present in
ImageNet-21k (Deng et al., 2009).

IN-L gives weak supervision during detector training. Out of the 337 “rare” classes in LVIS, 277 are covered by IN-L and
are therefore weakly supervised, leaving 60 classes for which no weak supervision is available.

To investigate the improvement in performance when using IN-L, we split the rare class metric (APr), which reports average
precision across rare classes, into APr-w which averages across rare classes present in IN-L and APr-z which averages
across rare classes not present in IN-L which are therefore truly zero-shot classes. Note that when no extra image-level data
is used, i.e. DIMG = ∅, all rare classes are truly zero-shot classes.

Table 8 shows the result of using this breakdown. These results show training on IN-L improves performance on rare classes
not contained in IN-L, which may not be expected. The weak supervision from IN-L leads to a reduction in false positives
for all rare classes leading to improved performance across all metrics. Moreover, our multi-modal classifiers perform best
across all metrics.
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C. Vision-based Classifier Pipeline Implementation Details
For the transformer architecture of the visual aggregator detailed in Section 3.3, we use 4 transformer encoder blocks, each
with a hidden dimension of 512 and MLP dimension 2048. As input to the first transformer block, we encode each image
exemplar with a CLIP image encoder which remains frozen throughout training, yielding one embedding per exemplar. The
set of embeddings are input with a learnable [CLS] token. The output [CLS] token is used as the final vision-based classifier.

To train the model we use the ImageNet-21k-P dataset (Ridnik et al., 2021) for 10 epochs. To speed up and improve
training we store a dynamic queue of size 4096×K CLIP encoded embeddings, with 512 positions in the queue updated
each iteration, using a last-in first-out policy. Each set of K represents encodings from K randomly sampled images for a
single class. We use K = 5. For contrastive training, we use a temperature of 0.02 in the InfoNCE (van den Oord et al.,
2018) loss function, the AdamW (Loshchilov & Hutter, 2018) optimiser with standard hyperparameters and a learning
rate of 0.0002. Furthermore, during training we uniformly sample k ∈ [1 : K] to simulate varying numbers of image
exemplars being available for downstream OVOD when CTEST is defined. Therefore, for a given iteration, there may 1− 5,
visual embeddings input per class. Prior to input to the CLIP image ViT encoder, we apply random augmentations to
each sampled image from ImageNet-21k-P. We use an augmentation policy similar to SimCLR (Chen et al., 2020), which
includes RandomResizedCrop, ColorJitter and RandomGrayscale. We discover that test-time augmentation
of the image exemplars available for the vocabulary in CTEST improves downstream OVOD performance. For each image
exemplar, we generate 5 test-time augmentations. Therefore if we have L image exemplars for a given class in CTEST, 5L
augmented images are encoded using the CLIP image encoder and fused using the learnt transformer architecture — the
visual aggregator — as described in Section 3.3. Use of test-time augmentation is ablated in Section A.
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D. Sourcing Image Exemplars
In this section, we detail how image exemplars are sourced when performing experiments using vision-based classifiers and
multi-modal classifiers, as described in Section 3.3 and 3.4, respectively. We start with an empty image exemplar dictionary
(IED) for the 1203 LVIS classes.

From constructing the image-level dataset IN-L, we know that ImageNet-21k (Deng et al., 2009) contains 997 out of the
1203 classes in the LVIS vocabulary, using exact WordNet (Miller, 1995) synset matching. We add IN-L to our IED. The
result is 988 classes have more than 40 images in ImageNet-21k. This leaves 215 classes for which there are too few or no
image exemplars (< 40).

Next, to try and fill this gap, we turn to LVIS itself. We add the LVIS training annotations with area greater than 322 to our
IED. There are now 1095 LVIS classes with more than 40 examples, leaving 48 classes with at least 10 exemplars and 60
classes with less than 10 exemplars.

The final dataset we turn to is VisualGenome (Krishna et al., 2017), which provides bounding box annotations for 7605
WordNet synsets. We include the annotations from VisualGenome with an exact WordNet synset match with the LVIS
vocabulary to our IED. We now have 1110 LVIS classes with at least 40 exemplars and 1160 with at least 10 exemplars.
Reducing our minimum required number of exemplars per class from 40 to 10 leaves 43 classes with too few exemplars.

At this point, we inspect each of the remaining 43 classes by hand and find that all have other synsets present in ImageNet-21k
which are visually identical or very similar. For example, “anklet” is a “common” class in LVIS, for which LVIS gives a
definition of “an ornament worn around the ankle” and a WordNet synset of anklet.n.03. This synset is not found
in ImageNet-21k but anklet.n.02, defined as “a sock that reaches just above the ankle” by WordNet, is present and
visual inspection shows these images to actually exactly match anklet.n.03. Therefore, we add ImageNet-21k images
relating to anklet.n.02 to our IED. As another example, penny.n.02 (as in the penny coin) is a “rare” class in LVIS
for which exemplars could not be found automatically. However, ImageNet-21k contains images of coin.n.01 which is
a hypernym penny.n.02. The images for coin.n.01 are visually extremely similar and often identical to those one
would expect for penny.n.02 and so we add ImageNet-21k images relating to coin.n.02 to our IED.

After applying some human effort as described above, our IED contains at least 40 image exemplars for 1110 (92% of LVIS
classes) and at least 10 image exemplars for all LVIS classes.
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Figure 5. Detection performance of our vision-based classifiers on the LVIS OVOD benchmark. We vary the number of image exemplars
available per class, K, to investigate the effect of the number of image exemplars on OVOD performance.

E. Varying Number of Image Exemplars for Vision-based Classifiers
In this section we show results using vision-based classifiers varying the number of K image exemplars used per class.
Figure 5 shows performance on the LVIS OVOD benchmark for rare classes using K = 1, 2, 5, 10, where K is the number
of image exemplars per class used. We compare our method which makes use of our aggregator (red dashed), which has a
transformer architecture, with the simple vector mean of the embeddings (blue solid) for the K image exemplars. In both
cases we apply the ‘gentle’ TTA detailed and ablated in Section A.

These results use LVIS-base as detection training data, no additional image-level labelled data i.e. DIMG = ∅ and CLIP
ViT-B/32 as the pre-trained visual encoder to produce initial embeddings from each exemplar.

Figure 5 shows that for each value of K, the use of our aggregator boosts performance on rare classes demonstrating the
utility of our aggregator at combining the most useful information from the K given exemplars. Our method for K = 5
surpasses the performance of K = 10 with simple vector averaging. For K = 1, our method improves performance by 2.3
APr which further demonstrates the improved feature representation — K = 1 involves no aggregation as only 1 exemplar
is available per class.

Furthermore, we compare to the performance of our text-based classifiers which make use of rich class descriptions sourced
from a GPT-3 model. Our vision-based classifiers cannot surpass the performance of our text-based classifiers demonstrating
the need for more research into using image exemplars for OVOD.
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F. Additional Example Class Descriptions
In this section we show a selection of rich class descriptions sourced from the text-davinci-002 text completion
model from OpenAI. For each class in the LVIS vocabulary we generate 10 rich descriptions. We also give the LVIS
frequency category — rare, common, frequent.

F.1. Generated descriptions for “bagpipe” (rare)

1. A bagpipe is a wind instrument with a bag that is filled with air.
2. A bagpipe typically consists of a blowstick, a chanter, and one or more drones.
3. A bagpipe is a musical instrument that has a bag, a blowpipe, and usually two drones.
4. A bagpipe is a wind instrument with a bag that collects air, a reed pipe for each note,

and a blowpipe.
5. A bagpipe is a musical instrument that is played by blowing into a bag of air.
6. Bagpipes vary in appearance, but most have a bag made from a animal skin, a blowpipe,

a chanter, and one or more drones.
7. A bagpipe is a musical instrument that has a bag, a blowpipe, and usually drone pipes.
8. A bagpipe is a musical instrument that is usually made out of wood.
9. A typical Highland bagpipe has a chanter with a double reed, a blowstick, three drones

with single reeds, and a bag.
10. A bagpipe consists of a blowing bag, a chanter, a drone, and usually one or more

drones.

F.2. Generated descriptions for “trench coat” (rare)

1. A trench coat is a coat made of heavy cloth, sometimes waterproof, that hangs to about
knee length.

2. A trench coat looks like a long, military-style coat.
3. A trench coat typically looks like a long, belted raincoat.
4. A trench coat is a long, water-resistant coat that is typically worn over top of a

suit.
5. A trench coat typically has a removable liner, a double-breasted front, and belted

cuffs.
6. A trench coat generally refers to a type of coat that is longer than waist length.
7. A trench coat is a coat that is usually a little bit longer than waist length, has a

tie or a belt around the waist, and has a collar.
8. A trench coat is a coat made of waterproof material, typically hip-length or longer,

with a belt and a collar.
9. A trench coat is a long, light coat with a belt.

10. A trench coat is a raincoat made of heavy-duty fabric, typically poplin, gabardine, or
drill.

F.3. Generated descriptions for “walrus” (rare)

1. A walrus is a large, flippered marine mammal with a bulky body, short limbs, and a
large head with two long tusks protruding from the mouth.

2. A walrus is a blubbery mammal with long tusks, whiskers, and a seal-like face.
3. A walrus is a large, flippered marine mammal with a long, tusked head.
4. A walrus is a stocky, rounded pinniped with small flippers, short fur, and long tusks.
5. A walrus is a large, flippered marine mammal with a bulky body, short tail, and wide,

flat head.
6. A walrus is a large ocean mammal with two long tusks, a thick fur coat, and large

flippers.
7. A walrus is a large flippered marine mammal with a discontinuous distribution about

the North Pole in the Arctic Ocean and sub-Arctic seas of the Northern Hemisphere.
8. A walrus is a large flippered marine mammal with a thick fur coat.
9. A walrus is a large marine mammal with a body shaped somewhat like a seal.

10. A walrus is a seal with a long face and large tusks.
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F.4. Generated descriptions for “briefcase” (common)

1. A briefcase is a rectangular, portable case used to hold papers, documents, or other
materials.

2. A briefcase is a small case used to carry documents and other small items.
3. A briefcase is a small, rectangular-shaped case that is used to carry important

documents or other items.
4. A briefcase is typically a rectangle shaped bag made of leather or synthetic

materials.
5. A briefcase generally looks like a small, rectangular case made out of a variety of

materials, such as leather, canvas, or nylon.
6. A briefcase is a narrow rectangular case used to carry documents and other valuables.
7. A briefcase is a box-shaped bag typically used by businesspeople to transport

important documents.
8. A briefcase is a rectangular leather case with a handle.
9. A briefcase is a small case used to carry documents and other small items.

10. A typical briefcase is rectangular and has a handle on the top.

F.5. Generated descriptions for “coin” (common)

1. A coin is a small, flat, round piece of metal or plastic that is used as money.
2. A coin has a head side and a tail side.
3. A coin is usually a small, flat, round piece of metal or plastic that is used as

money.
4. A coin has a round shape and is flat.
5. A coin generally has a circular shape with a raised edge, and two faces --- one on

each side.
6. A coin is a small, flat, round piece of metal or plastic that is used as money.
7. A coin is a round piece of metal with an image on one side and the words ‘‘United

States of America’’ on the other.
8. A coin is a small, round, flat piece of metal or plastic that is used as money.
9. Sure, a coin is a small, round, flat piece of metal or plastic that is used as money.

10. A coin is a small, round, metal disk with an image on one side and raised lettering on
the other.

F.6. Generated descriptions for “waffle” (common)

1. A waffle is a pancake-like pastry that is cooked in a waffle iron and has a
distinctively grid-like pattern on the top and bottom.

2. A waffle is a dish made from leavened batter or dough that is cooked between
two plates that are patterned to give a characteristic size, shape, and surface
impression.

3. A waffle is a thin, round, batter-based cake that is cooked in a waffle iron and is
usually served with syrup.

4. A waffle looks like a round, honeycomb-patterned cake that is cooked in a waffle iron.
5. A waffle is typically a leavened batter or dough that is cooked between two plates

that are patterned to give it a characteristic size, shape, and surface impression.
6. A waffle looks like an egg-shaped pancake with deep indentations.
7. A waffle looks like a grid of squares.
8. A waffle is a pancake-like pastry that is made from a leavened batter or dough and is

cooked between two heated plates.
9. A waffle is a pancake-like food that is cooked in a waffle iron.

10. A waffle is a hotcake with different patterns on it.
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F.7. Generated descriptions for “avocado” (frequent)

1. An avocado looks like a pear-shaped fruit with green or blackish skin.
2. It is a green fruit that has a dark brown or black seed in the center.
3. An avocado is a pear-shaped green fruit with smooth, green skin and a large seed in

the center.
4. An avocado is a fruit that is brown and bumpy on the outside and green and creamy on

the inside.
5. An avocado is a fruit with a dark green or blackish skin and a soft, fleshy inside.
6. An avocado is a green, pear-shaped fruit with a smooth, fleshy texture.
7. An avocado is a pear-shaped fruit with smooth, green skin.
8. An avocado is shaped like an egg and has a greenish-brownish skin.
9. An avocado is typically a dark green or black color on the outside with a soft, light

green or yellow color on the inside.
10. An avocado is a pear-shaped fruit with smooth, green skin and a large, pit in the

center.

F.8. Generated descriptions for “sausage” (frequent)

1. A sausage is a cylindrical shape made of ground meat, typically pork, and a variety of
spices and other ingredients.

2. A sausage is typically a ground-up mix of pork, beef, or other meats with spices and
salt, encased in a thin skin.

3. A sausage is typically a cylindrical shaped food made from ground meat, spices, and
other ingredients.

4. A sausage is a long, thin, cylindrical piece of meat.
5. Sausages are typically long, cylindrical shaped foods made from ground meat and

spices.
6. A sausage is a tubular meat product typically made from ground pork, beef, or poultry.
7. A sausage is a cylindrical casing filled with meat, typically pork, and various herbs

and spices.
8. A sausage looks like a tubular shape made of ground up meat that is usually encased in

a thin layer of intestine.
9. A sausage is a cylindrical casing of meat that is typically filled with ground pork,

although many other variations exist.
10. When cooked, a sausage is typically cylindrical and can vary in length.

F.9. Generated descriptions for “spectacles” (frequent)

1. A spectacle is a pair of eyeglasses.
2. A spectacles is a type of eyewear that consists of a frame that holds two lenses in

front of the eyes.
3. Spectacles are a type of eyewear that helps people see more clearly.
4. Spectacles are glasses that are worn in order to improve vision.
5. A spectacles usually refers to a glass or plastic lens worn in front of the eye to

correct vision, or protect the eye from debris, dust, wind, etc.
6. A spectacles is a type of corrective lens used to improve vision.
7. A spectacle is a lens worn in front of the eye to correct vision, for cosmetic reasons,

or to protect the eye.
8. A spectacles has a frame that goes around your head and two lenses in front of your

eyes.
9. A spectacles has two glass or plastic lenses in metal or plastic frames that rest on

the ears.
10. A pair of spectacles is a frame that holds two eyeglasses lenses in front of a

person’s eyes.
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G. Example Image Exemplars
In this section we show a selection of image exemplars, for LVIS classes, found using the process described in Section D.
We also give the LVIS frequency category — rare, common, frequent. For cases where the image exemplar comes from a
dataset with bounding boxes (LVIS or VisualGenome) we show the bounding box in yellow.

Figure 6. Image Exemplars for “puffin” (rare).

Figure 7. Image Exemplars for “apricot” (rare).

Figure 8. Image Exemplars for “flamingo” (common).

Figure 9. Image Exemplars for “lantern” (common).
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Figure 10. Image Exemplars for “aerosol can” (common).

Figure 11. Image Exemplars for “wineglass” (frequent).

Figure 12. Image Exemplars for “beanie” (frequent).

Figure 13. Image Exemplars for “fire engine” (frequent).
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H. More Qualitative Results
In this section we show more rare category detections on the LVIS OVOD benchmark using our multi-modal classifier
trained with IN-L.

diary.n.01 dinghy.n.01 beach_ball.n.01 boom.n.01

bowling_ball.n.01 burrito.n.01 candy_bar.n.01 cargo_ship.n.01

casserole.n.01cocoa.n.01 cornbread.n.01coverall.n.01 cylinder.n.01

drumstick.n.01

eclair.n.01

funnel.n.01lab_coat.n.01 mallet.n.01

milestone.n.01 omelet.n.01 papaya.n.01 roller_skate.n.01

sharpie.n.01sugar_bowl.n.01trench_coat.n.01satchel.n.01 martini.n.01

Figure 14. Additional qualitative results on LVIS OVOD benchmark.
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I. Dugong

Figure 15. An example of a dugong — a visually distinctive marine species with a less well known name.

24


