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Abstract

Instrumental variable (IV) analysis is a power-
ful tool widely used to elucidate causal relation-
ships. We study the problem of estimating the
average partial causal effect (APCE) of a contin-
uous treatment in an IV setting. Specifically, we
develop new methods for estimating APCE based
on a recent identification condition via an integral
equation. We develop two families of methods,
nonparametric and parametric - the former uses
the Picard iteration to solve the integral equation;
the latter parameterizes APCE using a linear basis
function model. We analyze the statistical and
computational properties of the proposed APCE
estimators and illustrate them on synthetic and
real-world data.

1. Introduction
Instrumental variable (IV) analysis is a powerful tool used
to elucidate causal relationships when a controlled exper-
iment is not feasible or when a randomized experiment is
not able to successfully treat each unit (Imbens, 2014; An-
grist & Krueger, 2001). For example, consider a study of
the effect of years of education (treatment variable X) on
monthly wages (outcome variable Y ) (Card, 1999; Angrist
& Krueger, 1991). Since researchers cannot force people
to attend or drop out of school, they use the mother’s years
of education (Z) as an instrumental variable with the un-
derstanding that the mother’s education affects the subject’s
education but has no direct influence on the subject’s wages.
This setting is represented by the causal graph in Fig. 1,
where H represents unmeasured confounders.

In general, further assumptions are needed to identify the
causal effect of the treatment on the outcome. Assume
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Figure 1: A causal graph representing the IV setting.

the causal relations are represented by structural equations
Y = fY (X,H,uY ) and X = fX(Z,H,uX). Typical
assumptions include: the structure equations are linear (lin-
earity); the structural equations are monotonic on certain
arguments (monotonicity); the influence of the IV on the
treatment is separable from that of the confounders, i.e.,
fX(Z,H,uX) = fX1(Z,uX) + fX2(H,uX) (separabil-
ity I); or the influence of the treatment on the outcome is sep-
arable from that of the confounders, i.e., fY (X,H,uY ) =
fY 1(X,uY ) + fY 2(H,uY ) (separability II). We note that
separability I is testable but separability II is not (Breusch
& Pagan, 1979; Su et al., 2015).

One of the most widely used methods for estimating causal
effects via IV is linear two-stage least squared (TSLS)
(Stock, 2001) which assumes linearity and separability I
and II. By contrast, the two-stage predictor substitution
(TSPS) method (Hausman, 1978; Terza et al., 2008) as-
sumes separability I and II but is applicable for nonlinear
models. Methods not relying on the separability I assump-
tion include the generalized method of moments (GMM)
(Hansen, 1982; Baum et al., 2003), the nonparametric two-
stage least squared estimator (NPTSLS) (Newey & Powell,
2003; Hartford et al., 2017; Singh et al., 2019), and the
nonparametric conditional quantile estimation (CQE) (Cher-
nozhukov et al., 2007; Imbens & Newey, 2009; Chen et al.,
2014; Torgovitsky, 2015). GMM uses the semiparametric
estimation framework and requires separability II and the
probability distribution of the IV. NPTSLS requires separa-
bility II while CQE requires monotonicity of the function
fY (X,H,uY ) with respect to H . Both NPTSLS and CQE
solve integral equations to identify the effect of the treat-
ment on the outcome. However, these integral equations are
ill-posed problems1 and lead to severe estimation difficul-

1A well-posed problem satisfies the following three properties
(Tikhonov et al., 1995): existence, uniqueness, and stability of the
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Table 1: The assumptions made by the related works: re-
quiring probability distribution of the IV (DI), linearity (LI),
separability I (SP I), separability II (SP II), monotonicity
(MO) with respect to the hidden confounder. Check marks
(✓) represent assumptions of the methods. Asterisks (∗)
denote an ill-posed problem.

Assumptions DI LI SP I SP II MO

TSLS ✓ ✓ ✓ ✓
TSPS ✓ ✓
GMM ✓ ✓
NPTSLS∗ ✓
CQE∗ ✓
This paper ✓

ties. We summarize the assumptions made by these existing
works in Table 1.

We study the causal effects of a continuous treatment vari-
able in this paper. While historically, the majority of the
previous work has focused on binary or categorical treat-
ment variables (e.g., (Imbens & Angrist, 1994; Balke &
Pearl, 1997; Wang & Tchetgen Tchetgen, 2018; Syrgkanis
et al., 2019)), in recent years, there has been a growing
interest in continuous treatment variables (Hirano & Im-
bens, 2005; Kennedy et al., 2017; Bahadori et al., 2022).
In particular, Wong (2022) has recently introduced an inte-
gral equation for identifying the effect (more exactly, the
average partial causal effect (APCE) (Wooldridge, 2005))
of a continuous treatment variable under the separability II
assumption. Wong (2022) proved an identification condi-
tion but did not provide a method for actually solving the
integral equation and estimating APCE from data samples.

In this paper, we recognize that the integral equation in
(Wong, 2022) is well-posed in bounded domains and de-
velop two families of methods, nonparametric and paramet-
ric, for estimating APCE from observed data. The non-
parametric method solves the integral equation with the
Picard iteration (Fridman, 1965; Diaz & Metcalf, 1970) us-
ing numerical integration and interpolation. The parametric
method reduces the estimation problem to a linear regres-
sion problem by parameterizing APCE using a linear basis
function model. We analyze the statistical and computa-
tional properties of the proposed methods. We illustrate
them on synthetic data showing superior performance to the
existing methods. Finally, we apply the proposed APCE
estimators on a real-world dataset to analyze the effect of
years of education on wages, which is of great interest in
economics (Card, 1999; Angrist & Krueger, 1991).

solution. Problems where one or more of these conditions do not
hold are called ill-posed problems.

2. Notation and Background
We represent each variable with a capital letter (X) and
its realized value with a small letter (x). Let 1Ω(x) be an
indicator function, which is 1 if x ∈ Ω; and 0 if x /∈ Ω.
Denote ΩX be the domain of X , E[Y ] and V(Y ) be the
expectation and the variance of Y , and PX [x] = P(X ≤ x)
be the cumulative distribution function (CDF) of X . In
addition, E[Y |X = x] and PX [x|Z = z] = P(X ≤ x|Z =
z) be the conditional expectation of Y given X = x and
the conditional CDF of X given Z = z. We write g(x) =
O(h(x)) as x → ∞ if there exists a positive real number
M and a real number δ such that |g(x)| ≤ Mh(x) for all
x ≥ δ. In contrast, we write g(x) = O(h(x)) as x → 0 if
there exists a positive real number M and a real number δ
such that |g(x)| ≤Mh(x) for all 0 ≤ |x| ≤ δ.

Functional Analysis. We explain the notations of functional
analysis (Muscat, 2014). Let H be a Hilbert space, where
an inner product is defined by ⟨a, b⟩ =

∫
ΩX

a(x)b(x)dx

and a norm is ∥a∥ = ⟨a, a⟩
1
2 for all a, b ∈ H. A

sequence {an} ∈ H converges strongly to a ∈ H if
∥an − a∥ → 0 as n → ∞. Let an operator L be
(L(a))(x) =

∫
ΩX

L(x′, x)a(x′)dx′ for a ∈ H, and ∥L∥
is an operator norm ∥L∥ = sup{∥L(a)∥ : ∥a∥ = 1 and a ∈
H}. When L possesses a countable set of positive eigenval-
ues, denote them λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ 0, together with
corresponding eigenvectors v1, v2, v3, . . . in H such that
L(vi) = λivi. The set {v1, v2, v3, . . .} is an orthonormal
basis.

Structural Causal Models. We use the language of Struc-
tural Causal Models (SCM) as our basic semantic and in-
ferential framework (Pearl, 2009). An SCMM is a tuple
⟨U ,V ,F ,PU ⟩, where U is a set of exogenous (unobserved)
variables following a joint distribution PU , and V is a set
of endogenous (observable) variables whose values are de-
termined by structural functions F = {fVi

}Vi∈V such that
vi := fVi

(paVi
,uVi

) where PAVi
⊆ V and UVi

⊆ U .
Each SCM M induces an observational distribution PV

over V , and a causal graph G(M) over V in which there
exists a directed edge from every variable in PAVi to Vi.
An intervention of setting a set of endogenous variables
X to constants x, denoted by do(x), replaces the original
equations of X by the constants x and induces a sub-model
Mx.

Average Partial Causal Effect (APCE). We denote the
potential outcome Y under intervention do(x) by Yx(u),
which is a solution of Y with U = u in the sub-modelMx.
Considering a continuous treatment X , we aim to estimate
the APCE E[∂xYx] := EU [ ∂

∂xYx(U)] (Chamberlain, 1984;
Wooldridge, 2005; Graham & Powell, 2012), which is a
real-valued function on x ∈ ΩX . APCE is a natural gener-
alization of the average causal effect of a binary treatment
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EU [Y1(U)]− EU [Y0(U)].

Instrumental Variable (IV) Model. We consider the IV
model represented by the causal graph in Fig 1, with the
following SCMMIV : Y := fY (X,H,uY )

X := fX(Z,H,uX)
Z := fZ(uZ)

(1)

We assume X , Y , and Z are continuous variables,
and uX and uY are exogenous noises, where U =
{H,uX ,uY ,uZ} and V = {Z,X, Y }

Conditions for identifying APCE. We explain Wong’s
(2022) conditions for identifying APCE from P(X,Y |Z).

Assumption 1. For all h ∈ ΩH under the SCMMIV ,

1. Instrument relevance: the instrument Z has a causal ef-
fect on X , i.e., Xz is not a constant function by varying
z for each subject.

2. Yx is differentiable and bounded in x ∈ ΩX .

3. supx,z p(Xz = x) <∞, where p denotes the density
function.

4. The set of distributions P(X|Z = z), induced by vary-
ing z, is a complete set.

These assumptions are needed just to set up the model and
are not restrictive. The second assumption means that there
exists APCE for all units for x ∈ ΩX . The third assumption
means the density function of XZ is bounded. The fourth
assumption implies that h is a zero function if E[h(X)|Z =
z] does not depend on z.

Assumption 2 (Separability II). The function
fY (X,H,uY ) is separable, i.e., it can be represented as
fY1(X,uY ) + fY2(H,uY ).

The following proposition holds (Wong, 2022):

Proposition 2.1. Under SCMMIV and Assumptions 1 and
2, APCE E[∂xYx] is identifiable via the following integral
equation

µ(z) =

∫
ΩX

k(x, z)E[∂xYx]dx, (2)

where

µ(z) = E[Y |Z = z0]− E[Y |Z = z]
k(x, z) = PX [x|Z = z]− PX [x|Z = z0]

, (3)

and z0 is a fixed value.

In this paper, we aim to estimate the APCE by solving the
integral equation (2). We show that this is a well-posed
problem, and develop nonparametric and parametric estima-
tors.

3. Nonparametric Approach
In this section, we develop a nonparametric approach for
estimating the APCE based on the Picard iteration method
for solving integral equations. First, we assume

Assumption 3. ΩX and ΩZ are bounded.

Then, we show that solving the integral equation (2) is a
well-posed problem (All proofs are given in Appendix A).

Proposition 3.1. Under SCMMIV and Assumptions 1, 2,
and 3, solving the function E[∂xYx] via the integral equation
(2) is a well-posed problem, that is, there exists a unique
solution and the solution changes continuously with changes
in the input functions.

In contrast, the integral equations in NPTSLS (Newey &
Powell, 2003) and CQE (Chernozhukov et al., 2007) for
estimating E[Yx] are ill-posed due to the use of a density
function in the integral kernels instead of a CDF, which is
bounded, in (2).

3.1. Nonparametric APCE estimator

The integral equation (2) is a “Fredholm Integral Equation
of the First Kind” with k called an integral kernel (Bôcher,
1926). A Fredholm integral equation of the first kind is
an integral equation of the form b = L(a) (a, b ∈ H), for
which Picard (1910) introduced a necessary and sufficient
condition for the existence of a solution, called Picard’s
condition, shown in the following:

Picard’s Condition. Given an operator L and a function
b ∈ H, there is a function a such that L(a) = b if and
only if

∑∞
i=1 ⟨a, vi⟩

2
/λ2

i < ∞, where vi and λi are the
eigenvalues and eigenvectors of L, and ⟨a, v⟩ = 0 for all v
such that L(v) = 0.

We will construct a nonparametric estimator for APCE
based on the Picard iteration scheme which is a powerful
tool for solving integral equations (Fridman, 1965).

Picard Iteration Scheme. First, we make the following
assumption:

Assumption 4. ΩX ⊆ ΩZ .

This means that the domain of Z includes the domain of X .
This assumption is needed because the Picard iteration (5) is
not defined in ΩX \ ΩZ . The assumption is often practical
in the IV setting because the IV and treatment variables
are often very similar variables and have the same domains.
Denote an operator K be

(K(a))(x) =
∫
ΩX

k(x′, x)a(x′)dx′ for any a ∈ H. (4)

Then the Picard iteration scheme for solving the integral
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equation (2) becomes

θt+1(x)← θt(x) + α
(
µ(x)−

∫
ΩX

k(x′, x)θt(x
′)dx′

)
(5)

for all x ∈ ΩX , where α is a real number representing a step
size that satisfies 0 < α < 2/∥K∥. We prove the following
results to show that θt(x) converges to the APCE E[∂xYx].
The following lemma holds:
Lemma 3.2. Under SCMMIV and Assumptions 1, 2, and
3, the operator K satisfies the following three properties:

1. K is a compact operator: K maps a bounded set into
a compact set in the sense of strong convergence.

2. K is self-adjoint: ⟨K(a), b⟩ = ⟨a,K(b)⟩ for a, b ∈ H.

3. K is positive semi-definite: ⟨K(a), a⟩ ≥ 0 for a ∈ H.

From Lemma 3.2, K possesses a countable set of positive
eigenvalues, and the following lemma holds:
Lemma 3.3. Under SCMMIV and Assumption 1, K satis-
fies the Picard’s condition.

Finally, we obtain the following theorem:
Theorem 3.4. Under SCMMIV and Assumptions 1, 2, 3,
and 4, the Picard iteration scheme (5) converges strongly to
the APCE, that is, limt→∞ θt(x) = E[∂xYx].

Nonparametric APCE (N-APCE) estimator. Next,
we present our proposed nonparametric APCE estimator
(named N-APCE) based on the Picard iteration scheme (5),
shown in Algorithm 1.

We assume we have available a set of observations D =
{z(i), x(i), y(i)}Ni=1. The algorithm needs as inputs a stop
threshold ϵ, a step size α, and an initial function θ1(x).
Let Ê[Y |Z = z] be predictors of Y given Z = z, and
P̂X [x|Z = z] be predictors of CDF of X given Z = z.
These predictor functions will be learned using a supervised
ML model from the observationsD (Hastie et al., 2009). We
denote µ̂(x) = Ê[Y |Z = x0] − Ê[Y |Z = x], k̂(x′, x) =

P̂X [x′|Z = x] − P̂X [x′|Z = x0], and an operator K̂ be
(K̂(a))(x) =

∫
ΩX

k̂(x′, x)a(x′)dx for any a ∈ H.

We approximate integrations by numerical integration. First,
choose a finite set of values X = {x1, . . . , xR} ∈ ΩX

where xr < xr+1 for r = 1, . . . , R − 1. For example, we
can use an equidistant interval division xr = {max(ΩX)−
min(ΩX)} × r/R + min(ΩX). Note that X and Z share
the values X . Next, let I[a(x);X ] denote a numerical
integration of the integration

∫
ΩX

a(x)dx for any function
a ∈ H given X . I[a(x);X ] takes the form of (Burden
et al., 2015)

I[a(x);X ] =

R∑
q=1

I(xq, xq+1)(xq+1 − xq), (6)

Algorithm 1 Nonparametric APCE (N-APCE) estimator

1: Input: A set of observations D = {z(i), x(i), y(i)}Ni=1,
a stop threshold ϵ, a step size α, and a set of X values
X = (x0, x1, . . . , xR).

2: Learn two predictive functions Ê[Y |Z = z] and
P̂X [x|Z = z] from the observations D using a super-
vised ML method.

3: Initialize the function θ1(x), and t← 1.
4: Calculate R+R2 values

µ̂(xr) = Ê[Y |Z = x0]− Ê[Y |Z = xr]

k̂(xq, xr) = P̂X [xq|Z = xr]− P̂X [xq|Z = x0]

for q, r = 1, . . . , R.
5: while {I[(µ̂(x)−I[k̂(x′, x)θ̂t(x

′);X ])2;X ]}1/2 > ϵ
6: Update the function θt+1(xr) by

θ̂t+1(xr)← θ̂t(xr)+α
(
µ̂(xr)−I[k̂(x′, xr)θ̂t(x

′);X ]
)

for r = 1, . . . , R.
7: end while
8: Return a function θ̂(x) as the N-APCE estimator by

interpolating over the final step function θ̂T (xr) values
for r = 1, . . . , R.

where I(xq, xq+1) can take different forms. For example,
the left hand rule uses I(xq, xq+1) = a(xq). See Appendix
B.1 for other options.

We introduce the following empirical risk to use as a stop-
ping criterion:

JN (θ;D) ={∫
ΩX

(
µ̂(x)−

∫
ΩX

k̂(x′, x)θ(x′)dx′
)2

dx

}1/2

. (7)

The empirical risk contains two integrations which will be
approximated by numerical integration. Hence, the numeri-
cal empirical risk is computed as below:

J̃N (θ;D) =

{I[(µ̂(x)− I[k̂(x′, x)θ(x′);X ])2;X ]}1/2. (8)

To run the Picard iteration and compute the numerical em-
pirical risk, we first calculate the following R+R2 values

µ̂(xr) = Ê[Y |Z = x0]− Ê[Y |Z = xr]

k̂(xq, xr) = P̂X [xq|Z = xr]− P̂X [xq|Z = x0]
(9)

for q, r = 1, . . . , R. At each iteration, update θ̂t as:

θ̂t+1(xr)←

θ̂t(xr) + α
(
µ̂(xr)− I[k̂(x′, xr)θ̂t(x

′);X ]
)

(10)
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for r = 1, . . . , R, from the initial function θ̂1(x) = θ1(x)

until θ̂t satisfies the stop condition J̃N (θ;D) ≤ ϵ.

Finally, after the Picard iteration converges to θ̂T , compute a
function θ̂(x) as the estimator of the APCE by interpolating
over the function θ̂T (xr) values for r = 1, . . . , R. We use
the Lagrange interpolating polynomial (Jeffreys & Jeffreys,
1988). See Appendix B.2 for the details.

3.2. Properties of N-APCE estimator

The error in the N-APCE estimator due to the interpolation
is well studied and understood in the field of numerical anal-
ysis (Burden et al., 2015). The convergence of the Picard
iteration and the error in θ̂T (xr) depend on the error in nu-
merical integration and the error in estimating the predictor
functions by ML methods. The former error is well under-
stood in the field of numerical analysis (Burden et al., 2015).
Thus, we will focus on the impacts of the ML error on the
N-APCE estimator.

Consistency and Computational Complexity. First, we
investigate the consistency and the algorithm complexity of
the N-APCE estimator. We make the following assumption:

Assumption 5. µ̂ and k̂ learned by ML methods are consis-
tent estimators of µ and k in (3).

We assume the values in X satisfy [x0, xR] =
[min(ΩX),max(ΩX)] and limR→∞ |xr+1 − xr| = 0 for
r = 1, . . . , R. Then, we obtain the following result:

Theorem 3.5. Under SCMMIV and Assumptions 1, 2, 3,
4, and 5, taking limits N →∞, R→∞, and t→∞, θ̂t(x)
is a pointwise consistent estimator of the APCE E[∂xYx] for
x ∈ ΩX almost everywhere.

Next, we show the termination of Algorithm 1. We make
the following assumption:

Assumption 6. K̂ satisfies the Picard’s condition.

Then, the following result holds:

Theorem 3.6. Under SCMMIV and Assumptions 1, 2, 3,
4, and 6, taking the limit R→∞, Algorithm 1 stops after a
finite number of iterations for any ϵ > 0.

We denote limt→∞ θ̂t(x) = θ̂∞(x). Then the following
corollary holds:

Corollary 3.7. Under SCMMIV and Assumptions 1, 2, 3,
4, and 6, the sequence θ̂t converges linearly to θ̂∞.

The complexity of building predictive models and calculat-
ing R+R2 prediction values depends on the ML methods
used. Assume that Algorithm 1 stops after T iterations, then
numerical integration takes total O(T ×R2) time, and the
final interpolation takes O(N ×R2) time. Long iterations
T may provoke serious problems in the calculation.

Bias and Variance. We investigate the bias and the vari-
ance of the N-APCE estimator. The estimator contains an
attenuation bias (Wooldridge, 2010), which is caused by the
errors in K̂. We make the following assumption:

Assumption 7. µ̂ and k̂ learned by ML methods are unbi-
ased estimators of µ and k in (3).

We compute µ̂ and k̂ by the conditional sample means in
the experiments, which satisfy Assumptions 5 and 7.

Then, we obtain the following result:

Theorem 3.8. Under SCMMIV and Assumptions 1, 2, 3,
4, 6, and 7, letting K̂−1 = α

∑∞
t=0(I − αK̂)t, if ∥K̂−1∥ is

bounded by M , then the expected absolute bias E[∥θ̂∞ −
θ∞∥] is bounded by M(A+ ∥θ∞∥B), where

A =

√∫
ΩX

V(µ̂(x))dx, B =

√∫
ΩX

V(k̂(x, x))dx. (11)

The conditional variance functions in A and B can be com-
puted using the method in (Fan & Yao, 1998). The ex-
pected absolute bias decreases according to O(g(N)1/2) if
the conditional variance functions of ML estimation de-
crease according to O(g(N)). For example, the condi-
tional sample means used in the experiments have a rate of
O(N−1), then the expected absolute bias decreases accord-
ing to O(N−1/2). Furthermore, the N-APCE estimator
also has other biases due to numerical integration and inter-
polation.

Finally, we assess the variance of the N-APCE estimator at
X = x. We obtain the following theorem:

Theorem 3.9. Under SCMMIV and Assumptions 1, 2, 3,
4, and 7, when Algorithm 1 stops at t = T , the upper bound
of the variance of θ̂T (x) is α2(T − 1)2ν(x) + O(α3) as
α→ 0 for x ∈ ΩX , where ν(x) is

V(µ̂(x)) +
(∫

ΩX

√
V(k̂(x′, x))|θT (x′)|dx′

)2

+ 2
√
V(µ̂(x))

(∫
ΩX

√
V(k̂(x′, x))|θT (x′)|dx′

)
. (12)

Furthermore, the following corollary holds:

Corollary 3.10. Under SCMMIV and Assumptions 1, 2,
3, 4, and 7, when Algorithm 1 stops at t = T , the variance
of θ̂T (x) is

α2(T − 1)2V(µ̂(x))

+O(α3) +O({max
x′
{V(k̂(x′, x))}}1/2) (13)

as α→ 0, {maxx′{V(k̂(x′, x))}}1/2 → 0 for x ∈ ΩX .

The limit {maxx′{V(k̂(x′, x))}}1/2 → 0 means the ML
estimator Ê[Y |Z = z] exhibits small conditional variance.
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4. Parametric Approach
In this section, we present a parametric approach for esti-
mating the APCE.

4.1. Parametric APCE estimator

Linear basis function model. To solve the integral equation
(2), we parameterize the APCE by a linear basis function
model

E[∂xYx] =

P∑
p=1

θpϕp(x) (14)

using the basis functions {ϕp(x)}p=1,...,P (Bishop, 2006),
where θ = {θ1, . . . , θP } are the model parameters to be es-
timated from data. Then, the integral equation (2) becomes

µ(z) =

P∑
p=1

θp

∫
ΩX

k(x, z)ϕp(x)dx. (15)

Letting the anti-derivative of the basis functions be φp(x) =∫
ϕp(x)dx for p = 1, . . . , P , the integral equation becomes

µ(z) =

P∑
p=1

θp{E[φp(X)|Z = z]− E[φp(X)|Z = z0]}.

(16)

Next, we show that the estimation problem reduces to a
system of linear equations.

First, select a set of values {z1, . . . , zR} ∈ ΩZ , where
zr < zr+1 for r = 1, . . . , R− 1. Let cr = E[Y |Z = zr]−
E[Y |Z = z0], d

p
r = E[φp(X)|Z = zr]−E[φp(X)|Z = z0]

for r = 1, . . . , R and p = 1, . . . , P . Furthermore, denote
dp = (dp1, . . . , d

p
R)

T for p = 1, . . . , P , c = (c1, . . . , cR)
T ,

and D = (d1, . . . ,dP ). Then, parameters θ are given by
solving c = DTθ. Here, DT denotes the transposed matrix
of D.

Parametric APCE estimator. Next, we present our pro-
posed parametric APCE estimator (named P-APCE), shown
in Algorithm 2.

We assume we have available observations D =
{z(i), x(i), y(i)}Ni=1. Let Ê[Y |Z = z] be predictors of Y
given Z = z, and Ê[φp(X)|Z = z] be predictors of φp(X)
given Z = z for p = 1, . . . , P . These predictor functions
will be learned using a supervised ML model from the obser-
vationsD (Hastie et al., 2009). Then, calculate the following
R+R× P values

ĉr = Ê[Y |Z = zr]− Ê[Y |Z = z0]

d̂pr = Ê[φp(X)|Z = zr]− Ê[φp(X)|Z = z0]
(17)

for r = 1, . . . , R and p = 1, . . . , P . Denote d̂
p

=
(d̂p1, . . . , d̂

p
R)

T for p = 1, . . . , P , ĉ = (ĉ1, . . . , ĉR)
T , and

Algorithm 2 Parametric APCE (P-APCE) estimator

1: Input: A set of observations D = {z(i), x(i), y(i)}Ni=1,
the basis functions {ϕp(x)}p=1,...,P , and a set of values
{z1, . . . , zR} ∈ ΩZ .

2: Learn predictive functions Ê[Y |Z = z] and
Ê[φp(X)|Z = z] for p = 1, . . . , P from the obser-
vations D using a supervised ML method.

3: Calculate R+R× P values

ĉr = Ê[Y |Z = zr]− Ê[Y |Z = z0]

d̂pr = Ê[φp(X)|Z = zr]− Ê[φp(X)|Z = z0]

for r = 1, . . . , R and p = 1, . . . , P .
4: Letting ĉ = (ĉ1, . . . , ĉR)

T , d̂
p
= (d̂p1, . . . , d̂

p
R)

T for

p = 1, . . . , P , and D̂ = (d̂
1
, . . . , d̂

P
), solve the opti-

mization problem θ̂ = argminθ ∥ĉ− D̂θ∥2.
5: Return

∑P
p=1 θ̂pϕp(x) as the P-APCE estimator.

D̂ = (d̂
1
, . . . , d̂

P
). We obtain the estimator θ̂ by minimiz-

ing the following empirical risk (Olive, 2017)

JP (θ;D) = ∥û− D̂θ∥2. (18)

The solution is given as (D̂T D̂)−1D̂T û if the matrix D̂T D̂
is invertible; otherwise, it is solvable by the singular value
decomposition (Mandel, 1982) or the regularization tech-
niques (Hilt et al.).

4.2. Properties of P-APCE estimator

Next, we show the properties of the P-APCE estimator. We
make the following assumption:

Assumption 8. ĉ and D̂ learned by ML methods are con-
sistent estimators of c and D.

Then, the following theorem holds:

Theorem 4.1. Under SCMMIV and Assumptions 1, 2, 3,
and 8, the estimator θ̂ given by Algorithm 2 is a pointwise
consistent estimator of θ in Eq. (15).

The estimator θ̂ has a bias since this model can be considered
as an errors-in-variables model (Söderström, 2007) or a
measurement error model (Fuller, 2009). Since the norm of
the bias of the errors-in-variables model decreases according
to the inverse of the norm of D̂T D̂ (Greene, 1997), the
expected norm of bias decreases according to O(N−1/2)
if the conditional variances of prediction values decrease
according to O(N−1) as N → ∞. As for computational
complexity, the complexity of building predictive models
and calculating R + R × P prediction values depends on
the ML method. The inverse matrix is computed in O(R3)
time.
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Model Selection. We can use the empirical risk in equa-
tion (18) as a performance metric of the trained model
with parameters θ̂ given a separate test dataset D′ =
{z′(i), x′(i), y′(i)}N ′

i=1. Assume ĉ′ and D̂′ are computed us-
ing D′. Then, we can evaluate the trained model by the
following test error:

J test
P (θ̂;D′) = ∥ĉ′ − D̂′θ̂∥2. (19)

Given a separate dataset, this performance metric can also
be used for model selection from among various candidate
basis functions or the number P of basis.

5. Experiments
In this section, we present numerical experiments to demon-
strate the performance of the P-APCE and N-APCE estima-
tors. We compare them with the parametric method TSPS
(Terza et al., 2008) and the nonparametric method NPTSLS
(Newey & Powell, 2003). Note that among the existing
methods summarized in Table 1, GMM requires the distri-
bution of the IV which we don’t assume available, and CQE
requires monotonicity. NPTSLS computes E[Yx] which we
differentiate to compute APCE E[∂xYx].

Settings. We consider the following SCM:{
X := 1

25Z
2 + 1

5Z + 0.5 + (Z3 + 0.1)U
Y := X3 +X2 +X + U + E

. (20)

This SCM has non-linear functions for both fX and fY ; it
satisfies separability II but not separability I; and it satisfies
Assumption 1. Each realized value of U and E are i.i.d. and
sampled from a uniform distribution U [−1, 1].

We generated random samples using the SCM in (20) for
11 different values of Z in (0, 0.3, . . . , 2.7, 3). The sample
size at each Z value is 10 and 100, respectively, for a total
sample size of N = 100 and N = 1000. We compute
the µ̂ and k̂ in (3) by the conditional sample means, e.g,
Ê[Y |Z = z] = {

∑N
i=1 y

(i)
1z(i)=z}/{

∑N
i=1 1z(i)=z}. We

also compute the ĉ and D̂ by the conditional means. The
conditional means satisfy Assumptions 5 and 7. We conduct
each simulation 100 times.

Settings of N-APCE (Algorithm 1) We let X =
{0, 0.3, . . . , 2.7, 3}; and the N-APCE estimator at X = 0 is
not defined since x0 is 0. We calculate the numerical integra-
tion using the left-hand rule. We let the initial function θ̂1 be
a zero function, and the stop threshold ϵ be 10. We choose
the step size as the smallest one from (1, 0.5, 0.1, . . .) when
Algorithm 1 stops before 100 iterations, and the chosen step
size α is 0.5.

Settings of P-APCE (Algorithm 2) We use the polynomial
basis functions ϕp(x) = xp−1 for p = 1, 2, . . ., and cal-
culate the solution of the equation (18) by (D̂T D̂)−1D̂T ĉ.

To determine the best degree of the model, we separate the
data set into training set D and validation set D′, estimate
θ̂ by the training set, and evaluate the trained model using
the performance measure (19). We simulate 100 times and
compute the performance measure. From the results (shown
in Table 5 in the appendix), we decide that the highest de-
gree of the polynomial functions in the P-APCE estimator
will be 3, when the mean of the performance measure is the
smallest. Due to overfitting, the validation errors gradually
increase when the model degree is greater than 4. We let
the degree of TSPS also be 3. For NPTSLS, we use the Her-
mite polynomial basis functions h0(X) = 1, h1(X) = X ,
h2(X) = X2 − 1.

Results. The means and standard deviations (SD) of the
N-APCE estimator at different X values over 100 runs, and
the approximate SD by the equation (13) are shown in Table
2. The means and the SD of the estimated coefficients by
P-APCE and TSPS are shown in Table 3. The boxplots
of the estimated values by N-APCE, P-APCE, TSPS, and
NPTSLS at each point in (0.3, 0.6, . . . , 2.7, 3) are shown in
Figure 2.

We have the following observations from the results. The
P-APCE estimator performed superior to the TSPS - this
may be because the underlying IV model does not satisfy
separability I. The SD and biases of the P-APCE estimators
are relatively large when N = 100, and the estimators
have relatively small biases and SD when N = 1000. In
contrast, the TSPS estimators have relatively large biases
and SD for both N = 100 and N = 1000. The N-APCE
estimator performed superior to NPTSLS. The interquartile
range (IQR) of N-APCE is narrower than that of NPTSLS
in Figure 2.

The N-APCE estimators have relatively small SD, and the
means are close to the true APCE values. Compared to
the P-APCE estimator, the N-APCE estimator is less likely
to misrepresent the form of the function. The P-APCE
estimators sometimes become an upward convex function
at small X values, which misrepresents the characteristic
of the function. In addition, the approximate SD by the
equation (13) is close to the SD of the N-APCE estimates.
Additional information about this experiment is given in
Appendix C.1.

We have performed additional numerical experiments on
non-monotonic (Appendix C.2) or non-polynomial (Ap-
pendix C.3) APCE functions, and experiments on a model
satifying both separability I and II (Appendix C.4). We have
the following observations from the results. First, our N-
APCE and P-APCE estimators work well in situations where
the APCE is not monotonic. Second, in a situation where
the APCE is not polynomial, the P-APCE estimator does
not work well and the N-APCE estimator still works well;
thus, the N-APCE estimator is superior to the parametric

7
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Table 2: The means and standard deviations (SD) of the N-APCE over 100 runs, and the means of the approximate SD by
the equation (13) (Approx SD) at (0.3, 0.6, . . . , 2.7, 3.0) when N = 100 and N = 1000.

X = x 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3
True APCE 1.87 3.28 5.23 7.72 10.75 14.32 18.43 23.08 28.27 34

(N = 100) Mean 2.519 4.416 6.907 10.001 13.588 18.721 24.918 30.223 35.955 44.400
SD 4.386 4.577 5.387 6.335 8.269 8.145 11.114 12.389 14.135 16.371

Approx SD 4.578 5.481 5.408 5.478 7.472 11.881 15.197 14.683 19.716 24.110
(N = 1000) Mean 1.822 3.647 5.397 7.514 10.561 14.394 18.601 24.017 30.521 37.536

SD 1.365 1.180 1.161 1.415 1.971 2.373 3.094 3.813 4.472 5.004
Approx SD 1.246 1.414 1.655 2.010 2.468 2.987 3.817 4.789 5.843 6.824

Table 3: The means and standard deviations (SD) of the
P-APCE, and the TSPS over 100 runs when N = 100 and
N = 1000; “D = m” means “the estimated coefficient of
the m-th degree term.” The true coefficients are 1, 2, 3 for
D = 0, 1, 2.

Results D = 0 D = 1 D = 2

P-APCE Mean 7.879 -11.128 8.525
N = 100 SD 10.516 20.884 9.214
TSPS Mean -9.749 29.489 -11.571
N = 100 SD 48.039 118.938 69.845
P-APCE Mean 0.995 2.132 2.878
N = 1000 SD 4.951 9.477 3.997
TSPS Mean -1.590 8.403 1.531
N = 1000 SD 15.110 37.188 21.470

method when a reasonable model for the data is unknown.
Finally, our N-APCE and P-APCE estimators are superior to
the TSPS and NPTSLS in terms of the SD of the estimates
even when the underlying IV model satisfies the separability
I and II.

6. Application in a Real-World Dataset
In this section, we present an application of our estimators
to real-world data in economics.

Real-world Dataset. We take up an open dataset in the R
package “wooldridge” (https://cran.r-project.
org/package=wooldridge), which was analyzed by
Griliches (1977) and Blackburn & Neumark (1992). The
data source is the National Longitudinal Survey of Young
Men, and the sample size is 935. We estimate the effect of
years of education on monthly wages, which is of great in-
terests in economics (Card, 1999; Angrist & Krueger, 1991).
Since researchers cannot force people to attend or drop out
of school, they use the mother’s years of education as an
instrumental variable. We take the subject’s years of edu-
cation as the treatment variable (X), their monthly wage

as the outcome variable (Y ), and their mother’s years of
education as the instrumental variable (Z). Here, X and
Z are discretized continuous variables, and the domains of
X and Z are {9, 10, . . . , 18}, ranging from the 1st year of
high school to the 2nd year of master’s degree. We exclude
samples where one of the three variables is NA. We estimate
the conditional expectation using the conditional means. We
determined the degree of polynomials in the P-APCE esti-
mator by the test error (19), and chose linear functions for
the candidates of the APCE. We evaluate the APCE by 1000
times bootstrapping method. To reduce the variance of the
estimator, we regularize the matrix D̂T D̂ by adding 0.1× I,
where I is an identity matrix of size R.

Results. We show the basic bootstrapping statistical prop-
erties of the P-APCE estimators and the TSPS in Table 4.
The N-APCE estimator did not converge. For the P-APCE
estimator, the mean of the constant term is 192.491; the
mean of the coefficient of the first degree term is −10.267.
As for the TSPS, the mean of the constant term is 108.484;
the mean of the coefficient of the first degree term is 0.073.
Both P-APCE and TSPS predict that years of education
increase the wages, which is consistent with the results of
previous works (Blackburn & Neumark, 1992; Wooldridge,
2010). On the other hand, the result of the TSPS implies
that the effect of years of education on wages is close to
constant; however, the result of the P-APCE estimator im-
plies that the effect of years of education on wages gets
weaker from year to year. Our results from the P-APCE es-
timator suggest that education significantly affects wages at
the compulsory school level, which coincides with (Angrist
& Krueger, 1991); on the other hand, education has little
effect at the college level. The increase in wages by getting
a higher education at the college level seems to be due to the
phenomenon described in Spence (1973) and Caplan (2018)
that people with an academic degree earn higher incomes
than people who don’t have an academic degree, even if they
possess the same skills, not the effect of education. This
difference is called “sheepskin effect” which is described
in Jaeger & Page (1996) as “the difference in earnings be-
tween individuals possessing a diploma and those who do
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Figure 2: Boxplots of the estimated APCE values by
the N-APCE, P-APCE, TSPS, and NPTSLS estimators at
X = (0, 0.3, . . . , 2.7, 3.0). The X-axis is the value of the
treatment variable X , and Y-axis is the value of the APCE.
The black curves are the true APCE.

not conditional on years of schooling.”

7. Conclusion
In this paper, we have developed two novel methods for
estimating the APCE of a continuous treatment via an in-
strumental variable. We analyzed the properties of the pro-
posed P-APCE and N-APCE estimators and demonstrated
their applications on synthetic and real-world data. The
performance of the parametric P-APCE estimators depends
critically on the choice of the basis functions. Nonpara-
metric N-APCE estimators do not have to make functional

Table 4: The results of the P-APCE estimator and the TSPS
for the real-world dataset.

P-APCE estimator TSPS
D = 0 D = 1 D = 0 D = 1

Min. -664.970 -55.854 -990.480 -82.835
1st Qu. 73.724 -18.613 -106.334 -15.593
Median 186.969 -9.842 118.563 -0.657
3rd Qu. 312.781 -1.939 313.215 16.273
Max. 834.128 51.523 1216.730 82.870
Mean 192.491 -10.267 108.484 0.073
SD 182.698 13.0290 325.414 24.646

assumptions but are computationally expensive.

In contrast to the most existing work, the P-APCE and N-
APCE estimators do not directly estimate the effect E[Yx],
but the APCE E[∂xYx]. However, the main interest in
causal inference is to infer the effects of the treatment un-
der changing conditions (Pearl, 2010); thus, the APCE is
often sufficient to reveal causal relationships. In particular,
APCE enables us to evaluate a popular target, the average
causal effect (ACE) of changing treatments from x′ to x′′,
by E[Yx′ ]− E[Yx′′ ] =

∫ x′

x′′ E[∂xYx]dx.
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Appendix

A. Proofs
A.1. Proof of Proposition 3.1

Proposition 3.1. Under Assumptions 1, 2, and 3, solving the function E[∂xYx] via the integral equation (2) is a well-posed
problem, that is, there exists a unique solution and the solution changes continuously with changes in the input functions.

Proof. First, note that a problem Kf = g is a well-posed problem if

1. a solution exists,

2. the solution is unique, and

3. the solution changes continuously with changes in the input operator K and function g.

Problems in which one or more of the conditions fails to hold are called ill-posed problems (Tikhonov et al., 1995). First,
since this integral equation has a unique solution from Wong (2022), it satisfies the first and second conditions. From
Assumptions 1, 2, and 3, the operator K is a bounded operator. Next, we show that a bounded operator implies continuous.
For any function f, f∗ ∈ H (f ̸= f∗),

∥K(f)−K(f∗)∥2 = ∥K(f − f∗)∥2 =

∫
ΩZ

(∫
ΩX

k(x′, x){f(x′)− f∗(x′)}dx′
)2

dx, (21)

from the Cauchy-Schwarz inequality

≤
∫
ΩZ

(∫
ΩX

k(x′, x)2dx′
)(∫

ΩX

{f(x′)− f∗(x′)}2dx′
)
dx (22)

=

(∫
ΩZ

∫
ΩX

k(x′, x)2dx′dx

)(∫
ΩX

{f(x′)− f∗(x′)}2dx′
)

(23)

≤
(∫

ΩZ

∫
ΩX

k(x′, x)2dx′dx

)
∥f − f∗∥2 <∞ (24)

Because

∥K(f)−K(f∗)∥ ≤

√(∫
ΩZ

∫
ΩX

k(x′, x)2dx′dx

)
∥f − f∗∥, (25)

the operator K is a continuous operator. Finally, from the open mapping theorem, the inverse operator K−1 is also
continuous. Here, K−1 = α

∑∞
t=1(I − αK)t where I is an identity operator and 0 < α < 2/∥K∥. Furthermore, for any

K,K∗ (K ̸= K∗) and g, g∗ (g ̸= g∗),

∥K−1(g)−K∗ −1(g∗)∥ ≤ ∥K−1(g)−K∗ −1(g)∥+ ∥K∗ −1(g)−K∗ −1(g∗)∥ (26)
≤ ∥K−1(g)−K∗ −1(g)∥+ ∥K∗ −1∥∥g − g∗∥ (27)

holds. Since the function k is continuous, the solution changes continuously with changes in the input function K and g.

A.2. Proof of Lemmma 3.2

Lemma 3.2. Under SCMMIV and Assumptions 1, 2, and 3, the operator K satisfies the following three properties:

1. K is a compact operator: K maps a bounded set into a compact set in the sense of strong convergence.
2. K is self-adjoint: ⟨K(a), b⟩ = ⟨a,K(b)⟩ for a, b ∈ H.
3. K is positive semi-definite: ⟨K(a), a⟩ ≥ 0 for a ∈ H.

12
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Proof. First, this is an integral equation (2)

E[Y |Z = z0]− E[Y |Z = z] =

∫
ΩX

{PX [x|Z = z]− PX [x|Z = z0]}E[∂xYx]dx, (28)

and the operator K is

K(f) =
∫
ΩX

{PX [x|Z = z]− PX [x|Z = z0]}f(x)dx (29)

for any f ∈ H. The function K is satisfies∫
ΩZ

∫
ΩX

|{PX [x|Z = z]− PX [x|Z = z0]}|2dxdz <∞, (30)

thus K is a compact integral kernel (Alexanderian, 2013). Second, since

⟨K(f), g⟩ =
∫
ΩZ

(∫
ΩX

{PX [x|Z = z]− PX [x|Z = z0]}f(x)dx
)
g(z)dz (31)

=

∫
ΩZ

f(x)
(∫

ΩX

{PX [x|Z = z]− PX [x|Z = z0]}g(z)dz
)
dx = ⟨f,K(g)⟩ , (32)

the operator K is selfadjoint. Third, since {PX [x|Z = z]− PX [x|Z = z0]} > 0 for all x ∈ X and

< K(f), f >=

∫
ΩZ

(∫
ΩX

{PX [x|Z = z]− PX [x|Z = z0]}f(x)dx
)
f(z)dz (33)

holds. The integral operator K satisfies the three properties in lemma 3.2.

A.3. Proof of Lemma 3.3

Lemma 3.3. Under SCMMIV and Assumption 1, K satisfies the Picard’s condition.

Proof. From Assumption 1, there exists the APCE, which is the solution of the integral equation (2). Since Picard’s
condition is the necessary condition for the existence of the solution, K satisfies the Picard condition.

A.4. Proof of Theorem 3.4

Theorem 3.4. Under SCMMIV and Assumptions 1, 2, 3, and 4, the Picard iteration scheme (5) converges strongly to the
APCE, that is, limt→∞ θt(x) = E[∂xYx].

Proof. We use the following result (Theorem (c1) in Diaz & Metcalf (1970)):

The operator L is assumed to be compact, selfadjoint, and positive semidefinite. Let b ∈ H be such that ⟨b, v⟩ for every u
such that L(v) = 0. Then, the sequence of the Picard’s iteration {θt}∞t=1 converge strongly, for every θ0 ∈ H if and only if
L satisfies Picard condtion.

The operator K is compact, selfadjoint, and positive semidefinite from the Lemma 3.2 and K satisfies the Picard condition
from Lemma 3.3. Thus, the Picard iteration {θt}∞t=0 converge strongly. From the uniqueness of the solution, the convergence
point is the APCE.

A.5. Proof of Theorem 3.5

Theorem 3.5. Under SCMMIV and Assumptions 1, 2, 3, 4, and 5, taking limits N →∞, R→∞, and t→∞, θ̂t(x) is a
pointwise consistent estimator of the APCE E[∂xYx] for x ∈ ΩX almost everywhere.

13



Instrumental Variable Estimation of Average Partial Causal Effects

Proof. The functions µ̂(x) and k̂(x′, x) can be written as{
µ̂(x) = µ(x) + e(x)

k̂(x′, x) = k(x′, x) + ϵ(x′, x)
, (34)

where functions e(x) and ϵ(x′, x) are error terms. Concisely, we represent the above relationships as below;{
µ̂ = µ+ e

k̂ = k + ϵ
. (35)

For the numerical integration, we choose the subinterval [xq, xq+1] satisfies that [x0, xQ] = [min(ΩX),max(ΩX)] and
limQ→∞ |xq+1 − xq| = 0 for q = 1, . . . , Q. In addition, for the numerical interpolation, we choose the subinterval
[xr, xr+1] satisfies that [x0, xR] = [min(ΩX),max(ΩX)] and limR→∞ |xr+1 − xr| = 0 for r = 1, . . . , R.

Then, we write down the Picard iteration with the ML error. Update the function θ̂ at X = xr by

θ̂t+1(xr) = θ̂t(xr) + α
(
µ̂(xr)− I[k̂(x′, x)θ̂t(x

′);X ]
)

(36)

θ̂t+1(xr) = θ̂t(xr) + α
(
µ(xr) + e(xr)− I[{k(x′, xr) + ϵ(x′, xr)}θ̂t(x′);X ]

)
(37)

θ̂t+1(xr) = θ̂t(xr) + α
(
µ(xr) + e(xr)− I[k(x′, xr)θ̂t(x

′);X ]− I[ϵ(x′, xr)θ̂t(x
′);X ]

)
, (38)

where I means the numerical integration, which is represented as below, concretely;

θ̂t+1(xr) = θ̂t(xr) + α
(
µ(xr) + e(xr)−

Q∑
q=0

A(k(xq, xr)θ̂t(xq), k(xq+1, xr)θ̂t(xq+1))(xq+1 − xq) (39)

−
Q∑

q=0

A(ϵ(xq, xr)θ̂t(xq), ϵ(xq+1, xr)θ̂t(xq+1))(xq+1 − xq)
)
. (40)

Then, we take limit Q→∞, and the numerical integration converge to integration. Thus,

lim
Q→∞

θ̂t+1(xr) = lim
Q→∞

θ̂t(xr) + α
(
µ(xr) + e(xr)−

∫
ΩX

k(x′, xr) lim
Q→∞

θ̂t(x
′)dx′ −

∫
ΩX

ϵ(x′, xr) lim
Q→∞

θ̂t(x
′)dx′

)
(41)

holds.

Since e(xr) converges in probability to 0 taking limit N →∞, and ϵ(x′, xr) converges in probability to zero function for
r = 1, . . . , R,

lim
Q→∞,N→∞

θ̂t+1(xr) = lim
Q→∞,N→∞

θ̂t(xr) + α
(
µ(xr)−

∫
ΩX

k(x′, xr)
{

lim
Q→∞,N→∞

θ̂t(x
′)
}
dx′

)
(42)

holds, which is the same as the Picard iteration of θt(xr) for t = 1, 2, 3, . . ., the estimator θ̂t(xr) is a consistent estimator of
θt(xr) for r = 1, . . . , R. Furthermore, taking the limit t→∞, limt→∞ θ̂t(xr) is a consist estimator of APCE at X = xr

since θt converge to APCE at X = xr. From the property of the interpolation, taking the limit that R→∞, the function
θ̂(x) is a consistent estimator of the APCE for x ∈ ΩX .

A.6. Proof of Theorem 3.6

Theorem 3.6. Under SCMMIV and Assumptions 1, 2, 3, 4, and 6, taking the limit R→∞, Algorithm 1 stops after a finite
number of iterations for any ϵ > 0.

Proof. As Theorem 3.4, the Picard iteration scheme (10) also converges strongly to the solution under Assumption 6. Thus,
Algorithm 1 stops after a finite number of iterations for any ϵ > 0.
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A.7. Proof of corollary 3.7

Corollary 3.7. Under SCMMIV and Assumptions 1, 2, 3, 4, and 6, the sequence θ̂t converges linearly to θ̂∞.

Proof. From the triangle inequality,

∥θ̂t+1 − θ̂∞∥
∥θ̂t − θ̂∞∥

=
∥
∑∞

t′=t+1(I − αK̂)t′(αµ̂)∥
∥
∑∞

t′=t(I − αK̂)t′(αµ̂)∥
=
∥
∑∞

t′=t(I − αK̂)t′(αµ̂) + (I − αK̂)t+1(αµ̂)∥
∥
∑∞

t′=t(I − αK)t′(αµ̂)∥
(43)

≤
∥
∑∞

t′=t(I − αK̂)t′(αµ̂)∥+ ∥(I − αK̂)t+1(αµ̂)∥
∥
∑∞

t′=t(I − αK̂)t′(αµ̂)∥
(44)

holds. Since ∥(I − αK̂)t+1(αµ̂)∥ is bounded for all t, ∥θ̂t+1 − θ̂∞∥/∥θ̂t − θ̂∞∥ is also bounded. Thus, the sequence θ̂t
converges linearly.

A.8. Proof of Theorem 3.8

Theorem 3.8. Under SCMMIV and Assumptions 1, 2, 3, 4, 6, and 7, letting K̂−1 = α
∑∞

t=0(I − αK̂)t, if ∥K̂−1∥ is
bounded by M , then the expected absolute bias E[∥θ̂∞ − θ∞∥] is bounded by M(A+ ∥θ∞∥B), where

A =

√∫
ΩX

V(µ̂(x))dx, B =

√∫
ΩX

V(k̂(x, x))dx. (45)

Proof. The Picard iteration, both with the ML error and without the ML error θ̂t+1(x) = θ̂t(x) + α
(
µ(x)−

∫
ΩX

k(x′, x)θ̂t(x
′)dx′

)
+ α

(
e(x)−

∫
ΩX

ϵ(x′, x)θ̂t(x
′)dx′

)
θt+1(x) = θt(x) + α

(
µ(x)−

∫
ΩX

k(x′, x)θt(x
′)dx′

) . (46)

Thus, the error of the estimator, θ̂t+1(x)− θt+1(x), becomes

θ̂t+1(x)− θt+1(x)

= θ̂t(x)− θt(x)− α

∫
ΩX

k(x′, x){θ̂t(x′)− θt(x
′)}dx′ + αẽ(x)− α

∫
ΩX

ϵ(x′, x)θ̂t(x
′)dx′ (47)

= θ̂t(x)− θt(x)− α

∫
ΩX

k(x′, x){θ̂t(x′)− θt(x
′)}dx′ + αẽ(x)− α

∫
ΩX

ϵ(x′, x){θ̂t(x′)− θt(x
′) + θt(x

′)}dx′,(48)

then

θ̂t+1(x)− θt+1(x)

= θ̂t(x)− θt(x)− α

∫
ΩX

k(x′, x){θ̂t(x′)− θt(x
′)}dx′ (49)

+αe(x)− α

∫
ΩX

ϵ(x′, x){θ̂t(x′)− θt(x
′)}dx′ + α

∫
ΩX

ϵ(x′, x)θt(x
′)dx′. (50)

Concisely, we denote the operator I − αK − αE

(I − αK − αE)(θ̂t − θt)(x) (51)

:= θ̂t(x)− θt(x)− α

∫
ΩX

k(x′, x){θ̂t(x′)− θt(x
′)}dx′ − α

∫
ΩX

ϵ(x′, x){θ̂t(x′)− θt(x
′)}dx′, (52)

then

θ̂t+1 − θt+1 = (I − αK − αE)(θ̂t − θt) + αe+ αEθt. (53)
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We write down the Picard iteration with the ML error, since θ1 = θ̂1,

θ̂2 − θ2 = αe+ αEθ2 (54)
θ̂3 − θ3 = (I − αK − αE)(αe+ αEθ2) + αe+ αEθ3 (55)

θ̂4 − θ4 = (I − αK − αE)2(αe+ αEθ2) + (I − αK − αE)(αe+ αEθ3) + αe+ αEθ4 (56)

θ̂5 − θ5 = (I − αK − αE)4(αe+ αEθ2) + (I − αK − αE)2(αe+ αEθ3) (57)
+(I − αK − αE)(αe+ αEθ4) + αe+ αEθ4 (58)

... (59)

holds; thus the error after t times iterations becomes

θ̂t − θt =

t−2∑
t′=0

(I − αK − αE)t
′
(αe+ αEθt′) =

t−2∑
t′=0

(I − α(K + E))t
′
(αe+ αEθt′). (60)

Here, since the operator (K + E) is continuous (bounded) and

∥
∞∑

t′=0

(I − α(K + E))t
′
(αe+ αEθ∞)−

t−2∑
t′=0

(I − α(K + E))t
′
(αe+ αEθt′)∥ (61)

≤ ∥
∞∑

t′=0

(I − α(K + E))t
′
(αe+ αEθ∞)−

t−2∑
t′=0

(I − α(K + E))t
′
(αe+ αEθ∞)∥ (62)

+∥
t−2∑
t′=0

(I − α(K + E))t
′
(αe+ αEθ∞)−

t−2∑
t′=0

(I − α(K + E))t
′
(αe+ αEθt)∥, (63)

∑t−2
t′=0(I −α(K+ E))t′(αe+αEθt′) converges strongly to

∑∞
t′=0(I −α(K+ E))t′(αe+αEθ∞), if the operator (K+ E)

satisfies the Picard condition. It converges strongly and θ̂t − θt converges strongly to the solution of the integral equation σ

αe+ αEθ∞ = α(K + E)σ ⇔ σ = (K + E)−1(e+ Eθ∞) (64)

where (K + E)−1(e + Eθ∞) = α
∑∞

t=0(I − α(K + E))t(e + Eθ∞) (Diaz & Metcalf, 1970). The norm of the error is
bounded by ∥σ∥ ≤ ∥(K + E)−1∥∥e+ Eθ∞∥ ≤ ∥(K + E)−1∥{∥e∥+ ∥E∥∥θ∞∥}. This means

∥θ̂∞ − θ∞∥ ≤ ∥K̂−1∥{∥µ̂− µ∥+ ∥K̂ − K∥∥θ∞∥}. (65)

If the operator ∥K̂−1∥ is bounded by M ,

∥θ̂∞ − θ∞∥ ≤M{∥µ̂− µ∥+ ∥K̂ − K∥∥θ∞∥} (66)

holds. If µ̂ is equal to µ and K̂ is equal to K, θ̂∞ is equal to θ∞.

A.9. Proof of Theorem 3.9

Theorem 3.9. Under SCMMIV and Assumptions 1, 2, 3, 4, and 7, when Algorithm 1 stops at t = T , the upper bound of
the variance of θ̂T (x) is α2(T − 1)2ν(x) +O(α3) as α→ 0 for x ∈ ΩX , where ν(x) is

V(µ̂(x)) +
(∫

ΩX

√
V(k̂(x′, x))|θT (x′)|dx′

)2

+ 2
√
V(µ̂(x))

(∫
ΩX

√
V(k̂(x′, x))|θT (x′)|dx′

)
.

Proof. As for the error at each x, the error of the estimator at x after t times iterations become

θ̂t(x)− θt(x) =

t−2∑
t′=0

(I − αK − αE)t
′
(αe+ αEθt)(x) (67)
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= α(t− 1)(e+ Eθt)(x) +O(α2) (68)

Then, the absolute error becomes

|θ̂t(x)− θt(x)| = |(t− 1)α(e+ Eθt)(x)|+O(α2) (69)

and the squared error becomes

(θ̂t(x)− θt(x))
2 = (t− 1)2α2(e+ Eθt)(x)2 +O(α3) (70)

Thus, the variance becomes

V(θ̂t(x)) = E[{θ̂t(x)− θt(x)}2] = (t− 1)2α2E[(e+ Eθt)(x)2] +O(α3). (71)

Here,

E[(e+ Eθt)(x)2] ≤ E[e(x)2] + 2E[e(x)E(θt)(x)] + E[E(θt)(x)2] (72)
= V(µ̂(x)) + 2E[{µ̂(x)− µ(x)}{K̂(θt)(x)−K(θt)(x)}] + V(K̂(θt)(x)) (73)

holds. From the unbiasedness of the ML, since E[XY ] ≤
√
E[X2]E[Y 2] from the Cauchy–Schwarz inequality,

E[(e+ Eθt)(x)2] ≤ V(µ̂(x)) + 2

√
V(µ̂(x))V(K̂(θt)(x)) + V(K̂(θt)(x)) (74)

holds. Furthermore, V(K̂(θt)(x)) is bounded by

V(K̂(θt)(x)) = E
[( ∫

ΩX

{k̂(x′, x)− k(x′, x)}θt(x′)dx′
)2]

(75)

≤ E
[∣∣∣ ∫

ΩX

{k̂(x′, x)− k(x′, x)}θt(x′)dx′
∣∣∣]2 (76)

≤
(∫

ΩX

E[|k̂(x′, x)− k(x′, x)|]θt(x′)|dx′
)2

(77)

≤
(∫

ΩX

√
V(k̂(x′, x))|θt(x′)|dx′

)2

(78)

(79)

from the Hölder’s inequality. Finally,

V(θ̂t(x)) ≤ (t− 1)2α2ν(x) +O(α3) (80)

holds, where

ν(x) = V(µ̂(x)) + 2

√
V(µ̂(x))

(∫
ΩX

√
V(k̂(x′, x))|θt(x′)|dx′

)2

+
(∫

ΩX

√
V(k̂(x′, x))|θt(x′)|dx′

)2

. (81)

A.10. Proof of Corollary 3.10

Corollary 3.10. Under SCMMIV and Assumptions 1, 2, 3, 4, and 7, when Algorithm 1 stops at t = T , the variance of
θ̂T (x) is

α2(T − 1)2V(µ̂(x)) +O(α3) +O({max
x′
{V(k̂(x′, x))}}1/2) (82)

as α→ 0, {maxx′{V(k̂(x′, x))}}1/2 → 0 for x ∈ ΩX .
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Proof. The inequality(∫
ΩX

√
V(k̂(x′, x))|θt(x′)|dx′

)2

≤ max
x′
{V(k̂(x′, x))}

(∫
ΩX

|θt(x′)|dx′
)2

(83)

holds; thus, from the Theorem 3.9

E[{θ̂t(x)− θt(x)}2] = (t− 1)2α2V(µ̂(x))(α3) +O(α3) +O(
√
max
x′
{V(k̂(x′, x))}) (84)

holds.

A.11. Proof of Theorem 4.1

Theorem 4.1. Under SCMMIV and Assumptions 1, 2, 3, and 8, taking a limit N →∞, the estimator θ̂ given by Algorithm
2 is a pointwise consistent estimator of θ in Eq. (15).

Proof. û and D̂ can be written as
ur = θP d

P
r + . . .+ θ1d

1
r

ûr = ur + er, for r = 1, . . . , R

d̂pr = dpr + ϵpr for r = 1, . . . , R and p = 1, . . . , P
, (85)

where er, for r = 1, . . . , R and ϵpr for r = 1, . . . , R and p = 1, . . . , P are error terms. We denote e = (e1, . . . , eR) and
ϵ = (ϵ1, . . . , ϵR). Then, the estimator θ̂ becomes

θ̂ = (D̂
T
D̂)−1D̂

T
û = {(D + ϵ)T (D + ϵ)}−1(D + ϵ)T (u+ e). (86)

Since D ⊥⊥ ϵ,

= (DTD + ϵT ϵ)−1(D + ϵ)T (u+ e) (87)

holds. From the Woodbury formula,

= (DTD + ϵT ϵ)−1(D + ϵ)T (u+ e) (88)
= [(DTD)−1 − (DTD)−1ϵT (I + ϵ(DTD)−1ϵT )−1ϵ(DTD)−1](D + ϵ)T (u+ e) (89)
= (DTD)−1(D + ϵ)T (u+ e)− (DTD)−1ϵT (I + ϵ(DTD)−1ϵT )−1ϵ(DTD)−1(D + ϵ)T (u+ e) (90)
= θ + (DTD)−1ϵTu+ (DTD)−1DTe+ (DTD)−1ϵTe

−(DTD)−1ϵT (I + ϵ(DTD)−1ϵT )−1ϵ(DTD)−1(D + ϵ)T (u+ e). (91)

Then,

θ̂ − θ = (DTD)−1ϵTu+ (DTD)−1DTe+ (DTD)−1ϵTe

−(DTD)−1ϵT (I + ϵ(DTD)−1ϵT )−1ϵ(DTD)−1(D + ϵ)T (u+ e). (92)

Taking the limit N →∞, ϵ converges in probability to a zero matrix and e converges in probability to a zero vector from
the consistency of the ML, thus θ̂ is a consistent estimator.
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B. Details of numerical integration and interpolation
In this section, we explain numerical integration and interpolation.

B.1. Details of numerical integration

First, denote I[a(x);X ] be a numerical integration of the integration
∫
ΩX

a(x)dx for a function a ∈ H given X ; and, it
takes form as

I[a(x);X ] =

R∑
q=1

I(xq, xq+1)(xq+1 − xq), (93)

e.g., the left-hand rule

I[a(x);X ] =

R∑
q=1

a(xq)(xq+1 − xq), (94)

the mid-point rule

I[a(x);X ] =
R∑

q=1

a(
xq + xq+1

2
)(xq+1 − xq), (95)

and the trapezoidal rule

I[a(x);X ] =

R∑
q=1

a(xq) + a(xq+1)

2
(xq+1 − xq). (96)

A total error of, at most, the mid-point rule is (xR − x0)
3B/24R2, where B is an upper bound for the second derivative

of a(x) and xr+1 − xr are equal for all r = 1, . . . , R. The total error converges to zero when R→∞, and the total error
converges with the order O(R−2).

B.2. Details of numerical interpolation

Next, we explain the numerical interpolation. Given, the set X and their values θ̂(xr) for r = 1, . . . , R. We interpolate the
function θ̂ by the linear combination

θ̂(x) =

R∑
r=1

wrlr(x), (97)

e.g., the Lagrange interpolating polynomial

lr(x) =
x− x0

xr − x0
. . .

x− xr−1

xr − xr−1

x− xr+1

xr − xr+1
. . .

x− xR

xr − xR
=

∏
0≤m≤R,m ̸=r

x− xm

xr − xm
(98)

The coefficients w1, . . . , wR are determined by solving the system of equations

θ̂(xr) =

R∑
r=1

wrlr(xr), for r = 1, . . . , R. (99)

When we interpolation the function θ(x) by the Lagrange interpolating polynomial θ̂(x), whose degree is R, the errors are
bounded by

|θ(x)− θ̂(x)| ≤ ChR

4R
, (100)

where C = maxx∈[x0,xR] | d
R

dRx
θ(x)| and h = maxr=0,...,R−1 |xr+1 − xr|. The errors converge to zero when R→∞ and

limR→∞ |xr+1 − xr| = 0 for all r = 1, . . . , R. Since h can be represented as w/R, and error converge with the order
O(R−R).
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C. Additional Information on Numerical Experiments
C.1. Additional Information on Numerical Experiments

We give additional information on the numerical experiment based on the following SCM (Model 1);{
X = 5−2Z2 + 5−1Z + 0.5 + (Z3 + 0.1)U
Y = X3 +X2 +X + U + E

. (101)

Table 6 and Table 9 show basic statistics of the parametric and N-APCE estimator when N = 100 and N = 1000. The
approximate upper bound of the SD (Approx USD) by the equation (12) and approximate bound of the SD (Approx SD)
by the equation (13) are also shown in Table 9. In addition, we compare the estimator with the TSPS in Table 7 and the
NPTSLS in Table 8.

Table 5: Basic statistics of the test error of P-APCE over 100 runs for each degree; the bold number is the smallest.

N = 100 D = 2 3 4 5 6

Min. 0.022 0.019 0.173 0.081 0.091
1st Qu. 0.131 0.111 0.352 0.281 0.222
Median 0.173 0.157 0.439 0.352 0.283
Mean 0.183 0.168 0.443 0.352 0.300
3rd Qu. 0.235 0.211 0.520 0.410 0.362
Max. 0.416 0.442 0.747 0.668 0.604

N = 1000 D = 2 3 4 5 6

Min. 0.039 0.027 0.030 0.068 0.059
1st Qu. 0.085 0.073 0.097 0.165 0.237
Median 0.122 0.102 0.133 0.226 0.307
Mean 0.124 0.113 0.151 0.227 0.315
3rd Qu. 0.151 0.134 0.195 0.272 0.386
Max. 0.303 0.349 0.332 0.509 0.595

Table 6: Basic statistics of the P-APCE estimators when N = 100 and N = 1000; ”Degree=m” means ”the estimated
coefficient of m-th degree term.”

N = 100 Degree=0 Degree=1 Degree=2

Min. -22.384 -57.235 -21.697
1st Qu. 1.460 -24.815 2.947
Median 7.017 -8.754 7.463
3rdQu. 15.728 2.386 13.781
Max. 33.222 52.881 29.850
Mean 7.879 -11.128 8.525
SD 10.516 20.884 9.214

N = 1000 Degree=0 Degree=1 Degree=2

Min. -12.438 -22.410 -6.869
1st Qu. -2.074 -4.150 0.615
Median 1.648 0.882 3.286
3rd Qu. 4.347 7.390 5.498
Max. 13.550 26.577 13.381
Mean 0.995 2.132 2.878
SD 4.951 9.477 3.997

Table 7: Basic statistics of the TSPS estimators when N = 100 and N = 1000; ”Degree=m” means ”the estimated
coefficient of m-th degree term.”

N = 100 Degree=0 Degree=1 Degree=2

Min. -124.484 -272.723 -222.915
1st Qu. -40.675 -48.223 -55.086
Median -11.869 35.187 -13.301
3rd Qu. 22.194 105.129 33.460
Max. 107.563 346.930 173.959
Mean -9.749 29.489 -11.571
SD 48.039 118.938 69.845

N = 1000 Degree=0 Degree=1 Degree=2

Min. -36.485 -122.498 -49.695
1st Qu. -10.755 -20.670 -11.550
Median -4.443 14.456 -1.834
3rd Qu. 9.840 31.107 18.230
Max. 52.377 95.724 75.675
Mean -1.590 8.403 1.531
SD 15.110 37.188 21.470
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Table 8: Basic statistics of the NPTSLS estimators when N = 100 and N = 1000; ”Degree=m” means ”the estimated
coefficient of m-th basis function.”

N = 100 Degree=0 Degree=1 Degree=2

Min. -47.459 -294.671 -111.854
1st Qu. -4.447 -52.320 -4.138
Median 8.343 -20.611 23.730
3rd Qu. 17.487 25.362 41.668
Max. 84.201 189.642 191.154
Mean 8.043 -18.671 21.677
SD 18.795 68.360 42.250

N = 1000 Degree=0 Degree=1 Degree=2

Min. -18.946 -103.199 -36.229
1st Qu. -1.671 -25.216 2.625
Median 3.502 -4.251 13.997
3rd Qu. 9.191 13.436 25.771
Max. 31.341 77.682 71.694
Mean 3.453 -3.980 13.324
SD 9.310 32.709 19.411
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C.2. Additional Numerical Experiments: Non-Monotone Situation

Settings. We consider the following SCM (Model 2):{
X = 1

25Z
2 + 1

5Z + 0.5 + (Z3 + 0.1)U
Y = X3 − 5X2 +X + U + E

. (102)

This model has the properties of the non-separability I, and non-linearity for both functions Yx and Xz . Furthermore, the
function fY is not monotone function. Each realized value of U and E are generated by i.i.d. uniform distributions that
U [−1, 1], and R values of the IV are (0, 0.3, 0.6, . . . , 2.7, 3). Let the total sample size be 100 and 1000, which means that
the sample size of each value of the IV is 10 and 100, respectively. We compute the numerical integration using the left
hand rule. Let the initial function be θ̂1(x) = 0 for x ∈ ΩX , and the stop condition ϵ be 0.1. We determined the smallest
step size from (1, 0.75, 0.5.0.25, . . .) where the Algorithm 1 stops before 100 iterations; and the chosen step size is 0.25.
By splitting the dataset into training data and test sets, we choose the degree of the candidate models.

Results. The basic statistics of the estimators of the P-APCE estimator are shown in Table 11, the basic statistics of the
estimators of the N-APCE estimator are shown in Table 14. The approximate upper bound of the SD (Approx USD) by the
equation (12) and approximate bound of the SD (Approx SD) by the equation (13) are also shown in Table 14. In addition,
we compare the estimator with the TSPS shown in Table 12 and the NPTSLS in Table 13. The basic statistics of the test error
(19) shown in Table 10. The boxplots of the prediction values or the estimators at each point for (0, 0.3, 0.6, . . . , 2.7, 3) are
shown in Figure 3. Our P-APCE and N-APCE estimators are also work well in this situation.

Table 10: Basic statistics of the test error of P-APCE estimator over 100 runs for each degree; the bold number is the
smallest.

N = 100 2 3 4 5 6

Min. 0.032 0.052 0.108 0.084 0.094
1st Qu. 0.132 0.117 0.214 0.202 0.260
Median 0.170 0.156 0.283 0.251 0.316
Mean 0.176 0.170 0.291 0.269 0.321
3rd Qu. 0.220 0.200 0.350 0.329 0.378
Max. 0.360 0.506 0.658 0.640 0.593

N = 1000 2 3 4 5 6

Min. 0.023 0.024 0.032 0.068 0.072
1st Qu. 0.082 0.082 0.085 0.163 0.259
Median 0.119 0.111 0.120 0.203 0.319
Mean 0.124 0.118 0.134 0.224 0.338
3rd Qu. 0.154 0.152 0.166 0.272 0.427
Max. 0.307 0.280 0.431 0.522 0.626

Table 11: Basic statistics of the P-APCE estimator over 100 runs when N = 100 and N = 1000; ”Degree=m” means ”the
estimated coefficient of m-th degree term.” The true coefficients are 1,−10, 3 for D = 0, 1, 2.

N = 100 Degree=0 Degree=1 Degree=2

Min. -21.455 -112.524 -12.706
1st Qu. -1.453 -35.753 0.845
Median 6.591 -19.507 6.357
3rd Qu. 14.245 -3.776 13.895
Max. 45.587 30.500 56.341
Mean 6.884 -21.293 7.836
SD 11.597 23.523 10.776

N = 1000 Degree=0 Degree=1 Degree=2

Min. -7.699 -35.297 -4.303
1st Qu. -2.114 -15.779 0.479
Median 0.181 -8.598 2.429
3rd Qu. 3.940 -4.209 5.251
Max. 13.934 7.164 13.788
Mean 0.965 -9.980 3.011
SD 4.074 7.788 3.285
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Table 12: Basic statistics of the TSPS estimators over 100 runs when N = 100 and N = 1000; ”Degree=m” means ”the
estimated coefficient of m-th degree term.” The true coefficients are 1,−10, 3 for D = 0, 1, 2.

N = 100 Degree=0 Degree=1 Degree=2

Min. -79.369 -242.889 -97.491
1st Qu. -17.842 -64.638 -19.566
Median -2.105 -5.722 0.531
3rd Qu. 23.754 31.387 35.343
Max. 91.758 174.522 143.904
Mean 1.724 -14.264 6.211
SD 28.991 70.436 40.554

N = 1000 Degree=0 Degree=1 Degree=2

Min. -17.786 -79.012 -19.795
1st Qu. -3.297 -27.551 -0.608
Median 2.531 -16.259 7.508
3rd Qu. 6.751 -2.533 14.251
Max. 27.773 32.155 44.101
Mean 2.310 -15.873 7.160
SD 0.705 21.219 12.169

Table 13: Basic statistics of the NPTSLS estimators when N = 100 and N = 1000; ”Degree=m” means ”the estimated
coefficient of m-th basis function.”

N = 100 Degree=0 Degree=1 Degree=2

Min. -54.375 -166.638 -99.904
1st Qu. 1.363 -81.848 6.876
Median 10.593 -48.348 25.811
3rd Qu. 18.377 -19.390 44.935
Max. 42.033 169.779 98.555
Mean 10.280 -51.501 27.218
SD 14.306 51.337 31.388

N = 1000 Degree=0 Degree=1 Degree=2

Min. -16.996 -83.916 -32.204
1st Qu. -2.929 -41.881 0.029
Median 2.927 -25.112 11.778
3rd Qu. 7.329 -6.241 20.938
Max. 19.271 46.499 46.130
Mean 1.947 -22.755 10.307
SD 7.730 26.933 15.843
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Figure 3: Boxplots of the estimated APCE by the P-APCE, TSPS, NPTSLS, and N-APCE estimators at (0, 0.3, . . . , 2.7, 3.0).
The black curve is the true APCE. The X-axis is the value of the treatment variable, and Y-axis is the value of APCE E[∂xYx]
at x. In the N-APCE estimator, we can not identify the values at x = 0.
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C.3. Additional Numerical Experiments: Non-Polynomial Situation

Settings. We consider the following SCM (Model 3):{
X = 1

25Z
2 + 1

5Z + 0.5 + (Z3 + 0.1)U
Y = 0.05 ∗ exp(X)2 + U + E

. (103)

This model has the properties of the non-separability I, and non-linearity for both functions Yx and Xz . Each realized value
of U and E are generated by i.i.d. uniform distributions that U [−1, 1], and R values of the IV are (0, 0.3, 0.6, . . . , 2.7, 3).
Let the total sample size be 100 and 1000, which means that the sample size of each value of the IV is 10 and 100,
respectively. We compute the numerical integration using the left hand rule. Let the initial function be θ̂1(x) = 0 for
x ∈ ΩX , and the stop condition ϵ be 0.5. We determined the smallest step size from (1, 0.75, 0.5.0.25, . . .) where the
Algorithm 1 stops before 100 iterations; and the chosen step size is 0.25. By splitting the dataset into training data and test
sets, we choose the degree of the candidate models.

Results. The basic statistics of the estimators of the P-APCE estimator are shown in Table 16, the basic statistics of the
estimators of the N-APCE estimator are shown in Table 19. The approximate upper bound of the SD (Approx USD) by the
equation (12) and approximate bound of the SD (Approx SD) by the equation (13) are also shown in Table 19. In addition,
we compare the estimator with the TSPS shown in Table 17 and the NPTSLS in Table 18. The basic statistics of the test error
(19) shown in Table 15. The boxplots of the prediction values or the estimators at each point for (0, 0.3, 0.6, . . . , 2.7, 3) are
shown in Figure 4. In this setting, both the P-APCE estimator and the TSPS are biased; therefore, the N-APCE estimator
is superior to them. Even for the N-APCE estimator, the estimators have large bias around x = 3 due to the error of the
numerical integration.

Table 15: Basic statistics of the test error of P-APCE estimator over 100 runs for each degree; the bold number is the
smallest.

N = 100 2 3 4 5 6

Min. 0.124 0.067 0.127 0.084 0.082
1st Qu. 0.303 0.168 0.238 0.209 0.235
Median 0.372 0.231 0.320 0.288 0.290
Mean 0.403 0.242 0.336 0.291 0.311
3rd Qu. 0.507 0.291 0.409 0.357 0.371
Max. 0.726 0.551 0.678 0.617 0.679

N = 1000 2 3 4 5 6

Min. 0.244 0.027 0.016 0.051 0.127
1st Qu. 0.395 0.073 0.091 0.199 0.260
Median 0.471 0.102 0.123 0.261 0.336
Mean 0.490 0.113 0.136 0.275 0.340
3rd Qu. 0.575 0.134 0.167 0.339 0.398
Max. 0.956 0.349 0.325 0.643 0.648

Table 16: Basic statistics of the P-APCE estimator over 100 runs over 100 runs when N = 100 and N = 1000; ”Degree=m”
means ”the estimated coefficient of m-th degree term.”

N = 100 Degree=0 Degree=1 Degree=2

Min. -23.378 -88.548 -19.309
1st Qu. 1.852165 -24.751 2.342
Median 6.953 -13.343 6.144
3rd Qu. 12.079242 -3.926 11.402
Max. 43.864 46.541 40.170
Mean 6.718 -13.227 6.647
SD 10.726 21.301 9.403

N = 1000 Degree=0 Degree=1 Degree=2

Min. -8.518 -30.722 -5.328
1st Qu. 0.010 -10.270581 1.278
Median 3.387 -6.747 3.928
3rd Qu. 5.419 -0.2028813 5.421
Max. 15.775 15.547 13.924
Mean 2.781 -5.759 3.528
SD 4.223 8.097 3.412
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Table 17: Basic statistics of the TSPS estimator over 100 runs when N = 100 and N = 1000; ”Degree=m” means ”the
estimated coefficient of m-th degree term.”

N = 100 Degree=0 Degree=1 Degree=2

Min. -46.126 -116.264 -74.016
1st Qu. -11.111 -21.324 -12.864
Median -1.101 2.165 0.348
3rd Qu. 8.514 27.131 14.994
Max. 47.440 120.329 69.432
Mean -0.538 0.523 1.423
SD 18.106 44.650 26.131

N = 1000 Degree=0 Degree=1 Degree=2

Min. -16.857 -41.870 -23.039
1st Qu. -2.651 -10.612 -1.069
Median -0.012 -0.570 2.059
3rd Qu. 4.138 5.425 7.886
Max. 16.973 41.654 25.948
Mean 0.830 -2.717 3.365
SD 5.659 13.852 8.016

Table 18: Basic statistics of the NPTSLS estimators when N = 100 and N = 1000; ”Degree=m” means ”the estimated
coefficient of m-th basis function.”

N = 100 Degree=0 Degree=1 Degree=2

Min. -55.585 -240.341 -153.915
1st Qu. -1.316 -43.386 -1.137
Median 6.079 -20.862 17.487
3rd Qu. 12.074 6.790 31.908
Max. 64.567 228.743 155.873
Mean 6.289 -22.454 16.472
SD 16.103 58.396 36.358

N = 1000 Degree=0 Degree=1 Degree=2

Min. -16.711 -79.781 -30.673
1st Qu. -1.236 -34.321 3.256
Median 3.350 -14.028 11.031
3rd Qu. 9.626 2.062 23.735
Max. 23.115 57.069 48.874
Mean 3.767 -14.165 11.788
SD 7.511 25.951 15.163
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Figure 4: Boxplots of the estimated APCE by the P-APCE, TSPS, NPTSLS, and N-APCE estimators at (0, 0.3, . . . , 2.7, 3.0).
The black curve is the true APCE. The X-axis is the value of the treatment variable, and Y-axis is the value of the APCE
E[∂xYx] at x. In the N-APCE estimator, we can not identify the values at x = 0.
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C.4. Additional Numerical Experiments: Separable Model

Settings. We consider the following SCM (Model 4):{
X = 1

25Z
2 + 1

5Z + 0.5 + 0.5U
Y = X3 +X2 +X + U + E

. (104)

This model has the properties of the non-linearity for both functions Yx and Xz , and is a separable model. Each realized value
of U and E are generated by i.i.d. uniform distributions that U [−1, 1], and R values of the IV are (0, 0.3, 0.6, . . . , 2.7, 3).
Let the total sample size be 100 and 1000, which means that the sample size of each value of the IV is 10 and 100,
respectively. We compute the numerical integration by the left-hand rule. Let the initial function be θ̂1(x) = 0 for x ∈ ΩX ,
and the stop condition ϵ be 10. We determined the smallest step size from (1, 0.5, 0.1.0.05, . . .) where the Algorithm 1 stops
before 100 iterations; and the chosen step size is 0.1. By splitting the dataset into training data and test sets, we choose the
degree of the candidate models.

Results. The basic statistics of the estimators of the P-APCE estimator are shown in Table 21, and the basic statistics of the
estimators of the N-APCE estimator are shown in Table 24. The approximate upper bound of the SD (Approx USD) by the
equation (12) and approximate bound of the SD (Approx SD) by the equation (13) are also shown in Table 24. In addition,
we compare the estimator with the TSPS shown in Table 22 and the NPTSLS in Table 23. The basic statistics of the test error
(19) are shown in Table 20. The boxplots of the prediction values or the estimators at each point for (0, 0.3, 0.6, . . . , 2.7, 3)
are shown in Figure 5. In this setting, all methods are unbiased; however, our estimators are superior to the TSPS because
our estimators have small SD, especially for the N-APCE estimator. These results imply that our two P-APCE and N-APCE
estimators are highly recommended even if the SCM satisfies two separabilities.

Table 20: Basic statistics of the test error of P-APCE estimator over 100 runs for each degree; the bold number is the
smallest.

N = 100 2 3 4 5 6

Min. 0.032 0.021 0.096 0.043 0.490
1st Qu. 0.106 0.095 0.181 0.115 0.782
Median 0.150 0.120 0.242 0.168 0.908
Mean 0.168 0.139 0.264 0.181 0.917
3rd Qu. 0.212 0.175 0.335 0.227 1.056
Max. 0.400 0.389 0.601 0.456 1.430

N = 1000 2 3 4 5 6

Min. 0.052 0.053 0.088 0.053 0.185
1st Qu. 0.190 0.106 0.189 0.136 0.322
Median 0.251 0.143 0.251 0.200 0.383
Mean 0.267 0.161 0.252 0.204 0.394
3rd Qu. 0.332 0.200 0.302 0.258 0.466
Max. 0.599 0.405 0.561 0.567 0.799

Table 21: Basic statistics of the P-APCE estimator over 100 runs when N = 100 and N = 1000; ”Degree=m” means ”the
estimated coefficient of m-th degree term.” The true coefficients are 1, 2, 3 for D = 0, 1, 2.

N = 100 Degree=0 Degree=1 Degree=2

Min. -17.688 -42.620 -31.250
1st Qu. -1.185 -14.817 -2.916
Median 2.624 0.765 3.218
3rd Qu. 7.830 10.437 11.641
Max. 17.276 59.196 29.240
Mean 2.855 -0.955 3.764
SD 6.559 18.412 10.879

N = 1000 Degree=0 Degree=1 Degree=2

Min. -7.029 -22.765 -10.234
1st Qu. -1.262 -4.727 -0.614
Median 0.620 3.008 2.357
3rd Qu. 3.419 8.567 7.179
Max. 10.107 24.833 16.936
Mean 1.004 2.067 2.927
SD 3.765 10.267 5.833
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Table 22: Basic statistics of the TSPS estimator over 100 runs when N = 100 and N = 1000; ”Degree=m” means ”the
estimated coefficient of m-th degree term.” The true coefficients are 1, 2, 3 for D = 0, 1, 2.

N = 100 Degree=0 Degree=1 Degree=2

Min. -122.595 -304.505 -213.737
1st Qu. -20.949 -62.730 -27.802
Median 5.848 -9.143 9.009
3rd Qu. 28.291 55.801 40.003
Max. 120.738 336.857 190.197
Mean 3.347 -3.349 6.102
SD 36.736 91.202 53.758

N = 1000 Degree=0 Degree=1 Degree=2

Min. -25.805 -79.778 -34.393
1st Qu. -5.239 -16.156 -7.000
Median 1.088 1.925 2.919
3rd Qu. 8.358 18.782 13.993
Max. 34.760 67.328 49.782
Mean 2.044 -0.023 4.204
SD 2.044 -0.023 4.204

Table 23: Basic statistics of the NPTSLS estimators when N = 100 and N = 1000; ”Degree=m” means ”the estimated
coefficient of m-th basis function.”

N = 100 Degree=0 Degree=1 Degree=2

Min. -160.130 -382.764 -568.256
1st Qu. -30.102 -43.643 -96.356
Median -3.183 31.600 -13.400
3rd Qu. 9.766 147.958 45.862
Max. 65.174 750.735 367.791
Mean -9.762 56.589 -33.426
SD 32.979 158.711 128.132

N = 1000 Degree=0 Degree=1 Degree=2

Min. -35.144 -144.924 -118.251
1st Qu. -9.750 -31.342 -35.186
Median 0.042 8.276 6.312
3rd Qu. 8.228 56.653 36.604
Max. 30.889 163.378 129.049
Mean -0.989 14.404 0.233
SD 12.875 62.087 49.119
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Figure 5: Boxplots of the estimated APCE by the P-APCE, TSPS, NPTSLS and N-APCE estimators at (0, 0.3, . . . , 2.7, 3.0).
The black curve is the true APCE. The X-axis is the value of the treatment variable, and Y-axis is the value of the APCE
E[∂xYx] at x. In the N-APCE estimator, we can not identify the values at x = 0.
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