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Abstract

We present a generic framework for creating dif-
ferentially private versions of any hypothesis test
in a black-box way. We analyze the resulting
tests analytically and experimentally. Most cru-
cially, we show good practical performance for
small data sets, showing that at ϵ = 1 we only
need 5-6 times as much data as in the fully pub-
lic setting. We compare our work to the one ex-
isting framework of this type, as well as to sev-
eral individually-designed private hypothesis tests.
Our framework is higher power than other generic
solutions and at least competitive with (and often
better than) individually-designed tests.

1. Introduction
Hypothesis tests are one of the most basic and common
statistical analyses that analysts perform on data. The goal
of a hypothesis test is to see whether some “effect” in the
data (e.g., men are taller than women) is plausibly the result
of random variation in the sample, rather than a true fact
about the population. Hypothesis tests are the bedrock of
statistical analysis in the social sciences, medicine, and other
fields, and a variety of hypothesis tests are used, depending
on the type of data and the sort of effect one is considering.

However, data in these fields often consists of private in-
formation about individuals. Researchers are under moral
and legal obligations to protect the privacy of that data and
can often only access that data if they can guarantee their
analysis will not violate the privacy of those individuals.
Differential privacy has emerged as the most convincing
formal definition of privacy protection in this setting.
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Differentially private versions of many popular hypothesis
tests have been created, including private analogues of χ2

tests (Fienberg et al., 2011; Gaboardi et al., 2016; Johnson
& Shmatikov, 2013; Rogers & Kifer, 2017; Uhlerop et al.,
2013; Vu & Slavkovic, 2009; Wang et al., 2015), ANOVA
tests (Campbell et al., 2018; Swanberg et al., 2019), and
many others (Alabi & Vadhan, 2022; Barrientos et al., 2019;
Canonne et al., 2020; Couch et al., 2019; Ding et al., 2018;
D’Orazio et al., 2015; Narayanan, 2022; Nguyên & Hui,
2017; Solea, 2014; Sheffet, 2017). However, this is work
that privacy researchers must carefully repeat for each pos-
sible hypothesis test. While this is feasible for the most
frequently used tests like χ2 and ANOVA, it is not plausi-
ble to expect this work to be repeated for the wide range
of hypothesis tests that exist, many of which are highly
specific to particular situations. For example, economists
(e.g. (Gatignon & Xuereb, 1997; Jaworski & Kohli, 1993))
use the Chow test to test for a structural break in a regres-
sion line; researchers studying ordinal data (e.g. (Kramer,
1996; Uddin & Huynh, 2018)) use ordered logistic regres-
sion. Conducting these sorts of analyses privately currently
requires collaboration with privacy experts and prohibitive
time and effort spent on the study of private statistics before
the applied question can even be considered.

In this paper we present a general framework that can auto-
matically create a private version of any existing hypothesis
test and demonstrate its practicality. For example, at ϵ = 1
our method generally requires no more than 5 or 6 times
as much data to detect a given effect as would be required
in the non-private setting. This makes our off-the-shelf
tool competitive with (and occasionally superior to) some
individually tailored private hypothesis tests.

1.1. Our Contributions

The framework we present can be viewed as an instantiation
of a method mentioned in the literature. Its origins are
not clear, and we think it is best viewed as folklore. It is
mentioned in (Canonne et al., 2019) and a similar technique
is used in (Cai et al., 2017). Perhaps the clearest description
of the method is in (Canonne et al., 2020):

“There exists a black-box method for obtaining a
differentially private tester from any non-private
tester A using the sample-and-aggregate frame-
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work (Nissim et al., 2007). Specifically, given any
tester A with sample complexity n, we can ob-
tain an ε-differentially private tester with sample
complexity O(n/ε).”

Unfortunately, these two sentences are the full extent to
which this method is considered in (Canonne et al., 2020).
The authors use it only as a point of comparison to show that
their method has better asymptotic performance. We are
interested not in the asymptotic case, but in concrete perfor-
mance that will allow the practical use of private statistics
on real data.

The authors quoted above also do not fully specify the
method to which they are referring. Experienced privacy
researchers can fill in the details on their own, but they can
be filled in different ways. Our goal here is to fill in the de-
tails completely, giving pseudocode and publicly available
implementations, but also to fill in these details in the best
possible way and to give concrete analysis of the power of
the resulting tests. In particular, we do the following:

• We give a framework for creating a private version of
any known (non-private) hypothesis test. This uses the
subsample-and-aggregate method, with the aggrega-
tion done by the uniformly most powerful binomial
test given by (Awan & Slavković, 2018).

• We give precise analytic expressions for the power of
our test in terms of the power of the underlying non-
private test. These finite sample (rather than asymp-
totic) calculations mean that given a specific public
test, one can easily tune parameters in our framework
to optimize its power. These calculations are where we
derive the claim that we can get ϵ = 1 privacy with
5-6 times the data needed for the public test, but we
stress that this is an upper bound without test-specific
parameter tuning, and in practice our statistical power
is often significantly higher.

• We implement our framework and use it to privatize
several specific tests1. In particular we consider the
context where Cannone et al. dismissed this method as
less powerful than their proposal. We find that despite
their superior asymptotic performance, our framework
outperforms their test in a range of practical settings.
For example, with a large effect size we obtain 80%
power at n = 65, while their test is invalid for n < 359
and does not reach 80% power until n = 6500.

In concurrent work, Peña and Barrientos (Peña & Barrientos,
2022) also provide a generic framework that implements

1Code that implements our methods is available at https:
//github.com/diff-priv-ht/test-of-tests.

the idea quoted from Canonne et al. above. We delayed the
publication of this work to add a full comparison to their
framework, which can be found in Section 4. Compared to
their framework, ours has meaningfully higher power, and
(unlike theirs) can be run for all database sizes, ϵ values, and
choices of public test.

Below, we provide an overview of differentially private hy-
pothesis testing. In section 3 we outline our test procedure,
providing pseudo-code and an analytic expression for the
test’s power. In Section 4 we compare our framework to
the only existing alternative, that of Peña and Barrientos.
Finally, in Section 5 we compare our general framework to
some specific existing private tests.

2. Background
In this section, we first discuss hypothesis testing in general.
We then introduce differential privacy and the results we
will use. Finally, we describe prior work on differentially
private hypothesis testing.

2.1. Hypothesis Testing

Consider a researcher who wants to determine if a new
miracle weight-loss drug works as advertised. They measure
the weight-loss of individuals in two groups, giving one the
drug and one a placebo. They wish to know if the drug had
a significant effect. Their first step is to formulate a null
hypothesis (H0) - a theory of how the data is distributed.
Here H0 may be that the differences in the groups are due
to random variation; the drug has no advantage over the
placebo.

To test whether or not the data x is consistent with H0, the
researcher will compute a test statistic τ(x). The choice of
a function τ to compute the test statistic largely determines
which hypothesis test being used. For a random database
X drawn according to H0, the distribution of the statistic
T = τ(X) can be determined either analytically or through
simulation. The researcher then computes a p-value, the
probability that the observed test statistic or a more extreme
value would occur under H0.

Definition 2.1. For an observed test statistic t = τ(x) and
null hypothesis H0, the one-sided p-value, p, is defined as

p = Pr[T ≥ t | T = τ(X) and X← H0].

If the function τ is well-chosen, then the more the under-
lying distribution of X differs from the distribution under
H0, the more likely a low p-value will be. Typically a sig-
nificance threshold α is chosen, and H0 is rejected as a
plausible explanation of the data when p < α. The choice
of α determines the type I error rate, the probability of
incorrectly rejecting a true null hypothesis.
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We define the critical value t∗ to be the value of the test
statistic t when p = α. We use this to define the statistical
power, a measure of how likely a hypothesis test is to pick
up an effect (i.e. to reject a false null hypothesis). The
power is a function of how much the underlying distribution
of X differs from the distribution under H0 as well as the
size of the database.

Definition 2.2. For a given alternate data distribution HA,
the statistical power, θ, of a hypothesis test is

θ = Pr[T ≥ t∗ | T = τ(X) and X← HA].

The goal of hypothesis test design is to maximize statistical
power, ideally finding a single test that has good perfor-
mance for a range of effects.

2.2. Differential Privacy

To convince the public to allow their confidential data to be
used for statistical analyses, researchers need to guarantee
that sensitive information will not be compromised. Pre-
vious methods adopted to protect individual privacy, such
as anonymization, have been shown to fail in numerous
cases (e.g. (Sweeney, 2002; Narayanan & Shmatikov, 2008;
Homer et al., 2008)).

Differential privacy, proposed in 2006 by Dwork et al.
(Dwork et al., 2006), is a formal definition of privacy. It
protects an individual’s privacy by requiring that any output
occurs with roughly equal probability regardless of value of
that individual’s information. Databases that differ only in
the data of one individual are called neighboring databases.

Definition 2.3 (Differential Privacy). A randomized algo-
rithm f̃ on databases is (ε, δ) differentially private if for all
S ⊆ Range(f̃) and for databases x, x′ that only differ only
in the values of one row:

Pr[f̃(x) ∈ S] ≤ eε Pr[f̃(x′) ∈ S] + δ.

It is possible that δ = 0. Under this condition, the random-
ized algorithm f̃ is said to be ε-differentially private. In
general, ε indicates the privacy level (a smaller ε indicates a
higher privacy guarantee) and δ determines the likelihood
of privacy failure. An (ε, δ)-differential privacy guarantees
that, with 1− δ probability, the privacy loss is bounded by
eε.

Differential privacy is resistant to post processing — if
an algorithm is differentially private, any further analysis
or computation on the output (without dependence on the
database) will also result in private output.

Theorem 2.4 (Post Processing). Let f̃ be an (ε, δ)-
differentially private randomized algorithm. Let g be an
arbitrary randomized algorithm. Then g ◦ f̃ is (ε, δ)- differ-
entially private.

Any differentially private algorithm must be randomized.
The most popular (and simple) method is the Laplace mech-
anism, introduced by Dwork et al. (Dwork et al., 2006),
which adds noise drawn from the Laplace distribution to the
output of the query one seeks to privatize.

Definition 2.5 (Laplace Distribution). The Laplace Distri-
bution centered at 0 with scale b has probability density
function

Lap(x|b) = 1

2b
exp
(
− |x|

b

)
.

We write Lap(b) to denote the Laplace distribution with
scale b.

The magnitude through which the alteration of a single row
in the database can change the output of a query is called
the global sensitivity.

Definition 2.6 (Global sensitivity). The global sensitivity
of a function f is:

GSf = max
x,x′
|f(x)− f(x′)|,

where x and x′ are neighboring databases.

The standard deviation of the Laplace Distribution used to
introduce noise depends on both ε and GSf .

Definition 2.7 (Laplace Mechanism). Given any function
f , the Laplace mechanism is defined as

f̃(x) = f(x) + Y,

where Y is drawn from Lap(GSf/ε), and GSf is the global
sensitivity of f .

Theorem 2.8 (Laplace Mechanism). The Laplace mecha-
nism (ε, 0)-differentially private.

Although the Laplace mechanism ensures that an output
will not violate privacy, sometimes the global sensitivity is
so large that the Laplace noise overwhelms the signal. The
subsample and aggregate technique (Nissim et al., 2007) is
designed to mitigate this problem. Subsample and aggregate
works exactly as it sounds. The database x with n rows
is first partitioned into m groups of approximately equal
size. Then a non-private function f is computed in each
group independently. Finally, these intermediate results are
aggregated through some differentially private mechanism.

2.3. Related Works

There is an extensive (and rapidly expanding) literature ex-
amining the problem of converting public hypothesis tests
to the private setting. One line of work (Smith, 2008; 2011;
Wasserman & Zhou, 2010) studies how fast the distributions
of private test statistics converge to the public. These results,
however, are often asymptotic and offer little in the way of
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implementable tests. (Wang et al., 2018) studies the prob-
lem of generating a reference distribution more thoroughly,
providing a general recipe for approximating the sampling
distributions of private test statistics.

Another line of work examines the problem of privatiz-
ing the test statistic for the χ2 test of independence. This
includes works in the context of genome-wide associa-
tion study (GWAS) data (Fienberg et al., 2011; Johnson
& Shmatikov, 2013; Uhlerop et al., 2013), although they
tend to use asymptotic arguments for the uniformity of p-
values. Other work (Gaboardi et al., 2016; Wang et al.,
2015) has shown that Monte Carlo methods can produce
better reference distributions. (Vu & Slavkovic, 2009) pro-
vides concrete methods for producing a p-value by adjusting
for Laplace noise, while (Rogers & Kifer, 2017) proposes
alternate test statistics that have reference distributions with
preferable properties.

Recent works in differentially private hypothesis testing
have begun to include in-depth power analyses. (Awan &
Slavković, 2018) constructed the universally most powerful
test for binomial data (see Section 3.1 for further discus-
sion). (Brenner & Nissim, 2010) shows that a universally
most powerful test cannot exist for data with a domain con-
taining more than two elements. Nguyên and Hui propose
methods for differentially private survival analysis (Nguyên
& Hui, 2017). Two works have addressed the problem of
studying the difference in means of normal distributions
(Ding et al., 2018; D’Orazio et al., 2015), and several con-
sider the problem of hypothesis testing for linear regression
coefficients (Alabi & Vadhan, 2022; Barrientos et al., 2019;
Sheffet, 2017). Of these, (Barrientos et al., 2019) is notable
for sharing some conceptual ideas with the framework we
propose here. A few works propose tests for the mean of
a normal distribution in the univariate (Solea, 2014) and
mulivariate (Canonne et al., 2020; Narayanan, 2022) set-
tings. Two works study the one-way ANOVA (Campbell
et al., 2018; Swanberg et al., 2019), although these are out-
performed by work on nonparametric alternatives (Couch
et al., 2019). (Avella-Medina, 2021) proposes a hypothe-
sis test based on M -estimators that is applicable to general
parametric models, including many of the above.

3. Framework
Here we introduce our test of tests (ToT) framework and
analyze its power. We also discuss how to optimize the
framework’s parameters for a given situation.

3.1. Private Binomial Test

Awan and Slavković (Awan & Slavković, 2018) develop a
uniformly most powerful test for binomial data. They define
the Truncated-Uniform-Laplace (Tulap) Distribution, the

sum of the discrete Laplace and uniform distributions. The
distribution is parameterized by a location parameter, m,
and a scale parameter, b ∈ (0, 1). Its CDF has a closed
form; see Definition 4.1 in (Awan & Slavković, 2018). 2

Let A ∼ Binomial(n, p). Awan and Slavković show that
the private test statistic Z|A ∼ Tulap(A, e−ε) is an ε-
differentially private estimate of A. They also provide an
algorithm for producing a p-value to test the hypothesis

H0 : p ≤ p0 and HA : p > p0

and show that the p-value produced is the smallest ε-DP
p-value for this test. See Theorem 7.2 and Algorithm 2 in
(Awan & Slavković, 2018) for further details.

3.2. Our Algorithm

We now describe our general algorithm, which we call test
of tests (ToT), which can privatize all hypothesis tests. The
formalization is presented in Algorithm 1 and a graphical
representation in Figure 1. We are given a database x of size
n, and our goal is to run an ε-private version of hypothesis
test τ 3 on that database with significance threshold α. We
first partition the input database into m equal sized subsets
x1, . . . , xm. In practice, if m ∤ n, then the subsets should
be of sizes ⌊ nm⌋ and ⌈ nm⌉ as appropriate. The following
results will assume that m | n for simplicity. In each sub-
set, we conduct the public test τ , computing the p-value
and accepting/rejecting according to a sub-test significance
threshold of α0. If the number of data points in a subsample
is insufficient to run the public test, the p-value is drawn
from Unif(0, 1). Let a be the number of rejects. Under the
null distribution, each instance of τ rejects with probability
α0, so a follows a binomial distribution.

We then conduct Awan and Slavković’s private binomial test
on a to see if it is consistent with a binomial distribution with
parameter α0. To privatize a, we define z = Tulap(a, e−ε).
Let B ∼ Binomial(m,α0) and N ∼ Tulap(0, e−ε). Then,
the reference distribution is B + N and so the p-value is
P (B +N ≥ z).

Note that of the inputs listed, x, τ , ϵ, and α are true inputs
from the user, while m and α0 are parameters that can be
optimized. We discuss this optimization in Section 3.4.

The privacy and validity of Algorithm 1 follow immediately
from its design. These proofs (and most others in this paper)
are placed in Appendix A due to space constraints.
Theorem 3.1. Algorithm 1 is ε-differentially private.

Theorem 3.2. Algorithm 1 is valid. That is, when the data
is drawn from H0 the probability of rejection is at most α.

2The Tulap distribution has a third parameter, q, but we always
set q = 0 because our aim is to have δ = 0. Allowing δ > 0 could
be done by changing q, and would increase the power of our test.

3For concision, we use τ to represent a test that utilizes τ(x).
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Figure 1. A graphical representation of Algorithm 1.

Algorithm 1 Test of Tests
Input: x, τ , ε, α, m, α0

Partition x into subsets x1, . . . , xm

for j = 1 to m do
if τ can be run on xj then
pj ←− τ(xj)

else
pj ∼ Unif(0, 1)

end if
end for
a←− |{pj : pj < α0}|
z ←− Tulap(a, e−ε)
p.value←− P (B +N ≥ z)
Output: z, p.value

3.3. Theoretical Power

We can now analyze the statistical power of the test of
tests framework. We begin by noting its asymptotic sample
complexity as a function of ε. This was stated without
proof by (Canonne et al., 2020), and we provide a proof in
Appendix A.

Theorem 3.3. The number of samples required for our test
to achieve ρ power is n = O (c/ε), where c is the number
of samples needed by the non-private test, τ .

The focus of this work is not asymptotic performance, but
practical performance on small n, and for that analysis we
need an exact computation of the power of any ToT instanti-
ation.

Theorem 3.4. Let θ be the power of the public test τ
in each of the m subsamples with significance level α0.
Let A ∼ Binomial(m, θ), Z|A ∼ Tulap(A, e−ε), B ∼
Binomial(m,α0), and N ∼ Tulap(0, e−ε). Then the power

of our test is

P(ε, α,m, α0, θ) = (1− FZ(F
−1
B+N (1− α))).

Note that F−1
B+N does not have a known analytic form, so

when computing the power via Theorem 3.4, the quantiles
of the distribution must be determined numerically.

If one is interested in a particular public hypothesis test with
known characteristics, the above result can be used to deter-
mine a bound on the sample size required for the privatized
test to achieve ρ power. (Simple proof in Appendix A.)

Corollary 3.5. Suppose that a public hypothesis test τ re-
quires at most n data points to achieve θ power at a signif-
icance level α0 for any choice of the data. Then, in order
for the private test with privacy parameter ε to achieve
ρ power at a significance level α, the necessary number
of data points is bounded above by nm̃, where m̃ is the
smallest m such that ρ ≤ P(ε, α,m, α0, θ).

Since the power P is strictly increasing with respect to
m, it is straightforward to determine m̃ numerically. This
allows general statements about how much more data a
private test will need compared to the equivalent public test.
Some examples are shown in Table 1. For example, the
first row shows that any public test that achieves 80% power
at α = 0.05 can be privatized at ε = 1 (by using exactly
that public test as the subtest) to get the same power and
significance with m̃ = 5, meaning that the private test needs
5 times the data of the public test. For 95% power 6 times
the data of the public test is needed. (For ε = 0.01 those
multiples are 44x and 52x respectively.)

We stress that these general statements, while they are very
strong, are only upper bounds. That is because without spec-
ifying a test, one cannot say what would happen when the
α0 for the subtests is different than the α one is attempting to
achieve in the overall test. Given any particular test, one can
vary α0 and find better settings. For example, a z-test with
α = 0.05 run on data with an effect size of 0.65 standard
deviations will reach 80% power at n = 20, meaning that
the statement above would guarantee no more than n = 100
needed to get the same power in the ε = 1 private setting.
But allowing α0 to take values other than 0.05, we find that
one can actually do this with n = 70, meaning a 3.5× cost
of privacy, rather than 5×. At ε = 0.01, it requires n = 420,
for a 21× cost of privacy, instead of the 44 given by the
upper bound in the table.

As another example, take an ANOVA test with three groups
run on data with equal within-group and between-group
variance. The upper bounds in the table for 95% power
require 6× data at ε = 1 and 52× data at ε = 0.01, but the
optimized test requires 3.6× and 41× data instead.
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θ α0 ρ α ε m̃
0.80 0.05 0.80 0.05 1 5
0.80 0.05 0.80 0.05 0.1 44
0.95 0.05 0.95 0.05 1 6
0.95 0.05 0.95 0.05 0.1 52

Table 1. For a public test τ that requires achieves θ power at signif-
icance level α0, in order for our ε-private test to achieve ρ power
at a significance level of α, we require at most a factor of m̃ more
data.

3.4. Optimization

The variables m (the number of subsamples) and α0 (the
sub-test significance threshold) must be optimized. Fortu-
nately, we find that doing an extremely thorough optimiza-
tion for these parameters is not necessary. The optimal
m,α0 combination for one effect size generally does an ade-
quate job across a large range of effect sizes, with a decrease
in power generally in the range of 1 to 2%.

When an approximate expected effect size is known, we
can easily compute θ, the power of the public test τ , for
any sample size. For fixed m, standard techniques can be
used to find the α0 that maximizes P(ε, α,m, α0, θ). This
can then be repeated for all m in a reasonable set to find
the otpimal m,α0 pair. For our simulations, we use the
set {1, 2, 3, . . . , ⌊

√
n⌋, . . . ⌊n3 ⌋, ⌊

n
2 ⌋, n} and find that this

process takes less than 20 seconds for a t-test at n = 100.

In practice, however, an approximate expected effect size is
often not known a priori. In this setting, we suggest fixing
a desired power, ρ, and optimizing for the m,α0 pair that
minimizes the effect size detectable with ρ power. This
can be achieved by beginning with a grid of effect sizes
and performing a binary search, using the above process
for known effect size at each step, to find the minimum
effect size in the grid detectable with ρ power. Then use the
m,α0 from that combination to run the test of tests. In our
simulations, we use a length-16 grid and find this process
takes less than a minute and a half for a t-test at n = 100.

We note, interestingly, that the optimization tends to favor
high values of m, with very small subsamples and high
significance thresholds on the subtests. It turns out that
aggregating a large number of minimally-informative tests
is preferable to a small number of more reliable tests.

4. Comparison to Peña-Barrientos Framework
Peña and Barrientos (Peña & Barrientos, 2022), simultane-
ously to this work, proposed their own framework (hence-
forth referred to as PB) for privatizing arbitrary public hy-
pothesis tests. Like our framework, theirs follows the folk-
lore subsample-and-aggregate idea mentioned by Canonne
et al. (Canonne et al., 2019).

Both methods begin by running the public test on subsam-
ples of the data set, but the methods of aggregation are differ-
ent. PB develop what is essentially a custom-built binomial
test based on a randomized response-type method. We in-
stead use the Awan and Slavković binomial test, which is
provably optimal. As a result, our framework is the highest-
power framework possible within this general type of design
(see Appendix A).

Theorem 4.1. For any choice of public test τ and privacy
parameter ϵ, the statistical power of the private test resulting
from the ToT framework will be higher than that resulting
from the PB framework.

The PB framework has drawbacks beyond the simple low-
ering of power. The details of the test mean that it cannot
get valid results at all parameter settings. In particular, there
is a minimum m value at which the test can be run. Since
the public test itself often requires a certain amount of data,
this means that a meaningful amount of data is sometimes
required before the PB test can be used at all. (For example,
with ε = 1 and α = 0.05, PB requires m ≥ 7, increasing to
m ≥ 67 when ε = 0.1.)

Furthermore, given values of the other parameters, α0 must
be set to a specific value so that the resulting α of the larger
test is accurate. This removes a degree of freedom in opti-
mization, further worsening power. PB give two methods
of setting parameters. The first involves no real optimizing
at all, suggesting that m be set as low as possible. This
is meant for the “low-power” setting, where the goal is to
achieve significant power at the lowest possible n. (In con-
trast, we find that very high m often results in better power.)
We use this method in our comparison calculations, though
we note that they also suggest one could calculate power
curves at a variety of parameter values and choose the best
parameters through visual inspection. This method is neces-
sary to reach high power, because using the lowest possible
m results in an upper bound on the power of the PB test,
meaning that the power does not approach 100% as n grows.
(This bound can be as low as 80% in realistic scenarios.)

In Appendix A we provide an analogue of our Theorem
3.4 for the PB test so that we can directly compare power
instead of relying upon approximate simulations. Figure
2 shows the exact power of PB and of our ToT framework
for two examples. We use a t-test as the public test. In the
top panel, with a moderate effect size and ε = 1, the PB
framework requires 40% more data to achieve 80% power
(n = 200 for ToT, n = 280 for PB). In the bottom panel,
with a larger effect size and ε = 0.1, the difference is much
greater. Here ToT only requires n = 125 to get 80% power,
while PB cannot be run at all until n ≥ 134 and doesn’t get
80% power until n = 348 (a 178% increase). Additional
comparisons privatizing a z-test and an ANOVA can be
found in Appendix B.
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Figure 2. Power comparison between (Peña & Barrientos, 2022)
and the test of tests for various sample sizes n with α = 0.05 and
a t-test with σ = 1. The top panel has an effect size of µ = 0.4
and ε = 1; the bottom has µ = 3 and ε = 0.1. We optimize m,α0

for the test of tests as discussed in Section 3.4 with target ρ = 0.9.

5. Comparisons to Tailored Tests
In this section, we demonstrate the use of the ToT framework
on a selection of hypothesis tests, namely a test for the
mean of multivariate normal data and a one-way ANOVA.
These tests have both been the subject of prior work, so we
can compare our general-purpose technique to tests experts
carefully developed for specific situations.

5.1. Mean of Multivariate Normal Data

Since the general method we are using was described (and
dismissed) in (Canonne et al., 2020) (henceforth referred
to as CKMUZ), we begin by using our framework to de-
velop a test for the same situation. Here the analyst ob-
serves data drawn from a multivariate normal distribution,
x = {X1, . . . ,Xn} and Xi ∼ Nd(µ, Id). The null hy-
pothesis is that µ = 0, while the alternate has µ ̸= 0. A
public hypothesis test for this setting uses the test statistic
Z = n

∑d
j=1 X̄

2
j , which is known to follow the distribution

χ2(df = d). We will use this test for the p-value computa-
tion step in Algorithm 1. We also compute the power of this

test.

Theorem 5.1. Let F0 and FA be the CDFs of χ2(df =

d) and χ2
(
df = d, λ = n

∑d
j=1 µ

2
j

)
, respectively, where

n is the sample size and µj is the jth entry of µ. Then
the power of the public test with significance level α is
1− FA(F

−1
0 (1− α)).

This analytic expression for the power is not needed to
perform the test, but having it allows optimization to be
done more efficiently and means our figures show the exact
power of our test, rather than a Monte Carlo approximation.

CKMUZ proposes a computationally efficient private test
for this setting4 and proves that its asymptotic dependency
on ε and effect size is superior to the strategy we use
here. (Narayanan, 2022) gives another test with yet bet-
ter asymptotic performance. Unfortunately, this algorithm
is described only in general asymptotic terms, without the
concrete details necessary for implementation. As a result,
we compare to the test given by CKMUZ.

The CKMUZ test does not have an adjustable α value. In-
stead, the analyst is inputs a parameter, γ,5 that is a lower
bound on the total variation distance between the null dis-
tribution Nd(0, Id) and the alternate distribution Nd(µ, Id).
The test is then guaranteed to distinguish the two distribu-
tions with probability 2/3 with a required sample complex-
ity of Õ

(
d1/2/γ2 + d1/2/(γε)

)
. This means that Type 1

error will approach 1/3 for sufficiently high n, but it can
be much higher at low n. In fact, there is a threshold of
max

{
25 log d

δ ,
5
ε log

1
δ

}
below which the test always re-

jects (100% Type 1 error). Just above this threshold it has
Type 1 error of roughly 50%, where it remains for the entire
range of n values we are considering. (This Type 1 error
is proven analytically in Appendix A and confirmed exper-
imentally in Appendix B.) As a result, we set the α value
in our test to 0.5 for a fair comparison, but we note that our
test has the advantage that α can be set arbitrarily.

For our comparison, we set d = 100 and ε = 1. ToT uses
pure differential privacy, with δ = 0, but CKMUZ requires
a nonzero δ. We set δ = 10−3, which we believe to be
very favorable, much higher than is generally considered
acceptable in practice. We set γ = 0.1. We do not present
the power curve for the CKMUZ test until it stops summar-
ily rejecting all inputs, which for these parameters happens
at n = 359. We consider two possible effects, one where
the true mean differs by 0.1 standard deviations in all co-
ordinates, and one where it differs by 0.5 in only a single
coordinate. The results can be seen in Figure 3.

4(Narayanan, 2022) points out an error in this work, but it is in
a second algorithm that is irrelevant to this comparison.

5We call this parameter γ, rather than the α from the paper to
avoid conflict in notation.
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µ
 =

 0.1 in all dim
.

µ
 =

 0.5 in one dim
.
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Figure 3. Power comparison between CKMUZ and the tests of
tests for various sample sizes n. For the top panel, µi = 0.1 for
all i; for the bottom, µ1 = 0.5 and µi = 0 for i ̸= 1. We set
d = 100, ε = 1, and α for the test of tests and public test is set to
match the Type I Error of the CKMUZ test. We optimize m,α0

for the test of tests as discussed in Section 3.4 with target ρ = 0.9
for n ≤ 500 and ρ = 0.99 for n > 500.

In the first case, with the larger effect size, we reach 80%
power at n = 65, while the CKMUZ test isn’t even valid
until n = 359 and doesn’t reach 80% power until n =
6500. In the second case, with a smaller effect size, the
difference is smaller though still substantial. ToT requires
only 20% as much data to reach 80% power — 190 data
points compared to 850. (At 99% power, the gap is smaller,
with ToT needing 87% of the data needed by CKMUZ.)
Additional comparisons are provided in Appendix B.

Of course, the CKMUZ test does have better asymptotic
performance, so there is some sufficiently small ε and ef-
fect size (and sufficiently large δ) such that it becomes the
higher-power test. However, for a wide variety of practical
situations, those superior asymptotics have not yet come
into play, and ToT is the better choice.

5.2. One-way Analysis of Variance

As our second example we consider a one-way ANOVA,
which examines whether groups of data have the same mean.
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1.00

10 100 1000
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P
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er

Public Test ToT

CKSBG SGGRGB

Figure 4. Power comparison between CKSBG. SGGRGB, and the
test of tests for various sample sizes n. The effect size is η = 1,
ε = 1, and number of groups g = 3. All groups are of equal
size and α = 0.05. All non-public power curves are estimated via
simulation. We optimize m,α0 for the test of tests as discussed in
Section 3.4 with target ρ = 0.9.

Formally, each of g groups has a mean µg . Data within each
group is drawn from N (µi, σ

2) for a fixed, unknown σ.
Under H0 all groups have equal mean, while in HA some
means differ. The classical test for this setting uses the
F statistic, which follows a known distribution under H0.
(For a more thorough introduction, see (Rice, 2007).) For
this analysis, we focus on the case of equal-sized groups.
We call the ratio of the between-group variance and the
within-group variance η = Var(µ1, . . . , µg)/σ

2 the effect
size. The power of an ANOVA in this setting has a known
solution available in most statistical software.

This setting is the subject of a significant line of work.
(Campbell et al., 2018) give the first private test, which
was later improved upon by (Swanberg et al., 2019) (hence-
forth, SGGRGB) and then (Couch et al., 2019) (henceforth
CKSBG). To the best of our knowledge, the private non-
parametric test of CKSBG is the most powerful private test
available in this setting and thus will serve as a benchmark
for the performance of the test of tests.

For comparison to the test of CKSBG, we choose the setting
in Figure 3 of (Couch et al., 2019) which examines privacy
level ϵ = 1 and effect size η = 1. As shown in the top
panel of Figure 4, the test of tests is slightly worse, but
the difference is small. (CKSBG require 22% less data to
reach 80% power.) It performs much better than the test
of SGGRGB. Importantly, unlike the tests tailored to this
setting, the test of tests does not require the estimation of a
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reference distribution via simulation. Thus, the test of tests
is faster to run (and p-values are arguably more accurate).

Varying the setting shows that these two tests are incompa-
rable. We have included additional examples in Appendix
B. With a smaller effect size, the gap between ToT and prior
work increases, while a large effect size and/or smaller ε
actually results in ToT becoming the state of the art most
powerful test, though by a small margin. Regardless of the
specifics of the comparison, we find it exciting that our gen-
eral framework is at all comparable to a highly-refined test
carefully developed for a specific situation.

Acknowledgments

We would like to thank Andrés Barrientos for sharing code
that implements his parallel work and Canyon Foot for shar-
ing some code that appears in our implementations. All
authors were supported by the National Science Foundation
under Grant No. SaTC-1817245. Kaiyan Shi acknowledges
additional support from the U.S. Army Research Office un-
der Grant No. W911NF-20-1-0015 and Zeki Kazan from
NSF Grant No. SES-2217456. We would also like to thank
the three anonymous reviewers who provided excellent feed-
back.

References
Alabi, D. and Vadhan, S. Hypothesis testing for differen-

tially private linear regression. In Oh, A. H., Agarwal,
A., Belgrave, D., and Cho, K. (eds.), Advances in Neural
Information Processing Systems, 2022.

Avella-Medina, M. Privacy-preserving parametric inference:
a case for robust statistics. Journal of the American
Statistical Association, 116(534):969–983, 2021.
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A. Proofs
Here we include the proofs that were excluded from the main body.

A.1. Proofs for Section 3

First, we prove that our test is private and valid. These are straightforward results using known results/techniques.

Theorem 3.1. Algorithm 1 is ε-differentially private.

Proof. By Subsample and Aggregate (Nissim et al., 2007) and Theorem 6.1 in Awan and Slavković (Awan & Slavković,
2018), which shows the release of the statistic with Tulap noise satisfies privacy, the release of z is ε-differentially private.
By Theorem 2.4 (post processing), the release of the p-value is also ε-differentially private.

Theorem 3.2. Algorithm 1 is valid. That is, when the data is drawn from H0 the probability of rejection is at most α.

Proof. Each of the m subgroups will reject (i.e., be included in the count a) with probability at most α. For most this
follows from the validity of the public test τ . In cases when τ can’t be run, it follows from the uniform selection of pj . From
there, the validity follows immediately from the results of (Awan & Slavković, 2018).

Next, we prove that the sample complexity of our test is an O(1/ε) factor more than that of the public test.

Theorem 3.3. The sample complexity required for our test to achieve ρ power is

n = O
(
1

ε

)
Proof. Consider an alternative test with two changes: we add Laplace noise instead of Tulap noise and we use the proportion
below the threshold as our test statistic, rather than the count. In line 6 of Algorithm 1, we use the alternative test statistic

z̃ =
a+ Lap

(
1
ε

)
m

=
a

m
+

Lap
(
1
ε

)
m

.

This output is guaranteed to be ε-differentially private by Theorems 2.4 and 2.8. It has sensitivity 1 since changing a row in
the dataset can only change the p-value in one group and therefore can change a by at most 1.

Let L =
Lap( 1

ε )
m . Then there exists some ε = ε∗, some number of subgroups m, and some subgroup size n such that

L =
Lap( 1

ε∗ )
m is small enough that power ρ can be achieved with sample size mn, where n is the number of datapoints in

each group and m is the number of groups.

Now let ε′ = ε∗

k and m′ = km. By the scaling property of Laplace distribution, we have

Lap
(

1
ε′

)
m′ =

Lap
(

1
ε∗/k

)
km

=
kLap

(
1
ε∗

)
km

=
Lap

(
1
ε∗

)
m

= L.

This means that if the number of datapoints in each group, n, is unchanged, then for ε′ = ε∗

k the noise added is still L if
there are k times as many groups.

We then need to consider how the additional groups affect the term a
m (this term is independent of ε). Note that E[ am ] = θ, a

constant, and so changing the number of groups will have no effect on this expectation. But Var[ am ] = θ(1−θ)
m , so increasing

the number of groups by a factor of k will decrease the variance by a factor of k. Thus, the distribution of z̃ will have
unchanged mean, and will still be distributed according to a binomial distribution, but it will now have lower variance. This
means the power of the test must necessarily increase.

This analysis shows that if power ρ can be achieved with ε at sample size mn, then it can also be achieved with ε/k at
sample size smaller than or equal to kmn. In other words, the sample complexity is inversely related to ε. This shows that
this alternate test has sample complexity O

(
1
ε

)
. Our test, which uses the uniformly most powerful ε-differentially private

binomial test instead of simple Laplace noise, must also have sample complexity O
(
1
ε

)
.
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Now we compute the exact (rather than asymptotic) power of the test.

Let fX(x) and FX(x) refer to the probability density function (PDF) and cumulative density function (CDF), respectively,
of a random variable X . We now establish two lemmas about the CDFs of relevant variables.

Lemma A.1. Let θ be the power of the public test τ in each of the m subsamples with significance level α0. Let
A ∼ Binomial(m, θ) and let Z|A ∼ Tulap(A, e−ε). Then the cumulative distribution function of Z is

FZ(z) =

M∑
i=0

FZ|A(z|i) fA(i).

Proof. Let f(a, z) be the joint probability density function of A and Z. Then the CDF of Z is

FZ(z) =

∫ z

−∞
fZ(t) dt

=

∫ z

−∞

M∑
i=0

f(i, t) dt

=

M∑
i=0

∫ z

−∞
fZ|A(t|i) fA(i) dt

=

M∑
i=0

FZ|A(z|i) fA(i)

Lemma A.2. Let B ∼ Binomial(m,α0) and N ∼ Tulap(0, e−ε). Then the cumulative distribution function of B +N is

FB+N (t) =

M∑
i=0

fB(i)FN (i− t).

Proof. By convolution, the CDF of B +N is

FB+N (t) = P (B +N ≤ t)

=

M∑
i=0

∫ ∞

t−i

fB(i)fN (x) dx

=

M∑
i=0

fB(i)(1− FN (t− i))

=

M∑
i=0

fB(i)FN (i− t)

Theorem 3.4. Let θ be the power of the public test τ in each of the m subsamples with significance level α0. Let
A ∼ Binomial(m, θ), Z|A ∼ Tulap(A, e−ε), B ∼ Binomial(m,α0), and N ∼ Tulap(0, e−ε). Then the power of our test
is

P(ε, α,m, α0, θ) = (1− FZ(F
−1
B+N (1− α))).

Proof. Let Wi be a random variable which outputs 1 if pi < α0 and 0 otherwise. It is thus distributed Wi ∼ Bernoulli(θ).
Then A =

∑m
i=1 Wi ∼ Binomial(m, θ) is the number of p-values less than α0 and Z | A ∼ Tulap(A, e−ε) is the

differentially private estimate of A.
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B ∼ Binomial (M,α0) is the number of p-values less than α0 under the null hypothesis and N ∼ Tulap(0, e−ε, 0) is the
required amount of Tulap noise to maintain ε-differential privacy. For any valid hypothesis test, under the null hypothesis,
θ = P (pi < α0) ≤ α0. Testing the hypothesis of interest is thus equivalent to testing

H0 : θ ≤ α0 and HA : θ > α0.

The p-value for this test is
p(Z) = P (B +N ≥ Z | Z).

The power of this test is then

P (p(Z) ≤ α) = P (1− FB+N (Z) ≤ α)

= P (Z ≥ F−1
B+N (1− α))

= (1− FZ(F
−1
B+N (1− α))).

By Lemmas A.1 and A.2, FZ(z) =
∑M

i=0 FZ|A(z|i) fA(i) and FB+N (t) =
∑M

i=0 fB(i)FN (i − t). This completes the
proof.

Fixing the public test, we then get this corollary, from which we can calculate bounds on the cost of privacy, thought of as
the increase in the amount of data needed compared to the non-private test.

Corollary 3.5. Suppose that a public hypothesis test τ requires at most n data points to achieve θ power at a significance
level α0 for any choice of the data. Then, in order for the private test with privacy parameter ε to achieve ρ power at a
significance level α, the necessary number of data points is bounded above by nm̃, where m̃ is the smallest m such that

ρ ≤ P(ε, α,m, α0, θ)

Proof. Consider a database partitioned into m̃ subsets, each of size n. When running the public hypothesis test on each
subset, the true probability that the p-value is over the threshold α0 is some θ∗ ≥ θ. Consider P(ε, α, m̃, α0, θ

∗). Since
the distribution of Z under the alternative hypothesis will shift further away from the null distribution (its center is now
m̃θ∗ ≥ m̃θ ≥ m̃α0), it follows that

P(ε, α, m̃, α0, θ
∗) ≥ P(ε, α, m̃, α0, θ).

Now let m′ be the smallest m such that
ρ ≤ P(ε, α,m, α0, θ

∗).

Since P is strictly increasing as a function of m, it follows that m′ ≤ m̃.

Now consider the true number of datapoints required for the private test to achieve ρ power. I.e., the minimum number of
datapoints the test can achieve full power over all choices of α0 and m. Formally, we define

m∗ = argmin
m
{ρ ≤ P(ε, α,m, α0, θ

∗) | m ∈ N, α0 ∈ [0, 1]}.

Then since the test can achieve ρ power with m′n datapoints and m∗n is the minimum number of datapoints required to
achieve ρ power, it follows that m′n ≥ m∗n. Combining this with the early inequality gives m̃n ≥ m∗n.

A.2. Proofs for Section 4

The results of (Awan & Slavković, 2018) can be used to show that ToT has higher power than the PB framework.

Theorem 4.1. For any choice of public test τ and privacy parameter ϵ, the statistical power of the private test resulting
from the test of tests framework will be higher than that resulting from the PB framework.

Proof. Fix a number of subtests m and subtest significance threshold α0. Then the higher power for test of tests is an
immediate consequence of the main result of Awan and Slavković (Awan & Slavković, 2018). Up until the end of the
for-loop in Algorithm 1, the two frameworks are identical, and the remainder of the algorithm can be viewed as a binomial
test for whether the proportion of “reject” decisions in subtests is greater than α0. Because the Awan and Slavković binomial
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test is proven to be the uniformly most powerful test in this situation, it must be higher power than the actions performed by
the PB framework.

Allowing test of tests to use it’s own optimal m and α0 (rather than matching that of PB) can only increase the gap between
the two frameworks, since the optimal values might differ.

Here we compute an analytic expression for the power of the test proposed by (Peña & Barrientos, 2022).
Theorem A.3. Let θ be the power of the public test τ with significance level α0. Let fi,p,m be the probability mass function
of a Poisson-binomial distribution with a success probability vector of p repeated i times and 1− p repeated m− i times.
Then the power of the PB test is

PPB(ε, α,m, p, α0, θ) =

m∑
i=0

m∑
j=m+1

2

fi,p,m(j)

(
m

i

)
θi(1− θ)m−i.

Proof. Let W be the number of sub-samples in which the public test is rejected and let W̃ be the number in which the
sub-test is rejected after the randomized response mechanism is applied. We begin by considering the probability H0

is rejected conditional on W = i, which occurs if and only if W̃ > m−1
2 . The probability that W̃ = j is given by a

Poisson-Binomial distribution with the vector of success probabilities

(p, . . . , p︸ ︷︷ ︸
i times

, 1− p, . . . , 1− p︸ ︷︷ ︸
m−i times

).

We let fi,p,m denote this distribution.

Now consider the overall test. The probability that W = i is given by a binomial distribution with size m and probability θ.
Applying the Law of Total Probability then gives,

Pr

(
W̃ >

m− 1

2

)
=

m∑
i=0

Pr

(
W̃ >

m− 1

2
|W = i

)
Pr (W = i)

=

m∑
i=0

m∑
j=m+1

2

Pr
(
W̃ = j |W = i

) (m
i

)
θi(1− θ)m−i

=

m∑
i=0

m∑
j=m+1

2

fi,p,m(j)

(
m

i

)
θi(1− θ)m−i.

Note that the PB optimization will only select odd m, ensuring that m+1
2 is an integer. This completes the proof.

A.3. Proofs for Section 5

Here we compute an analytic expression for the power of the public test for deviation of d-dimensional Gaussian from a
given mean.

Theorem 5.1. Let F0 be the CDF of χ2(df = d) and FA be the CDF of χ2
(
df = d, λ = n

∑d
j=1 µ

2
j

)
, where n is the

sample size and µj is the jth entry of µ. Then the power of the public test with significance level α is 1− FA(F
−1
0 (1− α).

Proof. First, note that X̄j ∼ N
(
µj , σ = 1√

n

)
. Thus,

√
nX̄j ∼ N (

√
nµj , σ = 1). It follows that, for the test statistic,

Z = n

d∑
j=1

X̄2
j =

d∑
j=1

(
√
nX̄j)

2 ∼ χ2(df = d, λ).

Under the null hypothesis, λ = 0. But if µ ̸= 0,

λ =

d∑
j=1

(
√
nµj)

2 = n

d∑
j=1

µ2
j .
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Let Z be the observed test statistic and P be the corresponding p-value. For significance level α, the power of the test is thus

Pr(P ≤ α) = Pr(F0(Z) ≥ 1− α)

= Pr(Z ≥ F−1
0 (1− α)

= 1− FA(F
−1
0 (1− α)).

Here we compute a lower bound on the Type 1 error of the CKMUZ test.

Theorem A.4. Let L ∼ Laplace(b), where

b =

(
5∆G

δ +
432d

ε
ln

nd

δ

√
ln

n

δ
· ln 5

4δ

)
/ε

and ∆G
δ is as defined in Algorithm 4 of CKMUZ. Let Z ∼ N (0, σ = n

√
2d). Then the Type I Error of the CKMUZ algorithm

is bounded below by

1− FZ+L

(
n2γ2

324

)
.

Proof. We begin with Stage 2 of CKMUZ’s Algorithm 4. In Stage 1, any condition that fails results in a rejection of the
null hypothesis, which implies that the Type I Error resulting from the final steps is in a lower bound on the overall Type I
Error. In Stage 2, for each row j ∈ {1, . . . , n}, the algorithm will either draw X̂(j) from Nd(0, Id) or set X̂(j) = X(j), the
original row. But under the null hypothesis, X(j) ∼ Nd(0, Id), so either way X̂(j) ∼ Nd(0, Id).

Under the null hypothesis, then, T (X̂) = T (X). As a consequence of the author’s Theorem B.2, under the null hypothesis
T (X̂) ∼ N (0, σ = n

√
2d). In stage 3, the algorithm then adds noise from L ∼ Laplace(b) to T (X), where

b =

(
5∆G

δ +
432d

ε
ln

nd

δ

√
ln

n

δ
· ln 5

4δ

)
/ε

∆G
δ = 144

(
d ln

d

δ
+

d

nε2
ln2

1

δ
+
√
nd

√
ln

d

δ
· ln n

δ
+

√
d

ε
ln

1

δ

√
ln

n

δ

)
ln

nd

δ
.

The null hypothesis is then rejected if and only if T (X̂) + L > n2γ2

324 . Letting Z ∼ N (0, σ = n
√
2d), the Type I Error of

the test is then bounded below by

P

(
T (X̂) + L >

n2γ2

324
| H0

)
= 1− P

(
Z + L ≤ n2γ2

324

)
= 1− FZ+L

(
n2γ2

324

)
.

B. Additional Figures
Here we include additional figures.

B.1. Peña-Barrientos Framework

Figure 5 presents a comparison of the theoretical power of the binomial tests proposed by (Awan & Slavković, 2018) and
PB. Figures 6 and 7 present comparisons of the PB framework and the test of tests in additional settings.
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Figure 5. Let m and α0 be the parameters selected for the PB test using the “low-power” setting recommendations for α = 0.05 and a
given ε. The plot presents the power of a test of the hypotheses H0 : θ ≤ α0 and HA : θ > α0 for data x ∼ Binom(m, θ) as a function
of θ for the binomial tests proposed in (Awan & Slavković, 2018) (AS) and PB. The left panel presents ε = 0.1, and the right panel
presents ε = 1.
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Figure 6. Power comparison between PB and the test of tests for various choices of database size n with α = 0.05 and a z-test. The effect
size is µ/σ = 1 and privacy parameter is ε = 1. We optimize m and α0 for the test of tests at each n as discussed in Section 3.4 with
target power ρ = 0.9.
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Figure 7. Power comparison between PB and the test of tests for various choices of database size n with α = 0.05 and a one-way ANOVA
with non-private groups. The effect size is η = 4 and privacy parameter is ε = 1. We optimize m and α0 for the test of tests at each n as
discussed in Section 3.4 with target power ρ = 0.9.
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B.2. Multivariate Normal Data

Figure 8 compares the empirical Type I Error of the two tests in Figure 3. Figures 9 to 12 provide additional power
comparisons between CKMUZ and ToT with various dimensions d, effect sizes µ, and privacy parameters ε.
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Figure 8. Type I error check between CKMUZ and the tests of tests for various sample sizes n. The dimension is d = 100, ε = 1, and α
for the test of tests and public test is set to be 0.5. We optimize m and α0 for the test of tests at each n as discussed in Section 3.4 with
target ρ = 0.9.
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Figure 9. Power comparison between CKMUZ and the tests of tests for various sample sizes n. The true mean is µ1 = 0.1 and µi = 0
for all i ̸= 1. The dimension is d = 100, ε = 1, and α for the test of tests and public test is set to match the Type I Error of the CKMUZ
test. We optimize m and α0 for the test of tests at each n as discussed in Section 3.4 with target ρ = 0.9.
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Figure 10. Power comparison between CKMUZ and the tests of tests for various sample sizes n. The true mean is µi = 0.1 for i <= 20
and µi = 0 otherwise. The dimension is d = 60, ε = 1, and α for the test of tests and public test is set to match the Type I Error of the
CKMUZ test. We optimize m and α0 for the test of tests at each n as discussed in Section 3.4 with target ρ = 0.9.
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Figure 11. Power comparison between CKMUZ and the tests of tests for various sample sizes n. The true mean is µi = 0.3 for i <= 20
and µi = 0 otherwise. The dimension is d = 60, ε = 1, and α for the test of tests and public test is set to match the Type I Error of
the CKMUZ test. We optimize m and α0 for the test of tests at each n as discussed in Section 3.4 with target ρ = 0.9 for n ≤ 50 and
ρ = 0.99 for n > 50.
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Figure 12. Power comparison between CKMUZ and the tests of tests for various sample sizes n. The true mean is µi = 0.3 for i <= 20
and µi = 0 otherwise. The dimension is d = 60, ε = 0.5, and α for the test of tests and public test is set to match the Type I Error of
the CKMUZ test. We optimize m and α0 for the test of tests at each n as discussed in Section 3.4 with target ρ = 0.9 for n ≤ 100 and
ρ = 0.99 for n > 100.
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B.3. One-way Analysis of Variance

Figures 13 to 16 give more comparisons between CKSBG, SGGRGB, and ToT for various choices of parameters. Figures
13 and 14 are comparisons with g = 2 groups with both effect sizes, while Figures 15 and 16 are comparisons with g = 3
groups.
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Figure 13. Power comparison between CKSBG,SGGRGB, and the test of tests for various choices of database size n. The effect size is
η = 0.5, privacy parameter ε = 1, and number of groups g = 2. All groups are of equal size and α = 0.05. All power curves (except the
public test) are estimated via simulation. We optimize m and α0 for the test of tests at each n as discussed in Section 3.4 with target
ρ = 0.9.
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Figure 14. Power comparison between CKSBG, SGGRGB, and the test of tests for various choices of database size n. The effect size is
η = 25, privacy parameter ε = 0.1, and number of groups g = 2. All groups are of equal size and α = 0.05. All power curves (except
the public test) are estimated via simulation. We optimize m and α0 for the test of tests at each n as discussed in Section 3.4 with target
ρ = 0.9.
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Figure 15. Power comparison between CKSBG, SGGRGB, and the test of tests for various choices of database size n. The effect size is
η = 0.35, privacy parameter ε = 1, and number of groups g = 3. All groups are of equal size and α = 0.05. All power curves (except
the public test) are estimated via simulation. We optimize m and α0 for the test of tests at each n as discussed in Section 3.4 with target
ρ = 0.9.
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Figure 16. Power comparison between CKSBG, SGGRGB, and the test of tests for various choices of database size n. The effect size is
η = 25, privacy parameter ε = 0.1, and number of groups g = 3. All groups are of equal size and α = 0.05. All power curves (except
the public test) are estimated via simulation. We optimize m and α0 for the test of tests at each n as discussed in Section 3.4 with target
ρ = 0.9.
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