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Abstract
In this paper, we study the problem of inference in
high-order structured prediction tasks. In the con-
text of Markov random fields, the goal of a high-
order inference task is to maximize a score func-
tion on the space of labels, and the score function
can be decomposed into sum of unary and high-
order potentials. We apply a generative model
approach to study the problem of high-order in-
ference, and provide a two-stage convex optimiza-
tion algorithm for exact label recovery. We also
provide a new class of hypergraph structural prop-
erties related to hyperedge expansion that drives
the success in general high-order inference prob-
lems. Finally, we connect the performance of our
algorithm and the hyperedge expansion property
using a novel hypergraph Cheeger-type inequality.

1. Introduction
Structured prediction has been widely used in various ma-
chine learning fields in the past 20 years, including applica-
tions like social network analysis, computer vision, molec-
ular biology, natural language processing (NLP), among
others. A common objective in these tasks is assigning /
recovering labels, that is, given some possibly noisy obser-
vation, the goal is to output a group label for each entity
in the task. In social network analysis, this could be de-
tecting communities based on user profiles and preferences
(Ke & Honorio, 2022b; Kelley et al., 2012). In computer
vision, researchers want the AI to decide whether a pixel is
in the foreground or background (Nowozin et al., 2011). In
biology, it is sometimes desirable to cluster molecules by
structural similarity (Nugent & Meila, 2010). In NLP, part-
of-speech tagging is probably one of the most well-known
structured prediction task (Weiss & Taskar, 2010).

From a methodological point of view, a standard approach in
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the structured prediction tasks above, is to recover the global
structure by exploiting many local structures. Take social
networks as an example. A widely used assumption in social
network analysis is homophily — users with similar profiles
and preferences are more likely to become friends (Ke &
Honorio, 2018; 2019). Intuitively, a structured prediction
algorithm tends to assign two users the same label, if they
have a higher affinity score. Similarly, the same idea can be
motivated in the context of Markov random fields (MRFs).
Assume all entities form an undirected graph G = (V, E),
structured prediction can be viewed as the task of solving
the following inference problem (Bello & Honorio, 2019):

maximize
y∈L|V|

∑
v∈V,l∈L

cv(l) · 1[yv = l]

+
∑

(v1,v2)∈E
l1,l2∈L

cv1,v2(l1, l2) · 1[yv1 = l1, yv2 = l2] , (1)

where L is the space of labels, cv(l) is the score of assigning
label l to node v, and cv1,v2(l1, l2) is the score of assigning
labels l1 and l2 to neighboring nodes v1 and v2. In the
MRF and inference literature, the two terms in (1) are often
referred to as unary and pairwise potentials, respectively.
The inference formulation above allows one to recover the
global structure, by finding a configuration that maximizes
the summation of unary and pairwise local scores.

However, entities in many real-world problems could inter-
act beyond the pairwise fashion. Take the social network
example again, but this time let us focus on the academia
co-authorship network: many published papers are written
by more than two authors (Liu et al., 2005). Such high-
order interactions cannot be captured by pairwise structures.
Geometrically, the co-authorship network can no longer be
represented by a graph. As a result, the introduction of
hypergraphs is necessary to model high-order structured
prediction problems.

In this paper, we study the problem of high-order structured
prediction, in which instead of using pairwise potentials,
high-order potentials are considered. Using the MRF for-
mulation, we are interested in inference problems of the
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following form:

maximize
y∈L|V|

∑
v∈V,l∈L

cv(l) · 1[yv = l]

+
∑
e∈E

l1,...,lm∈L
e=(v1,...,vm)

ce(l1, . . . , lm) · 1[yv1 = l1, . . . , yvm = lm] ,

(2)

where m is the order of the inference problem as well as
the hypergraph (each hyperedge connects m vertices), and
ce(l1, . . . , lm) is the score of assigning labels l1 through lm
to neighboring nodes v1 through vm connected by hyper-
edge e ∈ E .

1.1. Inference as a Recovery Task

Structured prediction and inference problems with unary
and pairwise potentials in the form of (1) have been studied
in prior literature. Globerson et al. (2015) introduced the
problem of label recovery in the case of two-dimensional
grid lattices, and analyzed the conditions for approximate
inference. Along the same line of work, Foster et al. (2018)
generalized the model by allowing tree decompositions. An-
other flavor is the problem of exact inference, for which
Bello & Honorio (2019) proposed a convex semidefinite
programming (SDP) approach. In these works, the problem
of label recovery is motivated by a generative model, which
assumes the existence of a ground truth label vector y∗, and
generates (possibly noisy) unary and pairwise observations
based on label interactions.

Unfortunately, little is known for structured prediction with
high-order potentials and hypergraphs. In recent years, there
have been various attempts to generalize some graph prop-
erties (including hypergraph Laplacian, Rayleigh quotient,
hyperedge expansion, Cheeger constant, among others) to
hypergraphs (Li & Milenkovic, 2018; Mulas, 2021; Yoshida,
2019; Chan et al., 2018; Chen et al., 2017; Chang et al.,
2020). However, it took a long time for us to find out that
due to the nature of structured prediction tasks, the hyper-
graph definitions must fulfill certain properties, and none
of the definitions in the aforementioned works fulfill those.
This makes it challenging to design hypergraph-based label
recovery algorithms. Furthermore, none of the aforemen-
tioned works provide guarantees of either approximate or
exact inference.

In this work, we apply a generative model approach to study
the problem of high-order inference. We analyze the task of
label recovery, and answer the following question:

Problem 1 (Label Recovery). Is there any algorithm that
takes noisy unary and high-order local observation as the
input, and correctly recovers the underlying true labels?

1.2. Inference and Structural Properties

In the MRF inference literature, a central and longtime
discussion focuses on inference solvability versus certain
structural properties of the problem.

To see this, we first revisit various classes of structural
properties in pairwise inference problems (i.e., in the form
of (1)). Chandrasekaran et al. (2012) studied treewidth in
graphs as a structural property, and showed that graphs
with low treewidths are solvable. Schraudolph & Kamenet-
sky (2008) demonstrated that planar graphs can be solved.
Boykov & Veksler (2006) analyzed graphs with binary la-
bels and sub-modular pairwise potentials. Bello & Honorio
(2019) showed that inference with graphs that are “good”
expanders, or “bad” expanders plus an Erdos-Renyi random
graph, can be achieved. It is worth highlighting that the
structural properties above are not directly comparable or
reducible. Instead, they characterize the difficulty of an
inference problem from different angles, or in other words,
for different classes of graphs.

Similar discussions about inference versus structural prop-
erties exist in high-order MRF inference literature. For
example, Komodakis & Paragios (2009) investigated hy-
pergraphs fulfilling the property of one sub-hypergraph per
clique, and proved that high-order MRF inference can be
achieved through solving linear programs (LPs). Fix et al.
(2014) studied inference in hypergraphs with the property
of local completeness. Gallagher et al. (2011) analyzed
the performance of high-order MRF inference through or-
der reduction versus the number of non-submodular edges.
However, these works do not provide theoretical guarantees
of either approximate or exact inference.

In this paper, we provide a new class of hypergraph struc-
tural properties by analyzing hyperedge expansion. In order
to get some intuition, let us consider a social network with
two disconnected sub-networks. With an ideal algorithm,
we may recover the user communities in subnet 1 and the
those in subnet 2, but since there is no interaction between
the two subnets at all, we will not be able to infer the global
community structure (e.g., the relationship between the re-
covered communities in subnet 1 and subnet 2). A less
extreme case is networks with “bottlenecks,” i.e., removing
these bottleneck edges will disconnect the network. For
similar reasons, one can imagine that inference in networks
with bottlenecks can be hard if noise is present. See Figure
1 for an illustration. In pairwise graphs (2-graphs), such
connectivity / bottleneck property can be characterized by
the edge expansion (i.e., the Cheeger constant) of the graph.
Characterizing similar expansion properties in high-order
hypergraphs poses a challenge, especially if one wants to
relate such topological properties to the conditions of exact
inference.

Problem 2 (Structural Property). Under what topological
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(a) Disconnected graph (zero edge expan-
sion)

(b) Graph with a bottleneck (small edge
expansion)

(c) Graph without bottlenecks (large edge
expansion)

Figure 1. Graph expansion examples. Figure 1a shows a disconnected graph. With an ideal algorithm we may be able to recover the user
communities in the top subgraph and in the bottom subgraph, but since there is no observed interaction between the two, we will not be
able to infer the global structure. Figure 1b connects the two components in Figure 1a using a single orange edge. In this case the orange
edge is the “bottleneck.” Removing the orange edge disconnects the graph. Figure 1c adds two more edges to Figure 1b. In this case every
component is connected with no weak “bottleneck.” Edge expansion is a structural property, which characterizes how connected the
components in a graph are.

conditions will our label recovery algorithm work correctly
with high probability?

Summary of our contribution. Our work is highly theoret-
ical. We provide a series of novel definitions and results in
this paper:

• We provide a new class of hypergraph structural prop-
erties for high-order inference problems. We derive a
novel Cheeger-type inequality, which relates the tensor
spectral gap of a hypergraph Laplacian to a Cheeger-
type hypergraph expansion property. These hypergraph
results are not only limited to the scope of the model
in this paper, but also can be helpful to researchers
working on high-order inference problems.

• We propose a two-stage approach to solve the problem
of high-order structured prediction. We formulate the
label recovery problem as a high-order combinatorial
optimization problem, and further relax it to a novel
convex conic form optimization problem.

• We carefully analyze the Karush–Kuhn–Tucker (KKT)
conditions of the conic form optimization problem, and
derive the sufficient statistical and topological condi-
tions for exact inference. Our KKT analysis guarantees
the solution to be optimal with a high probability, as
long as the conditions are fulfilled.

2. Preliminaries
In this section, we formally define the high-order exact
inference problem and introduce the notations that will be
used throughout the paper.

We use lowercase font (e.g., a, b, u, v) to denote scalars and
vectors, and uppercase font (e.g., A,B,C) to denote tensors.
We denote the set of real numbers by R.

For any natural number n, we use [n] to denote the set
{1, . . . , n}.

We use 1 to denote the all-ones vector.

For clarity we use superscripts (i) to denote the i-th object
in a sequence of objects, and subscripts j to denote the j-th
entry. We use ◦ to denote the Hadamard product, and ⊗
to denote the outer product. Let v(1), . . . , v(m) ∈ Rn be a
sequence of m vectors of dimension n. Then v(1) ⊗ . . .⊗
v(m) is a tensor of orderm and dimension n (or equivalently,
of shape n⊗m), such that (v(1) ⊗ . . . ⊗ v(m))i1,...,im =

v
(1)
i1
. . . v

(m)
im

.

2.1. Tensor Definitions

Let A ∈ Rn⊗m

be an m-th order, n-dimensional real ten-
sor. Throughout the paper, we limit our discussion to
m = 2, 6, 10, 14, . . . for clarity of exposition. While other
even orders (m = 4, 8, 12 . . . ) are possible and a similar
analysis will follow, the hypergraph definitions will be in-
volving many more terms and the paper will be less readable.
See Remark 3.18 for discussion.

A symmetric tensor is invariant under any permutation of
the indices. In other words, A is symmetric if for any per-
mutation σ : [m]→ [m], we have Aσ(i1,...,im) = Ai1,...,im .

We define the inner product of two tensors A, B of the
same shape as 〈A,B〉 :=

∑n
i1,...,im=1Ai1,...,imBi1,...,im .

We define the tensor Frobenius norm as ‖A‖F :=
√
〈A,A〉.
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A symmetric tensor A is positive semidefinite (PSD), if for
all v ∈ Rn, we have 〈A, v⊗m〉 ≥ 0. We use Sn,m+ to denote
the convex cone of all m-order, n-dimensional PSD tensors.

The dual cone of Sn,m+ is the Caratheodory ten-
sor cone S∗,n,m+ , which is defined as S∗,n,m+ :={∑(m+n−1

m )
i=1 v(i)⊗m | v(i) ∈ Rn

}
. In other words, every

tensor in S∗,n,m+ is the summation of at most
(
m+n−1

m

)
rank-

one tensors. Sn,m+ and S∗,n,m+ are dual to each other (Ke &
Honorio, 2022a).

For any tensor A ∈ Rn⊗m

, we define its minimum
tensor eigenvalue λmin(A) (or equivalently λ1(A)) us-
ing a variational characterization, such that λmin(A) :=
minv∈Rn,‖v‖=1 〈A, v⊗m〉. Similarly we define its sec-
ond minimum tensor eigenvalue λ2(A) as λ2(A) :=
minv∈Rn,‖v‖=1,v⊥v(1) 〈A, v⊗m〉, where v(1) is the eigen-
vector corresponding to λmin(A).

We denote σn,m2 as the index set of m-tuples in the shape
of σ(i1, i1, i2, i2, . . . , im/2, im/2), for any permutation σ :
[m] → [m] and ij ∈ [n]. Intuitively, in every tuple of
σn,m2 , every index repeats an even number of times. We
use σ̄n,m2 to denote the set {(i1, . . . , im) | (i1, . . . , im) /∈
σn,m2 , and at least one index repeats twice}. In other words,
σ̄n,m2 is the complement of σn,m2 , subtracting cases with all
unique indices.

2.2. High-order Inference Task

We consider the task of predicting a set of n vertex labels
y∗ = (y∗1 , . . . , y

∗
n), where y∗i ∈ {+1,−1}, from a set of

observations X and z. X and z are noisy observations
generated from some underlying m-uniform hypergraph
G = (V, E). In particular, V is the set of vertices (nodes)
with |V| = n, and E is the set of hyperedges.

For every possible m-vertex tuple e = (i1, . . . , im), if
e ∈ E , the hyperedge observation Xi1,...,im (and all cor-
responding symmetric entries Xσ(i1,...,im)) is sampled to
be y∗1 · · · y∗m with probability 1 − p, and −y∗1 · · · y∗m with
probability p independently. If e /∈ E , Xi1,...,im is set to 0.

For every node vi ∈ V , the node observation zi is sampled
to be y∗i with probability 1− q, and −y∗i with probability q
independently.

We now summarize the generative model.

Definition 2.1 (High-order Structured Prediction with Par-
tial Observation). Unknown: True node labeling vector
y∗ = (y∗1 , . . . , y

∗
n). Observation: Partial and noisy hy-

peredge observation tensor X ∈ {−1, 0,+1}n⊗m

. Noisy
node label observation vector z ∈ {−1,+1}n. Task: Infer
and recover the correct node labeling vector y∗ from the
observation X and z.

3. Hypergraph Structural Properties and
Cheeger-type Inequality

In this section, we introduce a series of novel Cheeger-type
analysis for hypergraphs. This allows us to characterize the
spectral gap of a hypergraph Laplacian, via the topological
hyperedge expansion of the graph itself. Hypergraph theo-
rems in this section are general, and are not limited to the
specific model covered in our inference task. To the best
of our knowledge, the following high-order definitions and
results are novel. All missing proofs of the lemmas and
theorems can be found in Appendix A.

3.1. Hypergraph Topology

We first introduce the necessary hypergraph topological
definitions.
Definition 3.1 (Induced Hypervertices). Given an m-
uniform hypergraph G = (V, E), we use

H := {{i1, . . . , im/2} | i1, . . . , im/2 ∈ [n]}

to denote the set of induced hypervertices. We denote its
cardinality by N := |H| =

(
n
m/2

)
.

Definition 3.2 (Boundary of a Hypervertex Set). For any
hypervertex set S ⊂ H, we denote its boundary set as

∂S := {h1∪h2 | h1 ∈ S, h2 /∈ S, h1∩h2 = ∅, h1∪h2 ∈ E} .

Note that ∂S is a set of m-th order hyperedges.
Definition 3.3 (Hyperedge Expansion of a Hypervertex Set).
For any hypervertex set S ⊂ H, we denote the hyperedge
expansion of the set S as

φS :=
|∂S|
|S|

.

Definition 3.4 (Hyperedge Expansion of a Hypergraph).
Given an m-uniform hypergraph G = (V, E) with induced
hyperverticesH, we denote the hyperedge expansion of the
hypergraph G as

φG := min
S⊂H,0<|S|≤N/2

φS = min
S⊂H,0<|S|≤N/2

|∂S|
|S|

.

We also call φG the Cheeger constant of the hypergraph.

3.2. Hypergraph Laplacian

In this section, we introduce our hypergraph Laplacian re-
lated definitions.
Definition 3.5 (ζ-function). ζ : Rm → R is a function
defined as

ζ(v1, . . . , vm) =
∑

I⊂[m],|I|=m/2

∑
i∈I

vi −
∑
j /∈I

vj

m

.
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Definition 3.6 (Hypergraph Laplacian). Given an m-
uniform hypergraph G = (V, E), we use L ∈ Rn⊗m

to
denote its Laplacian tensor, which fulfills

〈
L, v⊗m

〉
=

1

m!
(
m
m/2

) ∑
(i1,...,im)∈E

ζ(vi1 , . . . , vim) .

Remark 3.7. Definition 3.5 and 3.6 are the generaliza-
tion of graph Laplacians to hypergraph cases. To see
this, note that for any pairwise graph (m = 2), its graph
Laplacian fulfills the following quadratic form property
v>Lv = 1

2

∑
(i,j)∈E(vi − vj)2. This is exactly equivalent

to setting m = 2 in the definitions above.

Definition 3.8 (Rayleigh Quotient). For any hypergraph
Laplacian L and non-zero vector v ∈ Rn, the Rayleigh
quotient RL(v) is defined as

RL(v) :=
〈L, v⊗m〉
‖v‖m

.

Definition 3.9 (Signed Laplacian Tensor). Given an m-
uniform hypergraph G = (V, E) with a sign vector y ∈
{−1,+1}n, we use Ly ∈ Rn⊗m

to denote its signed Lapla-
cian tensor, which fulfills

〈
Ly, v

⊗m〉 =
1

m!
(
m
m/2

) ∑
(i1,...,im)∈E

ζ(yi1vi1 , . . . , yimvim) .

Remark 3.10. The hypergraph Laplacian tensor L can be
viewed as a signed Laplacian tensor Ly , by taking y = 1.

Here we provide some important properties of hypergraph
Laplacians and Rayleigh quotients.

Lemma 3.11 (Laplacian Eigenpair). For any hypergraph
Laplacian L, 1 is an eigenvector of L with a minimum eigen-
value of 0. Similarly, for any signed hypergraph Laplacian
Ly , y is an eigenvector of Ly with an eigenvalue of 0.

Proof of Lemma 3.11. This follows directly from the defi-
nition of ζ-function, and Definition 3.6, 3.9.

Lemma 3.12 (Invariant under Scaling). For any non-zero
α ∈ R, we have

RL(v) = RL(αv) .

Proof of Lemma 3.12.

RL(αv) =
1

m!
(
m
m/2

) ∑
(i1,...,im)∈E

ζ(αvi1 , . . . , αvim)

‖αv‖m

=
1

m!
(
m
m/2

) ∑
(i1,...,im)∈E

αmζ(vi1 , . . . , vim)

αm ‖v‖m

=
1

m!
(
m
m/2

) ∑
(i1,...,im)∈E

ζ(vi1 , . . . , vim)

‖v‖m

= RL(v) .

Lemma 3.13 (Invariant under Scaling). For any δ ∈ R and
v ∈ Rn, v ⊥ 1, we have

RL(v) ≥ RL(v + δ1) .

Proof of Lemma 3.13. Note that

RL(v + δ1) =
1

m!
(
m
m/2

) ∑
(i1,...,im)∈E

ζ(vi1 + δ, . . . , vim + δ)

‖v + δ1‖m

=
1

m!
(
m
m/2

) ∑
(i1,...,im)∈E

ζ(vi1 , . . . , vim)

‖v + δ1‖m

≤ 1

m!
(
m
m/2

) ∑
(i1,...,im)∈E

ζ(vi1 , . . . , vim)

‖v‖m

= RL(v) ,

where the inequality follows from the fact that

‖v + δ1‖m =

(∑
i

(vi + δ)2

)m/2

=

(∑
i

v2
i + nδ2 + 2δ

∑
i

vi

)m/2

=

(∑
i

v2
i + nδ2

)m/2

≥

(∑
i

v2
i

)m/2
= ‖v‖m .

Lemma 3.14 (Signed Rayleigh Quotient Lower Bound).
For any hypergraph with Laplacian L and signed Laplacian
Ly , and for any δ ∈ R and v ∈ Rn, v ⊥ y, we have

RLy
(v) ≥ RL(v ◦ y + δ1) .
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Lemma 3.15 (Existence of Degree Tensor). For any hyper-
graph Laplacian L, let A denote the corresponding symmet-
ric adjacency tensor, such that Ai1,...,im = 1 if and only
if (i1, . . . , im) ∈ E . Then, there exists a high-order degree
tensorD fulfilling: 1)Di1,...,im = 0 if i1, . . . , im are all dif-
ferent, and 2) 〈D −A, v⊗m〉 = 〈L, v⊗m〉 for every vector
v ∈ Rn.

3.3. High-order Cheeger-type Inequality

Here, we connect the previous two sections and provide our
novel high-order Cheeger-type inequality.
Theorem 3.16 (High-order Cheeger-type Inequality). For
any m-uniform hypergraph G = (V, E) with Laplacian L,
we have

λ2(L) ≥ φmG .

Remark 3.17. Here we would like to discuss our choice
of hypergraph Laplacian as well as the related high-order
definitions. Despite the fact that there have been multiple
works trying to generalize some graph properties (including
hypergraph Laplacian, Rayleigh quotient, hyperedge expan-
sion, Cheeger constant, among others) to hypergraphs (Li
& Milenkovic, 2018; Mulas, 2021; Yoshida, 2019; Chan
et al., 2018; Chen et al., 2017; Chang et al., 2020), we want
to highlight that none above fulfill the requirement of our
high-order inference tasks.

To obtain a set of hypergraph definitions that are useful for
our inference task, we need to fulfill all the lemmas in this
section. In particular, here are the necessary conditions:

• To fulfill Lemma 3.12, each term in the parenthesis in
the ζ-function (Definition 3.5) must have a coefficient
of 1 or −1.

• To fulfill Lemma 3.13, the ζ-function (Definition 3.5)
and the norm in the denominator of the Rayleigh quo-
tient (Definition 3.8) must have the same power. Addi-
tionally, the summation of coefficients of the terms in
the parenthesis in the ζ-function (Definition 3.5) must
be 0. Combining with the last condition, it requires the
number of plus and minus terms to be equal.

• To fulfill Lemma 3.15, the number of minus terms
in the parenthesis in the ζ-function (Definition 3.5)
must be odd, so that 〈−A, v⊗m〉 can be canceled by
〈L, v⊗m〉 in those entries without repeating indices.

• To fulfill Lemma 3.11, the Rayleigh quotient must
achieve minimum with v = 1.

At this point it should be clear that we cannot simply use
some arbitrary definition from the prior literature. Our hy-
pergraph definitions are carefully constructed and chosen,
to fulfill all the necessary conditions above.

Remark 3.18. Regarding the choice of order m, note that if
m is odd, the task of label recovery will not be feasible in
the current formulation, since the Rayleigh quotient will be
unbounded below (instead of a minimum 0). From Remark
3.17 it can be noticed that if we keep the current definition
of ζ-functions, the only possible m’s are 2, 6, 10, 14, . . .
The definition of ζ-functions can be generalized for other
even orders, such that for every m-tuple I, we take the
average of many m-power terms by iterating through the
permutation of all possible signs. For clarity of exposition
we keep the current simpler definition, and focus on the case
of m = 2, 6, 10, 14, . . .

4. Exact Recovery of True Labels
In this section, we present an inference algorithm, which
recovers the underlying true labels in our model. To do so,
we take a two stage approach. In the first stage we only
utilize the hyperedge information observed from X , and
this allows us to narrow down our solution space to two
possible solutions. In the second stage, with the help of the
node information observed from z, we are able to infer the
correct labeling of the nodes.

4.1. Stage One: Inference up to Permutation

We start by considering the following combinatorial prob-
lem

maximize
y

〈
X, y⊗m

〉
subject to y ∈ {−1,+1}n . (3)

The issue with this optimization formulation is that the
problem is not convex, which makes the analysis hard and
intractable. Instead, we consider the following relaxed ver-
sion

maximize
Y

〈X,Y 〉

subject to Y ∈ S∗,n,m+

− 1 ≤ Yodd ≤ 1 ,∀odd ∈ σ̄n,m2

Yeven = 1 ,∀even ∈ σn,m2 . (4)

Alternatively, we represent the last two constraints as −1 ≤
Yσ̄n,m

2
≤ 1, and Yσn,m

2
= 1. Recall that S∗,n,m+ is the

convex cone of rank-one tensors. The motivation is that we
are using a rank-one tensor Y instead of the outer product
y⊗m, so that the problem becomes convex in the objective
function and the constraints. We have −1 ≤ Yσ̄n,m

2
≤ 1

because the product of y’s is either −1 or +1, and we have
Yσn,m

2
= 1 because if every yi repeats an even number of

times, we know the product must be +1.

It remains to prove correctness of program (4). We are
interested in identifying the regime, in which (4) returns the
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exact rank-one tensor solution Y ∗ := y∗⊗m = (−y∗)⊗m.
We now present our main theorem on inference. The proof
can be found in Appendix B.

Theorem 4.1 (Inference from Hyperedge Observation). For
an m-order structured prediction model with underlying
hypergraph G = (V, E) and hyperedge observation X , the
rank-one tensor solution Y ∗ := y∗⊗m = (−y∗)⊗m can be
recovered from the convex optimization program (4) with
probability at least 1− ε1(φG , n, p), where

ε1(φG , n, p) =2nm exp

(
−

(1− 2p)2φ2m
G

8nm ·max(|E| , nm−1)

)
+

16(1− p) |E|
(1− 2p)2φ2m

G
. (5)

Remark 4.2. A natural question to ask is, under what topo-
logical and statistical conditions can we obtain a high prob-
ability guarantee from Theorem 4.1. An observation is that
if the Cheeger constant of the underlying hypergraph is
large, or the noise level is small, recovery is more likely
to succeed. In Section 5, we analyze at some interesting
classes of hypergraphs with good expansion property (large
Cheeger constant), so that high probability recovery can be
guaranteed.

4.2. Stage Two: Exact Inference

In the previous section, we established the high probability
inference guarantee for the rank-one tensor solution Y ∗ :=
y∗⊗m = (−y∗)⊗m. By taking a factorization step, we know
either y∗ or −y∗ is the correct label vector. In this section,
our goal is to decide the correct labeling using the node
observation z.

Theorem 4.3. Let y ∈ {y∗,−y∗}. The correct label vector
y∗ can be recovered from program

z>y∗ = max
y∈{y∗,−y∗}

z>y . (6)

with probability at least 1− ε2(n, q), where

ε2(n, q) = e−(1−2q)2n/2 . (7)

Proof of Theorem 4.3. Applying Hoeffding’s inequality, we
obtain that

P
{
z>y∗ ≤ −z>y∗

}
= P

{
z>y∗ ≤ 0

}
≤ e−(1−2q)2n/2 .

Corollary 4.4. Combining the results in Theorem 4.1 and
4.3, we obtain that exact inference of the correct label vector
y = y∗ can be achieved with probability at least

1− ε1(φG , n, p)− ε2(n, q) . (8)

Proof of Corollary 4.4. Apply a union bound to Theorem
4.1 and 4.3.

Remark 4.5. Given p, q < 0.5, we observe that as long as
n→∞, we know ε2(n, q)→ 0 (an exponential decay). As
a result, whether one can obtain a high probability guarantee
in the shape of 1 − O(n−1) depends only on the order
of φG , that is, the topological structure of the underlying
hypergraph. In Section 5, we investigate hypergraphs with
good expansion properties, that allow us to achieve a high
probability guarantee of exact inference.

5. Examples of Hypergraphs with Good
Expansion Property

In this section, we consider some example classes of hy-
pergraphs with good expansion property, and demonstrate
that they lead to high probability guarantees in our exact
inference algorithm.

We first analyze complete hypergraphs.

Definition 5.1 (Complete Hypergraphs). An m-uniform
hypergraph G = (V, E) is complete, if for every m-vertex
tuple e = (i1, . . . , im), we have e ∈ E .

Proposition 5.2 (Expansion Property of Complete Hyper-
graphs). For any complete hypergraph G = (V, E), we
have

φG =
N

2
.

Proof. Recall thatH is the set of induced hypervertices. By
definition 3.3, with any S ⊂ H with 0 < |S| ≤ N/2, we
have

φS =
|S| · |H \ S|
|S|

= |H \ S| .

Taking a minimum as in definition 3.4, we obtain φG =
N
2 .

Corollary 5.3 (Exact Inference in Complete Hypergraphs).
Let G = (V, E) be a complete hypergraph. Assume
p, q < 0.5. Then exact inference can be achieved using
the proposed two-stage approach with probability tending
to 1 with a sufficiently large n.

Proof. Note that for complete hypergraphs, we have

φG =
N

2
=

1

2

(
n

m/2

)
≥ 1

2

(
n

m/2

)m/2
=

2m/2−1

mm/2
·nm/2 .

7



Exact Inference in High-order Structured Prediction

Substituting φG into (8), as long as n is greater than some
constant c0, we have

1− ε1(φG , n, p)− ε2(n, q) ≥ 1−O(n−1) .

Next, we focus on the case of regular expanders.

Definition 5.4 (d-regular Expander). An m-uniform hyper-
graph G = (V, E) is a d-regular expander hypergraph with
constant c > 0, if for any induced hypervertex set S ⊂ H
with 0 < |S| ≤ N/2, we have

|∂S| ≥ c · d · |S| .

Proposition 5.5 (Expander Hypergraphs). For any d-
regular expander hypergraph G = (V, E) with constant
c > 0, we have

φG = cd .

Proof. By definition 3.3, with any S ⊂ H with 0 < |S| ≤
N/2, we have

φS ≥
c · d · |S|
|S|

= cd .

Taking a minimum as in definition 3.4, we obtain φG =
cd.

Corollary 5.6 (Exact Inference in Expander Hypergraphs).
Let G = (V, E) be a d-regular expander hypergraph with
constant c > 0. Assume p, q < 0.5. Then exact inference
can be achieved using the proposed two-stage approach
with probability tending to 1 with a sufficiently large n, if

d ∈ Ω(n · (log n)1/2m) .

Proof. First note that the exponential term in (5) is the
dominating factor. Substituting φG = cd into the first term
of (5), we want to ensure

2nm exp

(
− (1− 2p)2(cd)2m

8nm ·max(|E| , nm−1)

)
≤ c0n−1 ,

for some constant c0 > 0. Note that |E| ∈ O(nm). As a
result, a sufficient condition for d is d ∈ Ω(n · (log n)1/2m).
Substituting d into the other term also fulfills the O(n−1)
bound.

5.1. Simulation Results

We test the proposed method on a hypergraph with order
m = 6; see Figure 2. We fix the number of nodes n = 10.
We focus on the Stage One, and check how many labels can
be recovered up to permutation of the signs. We implement
a tensor projected gradient descent solver motivated by Ke

& Honorio (2022a); Han (2013). For each setting we run
20 iterations. Our results suggest that if the noise level p is
small and the hypergraph Cheeger constant φG is large, the
proposed algorithm performs well and recovers the underly-
ing group structure. This matches our theoretic findings in
Theorem 4.1.

Figure 2. Simulations with different noise levels p (top) and
Cheeger constant φG (down). Our results suggest that if the noise
level p is small and the hypergraph Cheeger constant φG is large,
the proposed algorithm performs well and recovers the underlying
group structure.

Additionally, we implement a local-search based, hyper-
graph label propagation algorithm as a relevant baseline
approximation method (Raghavan et al., 2007). We use
the same setting with n = 10 and m = 6. To initialize
the propagation, we make the label of five nodes to be
visible to the algorithm. The algorithm proceeds as fol-
lows: for every unvisited node i, the algorithm will check
its interaction with all known nodes repetitively to obtain
enough samples (we set the number of repetitions to be
1001 in our script). For example, suppose i1 through ik
are visited nodes, then the algorithm will repetitively check
X(i, i1, i2, i3, i4, i5), X(i, i1, i2, i3, i4, i6), . . . in a stochas-
tic fashion to collect evidence. After that, if the sum of these
samples is positive, the label of i is assigned to be +1, and
otherwise −1. The algorithm then marks the node as visited
and continues, until all nodes are visited. We ran the experi-
ment with p = 0.1 for 20 trials. The average accuracy of the
label propagation algorithm above is 0.75 in total, and 0.5

8
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on the initially unknown parts. In particular, only 1 out of
20 trials perfect recovery is achieved. This performs much
worse than our results (perfect recovery in 80% trials).

5.2. Simulation on Real-world Datasets

We run the first stage of the proposed algorithm on a fourth-
order hypergraph generated from the real-world dataset
email-Eu-core (Yin et al., 2017; Leskovec et al., 2007). We
pick the largest two communities in the network. The gener-
ated hypergraph has 200 nodes in total (91 and 109 in each
group). We run our algorithm with a tensor projected gradi-
ent descent solver on the hypergraph, and exact inference of
the 200 labels was achieved perfectly up to permutation of
the two groups.

6. Concluding Remarks
We analyzed the problem of high-order label recovery in
this paper. To achieve this, we provided a novel class of
hypergraph structural properties, and derived a high-order
version Cheeger-type inequality. We also proposed a two-
stage algorithm to solve the high-order structured prediction
problem, and provided KKT analysis for its optimality.

We gave the first results with theoretical guarantees of infer-
ence in hypergraphs. For some context, (1) is the structured
prediction inference problem in graph cases. This inference
setting has been studied by Globerson et al. (2015); Foster
et al. (2018); Bello & Honorio (2019), among others. These
works have focused on binary label cases. And these works
studied various classes of graphs, including grid lattices,
graphs allowing tree decompositions, and expander graphs.
(2) is the structured prediction inference problem general-
ized to hypergraph cases. If we set m = 2, (2) reduces
to (1). We focused on hypergraph and binary label cases.
Our work studied a class of hypergraphs: those with good
expansion property, or hyper-expanders.

A limitation in our setting is that the observation of each
hyperedge is binary: either +1 or −1. As a future direction,
it can be interesting to think about more general cases, in
which the observations are weighted (that is, real values
instead of 1’s).
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A. Proofs of Hypergraph Structural Properties and Cheeger-type Inequality
For clarity of presentation, in the following proofs, we use

RNL(v) :=
∑

(i1,...,im)∈E

ζ(vi1 , . . . , vim)

to denote the numerator part of the Rayleigh quotient of Laplacian L, and

RDL(v) := ‖v‖m

to denote the denominator part.

Proof of Lemma 3.14. Regarding the numerator, we have

RNL(v ◦ y + δ1) =
∑

(i1,...,im)∈E

[
(vi1yi1 + δ + · · ·+ vim/2

yim/2
+ δ − vim/2+1

yim/2+1
− δ − · · · − vimyim − δ)m + . . .

]
=

∑
(i1,...,im)∈E

[
(vi1yi1 + · · ·+ vim/2

yim/2
− vim/2+1

yim/2+1
− · · · − vimyim)m + . . .

]
= RNLy

(v) .

Regarding the denominator, we have

RDL(v ◦ y + δ1) = ‖v ◦ y + δ1‖m

=

(∑
i

(viyi + δ)2

)m/2

=

(∑
i

v2
i y

2
i + nδ2 + 2δ

∑
i

viyi

)m/2

=

(∑
i

v2
i + nδ2

)m/2

≥

(∑
i

v2
i

)m/2
= ‖v‖m

= RDLy
(v) .

Proof of Lemma 3.15. Our goal is to construct a tensor D fulfilling 〈D −A, v⊗m〉 = 〈L, v⊗m〉 for any vector v ∈ Rn. In
other words, we require∑

i1,...,im

Di1,...,imvi1 . . . vim −
∑

i1,...,im

Ai1,...,imvi1 . . . vim =
∑

i1,...,im

Li1,...,imvi1 . . . vim .

A key observation is that on the left-hand side, D and A control different entries: Di1,...,im is equal to 0 in those entries
without repeating indices, while Ai1,...,im is equal to 0 in those entries with repeating indices. Recall that the union
σn,m2 ∪ σ̄n,m2 contains all entry indices without repeating indices. We can rewrite the equation above as∑

(i1,...,im)∈σn,m
2 ∪σ̄n,m

2

Di1,...,imvi1 . . . vim −
∑

(i1,...,im)/∈σn,m
2 ∪σ̄n,m

2

Ai1,...,imvi1 . . . vim =
∑

i1,...,im

Li1,...,imvi1 . . . vim .

11
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Recall that 〈
L, v⊗m

〉
=

1

m!
(
m
m/2

) ∑
(i1,...,im)∈E

ζ(vi1 , . . . , vim)

=
1

m!
(
m
m/2

) ∑
(i1,...,im)∈E

[
(vi1 + vi2 + · · ·+ vim/2

− vim/2+1
− · · · − vim)m + . . .

]
. (9)

The next observation is that, by expanding the m-power terms in the bracket, for each summand (i1, . . . , im) we will
obtain a sequence of monomials consisting of vi1 through vim . For example, this includes C0 · vi1vi2 . . . vim−1

, vim ,
C1 · v2

i1
vi2 . . . vim−1

, etc., where C’s are coefficients. Note that all these monomials have an order of m.

We now analyze the monomial terms above by grouping the monomials with the same power pattern. Formally, we group all
terms in the shape of C · vd1i1 v

d2
i2
. . . v

dq
iq

together, where d1 ≥ d2 ≥ · · · ≥ dq ≥ 1, d1 + · · ·+ dq = m. All permutation of
subscripts are enumerated in the parenthesis. We use Q to denote the number of terms inside this group. Here we provide
some examples of monomial groups:

• C · (vmi1 + vmi2 + · · ·+ vmim), with pattern d1 = m. In this case Q = m.

• m = 6, C · (v5
i1
v1
i2

+ v5
i1
v1
i3

+ · · ·+ v5
i6
v1
i5

), with pattern d1 = 5, d2 = 1. In this case Q = 6 · 5 = 30.

• m = 6, C ·(v3
i1
v2
i2
v1
i3

+v3
i1
v2
i2
v1
i4

+· · ·+v3
i6
v2
i5
v1
i4

), with pattern d1 = 3, d2 = 2, d3 = 1. In this caseQ = 6·5·4 = 120.

Next we discuss the power pattern in each group.

If the power pattern is d1 = · · · = dm = 1 (i.e., all 1-power components), we know the coefficient C
is equal to − 1

m!( m
m/2)

by counting. Thus, these terms with all 1-power components are already balanced by

−
∑

(i1,...,im)/∈σn,m
2 ∪σ̄n,m

2
Ai1,...,imvi1 . . . vim on the left-hand side. This also shows the necessity of introducing the

factor 1

m!( m
m/2)

in the definition of hypergraph Laplacians: it ensures that the term vi1vi2 . . . vim in the expanded form of

〈L, v⊗m〉 has a coefficient of 1.

For groups with other power patterns (d1 ≥ . . . dq ≥ 1, q < m), we balance them by setting D entries with indices in the
permutation of (i1, . . . , i1, i2, . . . , i2, · · · · · · , iq, . . . , iq), in which i1 repeats d1 times, i2 repeats d2 times, etc. We set the
value of these D entries to: CQ ·

∑
iq+1,...,im

Ai1,...,im = CQ ·
∑
iq+1,...,im

1[(i1, . . . , im) ∈ E ]. In other words, for D
entries containing index i1 through iq , we set them to be equal to thoseA entries containing index {i1, . . . , im}\{i1, . . . , iq}.
This can be illustrated using the same examples above:

• Set Di1,...,i1 = CQ
∑
i2,...,im

Ai1,...,im .

• Set Di1,i1,i1,i1,i1,i2 = CQ
∑
i3,i4,i5,i6

Ai1,...,im , and the same for all symmetric entries in σ(i1, i1, i1, i1, i1, i2).

• Set Di1,i1,i1,i2,i2,i3 = CQ
∑
i4,i5,i6

Ai1,...,im , and the same for all symmetric entries in σ(i1, i1, i1, i1, i1, i2).

After the procedure is done, we have 〈L, v⊗m〉 = 〈D −A, v⊗m〉, and Di1,i2,...,im = 0 if i1, i2, . . . , im are all different.

Proof of Theorem 3.16. Suppose v is the eigenvector associated with the second smallest eigenvalue λ2(L). By Lemma
3.12, we assume ‖v‖ = 1 without loss of generality. We also sort the entries of v, i.e., v1 ≤ · · · ≤ vn.

Our first step is to set up a helper vector u based on the second smallest eigenvector v. Recall thatH is the set of induced
hypervertices (see Definition 3.1). For any hypervertex hj = {i1, . . . , im/2} ∈ H, based on the second eigenvector v, we
define the v-value of hj by

v(hj) :=
1

m/2

(
vi1 + · · ·+ vim/2

)
.

This allows us to sort all the hypervertices by their v-value, such that the hypervertex indices fulfill

v(h1) ≤ v(h2) ≤ · · · ≤ v(hN ) ,
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and recall that N := |H|. We use M to denote the smallest integer fulfilling M ≥ 1
2 |H|, and we introduce a shifting

operation by defining u := v − v(hM ) · 1. We further find a constant cu > 0, and we scale u by multiplying u with cu so
that it fulfills (u1 + · · ·+ um/2)2 + (un−m/2+1 + · · ·+ un)2 = 1. Note that u fulfills the following properties:

• (u1 + · · ·+ um/2)2 + (un−m/2+1 + · · ·+ un)2 = 1.

• u1 ≤ · · · ≤ un.

• uM = 0.

• RL(v) ≥ RL(u), by Lemma 3.12 and 3.13.

The second step of our proof is to construct a random set of hypervertices St. To do so, we define t to be a random variable
on the support [u1 + · · ·+ um/2, un−m/2+1 + · · ·+ un], with probability density function f(t) = 2 |t|. It can be verified
that t is a valid random variable, because

∫ un−m/2+1+···+un

u1+···+um/2

2 |t| = (u1 + · · ·+ um/2)2 + (un−m/2+1 + · · ·+ un)2 = 1 .

Based on t, we can construct a random set of hypervertices St as follows

St := {hj | hj = {i1, . . . , im/2}, ui1 + · · ·+ uim/2
≤ t} .

Here we consider the size of St in the average case. We have

Et [|St|] =
∑
j

Pt
{
uhj
≤ t
}
,

and

Et [|H \ St|] =
∑
j

Pt
{
uhj > t

}
.

Combining the two leads to

Et [min(|St| , |H \ St|)] =
∑
j

Pt
{
uhj
≤ t < 0

}
+
∑
j

Pt
{
uhj

> t ≥ 0
}

=
∑
j

u2
hj
.

We also consider the boundary set ∂St. By Definition 3.2, a hyperedge e = h1 ∪ h2 belongs to ∂St, if h1 ∈ St, h2 /∈ St,
and h1 ∩ h2 = ∅. Define the shorthand notation uh :=

∑
i∈h ui, and assume uh1

≤ uh2
. Then

P {e ∈ ∂St} = P {uh1 ≤ t ≤ uh2} ≤ |uh1 − uh2 | (|uh1 |+ |uh2 |) .
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Finally, we analyze the expectation of |∂St|. It follows that

Et [|∂St|] =
∑

e∈E,e=h1∪h2

Et [1[e ∈ ∂St]]

=
∑

e∈E,e=h1∪h2

Pt {e ∈ ∂St}

≤
∑

e∈E,e=h1∪h2

|uh1
− uh2

| (|uh1
|+ |uh2

|)

(a)
≤

 ∑
e∈E,e=h1∪h2

(uh1 − uh2)m

 1
m
 ∑
e∈E,e=h1∪h2

(|uh1 |+ |uh2 |)
m

m−1


m−1
m

= RN
1
m ·

 ∑
e∈E,e=h1∪h2

(|uh1
|+ |uh2

|)
m

m−1


m−1
m

= RL(u)
1
m · ‖u‖ ·

 ∑
e∈E,e=h1∪h2

(|uh1
|+ |uh2

|)
m

m−1


m−1
m

≤ RL(u)
1
m · ‖u‖ ·

 ∑
e∈E,e=h1∪h2

(|uh1 |+ |uh2 |)2


m−1
m

≤ RL(u)
1
m · Et [min(|St| , |H \ St|)]

m−1
m

≤ RL(u)
1
m · Et [min(|St| , |H \ St|)] ,

where (a) follows from Holder’s inequality. Rearranging the terms above leads to

Et
[
RL(u)

1
m ·min(|St| , |H \ St|)− |∂St|

]
≥ 0 .

Thus there exists some t fulfilling
RL(u)

1
m ·min(|St| , |H \ St|)− |∂St| ≥ 0 ,

or equivalently,

RL(u) ≥
(

|∂St|
min(|St| , |V \ St|)

)m
.

Plugging in RL(v) ≥ RL(u) on the left-hand side, and Definition 3.4 on the right-hand side, we obtain

λ2(L) = RL(v) ≥ RL(u) ≥
(

|∂St|
min(|St| , |V \ St|)

)m
≥ φmG .

B. Proof of Exact Recovery of True Labels
Proof of Theorem 4.1. Our goal is to recover the true labels Y ∗ := (±y∗)⊗m (up to flipping signs) using (4). For readers’
convenience, here we restate the formulation:

maximize
Y

〈X,Y 〉

subject to Y ∈ S∗,n,m+

− 1 ≤ Yσ̄n,m
2
≤ 1

Yσn,m
2

= 1 .

14
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The Lagrangian dual problem of (4) is

minimize
V,V +,V −,A

∑
(i1,...,im)∈σn,m

2

Vi1,...,im +
∑

(i1,...,im)∈σ̄n,m
2

(V +
i1,...,im

+ V −i1,...,im)

subject to Vi1,...,im = 0 , if i1, . . . , im are all different

Vσ̄n,m
2

= V +
σ̄n,m
2
− V −

σ̄n,m
2

V +
σ̄n,m
2
≥ 0

V −
σ̄n,m
2
≥ 0

−X −A+
∑

(i1,...,im)∈σn,m
2

Vi1,...,im · Ei1,...,im +
∑

(i1,...,im)∈σ̄n,m
2

(V +
i1,...,im

− V −i1,...,im) · Ei1,...,im = 0

A ∈ Sn,m+ ,

where Ei1,...,im is a tensor with 1 in entry (i1, . . . , im), and 0 everywhere else. From the primal and dual problems, we
obtain the following KKT conditions:

V −X −A = 0 (Stationarity)
Yσn,m

2
= 1

Yσ̄n,m
2
≤ 1

−Yσ̄n,m
2
≤ 1

Y ∈ S∗,n,m+ (Primal Feasibility)
Vi1,...,im = 0

Vσ̄n,m
2

= V +
σ̄n,m
2
− V −

σ̄n,m
2

V +
σ̄n,m
2
≥ 0

V −
σ̄n,m
2
≥ 0

A ∈ Sn,m+ (Dual Feasibility)

V +
σ̄n,m
2

(Yσ̄n,m
2
− 1) = 0

V −
σ̄n,m
2

(Yσ̄n,m
2

+ 1) = 0

〈A, Y 〉 = 0 . (Complementary Slackness)

Here we construct primal and dual variables to fulfill all KKT conditions above. For the primal variable we set Y = Y ∗. For
the dual variable we define V = Dy∗ , where Dy∗ is the high-order degree tensor constructed from the signed Laplacian
Ly∗ , with the procedure defined in Lemma 3.15. We then define Vσn,m

2
= (Dy∗)σn,m

2
, V +

σ̄n,m
2

= max((Dy∗)σ̄n,m
2

, 0),

V −
σ̄n,m
2

= min((Dy∗)σ̄n,m
2

, 0). From the stationarity condition, we set A = Ly∗ = Dy∗ −X .

At this point, our construction of primal and dual variables have fulfilled every KKT conditions above except the positive
semidefinite condition A = Ly∗ ∈ Sn,m+ . From Lemma 3.11, we know y∗ is an eigenvector of Ly∗ with an eigenvalue of 0,
or equivalently, 〈Ly∗ , Y ∗〉 = 0. It remains to ensure for all orthogonal vectors, we have minu⊥y∗ RLy∗ (u) ≥ 0. On top of
that, we want to ensure the solution Y = Y ∗ is unique. This further requires that

min
u⊥y∗

RLy∗ (u) = min
u⊥y∗

〈Dy∗ −X,u⊗m〉
‖u‖m

> 0 .

Without loss of generality, we fix ‖u‖ = 1 in the following discussion. We split the terms above into

min
u⊥y∗,‖u‖=1

〈
Dy∗ −X,u⊗m

〉
≥ min
u⊥y∗,‖u‖=1

〈
Dy∗ − E [Dy∗ ], u

⊗m〉 (10)

+ min
u⊥y∗,‖u‖=1

〈
E [X]−X,u⊗m

〉
(11)

+ min
u⊥y∗,‖u‖=1

〈
E [Dy∗ −X], u⊗m

〉
. (12)
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First we bound the expectation term (12). Note that

min
u⊥y∗,‖u‖=1

〈
E [Dy∗ −X], u⊗m

〉
= min
u⊥y∗,‖u‖=1

〈
E [Ly∗ ], u

⊗m〉
= (1− 2p) · min

u⊥y∗,‖u‖=1

∑
(i1,...,im)∈E

ζ(ui1y
∗
i1 , . . . , uimy

∗
im)

= (1− 2p) ·RLy∗ (u)

≥ (1− 2p) ·RL(u ◦ y∗ + δ1)

≥ (1− 2p) · φmG ,

where the first inequality follows from Lemma 3.14, and the second inequality follows from Theorem 3.16.

Next we bound (11) using concentration inequalities. We have

P {−λmax(E [X]−X) ≤ −t} ≤ P
{
−‖E [X]−X‖2F ≤ −t

2
}

≤ 1

t2
· E
[
‖E [X]−X‖2F

]
=

1

t2
· 4p(1− p) |E| .

Setting t = 1−2p
2 φmG leads to

P
{
−λmax(E [X]−X) ≤ −1− 2p

2
φmG

}
≤ 16p(1− p) |E|

(1− 2p)2φ2m
G

. (13)

Finally we bound (10). Using Cauchy-Schwarz inequality, we obtain

−
∣∣〈E [Dy∗ ]−Dy∗ , u

⊗m〉∣∣ ≥ −‖vec (E [Dy∗ ]−Dy∗)‖ ·
∥∥vec

(
u⊗m

)∥∥
= −‖vec (E [Dy∗ ]−Dy∗)‖ · ‖u‖m

= −‖vec (E [Dy∗ ]−Dy∗)‖
≥ −nm/2 · ‖vec (E [Dy∗ ]−Dy∗)‖∞ ,

where vec (·) is the vectorization operator. We then use Hoeffding’s inequality for every entry. By the construction procedure
defined in the proof of Lemma 3.15, every entry of Dy∗ is the summation of at most max(|E| , nm−1) Rademacher random
variables. We obtain

P {vec (E [Dy∗,i1,...,im ]−Dy∗,i1,...,im) ≥ t} ≤ 2 exp

(
− 2t2

22 max(|E| , nm−1)

)
≤ 2 exp

(
− t2

2 max(|E| , nm−1)

)
.

By a union bound, we obtain

P
{
‖vec (E [Dy∗ ]−Dy∗)‖∞ ≥ t

}
≤ 2 exp

(
− 2t2

22 max(|E| , nm−1)

)
≤ 2nm exp

(
− t2

2 max(|E| , nm−1)

)
.

Setting t =
(1−2p)φm

G
2nm/2 leads to

P
{
−
∣∣〈E [Dy∗ ]−Dy∗ , u

⊗m〉∣∣ ≤ −1− 2p

2
φmG

}
≤ 2nm exp

(
−

(1− 2p)2φ2m
G

8nm max(|E| , nm−1)

)
. (14)

Combining the results of (13) and (14) with a union bound completes the proof.
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