
Rethinking Backdoor Attacks

Alaa Khaddaj * 1 Guillaume Leclerc * 1 Aleksandar Makelov * 1 Kristian Georgiev * 1 Hadi Salman 1

Andrew Ilyas 1 Aleksander Mądry 1

Abstract
In a backdoor attack, an adversary inserts ma-
liciously constructed backdoor examples into a
training set to make the resulting model vulner-
able to manipulation. Defending against such
attacks involves viewing inserted examples as out-
liers in the training set and using techniques from
robust statistics to detect and remove them.

In this work, we present a different approach to
the backdoor attack problem. Specifically, we
show that without structural information about
the training data distribution, backdoor attacks
are indistinguishable from naturally-occuring fea-
tures in the data—and thus impossible to “detect”
in a general sense. Then, guided by this observa-
tion, we revisit existing defenses against backdoor
attacks and characterize the (often latent) assump-
tions they make, and on which they depend. Fi-
nally, we explore an alternative perspective on
backdoor attacks: one that assumes these attacks
correspond to the strongest feature in the train-
ing data. Under this assumption (which we make
formal) we develop a new primitive for detecting
backdoor attacks. Our primitive naturally gives
rise to a detection algorithm that comes with the-
oretical guarantees, and is effective in practice.

1. Introduction
A backdoor attack (Gu et al., 2017) allows an adversary to
manipulate the predictions of a machine learning model by
modifying a small fraction of the training set inputs. This
involves adding a fixed pattern (called the “trigger”) to some
training inputs, and setting the labels of these inputs to some
fixed value yb. This intervention enables the adversary to
take control of the resulting models’ predictions at deploy-
ment time by adding the trigger to inputs of interest.

*Equal contribution 1MIT. Correspondence to: Alaa Khaddaj
<alaakh@mit.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Backdoor attacks pose a serious threat to machine learning
systems as they are easy to deploy and hard to detect. Indeed,
recent work has shown that modifying a very small number
of training inputs suffices for mounting a successful back-
door attack on models trained on web-scale datasets (Carlini
et al., 2023). Consequently, there is a growing body of work
on backdoor attacks and approaches to defend against them
(Chen et al., 2018; Tran et al., 2018; Jin et al., 2021; Hayase
et al., 2021; Levine & Feizi, 2021; Jia et al., 2021).

A prevailing perspective on defending against backdoor
attacks treats the manipulated training inputs as outliers,
and thus draws a parallel between backdoor attacks and the
classic data poisoning setting from robust statistics. In data
poisoning, one receives data that is, with probability 1− ε,
from a known distribution D, and, with probability ε, chosen
by an adversary. The goal is to detect the adversarially
chosen inputs, or to learn a good classifier in spite of the
presence of these inputs. This perspective is a natural one–
and has led to a host of defenses against backdoor attacks
(Chen et al., 2018; Tran et al., 2018; Hayase et al., 2021)—
but is it the right way to approach the problem?

In this work, we take a step back from the above view and
offer a different perspective on backdoor attacks: rather
than viewing the manipulated inputs as outliers, we view
the trigger used in the backdoor attack as simply another
feature in the data. To justify this view, we demonstrate that
backdoors triggers can be indistinguishable from features al-
ready present in the dataset. On one hand, this immediately
pinpoints the difficulty of detecting backdoor attacks, espe-
cially when they can correspond to arbitrary trigger patterns.
On the other hand, this observation suggests there might
be an equivalence between detecting backdoor attacks and
surfacing features present in the data.

Equipped with this perspective, we introduce a primitive for
studying features in the input data and characterizing a fea-
ture’s strength. This primitive then gives rise to an algorithm
for detecting backdoor attacks in a given dataset. Specifi-
cally, our algorithm flags the training examples containing
the strongest feature as being manipulated, and removes
them from the training set. We empirically verify the ef-
ficacy of this algorithm on a variety of standard backdoor
attacks. Overall, our contributions are as follows:

1

Rethinking Backdoor Attacks

Dog

Dog

Dog Dog

Horse

Train Time Inference Time

𝛼% of the training size

Model

Model

Figure 1: An illustration of a backdoor attack. An ad-
versary backdoors the training set by inserting a trigger (red
square) in a small fraction α of the training images, and set-
ting the label of these images to a desired class, e.g., “dog.”
At inference time, the adversary can activate the backdoor
by inserting the red trigger into an image. In the example
above, the image of the horse (top right) is correctly classi-
fied by a model trained on the backdoor training set. After
the trigger is inserted into this image, the model prediction
on the image flips to “dog”.

• We demonstrate that in the absence of any knowledge
about the distribution of natural data, the triggers used
in a backdoor attacks are indistinguishable from existing
features in the data. This observation implies that every
backdoor defense must make assumptions (either implicit
or explicit) about the structure of the distribution or the
backdoor attack itself (see Section 2).

• We re-frame the problem of detecting backdoor attacks as
one of detecting a feature in the data: the feature with the
strongest effect on the model predictions (see Section 3).

• We show how to detect backdoor attacks under the corre-
sponding assumption (i.e., that the backdoor trigger is the
strongest feature in the dataset). We provide theoretical
guarantees on our approach’s effectiveness at identifying
backdoored inputs, and demonstrate experimentally that
our resulting algorithm is effective in a range of settings.

2. Setup and Motivation
In this section, we formalize the problem of backdoor at-
tack, and introduce the notation that we will use throughout
the paper. We then argue that defending against backdoor
attacks requires certain assumptions and that all existing
defenses make such assumptions, implicitly or explicitly.

Let us fix a learning algorithm A and an input space Z =
X × Y (e.g., the Cartesian product of the space of images
X and of their corresponding labels Y). For a given dataset
S ∈ Zn, and a given example z = (x, y) ∈ Z , where x
is an input of label y, we define the model output function
f(z;S) as some metric of interest (e.g., loss) evaluated on

the input z after training a model on dataset S.1 We also
define, for any two sets S and S′:

Perf(S → S′) =
1

|S′|
∑
z∈S′

f(z;S)

i.e., the performance on dataset S′ of a model trained on S.

Backdoor attack. In a backdoor attack (see Figure 1), an
attacker observes a “clean” set of training inputs S, and re-
ceives an attack budget α ∈ (0, 1) that indicates the fraction
of the training set that the adversary can manipulate 2. The
attacker then produces (1) a partitioning of S into two sets
SP and SC , where SP is the set to be poisoned, such that
|SP | ≤ α|S|; and (2) a trigger function τ : Z → Z that
modifies training inputs in a systematic way, e.g., by insert-
ing a trigger in the input image x and changing its label. The
attacker then transforms SP using the trigger function to get
P = τ(SP), which replaces SP in the training set. Here,
we let τ(S′) for any set S′ denote the set {τ(z) : z ∈ S′}.
Overall, the attacker’s goal is, given a set S′ of inputs of
interest, to design P and τ that satisfy two properties:

• Effectiveness: Training on the “backdoored” dataset
makes models vulnerable to the trigger function. In other
words, Perf(SC ∪ P → τ(S′)) should be large.

• Imperceptibility: Training on the backdoored dataset
should not significantly change the performance of the
model on “clean” inputs. That is, Perf(SC ∪ P → S′) ≈
Perf(S → S′).

2.1. Is the Trigger a Backdoor or a Feature?

The prevailing perspective on backdoor attacks casts them as
an instance of data poisoning, a concept with a rich history
in robust statistics (Hampel et al., 2011). In data poisoning,
the goal is to learn from a dataset where most of the points—
an (1− ε)-fraction of them—are drawn from a distribution
D, and the remaining points—an ε-fraction of them—are
chosen by an adversary. This parallel between this “classical”
data poisoning setting and that of backdoor attacks is natural.
After all, in a backdoor attack the adversary inserts the
trigger in a small fraction of the data, which is otherwise
primarily drawn from the data distribution D.

However, is this the right parallel to guide us? Recall
that in the classical data poisoning setting, leveraging the
structure of the distribution D is essential to obtaining any
guarantees. For example, the developed algorithms often
leverage strong explicit distributional assumptions, such as

1For example, given z = (image x, label y), we can set
f(z;S) = P[f(x) = y]. In this paper, we define f to be the
classification margin on example z (see Appendix A).

2The budget α is typically a small value, e.g., 1%.

2

Rethinking Backdoor Attacks

Apply +hat to training images

Exploit at test time

Pred: Dog Pred: Cat

(a) An adversary can craft a trigger that is indistinguishable from
a natural feature and use it as a backdoor. Here, we “backdoor”
the ImageNet training set by generating (using 3DB (Leclerc
et al., 2021)) images of hats and pasting them on varying num-
bers of “cat” images. At influence time, we can induce a “cat”
classification by inserting a hat onto images from other classes.

Naturally occurring
tennis ball images

Exploit at test time

Pred: Fish Pred: Tennisball

+42px

(b) Without changing the training dataset at all, adversaries can
exploit patterns which act as “natural backdoors.” For example,
the nature of the “tennis ball” class in ImageNet makes it so that
an attacker can induce a “tennis ball” classification with just a
small test-time perturbation. By most definitions, therefore, this
tennis ball would constitute a backdoor attack.

Figure 2: An adversary can leverage (a) plausible features or (b) naturally occurring features to mount an backdoor attack.

(sub-)Gaussianity of the data (Lugosi & Mendelson, 2019).
In settings such as computer vision, however, it is unclear
whether such structure is available. In fact, we lack almost
any characterization of how image datasets are distributed.

We thus argue that without assumptions on the structure of
the input data, backdoor triggers are fundamentally indistin-
guishable from features already present in the dataset. We
illustrate this point with the following experiments.

Backdoor attacks can look like “plausible” features. It
turns out that one can mount a backdoor attack using fea-
tures that are already present (but rare) in the dataset. Specif-
ically, in Figure 2a, we demonstrate how to execute a back-
door attack on an ImageNet classifier using hats in place
of a fixed (artificial) trigger pattern. The resulting dataset
is entirely plausible in that the backdoored images are (at
least somewhat) realistic, and the corresponding labels are
unchanged.3 At inference time, however, the hats act as an
effective backdoor trigger: model predictions are skewed
towards cats whenever a hat is added on the test sample.
Should we then expect a backdoor detection algorithm to
flag these (natural-looking) in-distribution examples?

Backdoor attacks can occur naturally. The adversary
doesn’t need to modify the dataset: they can use features
already present in the data to manipulate models. For ex-
ample, a naturally-occurring trigger for ImageNet is the
presence of a tennis ball (Figure 2b). Similarly, Liu et al.

3With some more careful photo editing or using diffusion mod-
els (Song & Ermon, 2019; Ho et al., 2020), one could imagine
embedding the hats in a way that makes the resulting examples
appear more in-distribution and thus look unmodified even to a
human.

(2019) show that on CIFAR-10, “deer antlers” are another
natural backdoor, i.e., adding antlers to images from other
classes makes models likely to classify those images as deer.

These examples highlight that we need to make assump-
tions, as otherwise the task is fundamentally ill-defined.
Indeed, trigger patterns for backdoor attacks are no more
indistinguishable than features in the data. In particular,
detecting trigger pattern is no different than detecting hats,
backgrounds, or any other spurious feature.

2.2. Implicit Assumptions in Existing Defenses

Since detecting backdoored examples without assumptions
is an ill-defined task, all existing backdoor defenses must
rely on either implicit or explicit assumptions on the struc-
ture of the data or the structure of the backdoor attack. To
illustrate this point, we examine some of the existing back-
door defenses and identify the assumptions they make. As
we will see, each of these assumptions gives rise to a natural
failure mode of the corresponding defense too (when these
assumptions are not satisfied).

Latent separability. One line of work relies on the as-
sumption that backdoor examples and unmodified (“clean”)
examples are separable in some latent space (Tran et al.,
2018; Hayase et al., 2021; Qi et al., 2022; Chen et al., 2018;
Huang et al., 2022). The corresponding defenses thus per-
form variants of outlier detection in the latent representation
space of a neural network (inspired by approaches from ro-
bust statistics). Such defenses are effective against a broad
range of attacks, but an attacker aware of the type of defense
can mount an “adaptive” attack that succeeds by violating
that latent separability assumption (Qi et al., 2022).

3

Rethinking Backdoor Attacks

Structure of the backdoor. Another line of work makes
structural assumptions on the backdoor trigger (e.g., its
shape) (Wang et al., 2019; Zeng et al., 2021; Liu et al.,
2022; Yang et al., 2022). For example, Wang et al. (2019)
assume that the trigger has small ℓ2 norm. Such defenses
can be bypassed by an attacker who deploys a trigger that
remains hard to discern while violating these assumptions.
In fact, the “hat” trigger in Figure 2a is such a trigger.
Effect of the backdoor on model behavior. Another al-
ternative is to assume that backdoor examples have a non-
positive effect on the model’s accuracy on the clean exam-
ples. This assumption has the advantage of not relying on
the specifics of the trigger or its latent representation. In
particular, a recent defense by Jin et al. (2021) makes this as-
sumption explicit and achieves good results against a range
of backdoor attacks. A downside of this approach is that sub-
tle clean-label attacks, e.g., (Turner et al., 2019), can violate
the incompatibility assumption and remain undetected.
Structure of the clean data. Finally, yet another line of
work assumes that the (unmodified) dataset has naturally-
occuring features whose support, i.e., the number of ex-
amples containing the feature, is (a) larger than the adver-
sary’s attack budget α, and (b) sufficiently strong to enable
good generalization. The resulting defenses are then able to
broadly certify that no attack within the adversary’s budget
will be successful. For example, Levine & Feizi (2021)
use an ensembling technique to produce a classifer that is
certifiably invariant to changing a fixed number of train-
ing inputs, thus ensuring that no adversary can mount a
successful backdoor attack.

For real-world datasets, however, this assumption (i.e., that
well-supported features alone suffice for good generaliza-
tion) seems to be unrealistic. Indeed, many features that
are important for generalization are only supported on a
small number of examples (Feldman, 2019). Accordingly,
the work of (Levine & Feizi, 2021) can only certify robust-
ness against a limited number of backdoor examples while
maintaining competitive accuracy.

3. An Alternative Assumption
The results of the previous section suggest that without
additional assumptions, the delineation between a backdoor
trigger and a naturally-occurring feature is largely artificial.
Indeed, in order to detect backdoor attacks, prior works
make (sometimes implicit) assumptions about the nature
of the corresponding features, or about the structure of the
training data. Given that we cannot escape making any
assumptions, we ask: what is the right assumption to make?

In this paper, we assume that the backdoor trigger is the
strongest feature in the data. Intuitively (and unlike the
assumptions discussed in Section 2.2), this assumption is
tied to the success of the backdoor attack. In particular, if a

backdoor attack violates this assumption, there must exist
another feature in the dataset that itself would serve as a
more effective backdoor trigger. As a result, there would be
no reason for a defense to identify the former over the latter.

In the remainder of this section, we make this assumption
formal. We begin by providing a definition of “feature,”
along with a definition of the “support” of any feature. Us-
ing these definitions, we can formally state our goal as iden-
tifying all the training examples that provide support for the
feature to the backdoor attack. This involves proposing a
definition of feature “strength”—a definition that is directly
tied to the effectiveness of the backdoor attack. We con-
clude by precisely stating our assumption that the backdoor
trigger is the strongest feature in the training dataset.

Setup. For a task with example space Z = X×Y (e.g., the
space of image-label pairs), we define a feature as a function
ϕ ∈ X → {0, 1}. For example, a feature ϕears might map
from an image x ∈ X to whether the image contains “cat
ears.” Note that by this definition, every backdoor attack
(as formalized in Section 2) corresponds to a feature ϕp that
“detects” the corresponding trigger transformation τ (that is,
ϕp outputs 1 on inputs in the range of τ , and 0 on all other
inputs).

For a fixed training set S ∈ Zn, we can describe a feature
ϕ by its support, which we define as the subset of training
inputs that activate the corresponding function:

Definition 1 (Feature support). Let ϕ : X → {0, 1} be a
feature (i.e., a map from the example space X to a Boolean
value) and let S ∈ Zn be a training set of n examples. We
define the support of the feature ϕ as Φ(S) = suppϕ(S) =
{z = (x, y) ∈ S | ϕ(x) = 1}, i.e. the subset of S where the
feature ϕ is present.

Observe that in the case of a backdoor attack using a back-
door trigger ϕp, the corresponding feature support Φp(S) is
the set of training examples that contain the trigger.

Characterizing feature strength. Recall that our goal in
this section is to place a (formal) assumption on a backdoor
attack as corresponding to the strongest feature in a dataset.
To accomplish this goal, we first need a way to quantify the
“strength” of a given feature ϕ. Intuitively, we would like
to call a feature “strong” if adding a single example con-
taining that feature to the training set significantly changes
the resulting model. (That is, if the counterfactual value of
examples containing feature ϕ is high.)

To this end, fix a distribution DS over subsets of the train-
ing set S. For any feature ϕ and natural number k, let the
k-output of ϕ be the expected model output (over random
draws of the training set) on inputs with feature ϕ, condi-
tioned on having k inputs with feature ϕ in the training set:

Definition 2 (Output function of a feature ϕ). For a feature

4

Rethinking Backdoor Attacks

ϕ, and a distribution DS over subsets of the training set
S, we define the feature output function gϕ as the function
that maps any integer k to the expected model output on
examples with that feature ϕ when training on exactly k
training inputs with that feature ϕ, i.e.,

gϕ(k) = Ez∼Φ(S)

[
ES′∼DS

[
f(z;S′)

∣∣∣∣|Φ(S′)| = k, z ̸∈ S′
]]

(1)

where z ∼ Φ(S) represents a random sample from the
support Φ(S) of the feature ϕ in the set S.

Intuitively, the feature output function gϕ(k) should grow
quickly, as a function of k, for strong features and slowly
for weak features. For example, adding an image of a rare
dog breed to the training set will rapidly improve accuracy
on that dog breed, whereas adding images with a weak
feature like “sky” or “grass” will impact the accuracy of the
model much less. In the context of backdoor attacks, the
“effectiveness” property (Section 2) implies that gϕp(|P |)−
gϕp

(0) is large where, ϕp is the backdoor trigger. Motivated
by this observation, we define the strength of a feature ϕ as
the rate of change of the corresponding output function.

Definition 3 (Strength of a feature ϕ). We define the k-
strength of a feature ϕ as the following function sϕ(k):

sϕ(k) = gϕ(k + 1)− gϕ(k) (2)

Note that we can extend Definition 2 and Definition 3 to
individual examples too. Specifically, we can define for a
feature ϕ the model k-output at an example z as:

gϕ(z, k) = ES′∼DS ;S′ ̸∋z

[
f(z;S′)

∣∣∣∣|Φ(S′)| = k

]
.

Similarly, we can define the k-strength of a feature ϕ at an
example z as: sϕ(z, k) = gϕ(z, k + 1)− gϕ(z, k).

To provide intuition for Definitions 2 and 3, we instantiate
both of them in the context of the trigger feature in a very
simple backdoor attack. Specifically, we alter the CIFAR-10
training set, planting a small red square in a random 1% of
the training examples, and changing their label to class “0”
(so that at inference time, we can add the red square to the
input image and make its predicted class be “0”).

In this poisoned dataset, the backdoor feature ϕp is a de-
tector of the presence of a red square, and the support Φp

comprises the randomly selected 1% of altered images (i.e.,
the backdoor images). We train 100,000 models on random
50% fractions of this poisoned dataset, and use them to es-
timate the k-output and k-strength of the backdoor feature.
Specifically, for a variety of examples z ∈ S, we (a) find the
models whose training sets had exactly k backdoor images
and did not contain z; and (b) average the model output on
z for each of these models.

24 28 32 36 40 44 48 52
Number of Poisoned Examples

10

5

0

5

10

A
ve

ra
ge

 M
ar

gi
n

Poisoned images
Clean images

Figure 3: Backdoored CIFAR10 examples. Each orange
(resp. blue) line corresponds to a poisoned (resp. clean)
example. The x-value represents the number of backdoored
examples present in the training set, while the y-value rep-
resents the model output (average margin) at that specific
example. The rate of change of the model output represents
the feature strength sϕp(k). We observe that the model out-
put of backdoored images (orange lines) increases as more
backdoored examples are included in the training set. In
contrast, the model output for clean images (blue lines) is
not affected by the number of poisoned training examples.

In Figure 3, we plot the resulting model output for examples
z ∈ Φp(S) that have the feature ϕp (orange lines) and also
for examples z ̸∈ Φp(S) that do not contain the backdoor
feature. Note that by Definition 2, the average k-output of
the backdoor feature is the average of the orange lines, and
by Definition 3, the average k-strength of the backdoor fea-
ture is the average (instantaneous) slope of the orange line.
We observe that for the poisoned examples, the k-strength
is consistently positive (i.e., the output monotonically in-
creases). This observation motivates our assumption about
the strength of backdoor trigger features:
Assumption 1. Let ϕp be the backdoor feature, and Φp(S)
be its support (i.e., the backdoored training examples) and
let p := |Φp(S)|. Then, for some δ > 0, α ∈ (0, 1) and all
other features ϕ with |Φ(S)| = p, we assume that

sϕp (α · p) ≥ δ + sϕ(α · p)

Justifying the assumption. As we already discussed, As-
sumption 1 has the advantage of being directly tied to the
effectiveness of the backdoor attack. In particular, we know
that in the absence of backdoored training examples, the
model should do poorly on the inputs with the backdoor
trigger (otherwise, we would consider the model to have
already been compromised). Thus, gϕp

(0) is small. On
the other hand, for the backdoor attack to be effective, we
must have that gϕp

(p) is large, i.e., models trained on the
backdoor training set should perform “well” on backdoored
inputs. The mean value theorem4 thus implies that there
must one point 0 ≤ k ≤ p at which sϕp(k) is large.

4Informally, the mean value theorem says that for any continu-
ous function f and any interval [a, b], there must exist c ∈ [a, b]

5

Rethinking Backdoor Attacks

4. Detecting Backdoored Examples
The perspective from the previous sections suggests that we
need to be able to analyze the strength of features present
in a dataset to understand the effect of these features on a
model’s predictions. Particularly, such an analysis would
allow us to translate Assumption 1 into an algorithm for de-
tecting backdoor training examples. Specifically, we would
be able to estimate the feature strength sϕ(k) for a given
feature ϕ. If we had a specific feature ϕ in mind, we could
compute the feature strength sϕ(k) using Equations (1) and
(2) directly. In our case, however, identifying the feature of
interest (i.e., backdoor feature) is essentially our goal.

To this end, in this section we first show how to estimate
the strength of all viable features ϕ simultaneously. We
then demonstrate how we can leverage this estimate to de-
tect the strongest one among them. Our key tool here will
be the datamodeling framework (Ilyas et al., 2022). In
particular, Ilyas et al. (2022) have shown that, for every
example z, and for a model output function f correspond-
ing to training a deep neural network and evaluating it on
that example, there exists a weight vector wz ∈ R|S| such
that: E[f(z;S′)] ≈ 1⊤

S′wz for subsets S′ ∼ DS , where
1S′ ∈ {0, 1}|S| is the indicator vector of S′5. In other
words, we can approximate the specific outcome of training
a deep neural network on a given subset S′ ⊂ S as a linear
function of the presence of each training data example. As
the ability of the datamodeling framework to capture the
model output function will be critical to our method, we
state it as an explicit assumption.

Assumption 2 (Datamodel accuracy). For any example z,
with a corresponding datamodel weight wz , we have that

ES′∼DS

[(
E[f(z;S′)]− 1⊤

S′wz

)2] ≤ ε (3)

where ϵ > 0 represents a bound on the error of estimating
the model output function using datamodels.

Assumption 2 essentially guarantees that datamodels pro-
vide an accurate estimate of the model output function for
any example z and for any random subset S′ ∼ DS . Also,
we can in fact verify this assumption by sampling sets S′ and
computing the error from Assumption 2 directly (replacing
the inner expectation with an empirical average).

It turns out that this property alone—captured as a for-
mal lemma below—suffices to estimate the feature strength
sϕ(k) of any feature ϕ.

Lemma 1. For a feature ϕ, let 1ϕ(S) be the indicator vector
of its support Φ(S), 1n be the n-dimensional vector of ones,

such that the rate of change of f at c is equal to f(b)−f(a)
b−a

.
5The indicator vector 1S′ takes a value of 1 at index i, if

training example zi ∈ S′, and 0 otherwise.

and let h : Rn → Rn be defined as

h(v) =
1

∥v∥1
v − 1

n− ∥v∥1
(1n − v).

Then, under Assumption 2, there exists C > 0 such that∣∣∣∣∣∣sϕ(α · |Φ(S)|)− 1

|Φ(S)|
∑

z∈Φ(S)

w⊤
z h(1ϕ(S))

∣∣∣∣∣∣ ≤ Cε1/2n1/4.

(4)
where ϵ is as defined in Assumption 2.

So, Lemma 1 provides a closed-form expression—involving
only the datamodel weight vectors {wz}—for the (approx-
imate) feature strength sϕ(k) of feature ϕ. We provide a
proof of this lemma in Appendix B.

4.1. Poisoned examples as a maximum-sum submatrix

In the previous section, we have shown how we can leverage
datamodels to estimate any given feature’s strength. In
this section, we combine Lemma 1 and Assumption 1 (i.e.,
that the backdoor trigger constitutes the strongest feature in
the dataset) into an algorithm that provably finds backdoor
training examples (provided that Assumptions 1 and 2 hold).

To this end, recall that n = |S| and p = |Φp(S)|. Assump-
tion 1 then implies that sϕp

(α · p) (i.e., the strength of a
backdoor feature ϕp) is large. So, guided by Lemma 1, we
consider the following optimization problem:

arg max
v∈{0,1}n

h(v)⊤Wv s.t. ∥vi∥1 = p, (5)

where h is as in Lemma 1. The following lemma (proved in
Appendix C) shows that under Assumption 1, the solution
to (5) is the indicator vector of the backdoor examples.

Lemma 2. Suppose Assumption 1 holds for some δ and
Lemma 1 for some C. Then if δ > 2pCε1/2n1/4, the unique
maximizer of (5) is the vector 1ϕp(S), i.e., the indicator of
the backdoored examples, where ϵ is as in Assumption 2.

Now, the fact that for v ∈ {0, 1}n we have 1
⊤
nWv =

v⊤(diag(1⊤
nW))v allows us to express (5) as a submatrix-

sum maximization problem. In particular, we have that

argmax
v∈{0,1}n:∥v∥1=p

(
1

p
· v − 1

n− p
· (1n − v)

)⊤

Wv

= argmax
v∈{0,1}n:∥v∥1=p

v⊤
(
W − diag

(p

n
· 1⊤

nW
))

v.

4.2. Detecting backdoored examples

The formulation presented in (5) is difficult to solve di-
rectly, for multiple reasons. First, the optimization problem
requires knowledge of the number of poisoned examples

6

Rethinking Backdoor Attacks

|Φp(S)|, which is unknown in practice. Second, even if we
did know the number of poisoned examples, the problem
is still NP-hard in general (Branders et al., 2017). In fact,
even linearizing (5) and using the commercial-grade mixed-
integer linear program solver Gurobi (Gurobi Optimization,
LLC, 2021) takes several days to solve (per problem in-
stance) due to the sheer number of optimization variables.

We thus resort to a different approximation. For each k in
a pre-defined set of “candidate sizes” K, we set p equal to
k (in (5)). We then solve the resulting maximization prob-
lem using a greedy local search algorithm inspired by the
Kernighan-Lin heuristic for graph partitioning (Kernighan
& Lin, 1970). That is, starting from a random assignment
for v ∈ {0, 1}n, the algorithm considers all pairs of indices
i, j ∈ [n] such that vi ̸= vj , and such that swapping the
values of vi and vj would improve the submatrix sum ob-
jective. The algorithm greedily selects the pair that would
most improve the objective and terminates when no such
pair exists. We run this local search algorithm T = 1000
times for each value of k and collect the candidate solutions
{vk,l : k ∈ K, l ∈ [T]}.

Rather than using any one of these solutions, we combine
them to yield a final score. We define the score of example zi
as the weighted sum of the number of times it was included
in the solution of local search, that is,

si =
∑
k∈K

1

k

T∑
l=1

vk,l
i . (6)

Intuitively, we expect that backdoored training examples
will end up in many of the greedy local search solutions
(due to Assumption 1) and thus have a high score si. We
translate the scores (6) into a concrete defense by flagging
(and removing) the examples with the highest score.

5. Experiments
In the previous section, we developed an algorithm that
provably detects backdoored examples in a dataset when-
ever Assumptions 1 and 2 hold. We now consider several
settings, and two common types of backdoor attacks: dirty-
label attacks (Gu et al., 2017) and clean-label attacks (Turner
et al., 2019). For each setting, we verify whether our as-
sumptions hold, and then validate the effectiveness of our
proposed detection algorithm.

Experimental setup. In Table 1, we present a summary
of our experiments. For all of these experiments, we use the
CIFAR-10 dataset (Krizhevsky, 2009), and the ResNet-9
architecture (He et al., 2015), and compute the datamod-
els using the framework presented in (Ilyas et al., 2022).
Specifically, for each experiment and setup, we train a total
of 100,000 models, each on a random subset containing

Exp. Type α Clean Acc. Backdoor Acc.

1 DL 1.5% 86.64 19.90
2 DL 5% 86.67 12.92

3 DL 1.5% 86.39 49.57
4 DL 5% 86.23 10.67

5 CL 1.5% 86.89 75.58
6 CL 5% 87.11 41.89

7 CL (no adv.) 5% 86.94 71.68
8 CL (no adv.) 10% 87.02 52.08

Table 1: A summary of the different backdoor attacks we
consider. “DL” and “CL” stand for dirty- and clean-label
attacks respectively, “CL (no adv.)” is the non-adversarial
clean label attack from Turner et al. (2019).

50%6 of CIFAR-107, and chosen uniformly at random.

5.1. Verifying our assumptions

In Section 3, we presented two assumptions for our proposed
defense to (provably) work. We now verify whether these
assumptions hold in the experimental settings we consider,
then validate the effectiveness of our detection algorithm.

Datamodel accuracy. Lemma 1 states that datamodels
are good approximators of a feature strength (provided As-
sumption 2 holds). To validate whether this is the case, we
estimate the “ground-truth” feature strength sϕp

(k) of the
backdoor triggr feature ϕp as described in (1) and (2). More
precisely, we train 100,000 models on random subsets of the
training set, each containing 50% of the training examples.
We then compute how the model outputs change with the
inclusion/exclusion of the backdoored examples. We then
compute the model’s outputs for the backdoored examples
as a function of the number of backdoored training exam-
ples. We then estimate the feature strength sϕ(k) as the rate
of change of the model outputs for backdoored examples.

Afterwards, we estimate the feature strength using datamod-
els, as given by Equation (4). In particular, we compute
the datamodels matrix W, the indicator vector h

(
1ϕp(S)

)
from Lemma 1, and their product h

(
1ϕp(S)

)⊤
W ∈ R|S|

Each entry of this product is an estimate of the backdoor fea-
ture strength at every training example. As Figure 4 shows,
datamodels are indeed good approximators of the backdoor
trigger feature’s strength.
Backdoor trigger as the strongest feature. Recall that
Assumption 1 states that the backdoor trigger is the strongest
among all the features present in the dataset. To validate this
assumption in our settings, we leverage our approximation

6We train, in Exp. 2 from Table 1, each model on 30% of the
dataset. More details in Section 5.1.

7The chosen value of α from Assumption 1 is hence 1/2.

7

Rethinking Backdoor Attacks

0.005 0.000 0.005 0.010
Datamodels Estimate

0.02

0.01

0.00

0.01

0.02

0.03
Fe

at
ur

e
St

re
ng

th
Poisoned
Clean

Figure 4: Estimating feature strength using datamod-
els. Each orange (resp. blue) data point in the scatter plot
above represents a poisoned (resp. clean) training exam-
ple. The x-value of each data point represents the feature
strength estimated using datamodels (see Equation (4)), and
the y-value represents the feature strength as estimated us-
ing Equation (2). We see a strong linear correlation between
these two quantities for poisoned examples, which indicates
that datamodels provide a good estimate of feature strength.

of feature strength using datamodels. Specifically, our result
from Section 4 suggest;s that the obtained product should
be highly correlated with the ground-truth backdoor trigger
indicator vector 1ϕp(S). We thus measure this correlation
by computing the area under the ROC curve (AUROC)
between the product h(1ϕp(S))

⊤W and the indicator vector
1ϕp(S). As we can see in Table 2, the AUROC score is very
high in seven out of the eight settings, which suggests that
Assumption 1 indeed holds in these cases.

E1 E2 E3 E4 E5 E6 E7 E8

99.9 60.9 98.0 97.7 99.9 99.9 97.0 98.3

Table 2: AUROC of the backdoor feature strength and the
backdoor examples indicator vector for our setups from
Table 1.

Interestingly, we observe that we get a low AUROC in the
Exp. 2 from Table 1 (the one with a very large number of
backdoored examples), which indicates that one of our as-
sumptions does not hold in that case. To investigate the
reason, we inspect the backdoor feature strength. Figure 5
shows that, for subsets of the training set containing 50%
of the training examples, the model output does not change
as the number of poisoned samples increases, i.e., for these
subsets, the backdoor feature strength is essentially 0. Con-
sequently, Assumption 1 does not hold. To fix this problem,
we use smaller random subsets, i.e., ones containing 30%
of the training examples, when estimating the datamodels.
In this new setting, the backdoor feature strength is signifi-
cantly higher, and the AUROC between the poison indicator
vector and the feature strenght product jumps to 99.34%.
For the remainder of the paper, we will use this setup.

1228 1230 1232 1234 1236 1238 1240 1242
Number of Poisoned Examples

5.0

7.5

10.0

12.5

15.0

A
ve

ra
ge

 M
ar

gi
n

Poisoned images
Clean images

Figure 5: Model output for different number of back-
door training examples. Each orange (resp. blue) line
corresponds to a poisoned (resp. clean) example. The x-
value represents the number of backdoored examples present
in the training set, while the y-value represents the model
output (average margin) at that specific example. The rate of
change of the model output represents the feature strength.
We observe that for backdoored examples (orange lines)
from Exp. 2 (see Table 1), the model output does not change
as more training examples are poisoned. Consequently, the
backdoor feature strength is 0.

5.2. Evaluating the effectiveness of our defense

Evaluating our score. As a first step, we measure how
well our scores predict the backdoored examples in our eight
settings. Specifically, we compute our scores by running our
local search algorithm from Section 4.2 on the datamodels
matrix W, then aggregating the results from the different
runs. Following that, we check how well these scores cor-
relate with the backdoor examples indicator vector 1ϕp(S).
As Table 3 shows, there is a high correlation between these
two quantities in all setups (cf. Section 5.1). This high cor-
relation suggests that our local search algorithm generates a
score that is predictive of the backdoored examples.

E1 E2 E3 E4 E5 E6 E7 E8

94.3 92.25 74.4 80.2 93.4 93.2 91.1 95.5

Table 3: AUROC for our scores (see Section 4.2) and the
backdoor indicator vector for our setups from Table 1.

Evaluating the effectiveness of our proposed defense.
Given that our scores are predictive of the backdoor exam-
ples indicator vector, we expect that removing the examples
with the highest scores will be an effective defense against
the backdoor attack. To test this claim, for each of the back-
door attacks settings, we train a model on the backdoored
dataset, and compute the accuracy of this model on (a) the
clean validation set, (b) and on the backdoored validation
set8. We then remove from the training set the examples cor-

8By adding the trigger to all images of the clean validation set.

8

Rethinking Backdoor Attacks

Exp.
No Defense AC ISPL SPECTRE SS Ours

Clean Poisoned Clean Poisoned Clean Poisoned Clean Poisoned Clean Poisoned Clean Poisoned

1 86.64 19.90 86.76 19.68 86.13 86.15 86.71 20.17 85.52 30.99 85.05 85.06
2 86.67 12.92 85.41 12.93 85.88 85.82 - - 85.33 13.63 83.39 83.13

3 86.39 49.57 86.25 48.85 86.32 85.57 86.28 45.32 85.22 78.22 84.82 84.11
4 86.23 10.67 84.75 10.82 85.86 85.18 - - 84.85 13.33 84.64 83.72

5 86.89 75.58 86.73 82.83 86.04 85.89 86.82 80.65 85.67 85.41 83.82 83.72
6 87.11 41.89 86.85 51.05 86.18 86.11 86.97 51.18 85.68 85.60 84.88 84.79

7 87.02 71.68 86.90 73.28 86.50 82.31 86.72 76.97 85.70 82.70 84.19 84.02
8 86.94 52.08 86.81 56.78 86.04 71.27 86.63 52.27 85.87 71.93 84.81 84.66

Table 4: A summary of the model performances on a “clean” and “poisoned” validation sets after applying our method, as
well as a number of baselines in all the settings we consider. The high accuracy on both the clean and poisoned validation
sets indicates the effectiveness of our defense against the backdoor attacks we consider.

responding to the top 10% of the scores9, train a new model
on the resulting dataset, and then check the performance
of this new model on the clean and the fully-backdoored
validation sets. We also compare our detection algorithm
with several baselines, including Inverse Self-Paced Learn-
ing(ISPL) (Jin et al., 2021), Spectral Signatures (SS) (Tran
et al., 2018), SPECTRE (Hayase et al., 2021) and Activa-
tion Clustering (AC) (Chen et al., 2018). Table 4 shows that
there is no substantial drop in accuracy when evaluating the
models trained on the curated training set.

6. Related Work
Developing backdoor attacks and defenses in the context
of deep learning is a very active area of research (Gu et al.,
2017; Tran et al., 2018; Chen et al., 2018; Turner et al.,
2019; Saha et al., 2020; Shokri et al., 2020; Hayase et al.,
2021; Qi et al., 2022; Goldblum et al., 2022; Goldwasser
et al., 2022) (see e.g. (Li et al., 2022) for a survey). One
popular approach to defending against backdoor attacks
revolves around outlier detection in the latent space of neural
networks (Tran et al., 2018; Chen et al., 2018; Hayase et al.,
2021). Such defenses inherently fail in defending against
adaptive attacks that leave no trace in the latent space of
backdoored models (Shokri et al., 2020).

Another line of work investigates certified defenses against
backdoor attacks (Levine & Feizi, 2021; Wang et al., 2022).
To accomplish that, the proposed methods provide certifi-
cates by training separate models on different partitions of
the training set, and dropping the models trained on data
containing backdoored examples. This approach, however,

9We remove 20% in Exp. 2 from Table 1 since the number of
poisoned examples is larger.

significantly degrades the accuracy of the trained model,
and is only able to certify accuracy when the number of
backdoored examples is very small.

A number of prior works explore the applicability of
influence-based methods as defenses against different at-
tacks in deep learning (Koh & Liang, 2017). To the best of
our knowledge, only Lin et al. (2022) discuss using such
methods for defending against backdoor attacks. However,
their defense requires knowledge of the attack parameters
that are typically unknown. Closest to our work is that
of Jin et al. (2021), who consider a defense based on model
behavior rather than properties of any latent space.

7. Conclusion
In this paper, we proposed a new perspective on backdoor
attacks. Specifically, we argued that backdoor triggers are
fundamentally indistinguishable from existing features in
the dataset. Consequently, the task of detecting backdoored
training examples becomes equivalent to that of detecting
strong features. Based on this observation, we propose a
primitive—and a corresponding algorithm—for identifying
and removing backdoored examples. Through a wide range
of backdoor attacks, we demonstrated the effectiveness of
our approach.

8. Acknowledgments
Work supported in part by the NSF grants CNS-1815221
and DMS-2134108, and Open Philanthropy. This material
is based upon work supported by the Defense Advanced
Research Projects Agency (DARPA) under Contract No.
HR001120C0015. We thank the MIT Supercloud clus-
ter (Reuther et al., 2018) for providing computational re-
sources that supported part of this work.

9

Rethinking Backdoor Attacks

References
Branders, V., Schaus, P., and Dupont, P. Mining a sub-

matrix of maximal sum. In International Workshop on
New Frontiers in Mining Complex Patterns (NFMCP),
2017.

Carlini, N., Jagielski, M., Choquette-Choo, C. A., Paleka,
D., Pearce, W., Anderson, H., Terzis, A., Thomas, K.,
and Tramèr, F. Poisoning web-scale training datasets is
practical. In arXiv preprint arXiv:2302.10149, 2023.

Chen, B., Carvalho, W., Baracaldo, N., Ludwig, H., Ed-
wards, B., Lee, T., Molloy, I., and Srivastava, B. Detecting
backdoor attacks on deep neural networks by activation
clustering. arXiv preprint arXiv:1811.03728, 2018.

DeVries, T. and Taylor, G. W. Improved regularization
of convolutional neural networks with cutout. In arXiv
preprint arXiv:1708.04552, 2017.

Feldman, V. Does learning require memorization? a short
tale about a long tail. In Symposium on Theory of Com-
puting (STOC), 2019.

Goldblum, M., Tsipras, D., Xie, C., Chen, X.,
Schwarzschild, A., Song, D., Madry, A., Li, B., and
Goldstein, T. Dataset security for machine learning: Data
poisoning, backdoor attacks, and defenses. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
2022.

Goldwasser, S., Kim, M. P., Vaikuntanathan, V., and Zamir,
O. Planting undetectable backdoors in machine learning
models. arXiv preprint arXiv:2204.06974, 2022.

Gu, T., Dolan-Gavitt, B., and Garg, S. Badnets: Identify-
ing vulnerabilities in the machine learning model supply
chain. arXiv preprint arXiv:1708.06733, 2017.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2021. URL https://www.gurobi.com.

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and
Stahel, W. A. Robust statistics: the approach based on
influence functions, volume 196. John Wiley & Sons,
2011.

Hayase, J., Kong, W., Somani, R., and Oh, S. Spectre:
defending against backdoor attacks using robust statistics.
arXiv preprint arXiv:2104.11315, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition, 2015.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion prob-
abilistic models. In Neural Information Processing Sys-
tems (NeurIPS), 2020.

Huang, K., Li, Y., Wu, B., Qin, Z., and Ren, K. Backdoor
defense via decoupling the training process. In Interna-
tional Conference on Learning Representations (ICLR),
2022.

Ilyas, A., Park, S. M., Engstrom, L., Leclerc, G., and Madry,
A. Datamodels: Predicting predictions from training
data. In International Conference on Machine Learning
(ICML), 2022.

Jia, J., Cao, X., and Gong, N. Z. Intrinsic certified robustness
of bagging against data poisoning attacks. In AAAI, 2021.

Jin, C., Sun, M., and Rinard, M. Provable guarantees against
data poisoning using self-expansion and compatibility.
2021.

Kernighan, B. W. and Lin, S. An efficient heuristic proce-
dure for partitioning graphs. The Bell System Technical
Journal, 1970.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In International Conference
on Machine Learning, 2017.

Krizhevsky, A. Learning multiple layers of features from
tiny images. In Technical report, 2009.

Leclerc, G., Salman, H., Ilyas, A., Vemprala, S., Engstrom,
L., Vineet, V., Xiao, K., Zhang, P., Santurkar, S., Yang, G.,
et al. 3db: A framework for debugging computer vision
models. In arXiv preprint arXiv:2106.03805, 2021.

Leclerc, G., Ilyas, A., Engstrom, L., Park, S. M., Salman,
H., and Madry, A. ffcv. https://github.com/
libffcv/ffcv/, 2022.

Levine, A. and Feizi, S. Deep partition aggregation: Prov-
able defenses against general poisoning attacks. In Inter-
national Conference on Learning Representations, 2021.

Li, Y., Jiang, Y., Li, Z., and Xia, S.-T. Backdoor learning:
A survey. IEEE Transactions on Neural Networks and
Learning Systems, 2022.

Lin, J., Zhang, A., Lecuyer, M., Li, J., Panda, A., and Sen,
S. Measuring the effect of training data on deep learning
predictions via randomized experiments. arXiv preprint
arXiv:2206.10013, 2022.

Liu, T. Y., Yang, Y., and Mirzasoleiman, B. Friendly noise
against adversarial noise: A powerful defense against data
poisoning attacks. In arXiv preprint arXiv:2208.10224,
2022.

Liu, Y., Lee, W.-C., Tao, G., Ma, S., Aafer, Y., and Zhang,
X. Abs: Scanning neural networks for back-doors by
artificial brain stimulation. In ACM SIGSAC Conference
on Computer and Communications Security, 2019.

10

https://www.gurobi.com
https://github.com/libffcv/ffcv/
https://github.com/libffcv/ffcv/

Rethinking Backdoor Attacks

Lugosi, G. and Mendelson, S. Sub-gaussian estimators of
the mean of a random vector. The annals of statistics, 47
(2):783–794, 2019.

Qi, X., Xie, T., Mahloujifar, S., and Mittal, P. Circumventing
backdoor defenses that are based on latent separability.
arXiv preprint arXiv:2205.13613, 2022.

Reuther, A., Kepner, J., Byun, C., Samsi, S., Arcand, W., Be-
stor, D., Bergeron, B., Gadepally, V., Houle, M., Hubbell,
M., Jones, M., Klein, A., Milechin, L., Mullen, J., Prout,
A., Rosa, A., Yee, C., and Michaleas, P. Interactive su-
percomputing on 40,000 cores for machine learning and
data analysis. In 2018 IEEE High Performance extreme
Computing Conference (HPEC), pp. 1–6. IEEE, 2018.

Saha, A., Subramanya, A., and Pirsiavash, H. Hidden trigger
backdoor attacks. In Proceedings of the AAAI conference
on artificial intelligence, volume 34, pp. 11957–11965,
2020.

Shafahi, A., Huang, W. R., Najibi, M., Suciu, O., Studer,
C., Dumitras, T., and Goldstein, T. Poison frogs! tar-
geted clean-label poisoning attacks on neural networks.
In Advances in Neural Information Processing Systems
(NeurIPS), 2018.

Shokri, R. et al. Bypassing backdoor detection algorithms
in deep learning. In 2020 IEEE European Symposium
on Security and Privacy (EuroS&P), pp. 175–183. IEEE,
2020.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. In Neural Information
Processing Systems (NeurIPS), 2019.

Tran, B., Li, J., and Mądry, A. Spectral signatures in back-
door attacks. In Advances in Neural Information Process-
ing Systems (NeurIPS), 2018.

Turner, A., Tsipras, D., and Madry, A. Label-consistent
backdoor attacks. 2019.

Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng,
H., and Zhao, B. Y. Neural cleanse: Identifying and miti-
gating backdoor attacks in neural networks. In Proceed-
ings of 40th IEEE Symposium on Security and Privacy,
2019.

Wang, W., Levine, A., and Feizi, S. Improved certified
defenses against data poisoning with (deterministic) finite
aggregation. In International Conference on Machine
Learning, 2022.

Xie, C., Huang, K., Chen, P.-Y., and Li, B. Dba: Distributed
backdoor attacks against federated learning. In Interna-
tional Conference on Learning Representations, 2020.

Yang, Y., Liu, T. Y., and Mirzasoleiman, B. Not all poisons
are created equal: Robust training against data poisoning.
In International Conference on Machine Learning, 2022.

Zeng, Y., Park, W., Mao, Z. M., and Jia, R. Rethinking
the backdoor attacks triggers: A frequency perspective.
In International Conference on Computer Vision (ICCV),
2021.

11

Rethinking Backdoor Attacks

A. Model Predictions Formulation Used in Our Paper
In this work, we use the margin function (defined below) as the model output function f(z;S).

Definition 4 (Margin function). For a dataset S′ ⊂ S and a fixed z = (x, y) ∈ X × Y , the margin function f(x;S) is
defined as

f(z;S′) := the correct-class margin on z of a model trained on S’,

where the correct-class margin is the logit of the correct class minus the largest incorrect logit.

Intuitively, f(z;S′) maps from an example z and any subset of the training dataset S′ ⊂ S to the correct-class margin on z
after training (using any fixed learning algorithm) on S′.

Here we focus on margins because of their (empirically observed) suitability for ordinary least squares, as observed in (Ilyas
et al., 2022, Appendix C).

12

Rethinking Backdoor Attacks

B. Proof of Lemma 1
Lemma 1. For a feature ϕ, let 1ϕ(S) be the indicator vector of its support Φ(S), 1n be the n-dimensional vector of ones,
and let h : Rn → Rn be defined as

h(v) =
1

∥v∥1
v − 1

n− ∥v∥1
(1n − v).

Then, under Assumption 2, there exists C > 0 such that∣∣∣∣∣∣sϕ(α · |Φ(S)|)− 1

|Φ(S)|
∑

z∈Φ(S)

w⊤
z h(1ϕ(S))

∣∣∣∣∣∣ ≤ Cε1/2n1/4. (4)

where ϵ is as defined in Assumption 2.

We decompose the proof into two parts. In the first part, we show that we can approximate the feature strength sϕ(k) using
datamodel weights (Lemma 3). In the second part, we relate h to the expressions involving datamodel weights in Lemma 3
(Lemma 4).

Lemma 3. Let α ∈ (0, 1), and S′ be a subset of S, sampled uniformly at random, such that |S′| = α · |S|. Let
a := α · |Φ(S)|. Suppose α is such that c ≤ α ≤ 1− c for some absolute constant c ∈ (0, 1). Then, there exists a constant
C > 0 (dependending on c) such that we have:∣∣∣∣sϕ(a)− Ez∼Φ(S)

[
ES′∼DS

[
w⊤

z 1S′

∣∣∣∣ |Φ(S′)| = a+ 1

]
+ ES′∼DS

[
w⊤

z 1S′

∣∣∣∣ |Φ(S′)| = a

]]∣∣∣∣ ≤ Cε1/2n1/4. (7)

Proof. Recall that the feature strength sϕ(k) is defined as:

sϕ(k) :=gϕ(k + 1)− gϕ(k) (8)

=Ez∼Φ(S)

[
ES′∼DS ,S′ ̸∋z

[
f(z;S′)

∣∣∣∣ |Φ(S′)| = k + 1

]
− ES′∼DS ,S′ ̸∋z

[
f(z;S′)

∣∣∣∣ |Φ(S′)| = k

]]

For convenience, assume that a = α · |Φ(S)| is an integer. First, by triangle inequality, it is enough to show that:∣∣∣∣Ez∼Φ(S)

[
ES′∼DS

[
f(z;S′)

∣∣∣∣ |Φ(S′)| = a

]
− ES′∼DS

[
w⊤

z 1S′

∣∣∣∣ |Φ(S′)| = a

]]∣∣∣∣ ≤ 1

2
· Cε1/2n1/4 (9)

and ∣∣∣∣Ez∼Φ(S)

[
ES′∼DS

[
f(z;S′)

∣∣∣∣ |Φ(S′)| = a+ 1

]
− ES′∼DS

[
w⊤

z 1S′

∣∣∣∣ |Φ(S′)| = a+ 1

]]∣∣∣∣ ≤ 1

2
· Cε1/2n1/4. (10)

We address Equation (9), and the bound for Equation (10) follows analogously.

To address Equation (9), we will show a stronger (per-example) statement:∣∣∣∣ES′∼DS

[
f(z;S′)

∣∣∣∣ |Φ(S′)| = a

]
− ES′∼DS

[
w⊤

z 1S′

∣∣∣∣ |Φ(S′)| = a

]∣∣∣∣ ≤ 1

2
· Cε1/2n1/4 (11)

Trivially, this implies that the expectation over z is also bounded from above by 1
2 · Cε1/2n1/4. To show that Equation (11)

holds, we first compute the probability of a random subset S′ containing a poisoned samples, and then show an upper bound
for Equation (9) leveraging the derived probability by using the definition of conditional expectation.

By directly counting, we have that

PS′∼DS
[|Φ(S′)| = a] =

(|Φ(S)|
a

)(|S|−|Φ(S)|
α·|S|−a

)(|S|
α·|S|

) .

13

Rethinking Backdoor Attacks

To ease notation, let n := |S| and p := |Φ(S)|, thus a = αp. Rewriting, we have

PS′∼DS
[|Φ(S′)| = αp] =

(
p
αp

)(
n−p

α(n−p)

)(
n
αn

) .

Next,

PS′∼DS
[|Φ(S′)| = αp+ 1] =

(
p

αp+1

)(
n−p

α(n−p)−1

)(
n
αn

)
=

(
p(1− α)

αp+ 1
· α(n− p)

(1− α)(n− p) + 1

)
· PS′∼DS

[|Φ(S′)| = αp]

We first show that the ratio of the two probabilities is bounded by a constant, i.e.,

p(1− α)

αp+ 1
· α(n− p)

(1− α)(n− p) + 1

=
α

α+ 1
p

· 1− α

1− α+ 1
n−p

≥ α

α+ α
· 1− α

2− α
≥ 1

2
· c

2− c

where we used that 1 ≤ αp and c ≤ α ≤ 1− c. Thus

PS′∼DS
[|Φ(S′)| = αp+ 1] ≥ c

2(2− c)
PS′∼DS

[|Φ(S′)| = αp].

Now we proceed with bounding PS′∼DS
[|Φ(S′)| = αp]. Using Stirling’s approximation, we have

PS′∼DS
[|Φ(S′)| = αp] ≍

√
n

p(n− p)

1

α(1− α)
≥ 2

C2 ·
√
n

for some constant C > 0. Now from the triangle inequality, Jensen’s inequality and Markov’s inequality we have that for
sufficiently large n

ES′∼DS

[
f(z;S′)

∣∣∣∣ |Φ(S′)| = αp

]
− ES′∼DS

[
w⊤

z 1S′

∣∣∣∣ |Φ(S′)| = αp

]
≤ ES′∼DS

[∣∣f(z;S′)− w⊤
z 1S′

∣∣ ∣∣∣∣ |Φ(S′)| = αp

]
≤

√
ES′∼DS

[
(f(z;S′)− w⊤

z 1S′)
2

∣∣∣∣ |Φ(S′)| = αp

]
≤ 1

2
Cε1/2n1/4.

The case for Equation (10) is analogous.

Next, we show that w⊤
z h(1Φ(S)) corresponds to the desired difference of conditional expectations. In this proof, we let

hϕ = h(1Φ(S)) for brevity.

Lemma 4. We have for every x ∈ S that

Ez∼Φ(S)

[
ES′∼DS

[
w⊤

z 1S′

∣∣∣∣ |Φ(S′)| = α · |Φ(S)|+ 1

]
− ES′∼DS

[
w⊤

z 1S′

∣∣∣∣ |Φ(S′)| = α · |Φ(S)|
]]

= Ez∼Φ(S)w
⊤
z hϕ.

14

Rethinking Backdoor Attacks

Proof. Again, let us consider the case for a single example z, and let n = |S|, p = |Φ(S)|. Then we can write

ES′∼DS

[
w⊤

z 1S′

∣∣∣∣ |Φ(S′)| = αp

]
= ES′∼DS

[∑
z∈S

1z∈S′wxz

∣∣∣∣ |Φ(S′)| = αp

]

=
∑
z∈S

PS′∼DS

[
z ∈ S′

∣∣∣∣ |Φ(S′)| = αp

]
· wxz.

There are a total of (
p

αp

)(
n− p

α(n− p)

)
sets satisfying |Φ(S′)| = αp. Among these, given that the sample z contains the feature ϕ, i.e., ϕ(z) = 1, there are(

p− 1

αp− 1

)(
n− p

α(n− p)

)
random subsets containing z. So for all z containing ϕ we have

P
[
z ∈ S′

∣∣∣∣ϕ(z) = 1, |Φ(S′)| = αp

]
=

αp

p
.

Similarly, for all samples z that do not contain ϕ ,i.e, ϕ(z) = 0, we have that

P
[
z ∈ S′

∣∣∣∣ϕ(z) = 0, |Φ(S′)| = αp

]
=

α(n− p)

n− p
.

Thus, overall

ES′∼DS

[
w⊤

z 1S′

∣∣∣∣ |Φ(S′)| = αp

]
=

αp

p
w⊤

z 1ϕ(S) +
α(n− p)

n− p
w⊤

z (1− 1ϕ(S))

= w⊤
z

(
αp

p
1ϕ(S) +

α(n− p)

n− p
(1− 1ϕ(S))

)
= w⊤

z

(
αp

p
1ϕ(S) +

α(n− p)

n− p
(1− 1ϕ(S))

)
Analogously,

ES′∼DS

[
w⊤

z 1S′

∣∣∣∣ |Φ(S′)| = αp+ 1

]
=

αp+ 1

p
w⊤

z 1ϕ(S) +
α(n− p)− 1

n− p
w⊤

z (1− 1ϕ(S))

= w⊤
z

(
αp+ 1

p
1ϕ(S) +

α(n− p)− 1

n− p
(1− 1ϕ(S))

)
= w⊤

z

(
αp+ 1

p
1ϕ(S) +

α(n− p)− 1

n− p
(1− 1ϕ(S))

)

We then subtract the two terms to get:

ES′∼DS

[
w⊤

z 1S′

∣∣∣∣ |Φ(S′)| = αp+ 1

]
− ES′∼DS

[
w⊤

z 1S′

∣∣∣∣ |Φ(S′)| = αp

]
= w⊤

z

(
1

p
1ϕ(S) −

1

n− p
(1− 1ϕ(S))

)
= w⊤

z h(1ϕ(S))

Finally, we get the desired results over all examples z ∈ Φ(S) by directly averaging.

Proof of Lemma 1. The proof of Lemma 1 follows by combining the results of Lemma 3 and Lemma 4:

15

Rethinking Backdoor Attacks

∣∣sϕ(α · |Φ(S)|)− Ez∼Φ(S)w
⊤
z h(1ϕ(S))

∣∣
=

∣∣∣∣sϕ(α · |Φ(S)|)− Ez∼Φ(S)

[
ES′∼DS

[
w⊤

z 1S′

∣∣∣∣ |Φ(S′)| = α · |Φ(S)|+ 1

]
+ ES′∼DS

[
w⊤

z 1S′

∣∣∣∣ |Φ(S′)| = α · |Φ(S)|
]]∣∣∣∣

≤
∣∣∣∣Ez∼Φ(S)

[
ES′∼DS

[
f(z;S′)

∣∣∣∣ |Φ(S′)| = α · |Φ(S)|+ 1

]
− ES′∼DS

[
w⊤

z 1S′

∣∣∣∣ |Φ(S′)| = α · |Φ(S)|+ 1

]]∣∣∣∣
+

∣∣∣∣Ez∼Φ(S)

[
ES′∼DS

[
f(z;S′)

∣∣∣∣ |Φ(S′)| = α · |Φ(S)|
]
− ES′∼DS

[
w⊤

z 1S′

∣∣∣∣ |Φ(S′)| = α · |Φ(S)|
]]∣∣∣∣

≤ 2 · 1
2
· Cε1/2n1/4 = Cε1/2n1/4

16

Rethinking Backdoor Attacks

C. Proof of Lemma 2
Lemma 2. Suppose Assumption 1 holds for some δ and Lemma 1 for some C. Then if δ > 2pCε1/2n1/4, the unique
maximizer of (5) is the vector 1ϕp(S), i.e., the indicator of the backdoored examples, where ϵ is as in Assumption 2.

Proof. The result follows directly from Assumption 1 and Lemma 1. In particular, let ϕv be a feature whose corresponding
support Φv(S) is of size p.

h(v)⊤Wv =

(
1

n
· v − 1

n− p
· (1n − v)

)⊤

Wv

=
[
h⊤
v wz1 h⊤

v wz2 . . . h⊤
v wzn

]
· v

=
∑

z∈Φv(S)

h⊤
v wz.

First, from Lemma 1, we have that:∑
z∈Φv(S)

h⊤
v wz ≤

∑
z∈Φv(S)

sv(z, α∥v∥1) + pC∗ε1/2n1/4

Now let vp be the indicator vector for the poisoned examples. We similarly have from Lemma 1:∑
z∈Φp(S)

h⊤
p wz ≥

∑
z∈Φp(S)

sp(z, α∥v∥1)− pC∗ε1/2n1/4

Thus for any v ̸= vp we have that

h⊤
p Wvp − h⊤

v Wv =
∑

z∈Φp(S)

h⊤
p wz −

∑
z∈Φv(S)

h⊤
v wz

≥
∑

z∈Φp (S)

svp(z, α∥vp∥1)−
∑

z∈Φv(S)

sv(z, α∥v∥1)− 2pC∗ε1/2n1/4

We now use Assumption 1 that states:

∑
z∈Φp(S)

sϕp (z, α · p)−
∑

z∈Φ(S)

sϕ(z, α · p) ≥ δ∗

By combining these two inequalities, we obtain:

h⊤
p Wvp − h⊤

v Wv =
∑

z∈Φp(S)

h⊤
p wz −

∑
z∈Φv(S)

h⊤
v wz

≥
∑

z∈Φp (S)

svp(z, α∥vp∥1)−
∑

z∈Φv(S)

sv(z, α∥v∥1)− 2pC∗ε1/2n1/4

≥ δ∗ − 2pC∗ε1/2n1/4

This concludes the proof that the solution of the optimization program in Equation (5) is the poison indicator vector vp, as
long as δ∗ > 2pC∗ε1/2n1/4.

17

Rethinking Backdoor Attacks

D. Experimental Setup

Figure 6: We execute the poisoning attacks with three types of triggers: (a) one black pixel on top left corner (first two
images), (b) 3x3 black square on top left corner (third and fourth images), and (c) 3-way triggers adapted from (Xie et al.,
2020) (last four images).

D.1. Backdoor Attacks

Dirty-Label Backdoor Attacks. The most prominent type of backdoor attacks is a dirty-label attack (Gu et al., 2017).
During a dirty-label attack, the adversary inserts a trigger into a subset of the training set, then flips the label of the poisoned
samples to a particular target class yb. We mount four different dirty-label attacks, by considering two different triggers, and
two different levels of poisoning (cf. Exp. 1 to 4 in Table 1).

Clean-Label Backdoor Attacks. A more challenging attack is the clean-label attack (Shafahi et al., 2018; Turner et al.,
2019)10 where the adversary avoids changing the label of the poisoned samples. To mount a successful clean-label attack,
the adversary poisons samples from the target class only, hoping to create a strong correlation between the target class and
the trigger.

We perform two types of clean-label attacks. During the first type (Exp. 5 and 6 from Table 1), we perturb the image with an
adversarial example before inserting the trigger, as presented in (Turner et al., 2019). During the second type of clean-label
attacks (Exp. 7 and 8 from Table 1), we avoid adding the adversarial example, however, we poison more samples to have an
effective attack.

Trigger. We conduct our experiments with two types of triggers. The first type is a fixed pattern inserted in the top left
corner of the image. The trigger is unchanged between train and test time. This type of trigger has been used in multiple
works (Gu et al., 2017; Turner et al., 2019). The other type of trigger is an m-way trigger, with m=3 (Xie et al., 2020).
During training, one of three triggers is chosen at random for each image to be poisoned, and then the trigger is inserted into
one of three locations in the image. At test time, all three triggers are inserted at the corresponding positions to reinforce the
signal. We display in Figure 6 the triggers used to poison the dataset.

D.2. Training Setup

Training CIFAR models. In this paper, we train a large number of models on different subsets of CIFAR-10 in order to
compute the datamodels. To this end, we use the ResNet-9 architecture (He et al., 2015)11. This smaller version of ResNets
was optimized for fast training.

Training details. We fix the training procedure for all our models. We show the hyperparameter details in Table 512. One
augmentation was used for dirty-label attacks (Cutout (DeVries & Taylor, 2017)) to improve the performance of the model
on CIFAR10. Similar to (Turner et al., 2019), we do not use any data augmentation when performing clean-label attacks.

Performance. In order to train a large number of models, we use the FFCV library for efficient data-loading (Leclerc
et al., 2022). The speedup from using FFCV allows us to train a model to convergence in ∼40 seconds, and 100k models for
each experiment using 16 V100 in roughly 1 day13.

10We evaluate the clean-label attack as presented in (Turner et al., 2019)
11https://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/cifar10.py
12Our implementation and configuration files will be available in our code.
13We train 3 models in parallel on every V100.

18

https://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/cifar10.py

Rethinking Backdoor Attacks

Optimizer Epochs Batch Size Peak LR Cyclic LR Peak Epoch Momentum Weight Decay

SGD 24 1,024 0 5 0.9 4e-5

Table 5: Hyperparameters used to train ResNet-9 on CIFAR10.

Computing datamodels. We adopt the framework presented in (Ilyas et al., 2022) to compute the datamodels of each
experiment. Specifically, we train 100k models on different subsets containing 50% of the training set chosen at random.
We then compute the datamodels as described in (Ilyas et al., 2022).

Local Search. We approximate the solution of the problem outlined in (5) using a local search heuristic presented in
(Kernighan & Lin, 1970). We iterate over ten sizes for the poison mask: {10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120}.
For each size, we collect 1,000 different solutions by starting from different initialization of the solution.

D.3. Estimating Theoretical Quantities

Recall the average margin definition presented in (1). In particular:

gϕ(k) = Ez∼Φ(S)

[
ES′∼DS

[
f(z;S′)

∣∣∣∣|Φ(S′)| = k, z ̸∈ S′
]]

(12)

where S′ is a subset of the training set, f(z;S′) is the margin of the model on example z when trained on the dataset S′,
Φ(S′) is the subset of the set S′ containing the poisoned feature, and k is the number of poisoned samples. Estimating the
average margins requires training a large number of models on different subsets, and measure–for every sample z and every
number of poisoned samples k–the margins of the trained model.

For the purpose of this paper, we leverage the datamodels computation framework to estimate these averages. In particular,
to compute the datamodels weights, we train a large number of models on different subsets S1, S2, . . . , ST of the training
set S14. For every subset Si, we record the number of poisoned samples in the subset, then we estimate the average margin
by averaging the margins over the different subsets that contain k poisoned samples.

Nϕ(z, k) =

T∑
i=1

1(|Φ(Si)|=k)∧ (z/∈Si) (13a)

ES′∼DS

[
f(z;S′)

∣∣∣∣|Φ(S′)| = k, z ̸∈ S′
]
≈ 1

Nϕ(k)

T∑
i=1

f(z;Si) · 1(|Φ(Si)|=k)∧ (z/∈Si) (13b)

gϕ(k) ≈
1

|Φ(S)|
∑

z∈Φ(S)

1

Nϕ(z, k)

T∑
i=1

f(z;Si) · 1(|Φ(Si)|=k)∧ (z/∈Si) (13c)

By a training 100k models on different subsets of the dataset, we obtain reasonable estimates of the marginal effects for
every sample z = (x, y).

14We refer the reader to (Ilyas et al., 2022) for more details.

19

Rethinking Backdoor Attacks

E. Omitted Plots
E.1. Average Margin Plots

In this section, we show for all the experiments the plots of the average margin for clean and poisoned samples as a function
of the number of poisoned samples in the dataset (cf. Fig. 3 in the main paper).

360 380 400
Number of Poisoned Examples

10

5

0

5

10

15

A
ve

ra
ge

 M
ar

gi
n

Exp. 1
Clean
Poisoned

1230 1235 1240
Number of Poisoned Examples

0

5

10

15

A
ve

ra
ge

 M
ar

gi
n

Exp. 2
Clean
Poisoned

340 360 380
Number of Poisoned Examples

5

0

5

10

15

A
ve

ra
ge

 M
ar

gi
n

Exp. 3
Clean
Poisoned

1230 1240 1250
Number of Poisoned Examples

10

0

10

20

30

A
ve

ra
ge

 M
ar

gi
n

Exp. 4
Clean
Poisoned

30 40 50
Number of Poisoned Examples

10

5

0

5

10

15

A
ve

ra
ge

 M
ar

gi
n

Exp. 5
Clean
Poisoned

100 110 120 130 140
Number of Poisoned Examples

5

0

5

10

A
ve

ra
ge

 M
ar

gi
n

Exp. 6
Clean
Poisoned

100 110 120 130 140
Number of Poisoned Examples

0

5

10

15

A
ve

ra
ge

 M
ar

gi
n

Exp. 7
Clean
Poisoned

220 240 260
Number of Poisoned Examples

0

5

10

15

20

A
ve

ra
ge

 M
ar

gi
n

Exp. 8
Clean
Poisoned

Figure 7: We plot for all the experiments the average margin for five clean samples (left) and five poisoned samples (right) as
the number of poisoned samples in the training set increases. We observe that the average margin for clean samples (without
the trigger) is constant when poisoning more samples in the dataset. In contrast, the average margin for poisoned samples
(with the trigger) increases when the number of poisoned samples increases in the dataset, confirming our assumptions.

E.2. Estimated Backdoor Feature Strength Plots

In this section, we show for all the experiments the plots of the estimated backdoor feature strength, and the approximation
we obtain using datamodels (cf. Figure 4 in the main paper).

0.005 0.000 0.005
Datamodels Estimate

0.025

0.000

0.025

0.050

Fe
at

ur
e

St
re

ng
th

Exp. 1
Poisoned
Clean

0.000 0.002
Datamodels Estimate

0.01

0.00

0.01

0.02

Fe
at

ur
e

St
re

ng
th

Exp. 2
Poisoned
Clean

0.000 0.005
Datamodels Estimate

0.02

0.00

0.02

0.04

Fe
at

ur
e

St
re

ng
th

Exp. 3
Poisoned
Clean

0.002 0.000 0.002 0.004
Datamodels Estimate

0.02

0.00

0.02

Fe
at

ur
e

St
re

ng
th

Exp. 4
Poisoned
Clean

0.025 0.000 0.025 0.050
Datamodels Estimate

0.0

0.1

0.2

0.3

Fe
at

ur
e

St
re

ng
th

Exp. 5
Poisoned
Clean

0.00 0.01 0.02
Datamodels Estimate

0.00

0.05

0.10

Fe
at

ur
e

St
re

ng
th

Exp. 6
Poisoned
Clean

0.00 0.01
Datamodels Estimate

0.000

0.025

0.050

Fe
at

ur
e

St
re

ng
th

Exp. 7
Poisoned
Clean

0.005 0.000 0.005 0.010
Datamodels Estimate

0.02

0.00

0.02

Fe
at

ur
e

St
re

ng
th

Exp. 8
Poisoned
Clean

Figure 8: We plot for all the experiments the estimated backdoor feature strength and the approximation with datamodels
presented in Equation 4. We observe for poisoned samples (in red) a good linear correlation between the strengths and the
datamodels’ approximation. Additionally, we observe no noticeable correlation for clean samples (in green).

20

Rethinking Backdoor Attacks

E.3. Distribution of Datamodels Values

In this section, we plot for each experiment the distribution of the datamodels weights for all experiments. In particular,
recall that the datamodels weight wz[i] represents the influence of the training sample zi on the sample z. We show below
the distribution of the effect of 1) poisoned samples on poisoned samples, 2) the poisoned samples on the clean samples and
4) the clean samples on the clean samples.

1 0 1 2 3
Datamodel Value

0.0

0.2

0.4

Fr
eq

ue
nc

y

Exp. 1
Poison to Poison
Poison to Clean
Clean to Clean

0 1 2
Datamodel Value

0.0

0.2

0.4

Fr
eq

ue
nc

y

Exp. 2
Poison to Poison
Poison to Clean
Clean to Clean

0 1 2
Datamodel Value

0.0

0.2

0.4

Fr
eq

ue
nc

y

Exp. 3
Poison to Poison
Poison to Clean
Clean to Clean

0 1 2
Datamodel Value

0.0

0.2

0.4

0.6

Fr
eq

ue
nc

y

Exp. 4
Poison to Poison
Poison to Clean
Clean to Clean

0 1 2
Datamodel Value

0.0

0.2

0.4

Fr
eq

ue
nc

y

Exp. 5
Poison to Clean
Clean to Clean
Poison to Poison

0 1 2
Datamodel Value

0.0

0.2

0.4

0.6

Fr
eq

ue
nc

y

Exp. 6
Poison to Poison
Poison to Clean
Clean to Clean

0 1 2 3
Datamodel Value

0.0

0.2

0.4

Fr
eq

ue
nc

y

Exp. 7
Poison to Poison
Poison to Clean
Clean to Clean

0 1 2
Datamodel Value

0.0

0.2

0.4

0.6

Fr
eq

ue
nc

y

Exp. 8
Poison to Poison
Poison to Clean
Clean to Clean

Figure 9: We plot the distribution of the datamodels weights for all the experiments. We clearly see that the effect of
poisoned samples on other poisoned samples is generally higher than the effect of poisoned samples on clean samples, and
than clean samples on each other.

E.4. Attack Success Rate (ASR)

In the main paper, we presented our results by measuring the accuracy of a model on a clean and a poisoned validation sets.
Another relevant metric is the Attack Success Rate (ASR) which measures the probability that the model predicts the target
class after inserting the trigger into an image. As we can see in Table 6, our defense leads to a low ASR in seven out of eight
setups.

Table 6: We compare our method against multiple baselines in a wide range of experiments. We observe that our algorithm
leads to a low ASR in all of our settings. Refer to Table 1 for the full experiments parameters.

Exp. No Defense AC ISPL SPECTRE SS Ours

1 87.94 88.26 0.70 87.67 73.78 0.81
2 96.38 96.32 0.67 - 95.40 1.44

3 50.49 51.33 0.58 55.68 10.44 1.18
4 99.21 99.02 0.75 - 95.85 2.30

5 15.66 5.35 0.71 7.66 0.80 0.92
6 58.57 45.44 0.66 46.78 0.67 0.77

7 26.09 23.64 9.90 18.48 9.17 3.56
8 50.62 44.82 26.07 44.14 24.72 3.42

21

	Introduction
	Setup and Motivation
	Is the Trigger a Backdoor or a Feature?
	Implicit Assumptions in Existing Defenses

	An Alternative Assumption
	Detecting Backdoored Examples
	Poisoned examples as a maximum-sum submatrix
	Detecting backdoored examples

	Experiments
	Verifying our assumptions
	Evaluating the effectiveness of our defense

	Related Work
	Conclusion
	Acknowledgments
	Model Predictions Formulation Used in Our Paper
	Proof of lemma:sensitivity-approx
	Proof of lemma:maximizer-is-indicator
	Experimental Setup
	Backdoor Attacks
	Training Setup
	Estimating Theoretical Quantities

	Omitted Plots
	Average Margin Plots
	Estimated Backdoor Feature Strength Plots
	Distribution of Datamodels Values
	Attack Success Rate (ASR)

