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Abstract
While deep neural networks play significant roles
in many research areas, they are also prone to
overfitting problems under limited data instances.
To overcome overfitting, this paper introduces
the first active learning method to incorporate
the sharpness of loss space into the acquisition
function. Specifically, our proposed method,
Sharpness-Aware Active Learning (SAAL), con-
structs its acquisition function by selecting un-
labeled instances whose perturbed loss becomes
maximum. Unlike the Sharpness-Aware learning
with fully-labeled datasets, we design a pseudo-
labeling mechanism to anticipate the perturbed
loss w.r.t. the ground-truth label, which we pro-
vide the theoretical bound for the optimization.
We conduct experiments on various benchmark
datasets for vision-based tasks in image classi-
fication, object detection, and domain adaptive
semantic segmentation. The experimental re-
sults confirm that SAAL outperforms the base-
lines by selecting instances that have the poten-
tially maximal perturbation on the loss. The
code is available at https://github.com/
YoonyeongKim/SAAL.

1. Introduction
A large-scale dataset is important because its wide cover-
age in the data space provides the generalization capabil-
ity (Bartlett & Mendelson, 2002). If a deep learning model
is trained with only a few data instances, the flexibility of
the learning model becomes prone to overfitting (Keskar
et al., 2017; Neyshabur et al., 2017). To overcome this prob-
lem of small datasets, active learning has been developed to
iteratively select key data instances through acquisition func-
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tions, which aims at the efficient use of the limited budget
for annotations from oracle (Cohn et al., 1996). This effi-
cient usage is a difficult challenge because the value of data
instance needs to be anticipated without any supervision in
prior to the oracle query (Dasgupta & Hsu, 2008).

This paper proposes a new active learning algorithm, named
Sharpness-Aware Active Learning (SAAL), that proposes
an acquisition function by reducing the potential sharpness
of loss surface after learning an instance, which is an acqui-
sition candidate. While we are inspired by Sharpness-Aware
Minimization, or SAM (Foret et al., 2020), which minimizes
the maximally perturbed loss of training datasets for the flat
loss surface, the adaptation of SAM to active learning re-
quires anticipation of the sharpness without a label on a data
instance. Therefore, we utilize pseudo-labels predicted by
the current classifier.

This utilization of pseudo-labels calls for theoretical investi-
gations, so we show that pseudo-labeling becomes the lower
bound of the maximally perturbed loss w.r.t. ground-truth
label, so such utilization can be a part of acquisition func-
tions. Also, we theoretically derive the upper bound of the
proposed acquisition score of SAAL, which includes the
loss, the norm of gradients, and the first eigenvalue of loss
Hessian matrix. Among the three terms of the upper bound,
the loss and the gradient terms are widely used acquisition
score for active learning, which captures the model change
by acquiring the instance (Yoo & Kweon, 2019; Ash et al.,
2020; Settles et al., 2007). Meanwhile, the first eigenvalue,
which is newly considered by SAAL, is connected to the
loss sharpness (Keskar et al., 2017), and this added term is
related to the generalization of the model. We summarize
our contributions in three aspects.

• SAAL is the first active learning framework to consider
the loss sharpness in its acquisition function.

• We prove the theoretic bound of the acquisition score
by utilizing the pseudo-label in SAAL.

• SAAL performs better than baseline models in various
benchmarks and tasks.
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2. Background
2.1. Notations

We assume a classifier parameterized by θ as fθ : Rd →
R|Y |; where d is the dimension of data instance, x;
and Y is the set of candidate classes. There are two
datasets: a dataset with labels, XL, and the other unla-
beled dataset, XU . We denote the acquisition function
of active learning as facq : Rd → R, which receives a
data instance as input, and which calculates the infor-
mativeness, or the acquisition score. The loss of a data
instance, x, w.r.t. the given label y is represented as
l(x, y; θ) := lCE(σ(fθ(x)), y), where lCE is cross-entropy
loss, and σ(·) is a softmax function. The total loss of a
dataset, S, is represented as LS(θ) =

1
N

∑N
i=1 l(xi, yi; θ),

where S = {(xi, yi)|i = 1, ..., N}. Lastly, we define the
pseudo-label, ŷ = argmaxj∈Y σ(fθ(x))j ; and we denote
the ground-truth label as ȳ.

2.2. Active Learning

There are several active learning scenarios that differ by the
setting of data accessibility: 1) membership-query synthe-
sis (Angluin, 1988; 2004), 2) stream-based active learning
(Atlas et al., 1989; Cohn et al., 1994), and 3) pool-based
active learning (Lewis & Gale, 1994). This paper focuses on
pool-based active learning: an unlabeled and large dataset
becomes a data pool, and the active learner sequentially
selects the informative instances by acquisitions.

There are three research directions in Pool-based active
learning. 1) Uncertainty-based active learning adopts
the acquisition function, facq, to calculate the uncertainty
of each unlabeled instance with regard to the current deep
learning model, and an oracle provides the ground-truth
label of the selected unlabeled instances with the highest
uncertainty. Since the acquisition score is usually calculated
for an unlabeled instance, xu ∈ XU , w.r.t. the current
model, fθ, it is expanded as facq(xu; fθ), resulting in the
selection rule as the below.

XS = argmax
X

′
S⊂XU

∑
xu∈X

′
S

facq(xu; fθ) (1)

Entropy, which is denoted as fEnt
acq (xu; fθ) = H[fθ(xu)] =

−
∑

j σ(fθ(xu))j log σ(fθ(xu))j , or variation ratio, which
is denoted as fV ar

acq = 1 −maxj σ(fθ(xu))j , are the most
widely used methods for calculating uncertainty (Shannon,
1948; Freeman, 1965).

Recently, additional networks are used to approximate the
uncertainty of each instance. Learning Loss for Active
Learning (LL4AL) (Yoo & Kweon, 2019) trains the loss
prediction module, fLPM , which takes the hidden fea-
ture maps as input and predicts the expected loss as out-
put. Then, LL4AL constructs the acquisition functions

fLL4AL
acq (xu) = fLPM (fkθ (xu)|k=1,...,K), where fkθ is the
k-th hidden feature map. Variational Adversarial Active
Learning (VAAL) (Sinha et al., 2019) trains a discriminator,
fdis, which takes a data instance as input and discriminates
whether the instance belongs to the labeled dataset or the
unlabeled dataset. Then, VAAL calculates the probabil-
ity of xu belonging to the unlabeled dataset, XU , as the
acquisition score, i.e., fV AAL

acq (xu) = fdis(xu).

2) Diversity-based active learning, such as Coreset ap-
proach (Sener & Savarese, 2018), selects instances that
represent the whole distribution of unlabeled instances, by
solving a mixed integer programming. 3) Hybrid-based
active learning is proposed to select the uncertain instances
in a diverse way. In BADGE (Ash et al., 2020), the acquisi-
tion function is calculated as the gradient embedding of xu
w.r.t. the parameter of the last fully connected layer, θout,
that is fBADGE

acq (xu) =
∂

∂θout
l(xu, ŷu; θ), where ŷu is the

pseudo-label of xu. Then, this embedding becomes an input
to the k-means++ seeding algorithm (Arthur & Vassilvitskii,
2006).

2.3. Sharpness-Aware Minimization (SAM)

As an independent research direction from active learning,
there is an increasing investigation on the flatness (or sharp-
ness) of loss response surfaces, and their corresponding
optimization because the flat minima is confirmed to have
deep connection to the generalization performance of neural
networks (Jiang et al., 2019).

Sharpness-Aware Minimization (SAM) is an optimizer for
training the deep neural network (Foret et al., 2020) to weigh
the importance of flat minima. Denoting the loss on the
dataset S w.r.t. the current parameter θ as LS(θ), the op-
timization objective of SAM is minimizing the maximally
perturbed loss with the regularization on the parameter, as
below.

min
θ

max
∥ϵ∥≤ρ

LS(θ + ϵ) + γ∥θ∥22 (2)

Here, γ is a hyperparameter that controls the magnitude of
the effect of regularization, ϵ is the perturbation to the pa-
rameter, and ρ defines the possible range of the perturbation.

This maximally perturbed loss can be decomposed as
max∥ϵ∥≤ρ LS(θ + ϵ) = (max∥ϵ∥≤ρ LS(θ + ϵ)− LS(θ)) +
LS(θ), interpreted as the sharpness term (first term of the
RHS) and the classification loss term (second term of the
RHS). Hence, SAM minimizes the loss sharpness as well
as the classification loss value. This optimization is a max-
min problem. The inner maximization problem is solved by
finding ϵ∗ = argmax∥ϵ∥≤ρ LS(θ + ϵ). By deriving Taylor
expansion of LS(θ + ϵ) w.r.t. θ around 0, and by introduc-
ing a dual norm problem, the ϵ∗ is approximated as follows,
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with 1
p + 1

q = 1.

ϵ∗ ≈ ρ · sign(∇θLS(θ))
|∇θLS(θ)|q−1

(∥∇θLS(θ)∥qq)1/p
(3)

After solving the inner maximization using ϵ∗, the mini-
mization problem is solved by obtaining the gradient, while
excluding the Hessian term, as below.

∇θ max
∥ϵ∥≤ρ

LS(θ + ϵ) ≈ ∇θLS(θ)|θ+ϵ∗ (4)

3. Method
3.1. Motivation

According to SAM (Foret et al., 2020), the loss of the popu-
lation dataset, D , is upper bounded by the maximally per-
turbed loss of the training dataset, X . From the perspective
of active learning, the training dataset is decomposed into
the labeled dataset, XL, and the unlabeled dataset, XU ,
i.e., X = XL ∪ XU . Hence, the upper bound can be
decomposed as below, with πL = |XL|

|X | and πU = |XU |
|X | .

LD(θ) ≤ max
∥ϵ∥≤ρ

LX (θ + ϵ) + γ∥θ∥22 (5)

≤ πL max
∥ϵ∥≤ρ

LXL
(θ + ϵ) + πU max

∥ϵ∥≤ρ
LXU

(θ + ϵ)

+ γ∥θ∥22 (6)

=: LSAAL
X (7)

Since the population loss, LD(θ), is never accessible, we
instead access the upper bound denoted in Eq. 7, which is
represented as LSAAL

X , and train our network to minimize
the upper bound. Among the three terms of LSAAL

X , the first
term and third term, πL max∥ϵ∥≤ρ LXL

(θ+ϵ)+γ∥θ∥22, will
be minimized if we use SAM optimizer. Then, the remain-
ing second term, πU max∥ϵ∥≤ρ LXU

(θ + ϵ), becomes the
key component for our optimization in the sharpness-aware
active learning scenario. During the acquisition iterations,
we select unlabeled instances, xu ∈ XU , with maximally
perturbed losses.

As a consequence of acquiring instances with maximally
perturbed losses, the acquired instances contribute to LXL

,
not LXU

anymore. Therefore, we directly reduce LXU

(eventually, LSAAL
X ) by removing its maximally contribut-

ing instances. Moreover, the acquired instances will be
labeled, and SAM will optimize LXL

, which becomes the
reduction of LSAAL

X , as well. These reductions of LSAAL
X

will reduce LD(θ) because of the above bound.

Comparison to Semi-Supervised Learning Our pro-
posed active learning algorithm is not the only way to de-
crease the loss of the unlabeled dataset, XU . Traditional
semi-supervised learning (SSL) is another approach that
utilizes LXU

(θ) during model training. However, it should

Algorithm 1 Sharpness-Aware Active Learning

1: Input: Labeled dataset X 0
L , Unlabeled dataset X 0

U ,
Classifier fθ

2: Initially train fθ by the cross-entropy loss of X 0
L

3: for j = 0, 1, 2, . . . do
4: Randomly sample X pool

U ⊂ X j
U

5: for xu ∈ X pool
U do

6: Calculate fSAAL
acq (xu; fθ) as Eq. 8

7: end for
8: XS = argmaxX

′
S⊂X pool

U

∑
xu∈X

′
S
fSAAL
acq (xu; fθ)

9: Query the label of XS to oracle
10: Update the labeled dataset, X j+1

L = X j
L ∪ XS

11: Update the unlabeled dataset, X j+1
U = X j

U \ XS

12: Train fθ by the cross-entropy loss of X j+1
L

13: end for

be noted that SSL does not guarantee to minimize the upper
bound, LSAAL

X . SSL minimizes the average of unlabeled
dataset loss instead of the maximum perturbed loss. Hence,
it is hard to guarantee that SSL will contribute to minimizing
the generalization error without prior knowledge on label
distribution (Ben-David et al., 2008). We can categorize the
SSL approach as three ways (Berthelot et al., 2019; Zhu,
2005), which are consistency regularization (Laine & Aila,
2016; Sajjadi et al., 2016), entropy minimization (Cireşan
et al., 2010; Lee et al., 2013), and traditional regularization,
such as weight decay (Zhang et al., 2018a;b). First, consis-
tency regularization and entropy minimization completely
depend on the pseudo-label, and an incorrect pseudo-label
might increase the generalization error. Second, the worst-
case or hardest instances might have incorrect pseudo-label.
In other words, SSL, training the model with an incorrect
pseudo-label, might fail to model the maximum perturbed
loss. Third, the minimization of maximum perturbed loss is
an independent approach to the previous semi-supervised
learning methods, such as traditional regularization as well
as consistency and entropy minimization. This aspect makes
SAAL to be potentially compatible with SSL.

3.2. Sharpness-Aware Active Learning

SAAL selects instances with high perturbed losses under
some perturbation on the model parameters, θ. Hence, our
acquisition function is as follows:

fSAAL
acq (xu; fθ) = max

∥ϵ∥≤ρ
l(xu, ŷu; θ + ϵ), (8)

where l is the cross-entropy loss function, and θ is the cur-
rent model parameter. Algorithm 1 describes the overall
process of SAAL. Since our acquisition function is calcu-
lated for the unlabeled instances, there comes a problem
when calculating the maximally perturbed loss function,
which requires labels. Hence, we use a pseudo-label, ŷu, for
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(a) Correlation between fSAAL
acq

and upper bound terms
(b) Magnitude of

the upper bound terms
(c) Detailed view of

the first eigenvalue, λ1

Figure 1. Correlation and magnitude of fSAAL
acq ’s upper bound terms; task loss, gradient norm, and 1st Eigenvalue of loss Hessian matrix.

the loss calculation.

To provide the validity of utilizing pseudo-labels, we pro-
vide Theorem 3.1, which explains the relation between the
maximally perturbed losses which are calculated with a
pseudo-label and with a ground-truth label, respectively.
The proof of Theorem 3.1 is given in Appendix A.9.1.

Theorem 3.1. For a data instance x, let ŷ be the pseudo-
label predicted by the network fθ and ȳ be the ground-truth
label. Then, the maximally perturbed loss calculated with
(x, ŷ) is a lower bound of the maximally perturbed loss
calculated with (x, ȳ); with a non-negative margin, δx, as
the below:

max
∥ϵ∥≤ρ

l(x, ŷ; θ + ϵ) ≤ max
∥ϵ∥≤ρ

l(x, ȳ; θ + ϵ) + δx. (9)

Next, Proposition 3.2 shows that the inequality of Eq. 9 has
zero margin under a mild condition. The proof of Proposi-
tion 3.2 is given in Appendix A.9.2.

Proposition 3.2. For a data instance x and the correspond-
ing pseudo-label ŷ, let ϵ̂ be the maximal perturbation over
the parameters w.r.t. the loss l(x, ŷ; θ + ϵ). If the perturbed
network, fθ+ϵ̂, keeps the predicted label as the same as the
label predicted from the original network, fθ; then the maxi-
mally perturbed loss calculated with (x, ŷ) is a lower bound
of the maximally perturbed loss calculated with (x, ȳ), as
the below:

max
∥ϵ∥≤ρ

l(x, ŷ; θ + ϵ) ≤ max
∥ϵ∥≤ρ

l(x, ȳ; θ + ϵ). (10)

Theorem 3.1 and Proposition 3.2 provide that the perturbed
loss with the pseudo-label, max∥ϵ∥≤ρ l(x, ŷ; θ+ϵ) becomes
the lower bound of the ground-truth label, so the maximiza-
tion of pseudo-label loss would indirectly increase the per-
turbed loss with the ground-truth label, which achieves the
goal of fSAAL

acq . On the other hand, the gap between two
terms originates from the scenario of active learning, which
inevitably utilizes the pseudo-label.

From (Foret et al., 2020), Eq. 3 becomes the maximal per-
turbation for a batch in training as the closed-form solution.

However, this approach becomes inadequate for acquisition
setting because the acquisition is determined by an instance,
not by a batch set. Therefore, we need to calculate the
closed-form optimization per instance, as below.

ϵ∗ ≈ ρ · sign(∇θl(xu, ŷu; θ))
|∇θl(xu, ŷu; θ)|q−1

(∥∇θl(xu, ŷu; θ)∥qq)1/p
(11)

In the next step, we calculate the perturbed loss in direction
to ϵ∗, and use it as the acquisition score:

fSAAL
acq (xu; fθ) = l(xu, ŷu; θ + ϵ∗) (12)

3.3. Connection to Recent Active Learning Algorithms

Here, we theoretically derive the upper bound of the acqui-
sition score of SAAL, and this derivation shows the connec-
tion to the recent active learning algorithms as well as the
generalization ability. We provide Theorem 3.3 as below.
The proof of Theorem 3.3 is given in Appendix A.9.3.

Theorem 3.3. The acquisition function, fSAAL
acq , of Eq. 8 is

upper bounded by:

fSAAL
acq (xu; fθ) ≤ l(θ)︸︷︷︸

Task Loss

+ ρ∥∇θl(θ)∥2︸ ︷︷ ︸
Gradient Norm

+
1

2
ρ2λ1︸ ︷︷ ︸

1st Eigenvalue

+ max
∥v∥≤1

O(ρ2v3) (13)

Theorem 3.3 derives the upper bound of the acquisition
score of SAAL, which consists of the task loss, the gradient
norm, and the first eigenvalue of the loss Hessian matrix.
Since we are selecting instances that have a high value of
fSAAL
acq , the selection refers that we are also selecting in-

stances that have high values of the loss, l(θ), and the mag-
nitude of the gradient embedding, ∥∇θl(θ)∥2, which are
connected to LL4AL (Yoo & Kweon, 2019) and BADGE
(Ash et al., 2020), respectively. Furthermore, SAAL consid-
ers the first eigenvalue of the loss Hessian matrix, w.r.t. the
current model parameters, denoted as λ1. The importance of
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the first eigenvalue for generalization is widely studied, that
is the first eigenvalue is used as the indicator of the sharp-
ness of the loss surface (Keskar et al., 2017; Zhuang et al.,
2022; Kaur et al., 2022). Hence, the selected instances by
SAAL might contribute to the generalization of the model.

Figure 1a shows that there exists a positive correlation be-
tween our acquisition score, fSAAL

acq , and the three terms
of upper bound. At the same time, those three terms are
not identical, which means that they are providing different
information. By selecting the instances with the high acqui-
sition score of SAAL, fSAAL

acq , we are selecting instances
that have high values of the loss, gradient norm, and the
first eigenvalue. Also, Figure 1b shows the value of the
three terms of upper bound. Interestingly, as the acquisition
iterations proceed, not only the loss and the gradient value,
but the first eigenvalue gets smaller. The change of the value
of the first eigenvalue is more noticeable in Figure 1c, which
plots the value of λ1 without the scaling term of 1

2ρ
2. This

indicates that SAAL leads the model to a flat minima, which
results in better generalization performances.

4. Results
4.1. Image Classification

Experiment Setting We conduct our experiment on
Fashion-MNIST (Fashion) (Xiao et al., 2017), SVHN (Net-
zer et al., 2011), CIFAR-10, and CIFAR-100 (Krizhevsky
et al., 2009). We adopt ResNet-18 (He et al., 2016) as a
backbone of our classifier. We train the network for 50
epochs after each acquisition step, using Adam optimizer
(Kingma & Ba, 2015) with a learning rate of 0.001; or SAM
optimizer (Foret et al., 2020) with a learning rate of 0.001
for Fashion, SVHN, CIFAR-10, and 0.1 for CIFAR-100.
This comparison of optimizer choice provides the ablation
between SAM and SAAL since the two share the pursuit of
flatness from the loss curve. In ImageNet experiment, we
follow the above settings besides 500 training epochs after
each acquisition step by the Adam optimizer with 0.001
learning rate. We replicated three times for each setting. We
followed the settings of the prior work (Kim et al., 2021),
which assumes a very low amount of allowed budget 1. We
provide more details in Appendix A.4.

Baselines We compared the performance of SAAL
with Random, Entropy (Shannon, 1948), Coreset (Sener
& Savarese, 2018), Learning Loss for Active Learning
(LL4AL) (Yoo & Kweon, 2019), Variational Adversarial
Active Learning (VAAL) (Sinha et al., 2019), and BADGE
(Ash et al., 2020). In addition, we compare our strategy with
ProbCover (Yehuda et al., 2022), utilizing the features of
unlabeled instances from self-supervised pretrained model.

1Section 4.2 provides an ablation study on the budget factor.

BADGE adopts k-means++ seeding algorithm to introduce
diversity on the acquisition, and we also provide an exper-
imental result with diversity following the same practice
from BADGE. Specifically, after calculating our acquisition
function using Eq. 8, we implement k-means++ seeding
algorithm with the acquisition score as an input, and we
report such variations on Table 1.

Quantitative Analysis Table 1 indicates that SAAL out-
performs the baselines in seven out of eight combinations
of experiments. The advantage of SAAL becomes obvious
when we use the Adam optimizer, rather than the SAM op-
timizer. We conjecture that this gain for Adam optimizer
originates from Eq. 7, which motivates SAAL in model-
ing the expected flat local minima after acquisitions. Re-
call that our inaccessible goal, LD(θ), is upper bounded
by πL max∥ϵ∥≤ρ LXL

(θ+ ϵ) + πU max∥ϵ∥≤ρ LXU
(θ+ ϵ),

as we discussed in Section 3.1. When using Adam opti-
mizer, the first term, max∥ϵ∥≤ρ LXL

(θ + ϵ), in the upper
bound is weakly optimized compared to using SAM op-
timizer, which we will present qualitative analyses in the
next section; because SAM optimizer directly minimizes
max∥ϵ∥≤ρ LXL

(θ+ϵ). Hence, the importance of the second
term in the upper bound, max∥ϵ∥≤ρ LXU

(θ + ϵ), becomes
more significant for Adam optimizer. Figure 12 of Appendix
A.2 provides the test accuracy along the acquisition itera-
tions, which shows SAAL achieves higher accuracy quicker
than baselines (see Figure 12a, 12d, or 12g).

To demonstrate that SAAL is also scalable in a high-
resolution dataset, we additionally perform three iterative
experiments for Imagenet. Figure 2 shows that SAAL out-
performs other baselines in every acquisition iteration.

Figure 2. Comparison of test accuracy for ImageNet (%) using
Adam optimizer.

Comparison of SAAL and SAM Our motivation started
from minimizing the maximally perturbed loss bound in
Eq. 6 for both labeled and unlabeled datasets. Having said
that, SAM aims at minimizing the term w.r.t. the labeled
dataset whereas SAAL aims at minimizing the term w.r.t.
the unlabeled dataset. Hence, it should be noted that SAAL
and SAM are orthogonal in their optimization to minimize
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Table 1. Comparison of test accuracy (%) using Adam optimizer and SAM optimizer. The best performance is indicated as boldface, and
we represent the second best performance as underline. (- represents that we failed to converge training when using SAM optimizer.)

Fashion SVHN CIFAR-10 CIFAR-100
Method Adam SAM Adam SAM Adam SAM Adam SAM
Random 81.2 ± 0.5 83.7 ± 0.3 72.4 ± 0.9 78.1 ± 1.1 50.7 ± 1.5 52.6 ± 2.8 43.3 ± 0.3 44.0 ± 0.7
Entropy 81.5 ± 1.4 84.1 ± 0.2 73.1 ± 1.0 77.5 ± 3.2 51.9 ± 1.8 54.6 ± 0.4 44.4 ± 0.7 44.1 ± 1.0
Coreset 83.8 ± 0.7 84.4 ± 0.6 75.3 ± 5.8 78.9 ± 1.3 51.7 ± 1.0 53.9 ± 1.3 44.4 ± 0.5 47.6 ± 1.4
LL4AL 83.5 ± 1.8 83.2 ± 1.4 75.1 ± 1.7 72.2 ± 0.2 51.7 ± 0.4 50.2 ± 1.1 43.9 ± 0.3 35.7 ± .01
VAAL 83.4 ± 0.1 84.1 ± 0.6 73.4 ± 1.3 77.1 ± 0.8 52.0 ± 0.9 53.1 ± 0.9 44.8 ± 0.3 45.5 ± 0.4

BADGE 85.4 ± 0.6 86.2 ± 0.2 74.9 ± 1.1 78.8 ± 0.9 52.3 ± 2.2 56.8 ± 1.9 45.7 ± 0.6 47.4 ± 0.7
ProbCover 84.0 ± 0.2 - 74.3 ± 0.5 - 54.1 ± 0.6 - 42.6 ± 0.6 -

SAAL 85.6 ± 0.2 85.0 ± 0.3 76.5 ± 1.0 77.1 ± 1.0 52.3 ± 2.3 56.0 ± 1.2 46.6 ± 0.5 48.4 ± 0.9
w/ k-means++ 85.8 ± 0.8 86.3 ± 0.5 76.8 ± 0.7 78.8 ± 1.0 54.4 ± 0.9 57.0 ± 1.1 47.6 ± 0.9 46.4 ± 0.1

the generalization gap of Eq. 6. We can infer the effect
of SAAL and SAM, respectively, from Table 1. Taking
CIFAR-10 dataset as an example, Random with Adam op-
timizer, which shows test accuracy of 50.7%, is the most
naive baseline without any concerns on the minimization of
the upper bound terms. Then, when we fix Random as the
acquisition and turn the optimizer to SAM, it shows the test
accuracy of 52.6%, whose gain is interpreted as the effect
of SAM, i.e., the effect of minimizing the upper bound term
w.r.t. labeled dataset. On the other hand, when we fix Adam
as an optimizer and utilize the acquisition of SAAL, we
achieve the test accuracy of 54.4% as the effect of SAAL,
i.e., the effect of minimizing the upper bound w.r.t. unla-
beled dataset. Finally, using both SAAL and SAM together
shows the highest test accuracy of 57.0%, which convinces
our motivation to minimize the upper bound of Eq.6.

Time Complexity We compare the time complexity of
SAAL and baselines because SAAL has additional steps
for finding the maximum perturbation over the acquisition
calculations. We used CIFAR-10 and measured the time
for a single iteration of acquisition and training. Figure 3
shows the wall-time by log scale. The results of Random
acquisition show that the SAM optimizer takes twice longer
time than the Adam optimizer, because it takes two steps
of gradient calculation. However, the gap between Adam
and SAM becomes smaller when using other active learning
algorithms, indicating that the time for calculating acqui-
sition score is the largest bottleneck. SAAL calculates the
perturbation, ϵ, for every single unlabeled instance, instead
of batch-wise calculation; so it takes longer than most of
the other baselines. The time complexity of SAAL can be
reduced if we adopt the improved SAM models (Du et al.,
2021; 2022) that have been proposed for an efficient calcu-
lation. Additionally, Table 2 presents the trade-off between
the wall-time and the batch size. Basically, we may increase
the batch-size to reduce the calculation time of perturbation
maximization, so this will provide the maximum perturba-
tion to batch instances, not a single instance. This treatment
drastically reduces the wall-time while maintaining perfor-
mance improvement.

Figure 3. Comparison of time complexity.

Table 2. Test Accuracy on CIFAR-10 and Time Complexity of
Batch-wise Perturbation.

Method BS Adam SAM
Test accuracy Time Test accuracy Time

BADGE - 52.3 ± 2.2 14.8 s 56.8 ± 1.9 16.0 s

SAAL

1 54.4 ± 0.9 49.6 s 57.0 ± 1.1 51.7 s
10 54.0 ± 1.0 16.8 s 57.7 ± 0.7 18.9 s

100 53.6 ± 2.3 8.0 s 56.0 ± 1.5 10.3 s
200 54.1 ± 1.3 7.5 s 56.2 ± 1.2 9.9 s

Qualitative Analysis Figure 4 supports the conjecture
for the advantage of SAAL by anticipating the flat local
minima in the acquisition process. Figure 4 measures the
maximally perturbed loss for the labeled dataset, XL; the
unlabeled dataset, XU ; and the total dataset, XL∪XU . We
compare the results between the models trained with the
SAM optimizer. Since it is computationally hard to calculate
the corresponding perturbation for every single unlabeled
instance, xu ∈ XU , we uniformly sample 2,000 unlabeled
instances from XU at each iteration; and we report the
averaged results for three independently repeated trials.

Figure 4a shows the maximally perturbed loss of XU when
using SAM optimizer. If we compare the result of SAAL
with the results of baselines, SAAL shows the lowest value
of the maximally perturbed loss, because SAAL selected
the instances with high values of perturbed loss, and SAAL
removed such instances by passing those instances to the
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(a) Unlabeled dataset, XU (b) Labeled dataset, XL (c) Total dataset, XU ∪ XL

Figure 4. Maximally perturbed loss of CIFAR-10 during the active learning iterations, trained by SAM.

labeled dataset. Figure 4b shows the maximally perturbed
loss of XL when using SAM optimizer. This loss also
indicates the flatness of the model; the lower value of the
maximally perturbed loss of XL indicates that the model
does not change the result even if the parameter is changed
in a small range, which refers to the flat model (Keskar et al.,
2017; Neyshabur et al., 2017). Hence, SAAL results in a
flat network compared to the baselines.

We conjecture that the flat model attained by SAAL is
explained by the look-ahead concept (Roy & McCallum,
2001; Konyushkova et al., 2017; Kim et al., 2021). If
we are planning to minimize max∥ϵ∥≤ρ LX (θ + ϵ) by
SAM optimizer, SAAL looks ahead the high values of the
max∥ϵ∥≤ρ LX (θ+ ϵ) from unlabeled instances, and SAAL
actively selects such unlabeled instances to flatten the future
response surface.

Finally, Figure 4c shows the maximally perturbed loss of the
total dataset, which is equivalent to the upper bound in Eq.
7. As confirmed in the figure, SAAL achieves the lowest
upper bound, which indicates that the model trained with
SAAL is more likely to achieve a lower population loss,
which is our ultimate goal of minimization objective. When
comparing the results of using SAM (Figure 4a - Figure 4c)
and the results of using Adam (Figure 11a - Figure 11c in
Appendix A.1), the gap between SAAL and other baselines
becomes clearer in using the Adam optimizer.

Visualization of Loss Landscape SAAL aims at con-
structing a flat model by adaptively 1) selecting instances
with high sharpness and 2) training the model to quickly de-
crease the loss for instances result in sharpness. Hence, we
visualize the loss landscape with the first eigenvalue of loss
Hessian matrix (Li et al., 2018). Appendix A.6 provides the
detailed visualization formula and the full enumeration of
figures. Figure 5 provides the loss landscape of SAAL and
baselines, and the visual inspection and the first eigenvalue
confirm that SAAL has a more flattened loss landscape.

(a) Entropy (b) Coreset

(c) BADGE (d) SAAL

Figure 5. Loss landscapes for Fashion, optimized by Adam.

4.2. Ablation Study on Image Classification

Robustness to Class Imbalanced Figure 5 demonstrates
that SAAL achieves a flat loss landscape, indicating a de-
sirable property of the method. In order to further assess
the robustness of SAAL, we conducted additional experi-
ments and compared it with other baselines. Specifically,
we created a long-tailed CIFAR-10 dataset and performed
experiments under low-budget settings. Table 3 shows that
SAAL effectively handles the imbalanced scenario, outper-
forming other baselines.

Table 3. Test Accruacy on long-tailed CIFAR-10 using Adam opti-
mizer.

Method Test Accuracy
Random 21.03± 0.89
Entropy 21.70± 0.95
Coreset 20.14± 1.23
BADGE 21.69± 1.00
SAAL 23.03± 1.11
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Figure 6. Proportion of unlabeled instances satisfying
the assumption in Proposition 3.2, with varying ρ.

Figure 7. Averaged value of the margin, δx, in Theo-
rem 3.1 for the unlabeled dataset; with varying ρ.

Figure 8. Test accuracy;
with varying ρ.

Sensitivity Analysis on ρ SAAL introduces a hyperpa-
rameter, ρ, which represents the size of the perturbation
region, ϵ. Hence, we conduct the sensitivity analysis on ρ
with the CIFAR-10 dataset, and we set the candidate values
for ρ as 0.01, 0.05, and 0.10.

First, we examined the validity of Theorem 3.1 by inves-
tigating if the network with the maximally perturbed pa-
rameters keeps the predicted label as same as the original
network. Figure 6 shows the proportion of unlabeled data
instances whose predicted labels remain the same by the
perturbed network during the active learning iterations; that
is ψ(ρ) := 1

|XU |
∑

x∈XU
1argmaxj fθ+ϵ̂(x)j=ŷ, where 1A is

the indicator function. When the size, ρ, of the perturbation,
ϵ, is zero (equivalently, if we do not perturb the network);
then the inequality of Eq. 10 is satisfied for all instances,
by the definition of the pseudo-label, ŷ. As we increase the
value of ρ, some instances fail to keep the predicted label as
the same as ŷ, because the parameter of the model changes
drastically, so that the model loses the prediction ability that
it has learned so far.

Also, we examined the validity of Proposition 3.2 by inves-
tigating the value of the margin, δx, for the unlabeled data
instances in Figure 7. It should be noted that δx is not our
hyperparameter, but a dependent variable subject to change
by ρ. We only investigate δx to reveal the characteristics
of ρ, not for the hyperparameter optimizations. To show
how the value of the margin, δx, affects the inequality, we
measure the relative value of the margin, δx, compared to
the maximally perturbed loss, max∥ϵ∥≤ρ l(x, ȳ; θ + ϵ); that
is r(ρ, δx) := 1

|XU |
∑

x∈XU

δx
max∥ϵ∥≤ρ l(x,ȳ;θ+ϵ) . From the

analyses of Figure 6 and 7, we adopted ρ = 0.05, because
this value 1) keeps the predicted label of data instance from
the original network with high probability and 2) keeps the
value of the margin relatively small compared to the max
perturbed loss w.r.t. the ground-truth label, while ρ = 0.05
is confirmed to perturb the parameters of the network effec-
tively (Foret et al., 2020).

The proper selection of ρ also affects the test accuracy, as

shown in Figure 8. If we select ρ with a too small value,
that is ρ = 0.01, the parameter of the model is not perturbed
enough to measure the sharpness, so SAAL cannot catch the
informative instances. If we select ρ with a too-large value,
that is ρ = 0.10, the maximally perturbed loss 1) does not
satisfy Proposition 3.2, as confirmed in Figure 6, and 2)
have too large value of margin, as confirmed in Figure 7.
Meanwhile, a proper value of ρ = 0.05 for the perturbation,
ϵ, shows the best performance.

Budget Variation To demonstrate SAAL is also scalable
in high budget setting, we conduct an additional experi-
ment. We follow the setting from (Yoo & Kweon, 2019);
we increase the budget to 1,000 instances but decrease the
iteration of acquisition to nine steps for Fashion, SVHN,
and CIFAR-10. For CIFAR-100, we similarly increase ini-
tial labeled dataset to 5,000 but acquire the 2,500 unlabeled
instances for six iterations. For further settings containing
hyperparameters, we report in Appendix A.5. While Ap-
pendix A.3 shows figures from all cases, Figure 9 shows
that SAAL is still the best result with a small margin.

(a) Fashion (b) SVHN

(c) CIFAR-10 (d) CIFAR-100

Figure 9. Test accuracy for high budget setting along the acquisi-
tion iteration; with SAM optimizers.
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4.3. Object Detection

To show the effectiveness of SAAL in a complex task, we
conduct an object detection task. Object detection returns
the locations of semantic objects and the corresponding
labels for a given input image, x. Hence, the loss for training
detection model consists of the bounding box regression loss
and the classification loss.

We experiment with PASCAL VOC 2007 and 2012 dataset
(Everingham et al., 2010), which contains 5,011 images and
4,952 images with 20 object classes, respectively. We adopt
Single Shot Multibox Detector (SSD) (Liu et al., 2016) as
the detection model. To apply SAAL for object detection,
we perturb the parameters to maximize the classification
loss; and use the summation of the perturbed loss from
every corresponding detection box in the image, x, as the
acquisition score for x. Afterward, we select the images
with the highest scores. We construct the initial labeled
dataset with 1,000 randomly selected images, and we select
additional 1,000 instances at every acquisition iterations,
so that we attain 10,000 final instances with nine repeated
acquisitions. We train the model for 300 epochs with a batch
size of 32. Figure 10 reports the mean average precision
(mAP) for three repeated trials of SAAL and baselines. As
shown in the figure, SAAL achieves high performance at
the earlier iterations and shows the highest mAP of 0.7541
at the last iteration; while BADGE, Entropy, and Random
show 0.7493, 0.7518, and 0.7403, respectively.

Figure 10. mAP of object detection task with PASCAL VOC
2007+2012.

4.4. Domain Adaptive Semantic Segmentation

Recently, active learning strategy is utilized for domain
adaptive semantic segmentation (Xie et al., 2022). We ex-
periment the semantic segmentation from a source domain
SYNTHIA (Ros et al., 2016) to a target domain CityScapes
(Cordts et al., 2016). The base strategy of acquisition fol-
lows ”Region-based Annotating”, which queries a pixel-
wise but acquires the neighborhood of a high-scored pixel
(Xie et al., 2022). RIPU (Xie et al., 2022) calculates the ac-

quisition score per pixel, which consists of a multiplication
of diversity and uncertainty score on a pixel. We similarly
calculate the acquisition score (RI-SAAL) by multiplying
the diversity score from (Xie et al., 2022) with the acquisi-
tion score from SAAL (see details in Appendix A.8). Table
4 confirms that RI-SAAL outperforms other baselines.

Table 4. mIOU of domain adaptive semantic segmentation from
SYNTHIA to CityScapes. The best performance is indicated as
boldface.

Method mIOU
Random 68.3
Entropy 68.6
RIPU (Xie et al., 2022) 70.2
RI-SAAL 70.6

5. Conclusion and Future Works
We propose a new active learning method named Sharpness-
Aware Active Learning, or SAAL. The proposed method
considers the loss sharpness of data instances, which is
strongly related to the generalization performance of deep
learning. Furthermore, we derive the upper bound of SAAL
acquisition score and find the connection to the recent active
learning methods; as well as the connection to the first
eigenvalue of loss Hessian matrix, which is widely used as
the indicator of loss sharpness. In various experiments with
benchmark datasets, SAAL shows better performance than
baselines.
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A. Appendix
A.1. Maximally perturbed loss with Adam optimizer

(a) Maximally perturbed loss of
XU with Adam

(b) Maximally perturbed loss of
XL with Adam

(c) Maximally perturbed loss of
XL ∪ XU with Adam

Figure 11. Maximally perturbed loss of the labeled dataset, unlabeled dataset, and total dataset during the active learning iterations. (a) -
(c) are the results of the model trained by Adam optimizer.

A.2. Test accuracy of classification for low budget setting

For low budget setting, we provide the learning curve of SAAL and baselines along the acquisition iterations.

(a) Test accuracy on
Fashion, with Adam

(b) Test accuracy on
SVHN, with Adam

(c) Test accuracy on
CIFAR-10, with Adam

(d) Test accuracy on
CIFAR-100, with Adam

(e) Test accuracy on
Fashion, with SAM

(f) Test accuracy on
SVHN, with SAM

(g) Test accuracy on
CIFAR-10, with SAM

(h) Test accuracy on
CIFAR-100, with SAM

Figure 12. Test accuracy for low budget setting along the acquisition iteration; with Adam and SAM optimizers.

To show the improvement of SAAL, we also provide the overall comparison in Figure 13. We consider all the N comparison
cases, where N contains the number of random seeds and the number of datasets, and the number of optimizers. Figure
13a shows the pairwise comparison, where (i, j)th cell indicates the proportion of the number when the ith algorithm
beats the jth algorithm. Figure 13b shows the pairwise comparison, where (i, j)th cell indicates the averaged value of the
performance gain achieved by the ith algorithm compared to the jth algorithm. The figures prove that SAAL outperforms
the baselines in most cases.
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(a) Overall comparison on number of beating trials (b) Overall comparison on performance gain

Figure 13. Overall comparison of SAAL with baselines.

A.3. Test accuracy of classification for high budget setting

For high budget setting, we provide the learning curve of SAAL and baselines along the acquisition iterations.

(a) Test accuracy on
Fashion, with Adam

(b) Test accuracy on
SVHN, with Adam

(c) Test accuracy on
CIFAR-10, with Adam

(d) Test accuracy on
CIFAR-100, with Adam

(e) Test accuracy on
Fashion, with SAM

(f) Test accuracy on
SVHN, with SAM

(g) Test accuracy on
CIFAR-10, with SAM

(h) Test accuracy on
CIFAR-100, with SAM

Figure 14. Test accuracy for high budget setting along the acquisition iteration; with Adam and SAM optimizers.

A.4. Details of experiment for low budget setting

For Fashion, SVHN, and CIFAR-10, we construct the initial labeled dataset with 20 instances, which are random but
balanced; and we select 10 additional instances with the highest acquisition score among the randomly selected 2,000
unlabeled instances per each iteration. For CIFAR-100, the initial labeled dataset consists of 1,000 instances, and we select
100 additional instances for 100 repeated iterations. For ImageNet, the initial labeled dataset consists of 5,000 instances,
and we select 5,000 additional instances for five repeated iterations. Here, SAAL introduces the perturbation size, ρ, of the
perturbation, ϵ, in Eq. 8, and we set the value of ρ as 0.05 for all the datasets.
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A.5. Details of experiment for high budget setting

We adopt Resnet-18 as backbone of our classifier. We train the network for 200 epochs after each acquisition step, using
Adam optimizer with a learning rate of 0.0005; and SAM optimizer with a learning rate of 0.001 for Fashion, SVHN,
CIFAR-10 and 0.1 for CIFAR-100. In high budget setting, we additionally optimize ρ of SAAL; Table 5 shows details of
finding ρ.

Table 5. Optimizing the proper ρ for SAAL in high budget setting.
Dataset Adam optimizer SAM optimizer
Fashion {0.03,0.04,0.05,0.06} {0.03,0.04,0.05,0.06}
SVHN {0.03,0.04,0.05,0.06} {0.03,0.04,0.05,0.06}

CIFAR-10 {0.03,0.04,0.05,0.06} {0.03,0.04,0.05,0.06}
CIFAR-100 {0.03,0.04,0.05,0.06} {0.03,0.04,0.05,0.06}

A.6. Loss landscape

When moving the weight θ along random directions d1 and d2 with magnitude α and β, plotting the loss change as the
below:

g(α, β) =
1

n

n∑
i=1

l(fθ+αd1+βd2(x), y) (14)

For a fair comparison, we calculate the loss of Fashion training set and perturb the loss to the same random directions.

(a) Random (b) Entropy (c) Coreset

(d) LL4AL (e) BADGE (f) SAAL

Figure 15. (a)-(f) are loss landscape for Fashion, optimized by Adam optimizer.

A.7. Additional experiments

A.7.1. DETAILS OF EXPERIMENT FOR CLASS-IMBALANCED SETTING

We followed low budget setting of CIFAR-10 in Appendix A.4, and long-tailed CIFAR-10 is composed with the samples by
exponentially imbalanced class ratios.

A.7.2. ABLATION STUDY WITH K-MEANS++

To compare the performance of SAAL when applying k-means++ with uncertainty-based active learning methods, we
conducted an additional ablation study. Table 6 indicates that applying k-means++ algorithm improves baselines by
considering diversity, but SAAL still outperforms the other methods.
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Table 6. Test Accruacy of uncertainty-based active learning methods with k-means ++ on CIFAR-10.
Method Adam SAM
Entropy w/k-means++ 51.3± 0.3 54.9± 1.1
LL4AL w/k-means++ 52.7± 1.2 55.3± 1.1
SAAL w/k-means++ 54.4± 0.9 57.0± 1.1

A.7.3. CORRELATIONS OF ACQUISITION SCORES AND UPPER BOUNDS IN THEOREM 3.3

We compare the correlation between other method’s acquisition score and upper bound terms in Theorem 3.3. Table 7
indicates that SAAL and BADGE have a high correlation with upper bounds, where the BADGE has a higher correlation of
1st Eigenvalue of loss Hessian matrix.

Table 7. Correlation value between acquisition scores and upper bound terms on CIFAR-10. Since BADGE use the gradient norm as
acquisition score, we mark it -.

Method Task loss Gradient norm 1st Eigenvalue of loss Hessian matrix
Entropy 0.939 0.917 0.885
BADGE 0.961 − 0.937
SAAL 0.988 0.976 0.924

In addition, we compare the correlation value among upper bound terms, and we conduct the experiment about how many
same data points are selected. In Table 8, we confirm that applying SAAL shows high positive correlation with all the upper
bound terms, while other upper bound terms do not. This indicates that, for example, the selected instances with loss as
acquisition function are not assured to have high eigenvalue compared to SAAL as acquisition function.

Table 8. Correlation value among upper bound terms on CIFAR-10.
Task loss Gradient norm 1st Eigenvalue of loss Hessian matrix

Task loss − 0.961 0.863
Gradient norm 0.961 − 0.937

1st Eigenvalue of loss Hessian matrix 0.863 0.937 −

Table 9 indicates that the proportion for intersection of selected instances is similar to the tendency of Figure 1a.

Table 9. Proportion of selecting the same data points per number of selections, k.
k 20 40 60 80 100
Task loss 0.600 0.825 0.918 0.938 0.964
Gradient norm 0.350 0.742 0.827 0.897 0.938
1st Eigenvalue of loss Hessian matrix 0.100 0.442 0.650 0.788 0.881

A.7.4. EFFECT OF LOW SHARPNESS INSTANCES

We conduct an experiment to select instances with low sharpness, and Table 10 indicates that the acquisition of low sharpness
degrades test accuracy. To analyze the degradation of the performance, we confirmed that the selected instances had a very
low value of the acquisition score, max∥ϵ∥≤ρ l(x, ŷ; θ + ϵ) ≈ 0. With these instances, the updated upper bound term w.r.t
the labeled dataset, i.e., πL max∥ϵ∥≤ρ LXL

(θ + ϵ) will be merely changed. This indicates that the model parameter, θ, is
not updated with active learning, and consequently shows a very low test accuracy.

Table 10. Comparison of test accuracy (%) between low sharpness and high sharpness acquisition on CIFAR-10.
Optimizer Adam SAM
SAAL-Reverse 36.9± 1.1 28.5± 0.2
SAAL 54.4± 0.9 57.0± 1.1
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A.8. Details of Domain Adaptive Semantic Segmentation

In (Xie et al., 2022), the acquisition score is calculated as a multiplication of the diversity score (Region Impurity) and
uncertainty score (Prediction Uncertainty). Instead of Prediction Uncertainty, we utilize the score from SAAL. Then, the
classifier may select high-sharpness valued pixels, whose neighborhoods contain diverse classes

Region impurity measures how neighbors of a pixel contain various classes. First, we define the neighborhood set of a pixel
(i, j) as follows:

Nk(i, j) = {(u, v)| |u− i| ≤ k, |v − j| ≤ k}
Pseudo-label Ŷ (i,j) is utilized to divide subset of a pixel (i, j) and Region impurity P (i,j) is calculated as follows:

N c
k(i, j) = {(u, v) ∈ Nk(i, j)| Ŷ (u,v) = c}

P (i,j) = −
C∑

c=1

|N c
k(i, j)|

|Nk(i, j)|
log

|N c
k(i, j)|

|Nk(i, j)|

We can define the pixel-wise score from SAAL as S(i,j) = f
(i,j)
acq . Finally, we utilize the final acquisition function

A(i,j) = P (i,j)S(i,j).

A.9. Proof Details

A.9.1. PROOF OF THEOREM 3.1

Theorem A.1. For a data instance x, let ŷ be the pseudo-label predicted by the network fθ and ȳ be the ground-truth label.
Then, the maximally perturbed loss calculated with (x, ŷ) is a lower bound of the maximally perturbed loss calculated with
(x, ȳ); with a non-negative margin, δx, as the below:

max
∥ϵ∥≤ρ

l(x, ŷ; θ + ϵ) ≤ max
∥ϵ∥≤ρ

l(x, ȳ; θ + ϵ) + δx.

Proof. The cross-entropy loss, l(x, y; θ), is represented with the logit vector fθ(x) ∈ R|Y | as the below:

l(x, y; θ) =− ln
exp(fθ(x)y)∑
j exp(fθ(x)j)

=− ln (exp(fθ(x)y)) + ln
∑
j

exp(fθ(x)j)

= ln
∑
j

exp(fθ(x)j)− fθ(x)y.

Then, the maximally perturbed loss of a data pair (x, y) is represented as the below:

max
∥ϵ∥≤ρ

l(x, y; θ + ϵ) = max
∥ϵ∥≤ρ

(ln
∑
j

exp(fθ+ϵ(x)j)− fθ+ϵ(x)y).

Since the pseudo-label, ŷ, satisfies ŷ = argmaxj∈Y fθ(x)j by the definition, it holds that fθ(x)ŷ ≥ fθ(x)j for all
j ∈ Y . Let ϵ̂ = argmax∥ϵ∥≤ρ l(x, ŷ; θ + ϵ). Define the margin, δx, as δx := [maxj{fθ+ϵ̂(x)j − fθ+ϵ̂(x)ŷ}]+ where
[·]+ = max{·, 0}. Then, the following holds.

max
∥ϵ∥≤ρ

l(x, ŷ; θ + ϵ) = ln
∑
j

exp(fθ+ϵ̂(x)j)− fθ+ϵ̂(x)ŷ

≤ ln
∑
j

exp(fθ+ϵ̂(x)j)− fθ+ϵ̂(x)ȳ + δx

≤ max
∥ϵ∥≤ρ

ln
∑
j

exp(fθ+ϵ(x)j)− fθ+ϵ(x)ȳ

+ δx

= max
∥ϵ∥≤ρ

l(x, ȳ; θ + ϵ) + δx
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A.9.2. PROOF OF PROPOSITION 3.2

Proposition A.2. For a data instance x and the corresponding pseudo-label ŷ, let ϵ̂ be the maximal perturbation over the
parameters w.r.t. the loss l(x, ŷ; θ + ϵ). If the perturbed network, fθ+ϵ̂, keeps the predicted label as the same as the label
predicted from the original network, fθ; then the maximally perturbed loss calculated with (x, ŷ) is a lower bound of the
maximally perturbed loss calculated with (x, ȳ), as the below:

max
∥ϵ∥≤ρ

l(x, ŷ; θ + ϵ) ≤ max
∥ϵ∥≤ρ

l(x, ȳ; θ + ϵ).

Proof. Since the perturbed network, fθ+ϵ̂, keeps the predicted label as the same as the label predicted from the original
network, fθ; it holds that argmax fθ+ϵ̂(x) = argmax fθ(x) = ŷ and accordingly fθ+ϵ̂(x)j ≤ fθ+ϵ̂(x)ŷ for all j. Hence,
maxj{fθ+ϵ̂(x)j − fθ+ϵ̂(x)ŷ} ≤ 0. Thus, by the definition of the margin in Theorem 3.1, δx becomes zero.

A.9.3. PROOF OF THEOREM 3.3

Theorem A.3. The acquisition function, fSAAL
acq , of Eq. 8 is upper bounded by l(θ) + ρ∥∇θl(θ)∥2 + 1

2ρ
2λ1 +

max∥v∥≤1O(ρ2v3); where l(θ) abbreviates the loss of a data pair, (x, y), and λ1 is the first eigenvalue of the loss
Hessian matrix.

Proof. Recall that our acquisition function is fSAAL
acq = max∥ϵ∥≤ρ l(xu, ŷu; θ+ϵ). Since we limit the size of the perturbation

as ∥ϵ∥ ≤ ρ, we can write ϵ = ρv with ∥v∥ ≤ 1, and max∥ϵ∥≤ρ l(xu, ŷu; θ + ϵ) = max∥ρv∥≤ρ l(xu, ŷu; θ + ρv) =
max∥v∥≤1 l(xu, ŷu; θ + ρv). Then, by Taylor expansion of l(xu, ŷu; θ + ρv) w.r.t. θ, the below holds, where we abbreviate
l(xu, ŷu; θ) as l(θ).

fSAAL
acq (xu; fθ) = max

∥ϵ∥≤ρ
l(θ + ϵ) = max

∥v∥≤1
l(θ + ρv)

= max
∥v∥≤1

{l(θ) + (ρv)T∇θl(θ) +
1

2
(ρv)T∇2

θl(θ)(ρv) +O((ρv)3)}

= l(θ) + max
∥v∥≤1

{(ρv)T∇θl(θ) +
1

2
(ρv)T∇2

θl(θ)(ρv) +O((ρv)3)}

≤ l(θ) + max
∥v∥≤1

(ρv)T∇θl(θ) + max
∥v∥≤1

1

2
(ρv)T∇2

θl(θ)(ρv) + max
∥v∥≤1

O((ρv)3)

= l(θ)︸︷︷︸
Loss

+ ρ∥∇θl(θ)∥2︸ ︷︷ ︸
Gradient Norm

+
1

2
ρ2λ1︸ ︷︷ ︸

1st Eigenvalue

+ max
∥v∥≤1

O((ρv)3)
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