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Abstract
Multivariate time series data for real-world ap-
plications typically contain a significant amount
of missing values. The dominant approach for
classification with such missing values is to im-
pute them heuristically with specific values (zero,
mean, values of adjacent time-steps) or learnable
parameters. However, these simple strategies do
not take the data generative process into account,
and more importantly, do not effectively capture
the uncertainty in prediction due to the multiple
possibilities for the missing values. In this paper,
we propose a novel probabilistic framework for
classification with multivariate time series data
with missing values. Our model consists of two
parts; a deep generative model for missing value
imputation and a classifier. Extending the ex-
isting deep generative models to better capture
structures of time-series data, our deep generative
model part is trained to impute the missing values
in multiple plausible ways, effectively modeling
the uncertainty of the imputation. The classifier
part takes the time series data along with the im-
puted missing values and classifies signals, and is
trained to capture the predictive uncertainty due
to the multiple possibilities of imputations. Im-
portantly, we show that naı̈vely combining the
generative model and the classifier could result in
trivial solutions where the generative model does
not produce meaningful imputations. To resolve
this, we present a novel regularization technique
that can promote the model to produce useful im-
putation values that help classification. Through
extensive experiments on real-world time series
data with missing values, we demonstrate the ef-
fectiveness of our method.
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1. Introduction
Multivariate time-series data are universal; many real-world
applications ranging from healthcare, stock markets, and
weather forecasting take multivariate time-series data as in-
puts. Arguably the biggest challenge in dealing with such
data is the presence of missing values, due to the funda-
mental difficulty of faithfully measuring data for all time
steps. The degree of missing is often severe, so in some
applications, more than 90% of data are missing for some
features. Therefore, developing an algorithm that can accu-
rately and robustly perform predictions with missing data is
considered an important problem to be tackled.

In this paper, we focus on the task of classification, where
the primary goal is to classify given multivariate time-series
data with missing values, simply imputing the missing val-
ues with heuristically chosen values considered to be strong
baselines that are often competitive or even better than more
sophisticated methods. For instance, one can fill all the
missing values with zero, the mean of the data, or values
from the previous time steps. GRU-D (Che et al., 2018)
proposes a more elaborated imputation algorithm where the
missing values are filled with a mixture between the data
means and values from the previous time steps with the
mixing coefficients learned from the data. While these sim-
ple imputation-based methods work surprisingly well (Che
et al., 2018; Du et al., 2022), they lack a fundamental mecha-
nism to recover the missing values, especially the underlying
generative process of the given time series data.

Dealing with missing data is deeply connected to handling
uncertainties originating from the fact that there may be
multiple plausible options for filling in the missing values,
so it is natural to analyze them with the probabilistic frame-
work. There have been rich literature on statistical analysis
for missing data, where the primary goal is to understand
how the observed and missing data are generated. In the
seminal work of Little & Rubin (2002), three assumptions
for the missing data generative process were introduced, in-
cluding Missing Completely At Random (MCAR), Missing
At Random (MAR), and Missing Not At Random (MNAR).
While MCAR or MAR simplifies the modeling and thus
makes the inference easier, they may be unrealistic for real-
world applications, because they assume that the missing
mechanism is independent of the missing values (MAR) or
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both missing and observed values (MCAR). MNAR, the
most generic assumption, assumes that the missing mecha-
nism depends on both missing and observed values, so the
generative model based on the MNAR assumption should
explicitly take the missing mechanism into account. Based
on this framework, Mattei & Frellsen (2019) presented deep
generative models for missing data under MAR assump-
tion, and this was later extended to MNAR in Ipsen et al.
(2021). Combining the deep generative model and classifier,
Ipsen et al. (2022) proposed a hybrid model that can classify
missing data with problematically imputed values generated
under MAR assumption.

Still, in our opinion, there is no satisfactory work combining
probabilistic generative models for multivariate time-series
data with missing values and classification models, so that
the classifier could consider the uncertainty in filling in
the missing values when making predictions. The afore-
mentioned probabilistic frameworks are not designed for
classification (Mattei & Frellsen, 2019; Ipsen et al., 2021),
and more importantly, not tailored for time series data (Ipsen
et al., 2022). A naı̈ve extension of Ipsen et al. (2022) for
time series is likely to fail; putting the obvious difference
between the static and time series data aside, the fundamen-
tal difficulty of learning the generative models for missing is
that there are no explicit learning signals that could promote
the model to generate “meaningful” missing values. Since
we don’t have ground truth for the missing values, in princi-
ple, the generative model can generate arbitrary values (e.g.,
zeros), and the combined classifier can still successfully
classify time series data, which is a critical problem that is
overlooked in the existing works.

To this end, we propose a hybrid model combining the deep
generative models for multivariate time series data and the
classification models for them. The generative part is built
under the MNAR assumption and is designed to naturally
encode the continuity of the multivariate time series data.
The classifier then takes the missing values generated from
the generative model to classify time-series, and unlike the
algorithms based on heuristic imputations, it takes multi-
ple feasible options for the missing values and computes
predictions based on them. To tackle the difficulty in guid-
ing the generative model to generate “meaningful” missing
values, we introduce a novel regularization technique that
deliberately erases observed values during training. As a
consequence, the classifier is forced to do classification
based more on the generated missing values, so the gener-
ative model is encouraged to produce missing values that
are more advantageous for the classification. Using the var-
ious real-world multivariate time series benchmarks with
missing values, we demonstrate that our approach outper-
forms baselines both in terms of classification accuracy and
uncertainty estimates.

2. Background
2.1. Settings and Notations

Let x = [x1, . . . , xd]
⊤ ∈ Rd be a d-dimensional vector,

along with the mask vector s = [s1, . . . , sd]
⊤ ∈ {0, 1}d,

where sj = 1 if xj is observed and sj = 0 otherwise.
Given a mask s, we can split x into the observed part xo :=
{xj | sj = 1} and the missing part xm := {xj | sj = 0}.
For a collection of data, the ith instance is denoted as xi =
[xi,1, . . . , xi,d], and si, xo

i , and xm
i are defined similarly.

For a multivariate time-series data, we denote the vector
of tth time step as xt = [xt,1, . . . , xt,d] ∈ Rd, and the
corresponding mask as st = [st,1, . . . , st,d]. The tth time
step of ith instance of a collection is denoted as xt,i, which
is split into xo

t,i and xm
t,i according to st,i.

Following Mattei & Frellsen (2019); Ipsen et al. (2021),
we assume that the joint distribution of an input x and
a mask s is factorized as pθ,ψ(x, s) = pθ(x)pψ(s|x).
The conditional distribution pψ(s|x) plays an important
role for describing missing mechanism. Under MCAR
assumption, we have p(s|x) = p(s), under MAR we
have pψ(s|x) = pψ(s|xo), and under MNAR we have
pψ(s|x) = pψ(s|xo,xm). The likelihood for the ob-
served data xo is thus computed as pθ,ψ(x

o, s) =∫
pθ,ψ(x, s)dx

m.

2.2. Missing Data Importance-Weighted Autoencoder
and its extensions

In this section, we briefly review the Missing data
Importance-Weighted AutoEncoder (MIWAE) (Mattei &
Frellsen, 2019), a deep generative model for missing data,
and its extensions to MNAR and supervised settings. Simi-
lar to variational autoencoder (VAE) (Kingma & Welling,
2014), MIWAE assumes that a data x is genearted from a
latent representation z, but we only observe xo with s gen-
erated from the missing model pψ(s|x). MIWAE assumes
MAR, so we have pψ(s|x) = pψ(s|xo). The log-likelihood
for (xo, s) is then computed as

log pθ,ψ(x
o, s)

= log pψ(s|xo) + log

∫
pθ(x

o|z)pθ(z)dz︸ ︷︷ ︸
=log pθ(xo)

. (1)

For the missing data imputation, pψ(s|xo) is not necessary,
so we choose to maximize only the log pθ(x

o). The inte-
gral is intractable, so we consider the Importance Weighted
AutoEncoder (IWAE) lower bound (Burda et al., 2015) as a
proxy loss,

L(K)
MIWAE(θ,ϕ) := E

[
log

1

K

K∑
k=1

pθ(x
o|zk)pθ(zk)

qϕ(zk|xo)

]
. (2)

2



Probabilistic Imputation for Time-series Classification with Missing Data

Here, qϕ(zk|xo) for k = 1, . . . ,K are i.i.d. copies of
the variational distribution (encoder) qϕ(z|xo) approximat-
ing the true posterior pϕ(z|xo), and the expectation is
w.r.t.

∏K
k=1 q(zk|xo). Ez1:K

denotes the expectation w.r.t.∏K
k=1 qϕ(zk|xo). K is the number of particles, and the

bound converges to the log-likelihood as K → ∞, that is,
L(1)

MIWAE(θ,ϕ) ≤ L(2)
MIWAE(θ,ϕ) ≤ · · · = log pθ(x

o).

Ipsen et al. (2021) presented not-MIWAE, an extension of
MIWAE with MNAR assumption. The log-likelihood for
(xo, s) under the MNAR assumption is,

log pθ,ψ(x
o, s) = log

∫
pψ(s|xo,xm)pθ(x

o|z)

× pθ(x
m|z)pθ(z)dzdxm, (3)

where we assume that (xo,xm) are independent given z.
The corresponding IWAE lower-bound with the variational
distribution qϕ(x

m, z|xo) = pθ(x
m|z)qϕ(z|xo) is,

L(K)
notMIWAE(θ,ψ,ϕ)

:= E
[
log

1

K

K∑
k=1

pθ(s|xo,xm
k )pθ(x

o|zk)pθ(zk)
qϕ(zk|xo)

]
, (4)

where the expectation is w.r.t.
∏K

k=1 pθ(x
m
k |zk)qϕ(zk|xo).

On the other hand, Ipsen et al. (2022) extended MIWAE to
a supervised learning setting, where the goal is to learn the
joint distribution of an observed input xo, a mask s, and
corresponding label y,

log pθ,ψ,λ(y,x
o, s) = log pψ(s|xo)

+ log

∫
pλ(y|xo,xm)pθ(x

o|z)pθ(xm|z)pθ(z)dz︸ ︷︷ ︸
=log pθ,λ(y,xo)

, (5)

The term pψ(s|xo) is irrelevant to the prediction for y,
so we choose to maximize log pθ,λ(y,x

o), which again
can be lower-bounded by IWAE bound with the variational
distribution qϕ(z,x

m|xo) = pθ(x
m|z)qϕ(z|xo):

L(K)
supMIWAE(θ,λ,ϕ)

:= E
[
log

1

K

K∑
k=1

pλ(y|xo,xm
k )pθ(x

o|zk)p(zk)
qϕ(zk|xo)

]
, (6)

where the expectation is w.r.t.
∏K

k=1 pθ(x
m
k |zk)qϕ(zk|xo).

2.3. GRU for multivariate time series data and
imputation methods

We briefly review GRU (Cho et al., 2014) and its variant
for time series classification with missing data since they
are common baselines. Given a multivariate time series

(xt)
T
t=1, GRU takes a vector of one time step at a time

and accumulates the information into a hidden state ht.
Specifically, the forward pass at tth time step takes xt and
updates the hidden state ht as follows:

at = σ(W axt +Uaht−1 + ba),

rt = σ(W rxt +Urht−1 + br)

h̃t = tanh(Wxt +U(rt ⊙ ht−1) + b),

ht = (1− at)⊙ ht−1 + at ⊙ h̃t,

where ⊙ denotes the element-wise multiplication. We also
review the heuristical imputation methods described in Che
et al. (2018), which are common baselines for the related
methods. Let x̂t,j denote the imputed value for xt,j .

• GRU-zero: a zero padding setting x̂t,j = st,jxt,j .

• GRU-mean: imputes the missing values as
x̂t,j = st,jxt,j + (1 − st,j)x̄j , where x̄j =∑n

i=1

∑T
t=1 st,i,jxt,i,j/

∑n
i=1

∑T
t=1 st,i,j is the em-

pirical mean of observed values for jth feature of a
given collection of time series data ((xt,i)

T
t=1)

n
i=1.

• GRU-forward: set x̂t,j = st,jxt,j + (1 − st,j)xt′,j ,
where t′ is the last time when jth feature was observed
before t.

• GRU-simple: along with the imputed vector x̂t (ei-
ther by GRU-mean or GRU-forward), concatenate ad-
ditional information. Che et al. (2018) proposed to
concatenate 1) the mask st, and the time-interval δt
saving the length of the intervals between observed val-
ues (see Che et al. (2018) for precise definition). The
concatenated vector [x̂t, st, δt] is then fed into GRU.

• GRU-D: introduces learnable decay values for the
input xt and hidden state ht as follows:

γxt
= exp(−max(W γx

δt + bγx
,0)),

γht
= exp(−max(W γh

δt + bγh
,0)).

Given a vector xt with mask st, GRU-D imputes the
missing values as

x̂t,j = Decay(st,j , xt,j , γxt,j , xt′,j , x̄j)

:= st,jxt,j + (1− st,j)(γxt,jxt′,j

+ (1− γxt,j)x̄j). (7)

That is, the missing is imputed as a mixture of the
last observed xt′,j and the empirical mean x̄j with the
mixing coefficient set as the learned decay. The hidden
state from the previous time step ht−1 is decayed as
γht

⊙ ht−1 and passed through GRU along with the
imputed x̂t.
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3. Methods
In this section, we describe our method, a probabilistic
framework for multivariate time series data with missing
values. Our method is an extension of supMIWAE to time
series data under MNAR assumption, but the actual im-
plementation is not merely a naı̈ve composition of the
existing models. In Section 3.1, we first present supnot-
MIWAE, an MNAR version of supMIWAE, with the en-
coder and decoder architectures designed for time series
data with missing values. In Section 3.2, we show why
the sup(not)MIWAE for data with missings may fail, and
propose a novel regularization technique to prevent that.

3.1. supnotMIWAE for multivariate time series data

Given a multivariate time series data x1:T := (xt)
T
t=1

with observed xo
1:T , missing xm

1:T , a missing mask s1:T :=
(st)

T
t=1, and a label y, we assume the following state-space

model with latent vectors z1:T := (zt)
T
t=1.

pθ,ψ,λ(y,x
o
1:T , s1:T )

=

∫
pλ(y|xo

1:T ,x
m
1:T )pθ(x

o
1:T |z1:T )pθ(xm

1:T |z1:T )

× pθ(z1:T )pψ(s1:T |x1:T )dx
m
1:Tdz1:T . (8)

Below we describe each component more in detail.

Prior pθ(z1:T ). We assume Gaussian process prior as in
Fortuin et al. (2020) for z1:T to encode temporal correlation
in the latent space. Let z1:T,j = [z1,j , . . . , zT,j ]

⊤ be the
vector collecting jth dimension of the series z1:T .

pθ(z1:T ) =

d∏
j=1

N (z1:T,j |0,K), (9)

where Kij = k(ti, tj) i, j ∈ {1 . . . T} and k is kernel
function. We use a Cauchy kernel for all experiments in this
paper.

Decoders pθ(x
o
1:T |z1:T ) and pθ(x

m
1:T |z1:T ). The de-

coder for the observed pθ(x
o
1:T |z1:T ) is defined in an au-

toregressive fashion,

pθ(x
o
1:T |z1:T )

=

T∏
t=1

N (xo
t |µdec(z1:t),diag(σ

2
dec(z1:t))), (10)

where (µdec(z1:t),σdec(z1:t))
T
t=1 are defined with a trans-

former (Vaswani et al., 2017) with causal maskings.

ht = Transformerdec(z1:t),

(µdec(z1:t),σdec(z1:t)) = MLPdec(ht). (11)

In practice, this casual transformer layer is applied at times.
The decoder for the missing pθ(x

m
1:T |z1:T ) defined simi-

larly. In our implementation, we actually let them share the
same model generating both xo

t and xm
t .

Missing model pψ(s1:T |x1:T ). The missing model is sim-
ply assumed to be independent Bernoulli distributions over
the time steps and features.

pψ(s1:T |x1:T ) =

T∏
t=1

d∏
j=1

Bern(st,j |σmis,t,j(x1:T )), (12)

where σmis(x1:T ) is computed as

σmis(x1:T ) = MLPmis(x1:T ). (13)

Classifier pλ(y|xo
1:T ,x

m
1:T ) We use a transformer based

model for the classifier. Given a time-series data x1:T

packing the observed values xo
1:T and the imputed miss-

ing values generated from the decoders, we first process the
data with 1D CNN applied along the time axis to compute
r1:T := CNN(x1:T ). Then we process r1:T with a Trans-
former block to compute an output hT . The conditional
distribution pλ(y|xo

1:T ,x
m
1:T ) is defined as

Categorical(y |Softmax(Linearcls(hT )). (14)

During the forward pass, the classifier takes the observed
input xo

1:T and the missing values generated from the de-
coder pθ(xm

1:T |z1:T ). We find it beneficial to adopt the idea
of GRU-D, where instead of directly putting the generated
missing values xm

1:T , putting the decayed missing values as
follows:

x̃1:T := (xo
1:T ,x

m
1:T ) where xm

1:T ∼ pθ(x
m
1:T |z1:T ),

x̂t,j = Decay(st,j , xt,j , γx̂t,j , xt′,j , x̃t,j). (15)

where γx̂t
= exp(−max(0,W x̂δt + bx̂) is a learnable

decay. We find this stabilizes the learning when the gener-
ated missing values xm

1:T are inaccurate, for instance, in the
early stage of learning. Note also the difference between
(15) and the original GRU-D imputation (7). In GRU-D, the
last observed values are mixed with the mean feature, while
ours mix them with the generated values.

Encoder qϕ(z1:T |xo
1:T ). Given the generative model de-

fined above, we introduce the variational distribution for
(xm

1:T , z1:T ) that factorizes as,

pθ(x
m
1:T |z1:T )qϕ(z1:T |xo

1:T ). (16)

Here, the encoder qϕ(z1:T |xo
1:T ) is defined as an autore-

gressive model as before,

qϕ(z1:T |xo
1:T )

=

T∏
t=1

N (zt|µenc(x
o
1:t),diag(σ

2
enc(x

o
1:t))). (17)
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Given a series of observed values xo
1:T , we first apply zero

imputation for the missing values, that is, set x′
t,j = xo

t,j

if st,j = 1 and x′
t,j = 0 otherwise. Then we concatenate

the missing indicators to x′
1:T and apply the 1D CNN to the

time-axis as r1:T = CNN(x′
1:T ). Having computed r1:T ,

similar to the decoder, we use a transformer with causal
masking to compute

ht = Transformerenc(r1:t),

(µenc(x
o
1:t),σenc(x

o
1:t)) = MLPenc(ht). (18)

Objective. Having all the ingredients defined, the IWAE
bound for supnotMIWAE is computed as follows:

L(K)(λ,θ,ψ,ϕ) := E
[
log

1

K

K∑
k=1

ωk

]
, (19)

where the expectation is w.r.t. K copies of a variational
distribution,

∏K
k=1 pθ(x

m
k,1:T |zk,1:T )qϕ(zk,1:T |xo

1:T ), and
ωk is the importance weight term defined as

ωk := pλ(y|xo
1:T ,x

m
k,1:T )pψ(s1:T |xo

1:T ,x
m
k,1:T )

× pθ(x
o
1:T |zk,1:T )pθ(zk,1:T )/qϕ(zk,1:T |xo

1:T ). (20)

3.2. ObsDropout: regularizing supnotMIWAE for better
imputation

The problem with (19) is that there is no clear supervi-
sion for the missing values xm

1:T . Obviously, if we had an
access to the missing values, the conditional probability
pθ(x

m
1:T |z1:T ) would guide the model to learn to correctly

impute those missing values. Without such true values, we
can only encourage the model to impute the missing values
with some indirect criteria. In the objective (19), there are
two terms that the model hinges on for this matter.

• The missing model pψ(s1:T |xo
1:T ,x

m
1:T ): this term en-

courages the model to reconstruct the missing mask st
from the imputed value xm

t , so in principle, the model
should impute the missing values in a way that they are
distinguishable from the observed values. However, in
general, the distributions of the observed and the miss-
ings are not necessarily different, and more importantly,
the model can easily cheat the objective. For instance,
consider a trivial case where the model imputes all the
missing values with zero. The conditional probability
pψ(s1:T |xo

1:T ,x
m
1:T ) can still be maximized by setting

σmis(xt,j) = 0 if xt,j = 0 (unless there are not many
observed with xo

t,j = 0).

• The classifier pθ(y|xo
1:T ,x

m
1:T ): this term expects the

model to generate meaningful imputations so that they
are helpful for the classification. However, as shown

in prior works (Che et al., 2018), the classifier can
achieve decent classification accuracy without mean-
ingful imputations, for instance, it will still be able to
classify the signals while all the missing values are
imputed with zeros. Hence, in the current form, there
is no strong incentive for the model to learn non-trivial
imputations that will bring significant accuracy gain
over zero imputations.

To summarize, a model trained with the objective (19) is
not likely to generate realistic missing values. To resolve
this, we may introduce a missing model pθ(s1:T |xo

1:T ,x
m
1:T )

much more elaborated than the simple i.i.d. model that we
are using right now, but that may require some dataset-
specific design. Instead, we present a simple regularization
technique that can effectively enhance the quality of the
imputed values.

Our idea is simple; when passing the observed inputs xo
1:T

and the imputed missing values x̂m
1:T (i.e., imputed by (15))

to the classifier, deliberately drop some portion of the ob-
served inputs. Without dropping the observed inputs, the
classifier may heavily rely on the observed inputs to do
the classification, but if some of the observed inputs are
dropped out during training, the classifier can focus more
on the imputed missing values x̂m

1:T . As a result, the model
is encouraged to generate more “useful” missing values that
are beneficial for classification. More specifically, let β be
a predefined dropout probability. Then we construct the
imputed input x̂t to the classifier as follows:

x̃1:T := (xo
1:T ,x

m
1:T ) where xm

1:T ∼ pθ(x
m
1:T |z1:T ),

mt,j ∼ Bern(1− β),

x̂t,j := Decay(st,jmt,j , xt,j , γx̂t,j , xt′,j , x̃t,j). (21)

That is, when an observed xt,j is dropped out, we put a
generated value with the decay applied as in (15), so that
the classifier could focus more on the values generated by
the decoder as we intended. We call this idea ObsDropout,
since we are dropping out the observed values during the
training.

With the mask variables m1:T included, the likelihood is
extended

pθ,ψ,λ(y,x
o
1:T , s1:T )

=

∫
pλ(y|xo

1:T ,x
m
1:T ,m1:T )pβ(m1:T )

× pθ(x
o
1:T |z1:T )pθ(xm

1:T |z1:T )
× pθ(z1:T )pψ(s1:T |x1:T )dx

m
1:Tdz1:Tdm1:T . (22)

The corresponding IWAE objective is defined sim-
ilarly to Eq. 19, with the expectation taken with
respect to K copies of a variational distribution,
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Figure 1. An overview of our model with obsdropout.

∏K
k=1 pθ(x

m
k,1:T |zk,1:T )qϕ(zk,1:T |xo

1:T )pβ(mk,1:T ) and
the importance term is defined as

ωk := pθ(y|xo
1:T ,x

m
k,1:T ,mk,1:T )pψ(s1:T |xo

1:T ,x
m
k,1:T )

× pθ(x
o
1:T |zk,1:T )pθ(zk,1:T )/qϕ(zk,1:T |xo

1:T ), (23)

where pθ(m1:T ) :=
∏T

t=1

∏d
j=1 Bern(mt,j |β).

3.3. Prediction

Similar to SupMIWAE, we exploit Self-Normalized Im-
portance Sampling (SNIS) to approximate the predictive
distribution for a new input xo

1:T . With the model trained
with obsdropout, we have

p(y|xo
1:T ) ≈

1

S

S∑
s=1

K∑
k=1

ζ̄
(s)
k , (24)

where

(z
(s)
k,1:T , (x

m)
(s)
k,1:T ,m

(s)
k,1:T )

i.i.d.∼ qϕ(z1:T |xo
1:T )pθ(x

m
1:T |z1:T )pβ(m1:T ), (25)

ζ
(s)
k := pλ(y|xo

1:T , (x
m)

(s)
k,1:T ,m

(s)
k,1:T )pθ(x

o
1:T |z

(s)
k,1:T )

× pθ(z
(s)
k,1:T )/qϕ(z

(s)
k,1:T |x

o
1:T ), (26)

ζ̄
(s)
k := ζ

(s)
k /

k∑
ℓ=1

ζ
(s)
ℓ . (27)

4. Related Work
There are two lines of literature closely related to our
method. The first line consists of work dealing with the
problem of missing data imputation based on Deep Latent
Variable Models (DLVMs). The other line consists of work
designing a tailored neural network architecture for super-
vised learning on irregularly sampled time series data, which
also implies missingness in the process of handling it as a
tensor.

DLVMs for missing data Mattei & Frellsen (2019) pro-
posed the MIWAE bound for training DLVMs in the pres-
ence of missing data under the MAR assumption. Ipsen
et al. (2021) modified the MIWAE bound suitable for the
MNAR scenario. Ipsen et al. (2022) extended the MIWAE
bound to the supervised learning task. This line of work
provides a useful framework for training DLVMs under
missingness. However, it is not directly applicable to time
series data because it cannot model the temporal dependency
within a series. There is previous work that makes DLVMs
suitable for multivariate time series. For example, Fortuin
et al. (2020) proposed a CNN-based VAE architecture with
a Gaussian Process prior to encode the temporal correla-
tion in the latent space. Rubanova et al. (2019) presented
ODE-RNNs, which employ Neural Ordinary Differential
Equations (Neural ODEs) to model hidden state dynamics
of RNNs. Shukla & Marlin (2021a) developed an attention-
based VAE architecture with probabilistic interpolation for
irregularly sampled time series data.

Irregularly sampled time series classification Re-
searchers have developed deep neural network architectures
customized to classify irregularly sampled time series data.
Several architectures have shown competitive empirical per-
formance in this task. Che et al. (2018) modified the archi-
tecture of GRU intending to perform supervised learning
with sparse covariates by introducing a learnable temporal
decay mechanism for the input and hidden state of GRU.
This mechanism has been applied to further research. For
example, Cao et al. (2018) employed temporal decay in
hidden states of their bidirectional-RNN-based model to
capture the missing pattern of irregularly sampled times
series. Shukla & Marlin (2019) presented a hybrid archi-
tecture of an interpolation network and a classifier. The
interpolation network takes irregularly sampled time series
as input and returns fully observed and regularly sampled
representation of the original time series data. Shukla &
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Table 1. Classification performances of baseline methods and ours
on MIMIC-III dataset.

Method AUROC (↑) CE (↓) ECE (↓) BS (↓)

GRU-Mean 0.844 ± 0.001 0.477 ± 0.012 0.240 ± 0.010 0.154 ± 0.004

GRU-Simple 0.824 ± 0.003 0.451 ± 0.053 0.197 ± 0.039 0.150 ± 0.020

GRU-Forward 0.856 ± 0.002 0.455 ± 0.014 0.219 ± 0.012 0.149 ± 0.005

GRU-D 0.855 ± 0.001 0.468 ± 0.011 0.224 ± 0.009 0.157 ± 0.004

PhasedLSTM 0.802 ± 0.005 0.499 ± 0.049 0.229 ± 0.033 0.166 ± 0.019

IP-Nets 0.830 ± 0.005 0.509 ± 0.031 0.253 ± 0.020 0.172 ± 0.012

SeFT 0.837 ± 0.003 0.432 ± 0.013 0.186 ± 0.008 0.142 ± 0.005

Ours 0.860 ± 0.003 0.432 ± 0.016 0.197 ± 0.011 0.141 ± 0.008

w/o obsdropout 0.849 ± 0.003 0.490 ± 0.024 0.232 ± 0.015 0.161 ± 0.009

w/o MNAR 0.851 ± 0.001 0.462 ± 0.007 0.220 ± 0.007 0.151 ± 0.003

Marlin (2021b) later modified interpolation network with
an attention-based architecture.

5. Experiments
In this section, we demonstrate our method on real-world
multivariate time series data with missing values. We
compare ours to the baselines on three datasets: MIMIC-
III (Johnson et al., 2016), PhysioNet 2012 (Silva et al.,
2012), and Human Activity Recognition (Anguita et al.,
2013). MIMIC-III and PhysioNet 2012 datasets contain
Electronic Health Records of patients from Intensive Care
Units (ICU). Human Activity Recognition dataset consists
of the 3D coordinate of sensors mounted on the people do-
ing some daily activities such as walking and sitting. See
Appendix A for the details of datasets. For all three datasets,
we compare classification accuracy and the uncertainty quan-
tification performances in Section 5.1. We also compare the
missing value imputation performance of our methods to
the baselines in Section 5.2

For the baselines, we considered GRU classifiers with var-
ious imputation methods and other deep neural network
based methods that are considered to be competitive in
the literature. See Appendix A for the detailed descrip-
tion of the baselines. For the uncertainty quantification
metrics, we compared cross-entropy (CE, equals negative
log-likelihood), expected calibration error (ECE), and brier
score (BS). Please refer to Appendix A for the detailed
description of the metrics.

5.1. Classification Results

We summarize the classification results in Table 1, Table 2,
and Table 3. In general, our method achieves the best per-
formance among the competing methods both in terms of
prediction accuracy and uncertainty quantification. In all
classification experiments, our method beats other baseline
methods by a wide margin in terms of predictive accuracy.
Also, our model shows competitive results with respect
to uncertainty metrics. Although SeFT (Horn et al., 2020)

Table 2. Classification performances of baseline methods and ours
on PhysioNet 2012 dataset.

Method AUROC (↑) CE (↓) ECE (↓) BS (↓)

GRU-Mean 0.853 ± 0.003 0.439 ± 0.013 0.194 ± 0.013 0.144 ± 0.006

GRU-Simple 0.819 ± 0.005 0.457 ± 0.065 0.145 ± 0.058 0.150 ± 0.026

GRU-Forward 0.850 ± 0.006 0.475 ± 0.028 0.221 ± 0.026 0.156 ± 0.010

GRU-D 0.862 ± 0.003 0.416 ± 0.024 0.166 ± 0.025 0.135 ± 0.009

PhasedLSTM 0.802 ± 0.007 0.489 ± 0.089 0.199 ± 0.074 0.166 ± 0.035

IP-Nets 0.863 ± 0.003 0.424 ± 0.041 0.180 ± 0.043 0.138 ± 0.015

SeFT 0.863 ± 0.001 0.458 ± 0.044 0.209 ± 0.039 0.156 ± 0.015

Ours 0.874 ± 0.004 0.399 ± 0.057 0.154 ± 0.048 0.129 ± 0.021

w/o obsdropout 0.866 ± 0.004 0.371 ± 0.050 0.119 ± 0.041 0.116 ± 0.018

w/o MNAR 0.869 ± 0.001 0.429 ± 0.033 0.182 ± 0.019 0.140 ± 0.012

Table 3. Classification performance of baseline methods and ours
on Human Activity Recognition dataset.

Method Accuracy (↑) CE (↓) ECE (↓) BS (↓)

GRU-Mean 0.780 ± 0.005 0.163 ± 0.012 0.019 ± 0.006 0.046 ± 0.002

GRU-Simple 0.861 ± 0.005 0.070 ± 0.004 0.010 ± 0.002 0.019 ± 0.001

GRU-Forward 0.847 ± 0.006 0.084 ± 0.008 0.012 ± 0.003 0.021 ± 0.001

GRU-D 0.860 ± 0.005 0.081 ± 0.005 0.012 ± 0.001 0.020 ± 0.001

PhasedLSTM 0.852 ± 0.001 0.070 ± 0.004 0.008 ± 0.003 0.020 ± 0.001

SeFT 0.848 ± 0.005 0.068 ± 0.001 0.003 ± 0.001 0.020 ± 0.001

Ours 0.883 ± 0.003 0.063 ± 0.003 0.009 ± 0.001 0.016 ± 0.000

w/o obsdropout 0.867 ± 0.018 0.068 ± 0.004 0.008 ± 0.003 0.018 ± 0.000

w/o MNAR 0.882 ± 0.004 0.070 ± 0.004 0.011 ± 0.001 0.017 ± 0.000

shows strong results in terms of uncertainty quantification in
some experiments, this method shows inferior performance
with respect to predictive accuracy. Since it is reasonable
to compare uncertainty quantification between models with
similar predictive performance, it can be said that our model
shows the best performance among baseline models in gen-
eral. We also provide an ablation study for our model to see
the effect of 1) obsdropout and 2) MNAR assumption. The
results clearly show that both components play important
roles in our model. For all the experiments, obsdropout
clearly makes the gain in terms of predictive performance.
Also, removing MNAR assumption makes the worse perfor-
mance.

5.2. Imputation Results

We quantitatively check the imputation performance of our
model on three datasets in Table 4, and visually check the
imputation quality by changing our model settings in Fig. 2.
Although our model is designed for the classification, ours
achieved the lowest MAE and MRE, outperforming the base-
line (SAITS) specifically designed for the imputation. Also,
our model achieved better performance than GP-VAE model
which employs identical prior distribution. This implies that
our architecture design and other ingredients such as obs-
dropout and missing model and supervised signal helps the
imputation. Only forward imputation shows comparable per-
formance with our model. However, the structure of forward
imputation is very restricted so it cannot deal with various
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Figure 2. Plots of µdec(z1:t),σ
2
dec(z1:t). (Left) Our model with MLP encoder and MLP decoder. (Right) Our model trained with

obsdropout with a rate of 0.4. Since MLP architecture does not take the temporal association into account, it shows spiky imputation
while our model shows smooth imputation. Also, our model shows better performance in uncertainty quantification since the learned
variance of the decoder captures sudden spikes and considers the initial part of the time series more uncertain.

Table 4. Imputation performance on PhysioNet 2012, MIMIC-III and Human Activity Recognition dataset.

PhysioNet 2012 MIMIC-III Human Activity Recognition

Method MAE (↓) MRE (↓) MAE (↓) MRE (↓) MAE (↓) MRE (↓)

Mean 0.696 ± 0.001 1.000 ± 0.000 0.330 ± 0.002 1.000 ± 0.000 0.799 ± 0.001 1.000 ± 0.000

Forward 0.400 ± 0.004 0.576 ± 0.005 0.151 ± 0.002 0.459 ± 0.002 0.305 ± 0.005 0.373 ± 0.007

GP-VAE 0.439 ± 0.010 0.630 ± 0.005 0.198 ± 0.012 0.601 ± 0.031 0.548 ± 0.008 0.684 ± 0.019

SAITS 0.653 ± 0.030 0.942 ± 0.013 0.341 ± 0.005 1.040 ± 0.087 0.834 ± 0.005 1.048 ± 0.013

Ours 0.367 ± 0.005 0.526 ± 0.005 0.149 ± 0.002 0.451 ± 0.008 0.297 ± 0.005 0.373 ± 0.006

w/o supervision 0.376 ± 0.007 0.541 ± 0.009 0.148 ± 0.002 0.449 ± 0.006 0.298 ± 0.005 0.373 ± 0.007

w/o obsdropout 0.377 ± 0.004 0.542 ± 0.005 0.152 ± 0.001 0.459 ± 0.002 0.299 ± 0.005 0.374 ± 0.006

w/o supervision & MNAR 0.394 ± 0.003 0.570 ± 0.006 0.150 ± 0.002 0.457 ± 0.003 0.299 ± 0.005 0.374 ± 0.006

time series such as time series that have many sudden spikes
or periodicity. Since our model simultaneously employs the
decay mechanism and generative model, our model is more
flexible and able to cope with various cases. Especially, the
ablation study on the class supervision part pλ(y|x1:T ) and
the obsdropout and MNAR assumption implies that the im-
putation values generated by our model which was trained
to better classify the signals are more “realistic”. Fig. 2 high-
lights the effect of using transformer-based encoders and
decoders. The values imputed with those techniques form
smoother trajectories and better capture the uncertainties in
the intervals without observed values.

6. Conclusion
In this paper, we presented a novel probabilistic framework
for multivariate time series classification with missing data.
Under the MNAR assumption, we first developed a deep
generative model suitable for generating missing values in
multivariate time series data. Then we identified an impor-
tant drawback of the naı̈ve combination of the deep gen-
erative models with the classifiers and proposed a novel
regularization technique called obsdropout to circumvent
that. In this way, combining the MNAR assumption and the

obsdropout regularization technique, the generative model
can generate more natural imputation, and the classifier
can also perform more accurate and robust classification
through this. Also, by using the transformer layers in the
internal modules, it can effectively capture the time series
structure. Through experiments, we show that it is possible
to achieve high performance and uncertainty calibration at
the same time in classification tasks with missing values.
We demonstrated that ours could classify real-world multi-
variate time series data more accurately and robustly than
existing methods.

Reproducibility statement Please refer to Appendix A
for full experimental detail including datasets, models, and
evaluation metrics.
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Table 5. Statistics of each dataset.

PhysioNet2012 MIMIC-III Human Activity

Number of samples 11,971 21,107 6554
Number of variables 37 16 12
Maximum number of time steps 215 292 50
Mean of number of time steps 74 78 162.4
Total missing rate 0.843 0.655 0.75

A. Experimental Details
A.1. Datasets

A.1.1. DATASET DESCRIPTION

We use three irregularly sampled time series datasets to evaluate the classification and imputation performance of our model
and baseline models.

PhysioNet Challenge 2012 (PhysioNet 2012) This dataset contains approximately 12,000 Electronic Health Records
of adult patients who were admitted to the intensive care unit (ICU). Each record contains up to 37 time series variables
including vital signs such as heart rate, and temperature. All of the variables were measured during the first 48 hours of each
patient’s admission to ICU and the sampling rate of times series varies among variables. After preprocessing, we have 37
features and 11,971 data points. This data is extremely sparse, with 85% of the entries being unobserved.

MIMIC-III MIMIC-III dataset is a widely used database that includes de-identified Electronical Health Record of patients
who stayed in ICU of Beth Israel Deaconess Medical Center from 2001 to 2012. It originally consists of approximately
57,000 records of patients who stayed in ICU. Records include various variables such as medications, in-hospital mortality,
and vital signs. Harutyunyan et al. (2019) set variety of benchmark tasks based on the subset of this database. Among them,
we conduct binary in-hospital mortality prediction task for measuring classification performance. After preprocessing, our
dataset contains 16 features and 21,107 data points.

UCI Localization Data for Person Activity (UCI Human Activity) This dataset includes records of five people doing
some usual activities such as walking or sitting. All people wear sensors on their right ankle, left, belt and chest. During
activities, the sensors record their position in the form of three-dimensional coordinates at very short intervals. Activities of
each people at a certain time point are classified into one of 11 classes and recorded with the position of sensors. After
preprocessing, we have total 6554 time series with 12 features (3-dimensional coordinates of 4 devices). Using this data, we
conduct an online-prediction task. The objective of this task is to classify each individual’s activity per time point based on
the position of sensors.

A.1.2. DATA PREPROCESSING

For all datasets, we basically standardize the numerical covariates so that all features have zero mean and unit variance,
respectively. Also, we normalize the time scale to be in [0, 1] scale.

PhysioNet2012 and MIMIC-III Since there is no fixed rule for preprocessing PhysioNet 2012 dataset and MIMIC-III
database researchers usually preprocess the raw data on their own. Therefore, it is difficult for practitioners to compare
experimental results with other works. So, for comparability, we employ python package medical ts datasets1

(Horn et al., 2020) which provides the unified data preprocessing pipeline for Physionet2012 and MIMIC-III datasets.
For both datasets, patients who have more than 1000 time steps or have no observed time series data were excluded.
Also, discretizing the time step of data by an hour and aggregating the measurement is frequently used to preprocess
Physionet2012 in previous work (Rubanova et al., 2019), but this package preserves much more original time series variables
while preprocessing than hourly-based aggregation preprocessing for both datasets. Please refer to (Horn et al., 2020) for
more details of dataset preprocessing.

1https://github.com/ExpectationMax/medical ts datasets
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UCI Human Activity Basically, we decide to follow the preprocessing of this dataset based on (Rubanova et al., 2019),
except for aggregation of time points of all data points in the dataset. We just use overlapping intervals of 50 time points
while (Rubanova et al., 2019) used 221 time points. So, our processed data finally contains 6554 data points and 50 time
points, and 12 features.

A.2. Details for classification experiments

For all experiments, we use five different random seeds to conduct experiments. Then we measure the mean and the variance
of each value.

A.2.1. BASELINE METHODS

• GRU-mean: Missing value is simply replaced with the empirical mean of each variable.

• GRU-forward: Missing entries are filled with previously observed values.

• GRU-simple: concatenate the mask st, and the time-interval δt along with the imputed vector x̂t. The concatenated
vector [x̂t, st, δt] is then fed into GRU.

• GRU-D: Missing values are imputed as a weighted mean of the last observed xt′,j and the mean x̄j with the learnable
weight.

• Phased-LSTM: This model is LSTM variant designed to deal with long sequence input by introducing a time gate in
their cell to prevent memory decay when useful information is absent for a long time (Neil et al., 2016).

• Interpolation-Prediction Network (IP-Nets): Instead of directly imputing missing values, IP-Nets (Shukla & Marlin,
2019) employed semi-parametric interpolation network that makes regularly spaced representation of irregularly
sampled time series data. Then, this representation is fed into a prediction network such as GRU.

• Set Function for Time Series (SeFT): SeFT (Horn et al., 2020) is a set function-based method attached with an
attention mechanism for multivariate time series classification task. This model encodes the observed value of the time
series as a set and uses the attention layer to aggregate the embedding of elements. Since SeFT only uses the observed
value as input, imputation is unnecessary.

A.2.2. MODEL IMPLEMENTATION IN HUMAN ACTIVITY EXPERIMENT

Since we conduct online-prediction task on Human Activity dataset, we do not consider IP-Nets as baseline models because
this model exploits future information when conducting interpolation before feeds the representation to the classification
model. SeFT also use future information due to the set encoding, but the author offers the method to prevent information
leakage by calculating attention weights in cumulative manner. Since our method uses causal masked attention layer in
encoder and decoder, we do not use future information during generation. For classifier, we use causal mask for attention
layer in classifier for this experiment.

A.2.3. TRAINING DETAILS

For all the classification experiments, we fix a batch size of 128. We adopt Adam with weight decay as the optimizer and
find the best weight decay for each model using grid search.

We conduct a grid search to find the best hyperparameters of each model. See the table for concrete search space and the
best hyperparameters for each model.

We employ early stopping for all classification experiments. We set early stopping patience to 20 epochs and set the
valid Area Under ROC curve(AUROC) as the early stopping criterion. Since the label imbalance of PhysioNet 2012 and
MIMIC-III is extreme, we over-sample the mortality class to train models on the balanced batches.

A.2.4. HYPERPARAMETERS

We search all hyperparameters in the grid to find the best hyperparameters for each model. For all models, we search the
weight decay of the AdamW optimizer in {0, 0.01, 0.1, 1} and the number of units (n units) of model layers in {128, 256}
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if the model accepts that parameter. For GRU variant models, we search the dropout probability of forward pass (dropout) in
{0, 0.1, 0.2, 0.3}, and the dropout probability of recurrent pass (recurrent dropout) in {0, 0.1, 0.2, 0.3}. For the SeFT-Attn
model, we followed the best hyperparameter settings presented in Horn et al. (2020). See Table 6 for hyperparameter
settings of our model and baseline methods for all classification experiments.

Table 6. Hyperparameter settings for classification experiments

Dataset Method Hyperparameters

PhysioNet2012

GRU-Mean weight decay: 0.1, n units: 128, dropout: 0.3, recurrent dropout: 0.1
GRU-Simple weight decay: 1.0, n units: 128, dropout: 0.0, recurrent dropout: 0.1
GRU-Forward weight decay: 0.0, n units: 256, dropout: 0.0, recurrent dropout: 0.2
GRU-D weight decay: 1.0, n units: 128, dropout: 0.0, recurrent dropout: 0.2

PhasedLSTM weight decay: 0.0, n units: 256, use peepholes: False, leak: 0.01, period init max: 1000.0
IP-Nets weight decay: 1.0, n units: 128, imputation stepsize: 1 , reconst fraction: 0.5
Seft weight decay: 0.0, n phi layers: 4, phi width: 128, phi dropout: 0.2, n psi layers: 2

psi width: 64, psi latent width: 128, dot prod dim: 128, n heads: 4
attn dropout: 0.5, latent width: 32, n rho layers: 2, rho width: 512
rho dropout: 0.0, max timescale: 100., n positional dims: 4

Ours weight decay: 0.0, n train latents: 10, n train samples: 1, n test latents: 20, n test samples: 30,
n hidden: 128, z dim: 32, n units: 128, observe dropout: 0.4

MIMIC-III

GRU-Mean weight decay: 1.0, n units: 128, dropout: 0.1, recurrent dropout: 0.2
GRU-Simple weight decay: 1.0, n units: 256, dropout: 0.0, recurrent dropout: 0.1
GRU-Forward weight decay: 0.0, n units: 256, dropout: 0.0, recurrent dropout: 0.1
GRU-D weight decay: 1.0, n units: 128, dropout: 0.0, recurrent dropout: 0.2

PhasedLSTM weight decay: 1.0, n units: 128, use peepholes: False, leak: 0.01, period init max: 1000.0
IP-Nets weight decay: 1.0, n units: 256, imputation stepsize: 1, reconst fraction: 0.5
Seft weight decay: 0.0, n phi layers: 3, phi width: 64, phi dropout: 0.1, n psi layers: 2

psi width: 64, psi latent width: 128, dot prod dim: 128, n heads: 4
attn dropout: 0.1, latent width: 256, n rho layers: 2, rho width: 512
rho dropout: 0.1, max timescale: 1000., n positional dims: 8

Ours weight decay: 0.0, n train latents: 10, n train samples: 1, n test latents: 20, n test samples: 30,
n hidden: 128, z dim: 32, n units: 128, observe dropout: 0.3

Human Activity

GRU-Mean weight decay: 0.0, n units: 256, dropout: 0.0, recurrent dropout: 0.0
GRU-Simple weight decay: 0.0, n units: 256, dropout: 0.0, recurrent dropout: 0.0
GRU-Forward weight decay: 0.0, n units: 256, dropout: 0.0, recurrent dropout: 0.0
GRU-D weight decay: 0.0, n units: 256, dropout: 0.0, recurrent dropout: 0.0

PhasedLSTM weight decay: 0.0, n units: 256, use peepholes: False, leak: 0.01, period init max: 1000.0
Seft weight decay: 0.0, n phi layers: 4, phi width: 128, phi dropout: 0.2, n psi layers: 2

psi width: 64, psi latent width: 128, dot prod dim: 128, n heads: 4
attn dropout: 0.5, latent width: 32, n rho layers: 2, rho width: 512
rho dropout: 0.0, max timescale: 100., n positional dims: 4

Ours weight decay: 0.0, n train latents: 10, n train samples: 1, n test latents: 10, n test samples: 10,
n hidden: 128, z dim: 10, n units: 128, observe dropout: 0.2

A.2.5. EVALUATION METRICS

For the classification task, we evaluate all models in terms of both predictive accuracy and predictive uncertainty. We use
the area under receiver operating characteristic (AUROC), and the accuracy (ACC) to evaluate the predictive performance.
To measure the uncertainty calibration of the model, we use cross entropy (CE), expected calibration error (ECE), and brier
score (BS) for comparing calibration.

Accuracy Metrics Accuracy metrics are defined using the following terms, where tp, tn, fn, and fp denote true positive,
true negative, false negative, and false positive respectively.
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accuracy =
tp+ tn

tp+ fp+ fn+ tn
(28)

precision =
tp

tp+ fp
(29)

recall =
tp

tp+ fn
(30)

sensitivity =
tp

tp+ fn
(31)

• AUROC: area under receiver operating characteristic, area under sensitivity curve.

A.3. Details for imputation experiments

Basically, We randomly delete 10% of observed data for testing the imputation performance of models. We trained our
model with five different seeds and also measured the performance of five different seeds.

A.3.1. BASELINE METHODS

• Mean: Replace missing values with global mean.

• Forward: Impute missing value with previously observed value

• GP-VAE: This model is VAE-based probabilistic imputation method proposed by Fortuin et al. (2020). This method
employs GP-prior to encode the temporal correlation in the latent space.

• SAITS: This model is self-attention based imputation model which Du et al. (2022) proposed. This employs a
combination of multiple layers of transformer encoder to impute multivariate time series data.

• Ours w/o supervision: To analyze the effect of supervised signal to the imputation performance, we remove the
supervised term from our training objective and train only the generative part of our architecture.

• Ours w/o dropout: Our model without obsdropout.

• Ours w/o supervision and MNAR: Our model without obsdropout and MNAR assumption, which missing model and
classifier is removed from our model.

A.3.2. EVALUATION METRICS

For the imputation task, we evaluate all methods in terms of MRE(Mean Relative Error) and MAE(Mean Absolute Error).

A.3.3. TRAINING DETAILS

We applied early stopping with patience 20 and stopping criterion as validation loss of each model. We randomly erase 10%
of the observed data for all datasets and measured the evaluation metrics. See Table 7 for hyperparameter settings of our
model and baseline methods for all imputation experiments.
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Table 7. Hyperparameter settings for imputation experiments

Dataset Method Hyperparameters

PhysioNet2012

Mean -
Forward -

Ours w/ obsdropout
n train latents: 10, n train samples: 1, n test latents: 10, n test samples: 1,
n hidden: 128, z dim: 32, n units: 128, observe dropout: 0.4

Ours w/o supervision
n train latents: 10, n train samples: 1, n test latents: 10, n test samples: 1,
n hidden: 128, z dim: 32, n units: 128,

Ours w/o MNAR
n train latents: 10, n train samples: 1, n test latents: 10, n test samples: 1,
n hidden: 128, z dim: 32, n units: 128, observe dropout: 0.4

GP-VAE n hidden: 128, z dim: 35, length scale: 7, kernel scale: 1, n latents: 1,beta: 1

SAITS
n head:4 , num layer:2 , d model:256 , MIT:True,
input with mask: True, MIT missing rate:0.4 , n hidden:128

MIMIC-III

Mean -
Forward -

Ours w/ obsdropout
n train latents: 10, n train samples: 1, n test latents: 10, n test samples: 1,
n hidden: 128, z dim: 32, n units: 128, observe dropout: 0.3

Ours w/o supervision
n train latents: 10, n train samples: 1, n test latents: 10, n test samples: 1,
n hidden: 128, z dim: 32, n units: 128,

Ours w/o MNAR
n train latents: 10, n train samples: 1, n test latents: 10, n test samples: 1,
n hidden: 128, z dim: 32, n units: 128, observe dropout: 0.3

GP-VAE n hidden: 128, z dim: 35, length scale: 7, kernel scale: 1, n latents: 1,beta: 1

SAITS
n head:2 , num layer:2 , d model:128 , MIT:True,
input with mask: True, MIT missing rate:0.2 , n hidden:128

Human Activity

Mean -
Forward -

Ours w/ obsdropout
n train latents: 10, n train samples: 1, n test latents: 10, n test samples: 10,
n hidden: 128, z dim: 32, n units: 128, observe dropout: 0.2

Ours w/o supervision
n train latents: 10, n train samples: 1, n test latents: 10, n test samples: 10,
n hidden: 128, z dim: 32, n units: 128,

Ours w/o MNAR
n train latents: 10, n train samples: 1, n test latents: 10, n test samples: 10,
n hidden: 128, z dim: 32, n units: 128, observe dropout: 0.2

GP-VAE n hidden: 128, z dim: 10, length scale: 7, kernel scale: 1, n latents: 1,beta: 1

SAITS
n head:2 , num layer:2 , d model:256 , MIT:True,
input with mask: True, MIT missing rate:0.4 , n hidden:128
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