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Abstract

As Machine Learning as a Service (MLaaS) plat-
forms become prevalent, deep neural network
(DNN) watermarking techniques are gaining in-
creasing attention, which enables one to verify the
ownership of a target DNN model in a black-box
scenario. Unfortunately, previous watermarking
methods are vulnerable to functionality stealing at-
tacks, thus allowing an adversary to falsely claim
the ownership of a DNN model stolen from its
original owner. In this work, we propose a novel
margin-based DNN watermarking approach that
is robust to the functionality stealing attacks based
on model extraction and distillation. Specifically,
during training, our method maximizes the mar-
gins of watermarked samples by using projected
gradient ascent on them so that their predicted
labels cannot change without compromising the
accuracy of the model that the attacker tries to
steal. We validate our method on multiple bench-
marks and show that our watermarking method
successfully defends against model extraction at-
tacks, outperforming relevant baselines.

1. Introduction
Deep learning has proven to be a promising strategy
for tackling practical problems from real-world domains
such as computer vision (He et al., 2016), natural lan-
guage processing (Brown et al., 2020), and speech recogni-
tion/synthesis (Baevski et al., 2020). This has led to active
deployments of a deep neural network (DNN) in real-world
applications. A Machine Learning as a Service (MLaaS)
platform is a notable example of such a practical system,
which allows users to provide input data and access the
output of the models that are deployed on the cloud.

1Kim Jaechul Graduate School of AI, KAIST 2Graduate
School of Information Security, KAIST. Correspondence to:
Byungjoo Kim <byungjoo@kaist.ac.kr>, Sung Ju Hwang <sjh-
wang82@kaist.ac.kr>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

As the MLaaS providers put a significant amount of re-
sources for constructing a high-performing model, protect-
ing their intellectual property rights is a crucial problem.
However, DNN models deployed via MLaaS systems are
known to be vulnerable to attacks that aim to steal their
functionalities. Even if the attacker does not have access to
the parameters of the deployed models, the adversary can
extract the functionality of the DNN models with black-box
functionality stealing attacks, for instance, model extraction
attacks (Orekondy et al., 2019). To mitigate the functionality
stealing threat, prior studies (Uchida et al., 2017; Li et al.,
2019; Namba & Sakuma, 2019; Chen et al., 2021; Yang
et al., 2021; Zhang et al., 2018; Adi et al., 2018; Bansal
et al., 2022) have suggested DNN watermarking methods
that enable the ownership verification of a stolen model.

These watermarking methods require either black-box or
white-box access to the suspicious model for ownership
verification. However, in practical scenarios, the model
owners using watermarking method which requires white-
box access to the suspicious model would fail to verify
their ownership because adversaries would not allow direct
access to the parameters of the stolen model. Due to this
limitation, most existing methods use the trigger set based
approach (Adi et al., 2018; Zhang et al., 2018; Li et al., 2019;
Namba & Sakuma, 2019; Zhang et al., 2020a;b; Chen et al.,
2021; Yang et al., 2021; Jia et al., 2021; Maini et al., 2021;
Li et al., 2022; Bansal et al., 2022), which operates in a
black-box setting. For ownership verification, model owners
conduct statistical testing to demonstrate the behavioral
difference between the watermarked and watermark-free
models with a predefined set of samples whose labels are
only known to the owner. When doing so, the model owner
designs the labels or samples used for the query set to have
an atypical distribution to prevent false alarms.

Despite the numerous attempts for DNN ownership veri-
fication, most existing DNN watermarking methods have
failed to demonstrate their robustness against model extrac-
tion attacks (Lukas et al., 2022), which aim to copy the
functionality of the target model.

Although several recent studies (Jia et al., 2021; Maini et al.,
2021; Li et al., 2022) have shown their robustness against
model extraction, we believe that the behavioral differences
between the stolen model and the clean model are insuffi-
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Figure 1: Concept. (left) The circle denotes the samples for classification, rhombus is the sample in the trigger set. Black and red line
indicates the decision boundary of the source model and its surrogate via stealing the functionality. To claim the ownership, prediction of
both source and surrogate model on the trigger set should be the same, which is done by margin-based watermarking since the margin
leads the surrogate model to include the rhombus in the same region. (right) The performance of the surrogate models with our method
and baseline watermarking methods on CIFAR-10 dataset. Ours outperforms the baselines in terms of both source model accuracy and
watermarking accuracy.

cient for ownership verification. The watermarking objec-
tive of a model is orthogonal to its original training objective
(e.g., cross-entropy) due to using the trigger set drawn from
the atypical distribution, letting the model extraction only
copies the model’s functionality for the original objective.

Focusing on such an imperfect copy mechanism, we propose
a novel watermarking method that allows to build a model
whose trigger set will be transferred to surrogate models
even with functionality stealing attacks. The functionality
stealing methods tend to imitate the decision boundary of
the target model, and thus we propose to train the model
such that each query sample in the trigger set has a sufficient
margin by using projected gradient ascent.

As our method gives sufficient margins to the queries, the
decision boundary of the surrogate model built by the func-
tionality stealing method results in copying the watermarks
while imitating the margin (see Figure 1, left). Our margin-
based watermarking method significantly outperforms the
relevant baselines on watermarking verification tasks against
extraction and distillation attacks (see Figure 1, right), where
the distillation attack is known to be the strongest attack
that assumes to be able to access to the training dataset and
objective of source models.

Last but not least, our proposed method allows to construct
an arbitrary trigger set as long as the set is distinguishable
from the original training set, which makes it difficult for
adversaries to identify the trigger set. Our contributions are
threefold:

• We propose a novel margin-based watermarking
method that aims to maximize the margins of the trig-
ger set to defense against functionality stealing attacks.

• We validate our margin-based watermarking method
against functionality stealing methods — extraction

and distillation, showing that it significantly outper-
forms previous methods in terms of both clean and
watermarking accuracy.

• We empirically show that our method is robust to how
we construct trigger sets, which makes it challenging
for adversaries to identify the trigger set.

2. Related Work
2.1. Ownership Verification and Watermarking DNN

Watermarking deep neural networks is to protect the intel-
lectual property by encrypting a specific pattern and using
it for ownership identification. There are various ways to
encrypt private patterns. For instance, a model owner de-
sign a specific patterns of the model parameters (Uchida
et al., 2017; Chen et al., 2019) and detect the pattern from
suspicious models. Alternatively, Rouhani et al. (2019) pro-
pose to insert the specific layers into the suspicious model,
which leads the desired prediction if the suspicious one
steals the functionality. Since the owner of the suspicious
model may not allow to access the model parameters or
architectures, however, those white-box methods cannot be
used for ownership claim, which results in trigger set based
watermarking (Adi et al., 2018; Zhang et al., 2018; Li et al.,
2019; Namba & Sakuma, 2019; Chen et al., 2021; Yang
et al., 2021; Jia et al., 2021; Bansal et al., 2022).

On the other hand, it is more realistic to leverage trigger sets
to verify the ownership since the model owner can verify the
ownership of a suspicious model by computing the accuracy
of the suspicious model on the trigger set. One requirement
of utilizing the trigger set is that the set should be drawn
from atypical distribution so that it can be distinguishable
from the conventional training dataset. Specifically, we as-
sign a random label to the sample from the trigger set so
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that the trigger set is not consistent with the training dataset.
For instance, one can make the trigger set by overlaying
the text to images and assigning labels other than ground
truth label (Zhang et al., 2018; Bansal et al., 2022) or utiliz-
ing the sample from different data distributions (Jia et al.,
2021). After training a model with watermarking scheme,
the owner can validate a suspicious model by collecting a
set of predictions of the suspicious model on the trigger
set and measuring the trigger set accuracy or p-value from
statistical testing.

While using the trigger set for watermarking, the trigger
set should be kept hidden since the adversary can use it by
enforcing the surrogate model to produce wrong predictions
on the trigger set (Lee et al., 2022). Further, adversary can
detect the trigger set consisting of the samples from different
data distribution and circumvent the owner verification by re-
jecting to produce the prediction of given out-of-distribution
samples (Namba & Sakuma, 2019).

There are ownership verification methods other than water-
marking. Based on the observation that distance of training
data to a decision boundary is larger than test data, we can
train a classifier to determine whether each data is included
in the training set or not (Maini et al., 2021). Similarly, we
can train a binary classifier to detect whether a model is
trained with owner defined semantic preserving transforma-
tions (Li et al., 2022).

Lastly, there are some works which utilize the adversarial
training and robustness (Madry et al., 2018). One can use
adversarial training for tweaking the decision boundary and
use the adversarial example itself for the trigger set (Merrer
et al., 2019). Additionally, one can use the conferrable
adversarial examples, which are the adversarial examples for
the source model and its surrogate but are not the adversarial
examples for the vanilla models (Lukas et al., 2020).

Compared to the previous watermarking and ownership ver-
ification methods, our method utilizes the trigger set com-
posed of the contradicting sample-label pairs from the train-
ing dataset, which enables to distinguish the model trained
with trigger set from the one trained without it. Moreover,
our method does not impose any restriction on the choice of
samples for the trigger, which cannot be done by using the
adversarial example itself as the trigger set. It allows to use
exponentially many possible combinations of the trigger set,
which make it hard for adversaries to which trigger set is
used for watermarking. Note that our method does not use
the adversarial example for the trigger set , we only use the
margin during training.

2.2. Functionality Stealing Methods as an Attack

Watermarking with the trigger set seems feasible for claim-
ing ownership, however, most of watermarking methods

with the trigger set failed to defend against functionality
stealing methods. Model extraction (Orekondy et al., 2019;
Jia et al., 2021), which is one of the functionality stealing
methods, steals the functionality from the source model
while ignoring the correlation of a model on the trigger set.
Moreover, we can can attack a black-box source model with
the functionality stealing methods. To best of our knowl-
edge, model extraction is the de facto strongest attack for
diminishing the watermark. To defend against such attack,
several methods are proposed. One can couple the training
of both the training dataset and the trigger set so that the
watermarking is transferred to a surrogate model while steal-
ing the functionality (Jia et al., 2021). Moreover, perturbing
the parameters during training shows the robust watermark-
ing which is certified for limited size of the perturbation
for model parameters (Bansal et al., 2022). However, the
adversary does not consider the limited size of perturbation
for stealing the functionality, which increases the impor-
tance of robust watermarking methods against realistic and
competitive functionality stealing threat.

Our work shows that margin-based watermarking shows
superior performance for defending functionality stealing
methods. The margin-based watermarking enforces the
trigger set to have an excessive margin, which allows the
surrogate model to also preserve the margin for the trig-
ger set. Throughout the further discussion, we present the
effectiveness of our method.

3. Method
In this section, we describe the problem we target and pro-
vide a formulation of our proposed margin-based method to
preserve watermarking to defend against attacks of stealing
models functionality.

3.1. Trigger set-based approach for watermarking

Given a training dataset D = {(xi, yi)}ni=1 where each
xi ∈ X ⊂ Rdx and yi ∈ Y ⊂ Rdy are iid drawn from a
joint distribution Px,y, we train a parametric source model
hθ : X → Y on dataset by minimizing the loss

L(θ;D) = 1

|D|
∑

(x,y)∈D

ℓ(hθ(x), y), (1)

where ℓ is a loss function such as cross-entropy loss for a
classification task.

However, one can steal the functionality of the source model
hθ without accessing to the dataset D. Specifically, adver-
saries can train another model ĥθ̂, which we refer to as a
surrogate model, on a surrogate datasetDs = {(x̂i, ŷi)}li=1

to imitate the output of the model hθ(x̂i) and thus they
replicate the original model hθ without accessing to the pa-
rameters θ of the model or the dataset D (Jia et al., 2021).
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Note that each sample x̂i ∈ X and its label ŷi ∈ Y from
the surrogate dataset are iid drawn from a joint distribution
P̂x,y which might be different from Px,y .

Model Extraction. Specifically, an adversary can query
a sample x̂i from the surrogate dataset Ds to the model hθ,
obtain the output of the model hθ(x̂i), and then minimize
the KL-divergence between ĥθ̂(x̂i) and hθ(x̂i) as follows:

minimize
θ̂

Lext(θ̂; θ,Ds)

Lext(θ̂; θ,Ds) =
1

|Ds|
∑

(x,y)∈Ds

DKL(hθ(x), ĥθ̂(x)),
(2)

which is a special case of knowledge distillation (Hinton
et al., 2015). Although a pair of the sample x̂i and its label
ŷi is drawn from joint distribution P̂x,y which is different
from Px,y, the adversary can still steal functionality of the
source model hθ (Orekondy et al., 2019).

Ownership Identification with a Trigger Set. In order
to detect and protect against intellectual property theft, one
can embed a watermark into a model and identify the own-
ership of stolen models. One effective method for wa-
termarking is the use of a trigger set. The owner of the
model randomly samples {(xki , yki)}mi=1 from D without
replacement, then replaces the label yki with a random la-
bel y′ki

such that y′ki
̸= yki

, resulting in the trigger set
Dq = {(xki

, y′ki
)}mi=1. Since the labels in the trigger set

are not consistent with the original training dataset D, the
set {(xki

, yki
)}mi=1 is excluded from D, and the remaining

set is denoted as Db := D \ {(xki , yki)}mi=1 which we call
benign training set. Finally, the owner forces the model hθ

to deliberately mis-classify xki
into y′ki

by optimizing the
parameters θ as follows:

minimize
θ

L(θ;Db) + L(θ;Dq), (3)

which we refer to as empirical risk minimization (ERM).
If a prediction of a suspicious model on the trigger set Dq

is sufficiently similar to that of hθ, we can claim that the
model is stolen and verify the ownership of the model.

However, the empirical risk minimization withDb andDq is
still vulnerable to functionality stealing. In other words, the
prediction for each sample xki

of the trigger set Dq made
by the surrogate model is not sufficiently similar to the pre-
diction of the source model. Since size of the trigger set is
small and the label y′ki

of the sample xki from the trigger
set Dq contradicts to the ground truth label yki , the trigger
set is considered as an outlier. If we train the source model
on both training setDb and the trigger setDq with ERM, the
samples from the trigger set are pushed away from the ma-
jority in the representation space as illustrated in Figure 2e
and they are located close to the decision boundary as shown
in Figure 2a. As a result, it is extremely difficult for the

Table 1: Acc. of the source and surrogate model with ERM.

Model CIFAR-10 Acc. Trig. Acc.

Source 93.10 100.00
Surrogate 90.60 0.00

surrogate model to generalize to such outlier trigger set by
learning from the source model output on the majorities. In
the end, as shown in Figures 2b and 2f, the surrogate model
mis-classifies the sample from the trigger set into its original
ground truth label. In other words, it achieves 0 accuracy
on trigger set and successfully removes the watermarking
as shown in Table 1.

3.2. Margin-based watermarking

As previously described, since the way how we label the
samples in the trigger set is not consistent with the training
dataset Db, the trigger set is considered to be an outlier in
the latent representation of the source model with ERM
in Figure 2e. It makes the surrogate model to steal the func-
tionality of the source model easier. In order to tackle these
limitation of ERM of Equation (3), as shown in Figure 2c,
we propose to maximize the margin of the sample xki

from
the trigger set Dq. Specifically, we perform projected gra-
dient ascent (Madry et al., 2018) to identify the samples
with maximum loss around the ϵ-neighborhood of the in-
stances from the trigger set and train the source model hθ to
minimize loss on those samples as well as the loss on the
training set Db as follows:

minimize
θ

L(θ;Db) + λLwat(θ;Dq) (4)

Lwat(θ;Dq) =
1

|Dq|
∑

(x,y′)∈Dq

max
∥δ∥∞≤ϵ

ℓ (hθ(x+ δ), y′) .

Consequently, as illustrated in Figure 2g, training the source
model hθ with the margin maximization pushes the trig-
ger sample xki with its label y′ki

towards majorities of the
samples xj from Db with its corresponding label yj = y′ki

,
and the output of the source model on the training set Db

becomes similar to that of the source model on the trigger
set Dq. Then the surrogate model learns to replicate the
output of the source model on the samples xj with yj = y′ki

in training set and it classifies the sample xki into the class
y′ki

= yj , i.e. the watermarking is still embedded in the
surrogate model and fails to steal the functionality of the
source model hθ as shown in Figure 2d. We outline our
method in Algorithm 1.

4. Experiments
4.1. Experimental Setup

We evaluate our margin-based watermarking method and the
other baselines which demonstrate the robustness against
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Class 1 Class 2 Trigger Set

(a) Source Model w/ ERM (b) Surrogate Model w/ ERM (c) Source Model w/ Ours (d) Surrogate Model w/ Ours

(e) Source Model w/ ERM (f) Surrogate Model w/ ERM (g) Source Model w/ Ours (h) Surrogate Model w/ Ours

Figure 2: Visualization of input (the fist row) and hidden representation (the second row) for the synthetic experiments, where the sample
(star) from the trigger set is labeled as the class 1 and its original ground truth label is the class 2. (a) & (e): Trigger set is outlier in the
source model with ERM and located near decision boundary. (b) & (f): Surrogate model easily mis-classifies the trigger set since the
trigger set is an outlier. (c) & (g): As a consequence of margin-based watermarking, the trigger set is not an outlier anymore. (d) & (h):
The surrogate model makes a correct prediction about the trigger set as it learns to classify the samples around the trigger set.

Algorithm 1 Margin-based watermarking
Input: The training dataset Dt, trigger set Dq, model hθ,
learning rate η1, loss function ℓ, step size for projected
gradient ascent η2, maximum bound for projected gradient
ascent ϵ, # of iteration K.
Output: Watermarked model hθ.

while not converge do
Sample a mini-batch (xbi , ybi)

n′

i=1 ∼ Dt

Lobj ← 1
n′

∑n′

i=1 ℓ(hθ(xbi), ybi), Lwat ← 0
for all i = 1, . . . ,m′ do
(xwat, ywat) ∼ Dq

δ ← 0 ∈ X
for all j = 1, . . . ,K do

δ ← δ + η1 · sign (∇δℓ(hθ(xwat + δ), ywat)
δ ← Proj(δ, ϵ)

end for
Lwat += 1

m′ ℓ(hθ(xwat + δ), ywat)
end for
L← Lobj + λLwat

θ ← θ − η2 · ∇θL
end while

functionality stealing methods.1

Stealing Methods. Following the previous papers (Jia
et al., 2021; Bansal et al., 2022), we train a surrogate model
ĥθ̂ on the dataset Db, i.e. Ds := Db, with variants of model
extraction methods to steal functionality of the model hθ.

• Soft-Label. We train the surrogate model ĥθ̂ to minimiz-

1The source codes are available at here.

ing Lext(θ̂; θ,Db) as described in Equation (2).
• Hard-Label. Instead of using the soft label
(z1, . . . , zdy ) = hθ(x), we construct a hard label ỹ =

one_hot(argmaxi{zi}
dy

i=1) ∈ Rdy and replace the soft
label with the hard label ỹ for the KL-divergence in Equa-
tion (2).

• Regularization with Ground Truth Label. As an ag-
gressive stealing method, we propose to train the surrogate
model ĥθ̂ to minimize empirical loss on the dataset Db as
well as KL-divergence between the output of the model
hθ and that of the ĥθ̂ as follows:

minimize
θ̂

αLext(θ̂; θ,Db) + (1− α)L(θ̂;Db), (5)

where 0 ≤ α ≤ 1 is a hyperparameter to control the im-
portance the loss function. Since how we label the sample
xki

from the trigger set Dq is not consistent with Db, i.e.
its label y′ki

contradicts to the ground truth label yki
, en-

forcing the surrogate model to predict ground truth label
of x from Db can effectively remove the watermarking
embedded in the source model hθ.

Baselines. We compare our margin-based watermarking
method against the following baselines.

• Entangled Watermark Embedding (EWE) (Jia et al.,
2021). It guides the source model by learning with the
soft nearest neighbor loss for the trigger set.

• Randomized Smoothing (RS) (Bansal et al., 2022). It
performs randomized smoothing for certified robustness
under the limited size of the modification for the source
model parameters θ.

5

https://github.com/matbambbang/margin-based-watermarking


Margin-based Neural Network Watermarking

Table 2: Results for watermarking DNNs against functionality stealing methods. All the models have the trigger set with size 100.
For the watermark accuracy of the standard model, the lower is better since the accuracy of the watermarking can have more statistical
significance. The result shows that our method strictly outperforms the baselines for ownership verification.

Methods Metric Source Model (hθ)
Surrogate Models (ĥθ̂)

Soft-Label Hard-Label Reg. w. GT Label

DI (Maini et al., 2021)

CIFAR-10
Acc. (%)

92.03 ± 0.25 92.50 ± 0.17 92.27 ± 0.38 92.23 ± 0.59
EEF (Li et al., 2022) 91.86 ± 0.22 87.75 ± 0.37 86.86 ± 0.61 86.04 ± 0.19
EWE (Jia et al., 2021) 86.10 ± 0.54 83.97 ± 1.02 82.22 ± 0.50 88.88 ± 0.35
RS (Bansal et al., 2022) 84.17 ± 1.01 88.93 ± 1.18 89.62 ± 0.97 90.14 ± 0.08
Margin-based (Ours) 87.81 ± 0.76 91.17 ± 0.76 91.88 ± 0.40 93.05 ± 0.20

DI (Maini et al., 2021)
p-value

10−3 10−2 10−2 10−2

EEF (Li et al., 2022) 10−7 10−4 10−4 10−3

Margin-based (Ours) 10−12 10−8 10−8 10−8

EWE (Jia et al., 2021) Trigger Set
Acc. (%)

26.88 ± 8.22 51.01 ± 5.58 36.05 ± 6.48 1.64 ± 1.05
RS (Bansal et al., 2022) 95.67 ± 4.93 7.67 ± 4.04 6.33 ± 1.15 3.00 ± 0.00
Margin-based (Ours) 100.00 ± 0.00 82.00 ± 1.00 51.33 ± 4.93 72.67 ± 6.66

Methods Metric Source Model (hθ)
Surrogate Models (ĥθ̂)

Soft-Label Hard-Label Reg. w. GT Label

DI (Maini et al., 2021)
CIFAR-100

Acc. (%)

70.97 ± 0.74 72.70 ± 0.26 71.33 ± 0.31 72.87 ± 0.59
EWE (Jia et al., 2021) 55.11 ± 1.67 53.00 ± 1.57 46.78 ± 1.00 63.73 ± 0.40
RS (Bansal et al., 2022) 59.87 ± 2.78 65.66 ± 1.53 65.79 ± 0.39 64.99 ± 0.30
Margin-based (Ours) 62.13 ± 4.36 67.66 ± 0.36 70.65 ± 0.49 70.24 ± 0.46

DI (Maini et al., 2021) p-value 10−3 10−2 10−2 10−2

Margin-based (Ours) 10−10 10−7 10−6 10−6

EWE (Jia et al., 2021) Trigger Set
Acc. (%)

68.14 ± 10.16 30.90 ± 11.34 15.10 ± 5.64 5.73 ± 3.42
RS (Bansal et al., 2022) 99.00 ± 1.73 2.67 ± 1.53 4.33 ± 4.16 2.00 ± 1.00
Margin-based (Ours) 100.00 ± 0.00 70.67 ± 7.57 40.00 ± 8.89 62.66 ± 10.12

Table 3: Accuracy of the model trained with CIFAR-10 on the
trigger sets constructed by each method.

Trigger Set EWE RS Ours

Trigger Acc 2.00 ± 2.00 1.67 ± 0.00 0.00 ± 0.00

• Dataset Inference (DI) (Maini et al., 2021). It measure
a proxy margin between sample x from Db and decision
boundary of each class, resulting in c ∈ Rdy , and leverage
the margin c to represent x as an embedding. Then it ex-
tracts the margin embedding c from unseen datasetDtest
and train a binary meta classifier that distinguishes the
margin embedding of Db from that of the unseen dataset.
After that, it extracts margin embedding of the suspicious
model from Db and Dtest and perform t-test between the
confidence score of the classifier on the margin embed-
ding from Db and Dtest to verify the suspicious model is
the counterfeit of the source model.

• Embedded External Features (EFF) (Li et al., 2022). It
samples pairs of samples and labels from Db and applies

semantic preserving transformations to the samples while
using the same label to construct the set Dt. Then it trains
a source model on Db ∪ Dt and a benign model on Db.
Gradient w.r.t both model parameter on each sample from
Dt is computed and a binary meta classifier is trained to
distinguish gradient of the source model from that of the
benign model. Finally, it performs t-test between gradient
of suspicious model on Dt and that of the source model
to verify the ownership of the suspicious model.

Evaluation Metric. For the watermarking based ap-
proaches — EWE and RS, we measure accuracy of the
surrogate model ĥθ̂ on the trigger set Dq to evaluate the
performance of watermarking. For the statistical testing
based methods — DI and EEF, we compute p-value from
the t-test performed by each method.

Settings We use the CIFAR-10 or CIFAR-100
dataset (Krizhevsky et al., 2009) as D and split the
training set of the CIFAR-10 dataset into a train set Db, and
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Table 4: Watermarking against adversary with different surrogate
dataset and architecture.

Model CIFAR-10 Acc. Trigger Set Acc.

Surrogate Dataset with SVHN

Source 87.81± 0.76 100.0± 0.00
Surrogate 63.99± 3.90 72.00± 6.08

Surrogate Model with VGG11

Source 87.81± 0.76 100.0± 0.00
Surrogate 86.00± 2.17 32.00± 7.21

a validation set. We randomly sample 100 images from the
validation set and assign random labels to them such that
the new label is different from their original ground truth
label, resulting in the trigger set Dq. ResNet34 (He et al.,
2016) is used for all the source and surrogate models. Note
that all the surrogate models are randomly initialized since
adversaries cannot access to the parameters of the source
model. As a functionality stealing, we use the training
dataset Db as the surrogate dataset Ds for training the
surrogate model to imitate the source model since it is the
de facto strongest attack for diminishing the watermark or
confusing the ownership verification procedure (Jia et al.,
2021).

Hyperaparemters For our margin-based watermarking
method, we set the trigger set size and batch size of the
trigger set to 100 and 25, respectively. We perform inner
maximization in Equation (4) for 5 steps with a step size
η1 = 1/255 and ϵ = 5/255. For attack with regularized by
ground truth label Equation (5), we set α to 0.3. We run
3 multiple experiments with a different random seed ,and
report the mean and standard deviation for accuracy and
harmonic mean for p-values.

4.2. Results on Functionality Stealing

In Table 2, we present our experimental result on CIFAR-10
and CIFAR-100 dataset. Notably, source model trained with
our margin-based watermarking method achieves perfect
accuracy on the trigger set, which is one of the most impor-
tant goals for watermarking since we identify the ownership
of the source model by the accuracy on the trigger set. In
contrast, all the baselines make some error on the trigger
set and the vanilla model trained without any ownership
verification method consistently shows 0 accuracy across all
the trigger sets as shown in Table 3.

Our margin-based watermarking is the most effective owner
verification method compared to other baselines. Firstly, all
the surrogate models trained with soft-label, hard-label, or
Reg. w. GT label fail to remove our margin-based water-
marking and thus they show significantly high accuracy on
the trigger set. In contrast, the other watermarking baselines
fail to prevent surrogate models from stealing the function-

ality of the source model and thus surrogate models show
low accuracy on the trigger set. Moreover, the source model
trained with our margin-based watermarking achieves the
best accuracy on CIFAR-10 / CIFAR-100 compared to the
source models trained with other watermarking baselines.
Based on these results, our method achieve the best trade-
off between accuracy on CIFAR-10 / CIFAR-100 and the
trigger set among the watermarking baselines EWE and RS.

Lastly, our method also outperforms other non-
watermarking baselines DI and EEF in terms of statistical
testing. The source model trained with our margin-based
watermarking achieves the lowest p-value compared to
other baselines. Moreover, all the surrogate models fail to
diminish the watermarking of our source model and show
an extremely small p-value, which means it is highly likely
that the surrogate model is counterfeit of the source model.

4.3. Heterogeneous Surrogate Dataset & Architecture

In this section, we assume that either the training dataset
Db or neural network architecture of the source model hθ

is unknown to adversaries, which is a more realistic and
challenging scenario than the previous experimental setup.
First, we utilize SVHN dataset (Netzer et al., 2011) as a
surrogate dataset Ds to train a surrogate model with the
soft-label (Equation 2) of the source model which is trained
with our margin-based watermarking. Since SVHN is dis-
similar to CIFAR-10 dataset, distilling the knowledge of the
source model into the surrogate model is imperfect. Conse-
quently, it degrades the accuracy of the surrogate model on
both CIFAR-10 dataset and trigger set as shown in Table 4.
Despite of the performance degradation, our margin-based
watermarking method still outperforms the other baselines
evaluated at much easier tasks, where trigger accuracy of
EWE and RS is 51.05 and 7.67, respectively.

Additionally, we replace the neural network architecture of
the surrogate model with VGG11 (Simonyan & Zisserman,
2015) and train the surrogate model with CIFAR-10 dataset
as a surrogate dataset, i.e. Ds = Db, to imitate the soft-
label of the source model trained with our margin-based
watermarking. Since we train the surrogate model with the
same dataset used for training the source model, as shown
in Table 4, the surrogate model can easily achieve as the
same accuracy as the source model on CIFAR-10. However,
the accuracy of the surrogate model on the trigger set drops
to 32.00. Since its architecture is different from that of the
source model, it is challenging for the surrogate model to
generalize to the trigger set.

4.4. Labeling Strategy for Trigger Set

In this section, we show that our margin-based watermark-
ing method is robust to how we construct the trigger set.
Our method allows owners to choose arbitrary samples from
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Table 5: Upper bounds of margin for the source model and its surrogates. The sufficient margin induces the high trigger set accuracy of
surrogates and also the margin of the source model is transferred to surrogates. We treat the maximum and the minimum intensity of the
CIFAR-10 as 1 and 0.

Model Source (hθ)
Surrogates

Soft-Label Hard-Label Reg. w. GT Label

Upper bound of Margin 0.0232 ± 0.0011 0.0094 ± 0.0006 0.0078 ± 0.0008 0.0080 ± 0.0005

CIFAR-10 Acc
of Source

CIFAR-10 Acc
of Surrogate

Trig. Acc.
of Surrogate

0.0

0.2

0.4

0.6

0.8

1.0
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cy
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Figure 3: Accuracy of the source model and the surrogate model
on CIFAR-10, and accuracy of the surrogate model on trigger sets
constructed by different methods (highest, lowest, and random).
Our margin-based watermarking method with any type of trigger
set outperforms the baseline EWE.

the given CIFAR-10 dataset D and can assign any labels to
the samples other than ground truth labels. This randomness
is critical for protecting the ownership of the model since it
is difficult for adversaries to identify such random trigger
set and remove the watermarking.

Firstly, we randomly samples 100 instances from the whole
dataset D and arbitrarily choose a label out of 9 excluding
the ground truth label for each sample. This results in 9100

possible different trigger sets for the given 100 samples. We
repeat this process to construct multiple trigger sets and
train the source model with each trigger set. As shown
in Figure 3, our margin-based watermarking method shows
consistent performance across all the trigger sets.

Lastly, we consider the following two extreme cases for
labeling the trigger set. Given the source model trained on
CIFAR-10, we compute the confidence score of the model
on the sample from the trigger set and either choose the
label with the highest or lowest confidence among nine
excluding the ground truth label. As shown in Figure 3, our
margin based watermarking with such extreme trigger set
still significantly achieves better trigger set accuracy than
the baseline EWE. Note that the source model trained with
our margin-based watermarking achieves perfect accuracy
on both trigger sets.

4.5. Upper Bound of Margin

In this section, we empirically verify that the surrogate
model partially copy the margin of the source model. In
order to measure the upper bound of the margin of each
sample from the trigger set, we perform projected gradi-
ent ascent while varying the maximum margin bound as
an approximation (Jia et al., 2021). As shown in Table 5,
we observe that the surrogate model still keeps margin for
some samples. Moreover, high margin is correlated with
high trigger set accuracy which validates our margin-based
watermarking method.

5. Conclusion
In this work, we proposed margin-based watermarking to
protect intellectual property rights. The margin-based wa-
termarking trains the trigger set with a sufficient margin and
achieves the robust decision boundary of the each sample
of the trigger set. We validate the margin-based watermark-
ing against the functionality stealing method for the most
competitive settings. For all the cases, the margin-based
watermarking outperforms the baseline watermarking and
ownership verification methods. Moreover, our method en-
sures to use any samples and any labels for the trigger set
which prevents adversaries aim from identifying the trigger
set and circumventing the ownership identification. Lastly,
we show that the margin is transferred to surrogate models
with quantitative and qualitative analysis. Our results sug-
gest that there exist trade-offs between watermarking and
the performance of the model, and we aim to seek a better
method for improving both of them as a future work.
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Figure 4: CIFAR-10 (green) and trigger set (blue) accuracies of the surrogate model from distillation while varying α.

A. Summary
The appendix is constructed as follows: we provide experimental settings, the meaning of the distillation for evaluating the
watermarking method, the result of the choice of the query and statistical significance comparison in Section B, visualization
of the margin-based watermarking in Section C and additional threat models in Section D.

B. Additional Analysis
B.1. Experimental settings

Here we produce the detailed experimental settings. We use ResNet-34 for all the watermarked model with SGD optimizer,
learning rate of 0.1, weight decay of 0.0001, learning rate decay of 0.1 for 100 and 150 epoch. The training was done for
200 epochs. For distillation and extraction, we used the same optimizer of training the source model. When varying the
number of iterations K in Algorithm 1 and Equation 3, we also vary the maximum perturbation size ϵ, for instance, when
K = 3, ϵ = 3/255. For baseline experiments, we perform all the experiments with the authors’ source codes. The source
codes are available at: https://github.com/matbambbang/margin-based-watermarking.

B.2. Distillation for evaluating the watermarking method

The purpose of distillation is to distill the knowledge from the high-performing teacher model to the small student model.
Thus we can see the distillation as functionality stealing since it leverages the student model to imitate the output of
the teacher model for a given input. There exist various approaches to distill from the teacher model such as data-free
distillation (Lopes et al., 2017), but we used the basic knowledge distillation method introduced in (Hinton et al., 2015).
From the distribution introduced in (Hinton et al., 2015), the dataset for distillation also needs to be sampled from the
same data distribution of the teacher model. Thus, in practice, the adversary cannot perform the distillation to diminish
the watermarking since the adversary cannot have a corresponding label for each sample. However, due to the distinction
between the label from the trigger set and the training set, the distillation can be used for stronger threats with the proper
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choice of hyperparameters. The watermarking methods using a trigger set mainly focus on the response or prediction of
the model, where the response should be distinguishable from the common models so that the victim can verify whether
the suspicious model steals the source model. In order to eliminate the watermark, we can steal the functionality by using
the source dataset of the watermarked model to produce the response of the query as same as the common models. We
empirically show how to achieve the aforementioned statement by using distillation.

The training objective of distillation used in our experiment is given by,

min
θ̂

E(x,y)∼D

[
(1− α) ·CE

(
σ(zs), y

)
+ α ·KL

(
σ(zs/T ), σ(zt/T )

)]
, (6)

where σ is the softmax function, zs, zt indicates the logit of the student and teacher model and α is a hyperparameter. We
used α = 0.7 to evaluate the watermarking in Table 2 which is also used in (Hinton et al., 2015). Intuitively, increasing the
ratio of the cross-entropy term in Equation 6 can produce a model which may be more similar to the model without any
watermarking. To verify this, we perform the distillation for our watermarking method while varying α. The results are
shown in Figure 4.

Mixup
Images

automobile,
airplane

bird,
horse

frog,
truck cat, truck ship, truck

Target
Label ship cat bird deer frog

Figure 5: The examples of the Mixup query with two Mixup
components for a trigger set.

The low α suppresses the knowledge transfer from the wa-
termarked model to the surrogate model and the watermark
accuracy drops. Even though there is no targeted elimination
method for the watermark, however, distillation is still effec-
tive for erasing the watermark. In conclusion, the distillation
used in our experiment can be used as one benchmark to
evaluate the watermarking method.

B.3. The effect of the choice of the trigger set

As we have demonstrated before, our method does not have
any constraints on the choice of the trigger set, except that
they should not be contained in the training set D. In the
previous experiments, we choose the samples randomly and assign random labels to them, that are different from their
ground truth labels. Further, we perform the experiments of the Mixup (Zhang et al., 2017) queries, where one Mixup query
is the average of the Mixup components and the corresponding label is randomly selected except the true label of the Mixup
components, see Figure 5. We set the number of Mixup queries to 100 and the number of Mixup components of 2 and 5.
Since one Mixup query contains multiple correlations of the Mixup components, the false correlation of the trigger set might
be stronger than of our previous settings.

Table 6: Comparison of the number of Mixup queries.

# of Mixup 2 5

Source
Model

CIFAR-10. Acc. 79.28 44.80
Trigger. Acc. 100.00 100.00

Distillation CIFAR-10. Acc. 90.30 89.76
Trigger. Acc. 42.00 10.00

Extraction
(CIFAR10)

CIFAR-10. Acc. 80.06 44.40
Trigger. Acc. 67.00 83.00

Extraction
(CIFAR100)

CIFAR-10. Acc. 75.24 39.66
Trigger. Acc. 89.00 85.00

Even with the stronger false correlation with the original
objective, the result in Table 6 shows the Mixup query
can be used for watermarking. However, when increas-
ing the number of Mixup components for each query,
the performance of the original objective decreases due
to the stronger false correlation of the trigger set. The
experiment shows that margin-based watermarking can
be used for any given query, but the method with strong
false correlation cannot guarantee the performance on the
original objective.

B.4. In-distribution Analysis

To prevent one scenario in which the adversary rejects
the queries to reject the ownership verification process,
we analyze the additional quantity: in-distribution analysis. Suppose one watermarking method achieves reasonable
performance for ownership verification. However, if the adversary can reject the querying process beforehand, the method
cannot be applied to verify the ownership. One simple rejection procedure for the adversary is to confirm whether the given
query is the in-distribution sample for the surrogate model or not. We analyze if the surrogate models from the watermarked
model confirm the query as the in-distribution sample or not.
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Table 7: In-distribution analysis by using energy-based OOD detection. The energy of the success queries are even lower
than of the samples from the original objective. This means that the queries of the trigger set is probable to be treated as the
in-distribution samples.

Energy CIFAR-10 Acc. Energy of D Success queries in Dq Failed queries in Dq

Source Model 0.8414 -7.7472 -15.1316 N/A
Reg. w/ GT Label 0.9200 -7.8103 -7.2842 -6.9181

soft label w/ same source 0.8662 -7.2169 -7.3657 -6.2308
soft label w/ diff. source 0.8010 -6.7147 -8.0391 -6.1190

(a) Margin size vs Acc. (b) Trigger set size vs Acc. (c) Coefficent of Lwat vs Acc.

Figure 6: Accuracy of as a function of hyperparameters. The green line indicates the accuracy of the source model on
CIFAR-10, the blue line shows the accuracy of the surrogate model on CIFAR-10, and the pink line denotes the accuracy of
the surrogate model on the trigger set.

To check the query which is an in-distribution sample or not, we use the energy-based out-of-distribution detection
method (Liu et al., 2020). In a nutshell, the lower energy indicates that the sample is probable to the in-distribution sample
and the other is not. The results are shown in Table 7. The results show that the energy of the success queries in Dq have a
lower energy than of the samples from the original objective D. Thus, the queries would be considered as the in-distribution
samples and the adversary cannot reject the queries by OOD sample rejection procedure.

B.5. Further Analysis

In this section, we empirically analyze how our margin-based watermarking leads to the surrogate which shows high accuracy
on the trigger set as varying the hyperparameters — the margin size, the number of the trigger set, and the coefficient λ of
Lwat in eq. 4. We present the experimental result in Figure 6, where the green line indicates the accuracy of the source
model on CIFAR-10 Db, the blue line shows the accuracy of the surrogate model on CIFAR-10, and the pink line denotes
the accuracy of the surrogate model on the trigger set. Note that we do not present the trigger set accuracy of our source
model with margin-based watermarking since it always achieves perfect accuracy on the trigger set.

Margin size The size of the margin is an important hyperparameter of our method. We hypothesize that a larger margin
leads to better accuracy of the surrogate model on the trigger set while it degrades the performance of the source model on
the CIFAR-10 dataset Db. In order to verify the hypothesis, we measure the accuracy of the source model and surrogate
model as varying the margin size. Specifically, we change the number of iterations K from 1 to 8.

As shown in Figure 6a, training a source model with small margin results in the surrogate model with low trigger set
accuracy while the small margin leads to better accuracy of the source model on CIFAR-10 dataset Db. On the other hand, if
we train the source model with a large number of iterations K, the surrogate model cannot remove watermarking and shows
higher trigger set accuracy. Although we perform more inner maximization step (K = 8), the surrogate model cannot obtain
perfect accuracy on the trigger set since it is hard for the source model to assign a sufficiently large margin to every sample
in the trigger set.

Size of the trigger set In this experiment, we show how the size of the trigger set affects to the accuracy on the CIFAR-10
dataset Db and the trigger set Dq. We hypothesize that it is hard for the source model with fixed size model capacity to
minimize the loss on the dataset Db along with a large trigger set since the trigger set is an outlier compared to the dataset
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Figure 8: Results against pruning attack. Even with prun-
ing, the stolen model still maintain the watermark accuracy.
When the watermark accuracy largely drops, the objective
accuracy also largely drops.

Table 8: Results of Equation 7. Since the extraction covers
various types of perturbation δ, the stolen model captures the
decision boundary of watermarked model more precisely,
and finally achieves superior watermark accuracy.

Method Ours

Source
Model

CIFAR-10 Acc. 89.47 ± 0.66
Trigger. Acc. 100.00 ± 0.00

Extraction
(margin)

CIFAR-10 Acc. 84.94 ± 0.48
Trigger. Acc. 98.33 ± 0.58

Db. As shown in Figure 6b, if we use a moderate size (from 25 to 100) of the trigger set for watermarking, the source model
achieves high accuracy on the CIFAR-10 dataset Db. On the other hand, training the source model with a trigger set of size
more than 100 degrades the performance on CIFAR-10. Since how we label the samples from the trigger set contradicts a
pair of samples and label in the dataset Db drawn from Px,y , the source model fails to generalize to test set drawn from Px,y

if it starts to focus on the trigger set.

Coefficient of the Watermarking Objective Lastly, we control the coefficient λ as 0.25 to 4, and the results are shown
in Figure 6c. For the margin-based watermarking with the small λ, the surrogate model shows the lower trigger set accuracy
since the watermarking objective is less considered during training. While increasing λ, the source model achieves a
sufficient margin for the trigger set and leads the surrogate model to achieve high trigger set accuracy. However, the bigger
λ makes the model pay less effort for training data, which results in the lower CIFAR-10 accuracy of the source model.
Also, the larger λ shows a high variance of the trigger set accuracy for the surrogate model which is also shown in the bigger
margin size cases that the model failed to get an excessive margin for every sample in the trigger set.

Overall, the margin-based watermarking shows the trade-off between the trigger set accuracy of the surrogate model and the
CIFAR-10 accuracy of the source model, since the trigger set is composed of contradictions compared to the training data
and that makes the learning hard to get excessive margin for each sample of the trigger set. Because of the contradiction, the
trade-off is inevitable. However, the margin-based watermarking with a reasonable margin size and the size of the trigger set
produces strong evidence for the ownership claims via the high trigger set accuracy of the surrogate model.

C. t-SNE visualization
We provide the additional t-SNE visualization in Figure 7 with perplexity of 10 where the figure does not represent the
margin area. In Figure 7, we perform t-SNE for two different perplexities with 5 (on the top of the figures) and 10 (on the
bottom of the figures).

D. Additional Threat Model
Since we discuss about the adversary with the functionality stealing attacks, distillation and extraction, we additionally
evaluate our method on the other attacks.
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Table 9: Results on self fine-tuning. All the surrogate model shows high trigger set accuracy, which is sufficient for
ownership claim.

Model Source Model Fine-tuned Model

CIFAR-10 Acc. 87.81 ± 0.76 90.64 ± 0.34
Trig. Acc. 100.00 ± 0.00 82.33 ± 2.52

D.1. Pruning

Pruning the deep neural networks is to obtain the small neural network which has similar performance of the original
model. Since pruning neglects sort of parameters, the watermarking can also be neglected and can decrease the watermark
accuracy (Liu et al., 2018). To investigate the effect of the pruning, we prune the extracted model where the pruning is done
for less activated neurons. Figure 8 shows the objective accuracy and the watermark accuracy with respect to the pruning
ratio. The results show that the pruning cannot effectively diminish the watermark, and when the pruning becomes effective,
the performance for the original task largely drops even the stolen model cannot be applicable. The results show that our
margin-based watermarking is still effective against pruning attacks.

D.2. Fine-tuning

Fine-tuning the source model itself is also known for diminishing the watermark. We perform the experiments with
fine-tuning for 100 epochs, learning rate of 0.1, and the results are shown in Table 9. Even we give excessive margin for the
trigger set, some of samples failed to achive the sufficient margin. Thus, during fine-tuning, the samples with less margin
drops and some of the trigger set still shows the high trigger set accuracy for ownership claim.

D.3. Extraction with margin

Our margin-based watermarking gives margin to the trigger set solely, so we observe the new type of extraction, the
extraction with a margin which is given by,

min
θ̂

E(x̃,ỹ)∼D̃

[
ℓ̃
(
ĥθ̂(x̃+ δ̃), hθ(x̃+ δ̃)

)]
, δ̃ = arg max

∥δ∥≤ϵ
ℓ̃(hθ(x̃+ δ), hθ(x̃)). (7)

The stolen model with the extraction of Equation 7 can achieve more similar decision boundary because the existence of δ
makes extraction to experience more various input images and its corresponding predictions. Table 8 shows the results, and
surprisingly the stolen model achieves near perfect watermark accuracy. This also supports our claim, that the functionality
stealing attack imitates the decision boundary of watermarked model, and more precise functionality stealing can copy most
of the watermark.
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Figure 7: t-SNE visualization of the watermarked model and the surrogate models for CIFAR10.
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