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Abstract

Datasets often have their intrinsic symme-
tries, and particular deep-learning models called
equivariant or invariant models have been devel-
oped to exploit these symmetries. However, if
some or all of these symmetries are only approxi-
mate, which frequently happens in practice, these
models may be suboptimal due to the architec-
tural restrictions imposed on them. We tackle
this issue of approximate symmetries in a setup
where symmetries are mixed, i.e., they are sym-
metries of not single but multiple different types
and the degree of approximation varies across
these types. Instead of proposing a new archi-
tectural restriction as in most of the previous ap-
proaches, we present a regularizer-based method
for building a model for a dataset with mixed ap-
proximate symmetries. The key component of
our method is what we call equivariance regular-
izer for a given type of symmetries, which mea-
sures how much a model is equivariant with re-
spect to the symmetries of the type. Our method
is trained with these regularizers, one per each
symmetry type, and the strength of the regulariz-
ers is automatically tuned during training, lead-
ing to the discovery of the approximation lev-
els of some candidate symmetry types without
explicit supervision. Using synthetic function
approximation and motion forecasting tasks, we
demonstrate that our method achieves better ac-
curacy than prior approaches while discovering
the approximate symmetry levels correctly.
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(a) Equivariant trajectory (b) Soft-equivariant trajectory

Figure 1: Illustrative example of a system with mixed sym-
metries with soft equivariances.

1. Introduction
Exploiting symmetries in a dataset is one of the key princi-
ples for building an effective deep-learning model. A pop-
ular approach for implementing this principle is to restrict
the architecture of a neural network in the model so that
the model has desired symmetries by construction. The ap-
proach has been highly successful, leading to a range of ef-
fective so-called equivariant or invariant models (Bronstein
et al., 2021), such as CNNs (Cohen & Welling, 2016; Co-
hen et al., 2019; 2018) and GNNs (Kipf & Welling, 2016;
Veličković et al., 2018), that cover different types of sym-
metries, such as translation invariance.

In practice, however, the symmetries implied in data are
often approximate, partially due to measurement noises or
unexpected external effects. For such scenarios, models
that are equivariant or invariant by construction may be
suboptimal due to their architectural restrictions. More-
over, while most of the previous works assume a single
type of symmetry, many real-world data come with mixed
symmetries, that is, multiple types of symmetries may ex-
ist in data. Equivariant models assuming symmetries of
just a single type cannot easily be combined to model such
mixed symmetries. Even more, those mixed symmetries
may be approximate, so different types of symmetries may
exhibit different approximation levels. As an example,
imagine we want to model the trajectory of a golf ball in
3D space as in Figure 1. The trajectory is O(3) equivari-
ant, or there are mixed symmetries w.r.t. Ox(2), Oy(2),
and Oz(2). Now assume that a wind is blowing along the
y-axis. While the trajectory is still Oy(2)-equivariant, it is
only approximately equivariant to Ox(2) and Oz(2). An
O(3)-equivariant model by design would be too restrictive
in this case, and a model equivariant only with respect to
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Oy(2) would miss soft equivariance along x and z axes.

In this paper, we tackle the modeling problem under mixed
approximate symmetries, i.e., there are multiple types of
symmetries with varying degrees of approximations across
the types. Instead of building models symmetric by de-
sign, we propose a regularizer-based method, where an un-
constrained model is regularized toward equivariance. The
regularizer is attached for each potential symmetry type ex-
pected to be implied in data, and the degree of equivariance
approximation of the type is captured by the strength of
the regularizer for it - its regularization coefficient. Since
it is almost impossible to know the degree of approxima-
tions in advance, the regularization coefficients must be
carefully tuned to capture the approximation levels cor-
rectly. Our method, without explicit supervision, can au-
tomatically tune the coefficients during training and, thus,
automatically discover the varying degrees of equivariance
approximations (from prescribed candidate groups) in the
mixed-symmetry settings.

We are not the first to study approximate symmetries. How-
ever, the existing works mostly rely on architectural restric-
tions in relaxed forms (Finzi et al., 2021a; van der Oud-
eraa et al., 2022; Wang et al., 2022). Moreover, they do
not consider multiple types of symmetries with different
approximation levels. In contrast, our method does not
impose architectural restrictions on a model but solely re-
lies on the equivariance regularizers. As we will show
later, the regularizer-based method is especially useful in
the mixed-symmetry settings, while the existing works are
not straightforwardly extended to those settings.

We experimentally evaluated our method with a synthetic
function-approximation task and a motion forecasting task.
Our method could correctly discover degrees of approxi-
mations of different symmetry types in a relative term and
achieve better test accuracy.

We summarize our contributions below:

• We tackle the problem where we have multiple types
of (approximate) symmetries with different levels of
equivariance/invariance errors.

• We propose a novel method regularizing an unre-
stricted model with (approximate) symmetry con-
straints, and present an algorithm that can automati-
cally identify approximation levels of different sym-
metry types during training.

• We demonstrate the effectiveness of our approach on
synthetic and real-world tasks with multiple types of
(approximate) symmetries.

2. Backgrounds
We start with a review on the formalization of symmetries
of neural networks in terms of groups. We also review so
called residual pathway prior (Finzi et al., 2021a), a recent
proposal for handling approximate symmetries.

2.1. Group Representation and Equivariance

A representation of a group G on a Euclidean space Rn

is a function ρ from G to the general linear group on Rn

(i.e., the group of invertible n × n matrices with matrix
multiplication as group composition) such that ρ preserves
the composition operator of the group. When we have rep-
resentations of a group G in Euclidean spaces X and Y ,
denoted ρX and ρY , we say that a function f : X → Y is
G-equivariant if for all g ∈ G and x ∈ X , we have

f
(
ρX (g)(x)

)
= ρY(g)

(
f(x)

)
. (1)

Intuitively, this condition means that f does not actively use
information that can be altered by group elements g. The
convolution layers in CNNs are a leading example that is
equivariant with respect to the translation group (in an ideal
setup where the images are defined over the entire plane
R2). A range of neural-network architectures that ensure
equivariance (including equivariant multilinear perceptions
to be explained next) have been developed because they
usually generalize better than non-equivariant counterparts.

2.2. Equivariant Multilayer Perceptrons

Equivariant Multilayer Perceptrons (EMLPs) (Finzi et al.,
2021b) are models that are guaranteed to be equivariant
with respect to a given group G and its representation ρ.
As its name indicates, an EMLP is identical to a standard
multilayer perceptron except for one thing: its weights and
biases are not network parameters, but they are constructed
out of other parameters. This further parameterization of
weights and biases ensure that all the linear layers of the
EMLP are equivariant by construction.

To describe the linear layers of an EMLP formally, we need
to recall a few facts. First, when G has representations
ρ on Rn and ρ′ on Rm, the set of G-equivariant linear
maps from Rn to Rm forms a vector space. Thus, it has
an orthonormal basis B = {M1, . . . ,Md} where the Mi’s
are m×n matrices representing G-equivariant linear maps
and when reshaped to vectors via stacking columns (i.e.,
vec(M1), . . . , vec(Md)), the matrices become orthonormal
vectors of (m × n) dimension. Second, the set of vectors
v in Rm that are invariant with respect to G and ρ′ (i.e.,
ρ′(g)(v) = v for all g ∈ G) forms a subspace of Rm. So,
this subspace also has an orthonormal basis. The linear lay-
ers of EMLP are defined in terms of these two bases.

Assume that the l-th layer of the network has nl input nodes
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and nl+1 output nodes. Formally, each linear layer l of an
EMLP is an affine map LinearEMLP : Rnl → Rnl+1 defined
as follows:

LinearEMLP(x) = Wx+ b,

vec(W ) = Qθ, b = Rβ, (2)

where vec(W ) is the vector obtained by stacking the
columns of the matrix W , Q is a fixed matrix with (nl+1×
nl) rows and d columns, and R is a fixed matrix with nl+1

rows and r columns. The columns of the matrix Q when
reshaped to nl+1 × nl matrices via unstacking form an or-
thonormal basis of the space of G-equivariant linear maps
from Rnl to Rnl+1 . Similarly, the columns of the other ma-
trix R form the basis of the subspace of G-invariant vec-
tors in Rnl+1 . The parameters to be trained are θ ∈ Rd and
β ∈ Rr, the coefficients combining the orthonomal basis.

2.3. Residual Pathway Prior

The Residual Pathway Prior (RPP) (Finzi et al., 2021a) is a
recent proposal for learning an approximately-equivariant
neural network. It is based on the idea of combining equiv-
ariant and non-equivariant transformations together in each
network layer. Concretely, it is the following variant of the
EMLP, which adds a standard linear layer, called residual
pathway, to each equivariant linear layer of the EMLP:

LinearRPP(x) = Wx+ b,

vec(W ) = QQ⊺vec(W1) + vec(W2),

b = RR⊺b1 + b2, (3)

where Q and R are from the equations in (2), and
Q⊺vec(W1) and R⊺b1 correspond to θ and β in the same
equations, respectively. Note that LinearRPP(x) is the sum
of the EMLP’s linear layer on x and W2x+b2. The residual
pathway refers to the latter part.

The parameters of an RPP are trained with the following ℓ2-
regularization, which comes from the prior distributions on
those parameters:

RRPP(W1, b1,W2, b2)

=
∥vec(W1)∥2 + ∥b1∥2

2σ2
1

+
∥vec(W2)∥2 + ∥b2∥2

2σ2
2

,
(4)

with σ2 being substantially smaller than σ1, which encour-
ages that residual layers play only a minor role for infer-
ence.

3. Equivariance Regularizer
In this section, we present our equivariance regularizer, the
key conceptual contribution of the paper. We assume that a
collection of groups G1, G2, . . . , GK are given, capturing

Figure 2: The projection-based equivariance regularizer
for a group G measures the distance ∥W −QQ⊺W∥,
where W is either vec(W ) or b in the standard linear layer
and Q is an orthonormal basis of the space of G-equivariant
matrices or G-invariant vectors.

different types of symmetries, and also that these groups
come with representations for input and output spaces of
all linear layers. The latter assumption enables us to talk
about Gk-equivariant linear or affine maps for all layers.
In our presentation, we fix a layer l, and describe how our
regularizers constrain network parameters at that layer. For
notational simplicity, we omit the layer indices from the
parameters, unless required to be specified.

3.1. Projection-Based Equivariance Regularizer

For every k = 1, . . . ,K, write Qk and Rk for the ma-
trices from the equations in (2); the columns of Qk form
an orthonormal basis of Gk-equivariant linear maps from
Rnl to Rnl+1 after being reshaped into nl+1 × nl matri-
ces, and the columns of Rk form an orthonormal basis of
nl+1-dimensional Gk-invariant vectors in Rnl+1 .

Our Projection-based Equivariance Regularizer (PER) for a
group Gk is defined by

RPER
k (W, b) =

λk

2
∥vec(W )−QkQ

⊺
kvec(W )∥2

+
λk

2
∥b−RkR

⊺
kb∥

2, (5)

where W and b are parameters of the l-th layer of the net-
work, and λk is a regularization coefficient for the group
Gk. Modulo the reshaping into the vector form, the term
QkQ

⊺
kvec(W ) is the projection of W (expressing a linear

map from Rnl to Rnl+1 ) to the space of Gk-equivariant lin-
ear maps expressed as nl+l × nl matrices. Thus, the first
summand measures the ℓ2-distance from W to the space
of Gk-equivariant linear maps. Similarly, the second sum-
mand uses the projection of the bias term and measures
the ℓ2-distance from b to the space of Gk-invariant vectors.
This regularizer can be a part of a learning objective during
training, so that the training moves the parameters W and b
towards the space of the Gk-equivariant linear maps or Gk-
invariant vectors. An advantage of this regularizer-based
approach for enforcing symmetries is that we can easily
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combine multiple regularizers for different groups simply
by adding them to the objective function. Concretely, in
our setup of K different groups, we can use the following
regularizer for the parameters of the l-th layer:

RPER(W, b) =

K∑
k=1

RPER
k (W, b) (6)

The regularization coefficients λk control the strength of
enforcing different types of symmetries formalized by dif-
ferent groups G1, . . . , GK . Ideally, these parameters are
set according to the approximation levels of different sym-
metry types. However, we don’t know the approximation
levels in advance. In the next section, we explain how to
infer such parameters during training without explicit su-
pervision.

An implicit assumption under the regularizer RPER(W, b)
is that the ℓ2-distance measures how much the symmetry
with respect to Gk is violated by the corresponding param-
eters of the network. The following proposition supports
that assumption, showing that minimizing the ℓ2 distances
indeed minimizes the equivariance error.

Proposition 3.1. Let f be an S-layer MLP with the weight
matrix W (l) and the bias term b(l) at each layer l. Assume
that the activation functions of f are G-equivariant and L-
Lipchitz continuous. Also, assume a constant U > 0 such
that ∥x∥ < U for every x ∈ X , and the operator norms
∥ρX (g)∥op and ∥ρY(g)∥op for any g ∈ G are also bounded
by U . Then, there exists a constant C > 0 depending on
S, L, and U only, such that for all {(W (l), b(l))}l=1,...,S ,
if the operator norm ∥W (l)∥op and the ℓ2 norm ∥b(l)∥ are
bounded by U for every l, we have

sup
x∈X ,g∈G

∥ρY(g)f(x)− f(ρX (g)x)∥

≤ C ·
S∑

l=1

(
∥vec(W (l))−Q

(l)
k Q

(l)⊺
k vec(W (l))∥

+ ∥b(l) −R
(l)
k R

(l)⊺
k b(l)∥

)
. (7)

The proof of a refined version of this proposition is given
in Appendix A. According to Proposition 3.1, the equiv-
ariance error of a model is bounded by the ℓ2-distances
of parameters to equivariance subspaces, and the mini-
mum equivariant error is achieved when the ℓ2-distances
are zero, which happens when the value of the regularizer
is zero.

Our methodology presents a comparable functionality to
RPP, yet it allows the model to discover soft equivariant
weights with a reduced number of parameters. The dis-
tinctions between RPP and PER have been visually depicted
in Appendix B.

3.2. Adjustment of Hyperparameters of Groupwise
Equivariance Regularizers

The regularization coefficients λ1, . . . , λK in (6) play an
important role of controlling the strengths of groupwise
equivariance constraints that we impose on the model. We
empirically observed that a better model is learned when
these regularization coefficients for different groups (and
hence the strengths of regularization for these groups) are
correlated with the approximation levels of symmetries for
those groups in a dataset. That is, if (λ∗

1, . . . , λ
∗
K) are the

coefficents leading to the best model with the lowest val-
idation error after training, then a smaller λ∗

k value means
weaker symmetry (more approximation error) for the group
Gk, and a larger λ∗

k means more exact symmetry for the
group Gk.

Based on this observation, we propose an automatic tun-
ing procedure that could discover the approximation lev-
els of different symmetry types (formalized by different
groups and captured through the regularizers) in a data-
driven way. Given an S-layer MLP f , let RPER

k (f) =∑S
ℓ=1 RPER

k (W (l), b(l)). We first initialize all the reg-
ularization coefficients with the same value, and in the
early stage of training, adjust the coefficients {λk}k=1,...,K

based on the magnitudes of the corresponding regularizers
{RPER

k (f)}k=1,...,K with the following formula:

λ∗
k = λk

(
min{RPER

k (f)}k=1,...,K

RPER
k (f)

)γ

, (8)

where γ is a scaling factor calibrating how much the ap-
proximation difference will be reflected in the coefficients.
We empirically confirmed that setting γ ∈ [2, 5] gives rea-
sonable results.

3.3. Extension of EMLP for Mixed Symmetries

Unlike our method which can conveniently combine multi-
ple regularizers for mixed symmetries, it is not straightfor-
ward to extend existing (approximately) equivariant mod-
els for mixed symmetry settings. Here, as a baseline, we
describe a naı̈ve extension of EMLP for our setup which as-
sumes multiple types of symmetries formalized by groups
G1, . . . , GK . Assume the model is equivariant to the first L
groups G1, . . . , GL and softly equivariant for the rest. For
G1, . . . , GL, we first compute a joint subspace by solving
the set of equivariance constraints for L groups and denote
the corresponding bases Q1 and R1. Similarly, we compute
a joint subspace for all groups G1, . . . , GK and denote the
bases Q2 and R2. A Mixed EMLP (MEMLP) is defined as

LinearMEMLP(x) = W1x+ b1 +W2x+ b2

vec(Wq) = Qqθq, b = Rqβq for q = 1, 2. (9)

Here, both W1x + b1 and W2x + b2 are equivariant to
G1, . . . , GL, so the overall model is equivariant to them.
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Table 1: Test MSE for the moment of inertia task. EMLP
and RPP are built with O(3) and MEMLP is built with O(3)-
EMLP and O(ax)-EMLP where ax ∈ {x, y, z}.

Equiv group MLP O(2)EMLP O(3)EMLP RPP MEMLP PER

O(3) 4.25±0.17 - 1.13±0.36 2.66±1.43 - 0.27±0.23

Ox(2) 2.84±0.12 1.75±0.63 62.36±41.10 2.06±1.12 3.38±0.92 0.25±0.16

Oy(2) 2.78±0.12 1.73±0.11 29.11±14.06 1.72±0.61 2.87±0.31 0.56±0.48

Oz(2) 2.69±0.10 1.56±0.17 46.32±10.18 1.86±1.13 2.75±0.29 0.32±0.26

- 6.81±0.23 - 10.65±2.08 4.16±0.49 - 0.34±0.28

On the other hand, since W1x + b1 is not equivariant to
GL+1, . . . , GK , the overall model is only softly equivari-
ant to them. The level of soft equivariance is controlled by
the prior variances for W1 and W2, as in the case of RPP.

4. Experiments
To demonstrate the effectiveness of our method, especially
for its utility in discovering mixed symmetries from data,
we compare ours to (approximately) equivariant baseline
models for a synthetic function approximation task and a
real-world motion forecasting task. The baselines we are
comparing against include EMLP, RPP, and MEMLP de-
scribed in § 3.3. The network architectures used for those
models including our model in common have four lay-
ers with the gated nonlinearities and bilinear layers as de-
scribed in Finzi et al. (2021b;a). Throughout all the ex-
periments, to see the net effect of the abilities of the mod-
els capturing equivariances, we controlled the sizes of the
competing models so that all of them have similar number
of parameters.

Additional information regarding the experiments, such as
the specific hyperparameters employed and the data pre-
processing details applied, can be found in Appendix F.
Furthermore, Appendix C provides insightful recommen-
dations for efficient initializations of neural networks in the
PER settings. Additionally, Appendix G presents supple-
mentary experiments conducted to assess the robustness of
our method.

4.1. Synthetic Function-Approximation Task

4.1.1. THE MOMENT OF INERTIA FUNCTION

We generate a synthetic dataset having mixed symme-
tries by adding a perturbation to a symmetric function
that computes the moment of inertia. Given the masses
and positions of five particles, denoted by (m1:5,x1:5) :=
(mi,xi)

5
i=1, the moment of inertia is computed as follows:

I(m1:5,x1:5) :=

5∑
i=1

mi(x
⊺
i xiI− xix

⊺
i ). (10)

The moment-of-inertia function is equivariant with re-
spect to group O(3), which consists of rotations and re-

Table 2: Test MSE for the CosSim task. EMLP and
RPP are built with (SO(3),S(3)) and MEMLP is built with
(SO(3),S(3))-EMLP and SO(3) or S(3)EMLP EMLP. Sub-
EMLP stands for either SO(3) or S(3) and EMLP stands for
(SO(3),S(3))-EMLP. All values are in a scale of ×10−1.

Inv group MLP Sub-EMLP EMLP RPP MEMLP PER

SO(3), S(3) 0.41±0.03 - 1.10±0.02 1.10±0.03 - 0.32±0.02

SO(3) 0.46±0.07 0.39±0.30 2.54±0.10 2.57±0.10 2.56±0.10 0.44±0.03

S(3) 0.69±0.04 2.14±0.11 2.14±0.11 2.18±0.09 2.18±0.09 0.65±0.09

- 3.76±0.32 - 3.76±0.32 3.84±0.04 - 0.66±0.13

flections. That is, for a group element g ∈ O(3),
ρ(g)I(m1:5,x1:5) = I(ρ(g)(m1:5,x1:5)). Here g acts on
each position xi, that is, ρ(g)(m1:5,x1:5) = (mi, gxi)

5
i=1

where g in gxi is represented as a 3× 3 matrix. The output
of the function M = I(m1:5,x1:5) is a 3× 3 matrix, and g
acts on M as ρ(g)(M) = gMg−1.

To generate data, we draw x1:5
i.i.d.∼ N (0, I) and m′

1:5
i.i.d.∼

N (0, 1), and then compute mi = softplus(m′
i). We then

compute the moment of inertia with (10) and add five dif-
ferent types of errors to the output. Let x̂, ŷ, ẑ ∈ R3 be
the orthonormal basis vectors of the x, y and z axes, re-
spectively. The five types of errors and the corresponding
approximate symmetries are as follows:

1. 0 (no error), O(3)-equivariant.
2. −Ix̂x̂⊺, Ox(2) equivariant, soft O(3) equivariant.
3. −Iŷŷ⊺, Oy(2) equivariant, soft O(3)-equivariant.
4. −Iẑẑ⊺, Oz(2) equivariant, soft O(3) equivariant.
5. −0.3I(x̂x̂⊺ − ŷŷ⊺ + ẑẑ⊺), soft O(3)-equivariant.

For the baselines, we consider O(3)EMLP, O(3)RPP, and
O(axis)-O(3)EMLP which is equivariant to O(axis) and softly
equivariant to O(3), where axis ∈ {x, y, z} is chosen ac-
cording to the symmetry in the data. Our model, denoted
by PER, regularizes an MLP with equivariance regularizers
for the groups (Ox(2),Oy(2),Oz(2)).

4.1.2. THE COSSIM FUNCTION

Another synthetic function-approximation task we con-
sider is the CosSim function which computes the average
cosine similarity between three particles. Given the posi-
tions of three particles in 3D space, denoted by x1:3 :=
{xi}3i=1 with each xi ∈ R3, the CosSim function computes

AvgCS(x1:3)

=
CS(x1,x2) + CS(x2,x3) + CS(x1,x3)

3
, (11)

where CS(a,b) := a·b
∥a∥∥b∥ . The AvgCS function is invari-

ant to both SO(3) and S(3) where SO(3) is a rotation group
in R3 and S(3) is a scaling group in R3. That is, for a group
element g ∈ SO(3) or g ∈ S(3), AvgCS(ρ(g)x1:3) =

5
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Figure 3: The training progress of PER on a dataset equiv-
ariant to Oz(2) and softly equivariant to Ox(2) and Oy(2).
From top to bottom: data equivariance error (defined in
Equation 12), model equivariance error, the values of the
equivariance regularizers (RPER

k (f))3k=1, and the regular-
ization coefficients (λk)

3
k=1. The coefficients are adjusted

automatically at epoch 2000.

AvgCS(x1:3), where ρ(g)x1:3 = {gxi}3i=1. Similarly

to the inertia task, to generate data, we draw x1:3
i.i.d.∼

N (0, I), compute (11), and inject four different types of
errors.

1. 0 (no error), SO(3) and S(3) invariant.

2. −
∑3

i=1∥xi∥
3 , SO(3)-invariant, soft S(3)-invariant.

3. −
∑3

i=1 |xi·x̂|∑3
j=1(|xj ·ŷ|+|xj ·ẑ|)

, soft SO(3) invariant, S(3) invari-
ant.

4. −
∑3

i=1∥xi∥
3 +

∑3
i=1 |xi·x̂|∑3

j=1(|xj ·ŷ|+|xj ·ẑ|)
, soft SO(3) and S(3)

invariant.

For the baselines, we consider (SO(3),S(3))EMLP,
(SO(3),S(3))RPP, SO(3)-S(3)MEMLP (equivalent
to SO(3) and softly equivalent to S(3)), and S(3)-
SO(3)MEMLP (equiv to S(3) and softly equiv to SO(3)).
For computing the basis of the joint equivariant subspace
of SO(3) and S(3), we solve for the conjunction of
equivariance constraints for two groups, as we explained
in § 3.3.

4.1.3. ANALYSIS OF THE RESULTS

Overall results. We summarize the results for the mo-
ment of inertia task in Table 1 and the results for the Cos-
Sim task in Table 2. For both tasks, PER significantly out-
performs baselines, across all error types having different
types of approximate equivariance. From below, we empir-
ically show that this is because PER correctly captures the
approximate equivariance in data and adjusts the regular-
ization coefficients accordingly.

Discovery of approximate equivariance. We check
whether our model correctly learns the degree of approx-
imate equivariance implied in the dataset. For instance, in
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(negative correlation)
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Figure 4: Absolute Pearson correlation coefficients be-
tween data equivariance errors and (model equivariance er-
ror, the values of equivariance regularizers, the regulariza-
tion coefficients), measured across 13 datasets of different
degrees and types of approximate equivariances.

the moment of inertia task, when data is perturbed by the
Item 3, our model should be able to detect that the data is
Oy(2) equivariant and softly O(3) equivariant. Figure 3 il-
lustrates the progress of equivariance errors, values of reg-
ularization, and their coefficients during training. Here, the
data is perturbed by the error type Item 4, so it is Oz(2)
equivariant and softly equivariant to Ox(2) and Oy(2). As
we can see in the figure, our model captures the difference
between the equivariance error levels and adjusts the regu-
larization coefficients at the epoch 2000. Here, our model
lowers the regularization coefficients for Ox(2) (to 2.91)
and Oy(2) (to 3.07) while keeping the coefficient for Oz(2)
(to 100.0). As a result, the model trained with the adjusted
regularization could correctly match the equivariance er-
rors assumed in the data.

To further demonstrate that our model indeed captures the
equivariance error levels from data, we measure the Pear-
son correlation coefficients between the (model equivari-
ance errors, the values of the equivariance regularizers
(RPER

k (f))3k=1, the regularization coefficients (λk)
3
k=1),

and the equivariance errors assumed in the data. Here, the
model equivariance error is measured as a Monte Carlo ap-
proximation of the following expectation of equivariance
error (scaled) of a model f :

Ex∈X ,g∈G

[
∥ρY(g)f(x)− f(ρX (g)x)∥
∥ρY(g)f(x)∥∥f(ρX (g)x)∥

]
. (12)

We measure the correlations across 13 different types of
datasets with varying error types and scales, and summarize
the result in Figure 4 (the specific values for each sample
are written in Appendix D). The model equivariance error
is highly correlated with the data equivariance error, indi-
cating that the model correctly captures the equivariance
errors implied in the data. Equivariance regularizers and
their coefficients are also correlated with the data equiv-
ariance error, supporting our claim that the automatic tun-
ing procedure in our method can discover the approximate
equivariance (from prescribed candidate groups) in a data-
driven way.
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4.2. Motion Forecasting Task

4.2.1. TASK DESCRIPTION

The goal of this task is to predict the future positions of a
moving vehicle given past positions. The position of the
vehicle is represented with a 3D coordinate (x, y, z). We
collect the trajectories from Waymo Open Motion Dataset
(WOMD) (Ettinger et al., 2021) containing trajectories of
vehicles moving on roads. We use 16,814 trajectories for
training, 3,339 trajectories for validation, and 3,563 trajec-
tories for testing. Each trajectory consists of T = 6 past
positions x(1:T ) := {x(t)}Tt=1 and T = 6 future positions
y(1:T ) := {y(t)}Tt=1 to be predicted, and the positions are
measured at a frequency of 2.5Hz. We assess the perfor-
mance of the models trained for this task using the Average
Distance Error (ADE) defined as follows:

ADE(y(1:T ), ŷ(1:T )) =
1

T

T∑
t=1

∥y(t) − ŷ(t)∥, (13)

where y(1:T ) and ŷ(1:T ) are predicted and ground-truth fu-
ture trajectories, respectively.

In principle, the trajectory of a moving vehicle is equivari-
ant to the rotations along the z-axis. Therefore, an Oz(2)-
equivariant model is expected to perform better than non-
equivariant models. Indeed, on the WOMD dataset, As-
saad et al. (2022) reported that an Oz(2)-equivariant trans-
former works better than a non-equivariant transformer.
However, they also reported that on the same task, the
Oz(2)-equivariant transformer performs worse than a soft
Oz(2)-equivariant transformer. In our experiment, we at-
tempt to see why this is the case and also find out what
other types of (approximate) symmetries the dataset might
exhibit. To this end, we compare Oz(2)-EMLP, O(3)-
EMLP, O(3)-RPP, Oz(2)-RPP, Oz(2)-O(3) MEMLP, and
MLP with (Ox(2),Oy(2),Oz(2)) PER.

4.2.2. NORMALIZATION METHODS

Typically, for a regression problem, we preprocess the in-
puts either by normalizing or scaling them. However, we
find that training with trajectories with such typical prepro-
cessing performs poorly, due to high variance across tra-
jectories. Hence, before the actual normalization, we first
do centering for each trajectory to bring it near the origin.
Given a i-th trajectory x

(1:T )
i , the centering is defined as

centering(x(1:T )
i ) = (x

(t)
i − x̄i) := c

(1:T )
i , (14)

where x̄i :=
∑T

t=1 x
(t)
i /T .

Even after centering, we still suffer from varying scales
of the coordinates (the values of the z-axis are signifi-
cantly smaller than the values of the other axes because

most vehicles run on horizontal roads). To resolve this,
we may normalize each coordinate separately but it might
also break the symmetry implied in the data. Hence, we
consider three different types of normalization schemes
where each scheme induces different (approximate) sym-
metry, and compare the models on the datasets prepro-
cessed with them. The goal of the experiment is to show
that our method can capture different types of symmetries
induced by the normalizations and thus perform robustly
across datasets. Examples of trajectory for each normaliza-
tion are visually compared in Appendix E.

Scale-aware normalization. Assume we have N trajec-
tories in the training set. Let µ ∈ R3 and σ ∈ R3

+ be the
element-wise mean and standard deviation of the trajecto-
ries in the training set,

µ =

N∑
i=1

T∑
t=1

c
(t)
i

NT
, σ =

( N∑
i=1

T∑
t=1

(c
(t)
i − µ)⊙2

NT

)⊙ 1
2

,

(15)

where ⊙ denotes the element-wise exponentiation. Given
µ and σ, the first normalization scheme is defined as

normalize(c(1:T )
i ) =

(
(c

(t)
i − µ)⊘ σ

)T
t=1

, (16)

where ⊘ denotes the element-wise division. We call this
normalization a scale-aware normalization, since it ad-
justs the data for each coordinate separately so that all the
(x, y, z) coordinates have similar scales.

Symmetry-aware normalization. Note that the scale-
aware normalization breaks the rotation symmetry because
it scales each coordinate with a different value. In that case,
we may lose the benefits of utilizing the rotation equiv-
ariance in a model. In the second normalization scheme,
instead of element-wise scaling, we use the total standard
deviation for the scaling:

m =

N∑
i=1

T∑
t=1

1⊺
3c

(t)
i

3NT
, s2 =

N∑
i=1

T∑
t=1

∥c(t)i −m13∥2

3NT

normalize(c(1:T )
i ) =

(
(c

(t)
i − µ)/s

)T
t=1

, (17)

where 13 = [1, 1, 1]⊺. We call this normalization
symmetry-aware since the rotation symmetry of the result-
ing trajectory is not broken by the normalization.

Symmetry-scale-aware normalization. While the
symmetry-aware normalization preserves the rotation
symmetry, it still has the problem of a small z-scale in the
training set. To further resolve this, as the third scheme,
we modify the centering step as follows,

centering(x(1:T )
i ) = (x

(t)
i −α⊗ x̄i)

T
t=1, (18)
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Figure 5: Test ADE results for WOMD dataset.

where ⊗ denotes the element-wise multiplication and α ∈
R3 is a scaling factor. We set α = (1, 1, 0.993), so the
values for the z-axis remain similar to the other axes af-
ter centering. Then we normalize the centered data as in
the symmetry-aware normalization. Since the values of the
z-axis were similar to those of other axes, even after the
scaling, the values of the three coordinates have a similar
scale. We call this scheme symmetry-scale-aware since it
is both scale-aware and preserves rotation symmetry.

4.2.3. ANALYSIS OF THE RESULTS

We expect that the scale-aware normalization breaks the
Oz(2) equivariance because it normalizes the x and y axes
with different scales, but the degree of approximate equiv-
ariance would not be serious because the x axis and the y
axis have similar (but still different) scales. Indeed, Fig-
ure 5 shows that the models (approximately) equivariant to
Oz(2), Oz(2)-EMLP, Oz(2)-O(3) MEMLP, and PER, per-
form better than the others. Interestingly, as can be seen
in Figure 6, PER discovers that the data has soft Oz(2)
equivariance, which coincides with our expectation that the
scale-aware normalization mildly breaks the Oz(2) equiv-
ariance. Note that Oz(2)-EMLP exhibits a tiny equivariance
error. This is due to a numerical error in calculating the
equivariant basis Q and R in Equation 2.

Even though the symmetry-aware normalization does not
break the O(3) equivariance, the dataset itself has soft
O(3) equivariance due to the gravity acting on the vehicles.
However, the significantly small scale of z-coordinates in
the symmetry-aware normalization causes a model to un-
derestimate the Ox(2) and Oy(2) equivariance. Conse-
quently, the small equivariance error discovered by PER
led to the best performance. As shown in Figure 6, while
Oz(2)-EMLP captures only large equivariance errors on
Ox(2) and Oy(2), PER captures small equivariance errors
on O(3).

For the symmetry-scale-aware scheme, PER shows the best

Oz(2)EMLP PER
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Figure 6: The model equivariance errors captured by
Oz(2)-EMLP and our algorithm.

performance. As in the scale-aware, all models perform
well except for the O(3)-EMLP. Together with the cap-
tured equivariance errors in Figure 6, they explain the
symmetry-scale-aware scheme is also softly O(3) equiv-
ariant. Whereas the element-wise scaling causes soft O(3)
equivariance in the scale-aware, in the symmetry-scale-
aware scheme, mainly the gravity acting on the vehicles
along the z-axis results in the soft O(3) equivariance of the
data. Moreover, the relatively large equivariance errors on
Oz(2) (blue) helped the performance of PER, which was a
coherent result with Assaad et al. (2022).

To summarize, for all three normalization, PER robustly
outperforms the baselines, and discovers reasonable soft
symmetries.

5. Related Work
The translation equivariance of CNN and permutation
equivariance of GNN are the most popular examples of
symmetry built in the neural networks. Recently, there
have been several works designing neural networks having
desirable group equivariance. EMLP (Finzi et al., 2021b)
is a framework that builds an MLP equivariant to various
groups. LieConv (Finzi et al., 2020) is a variant of CNN tar-
geting equivariance for Lie groups. Another variant called
G-CNN (Cohen & Welling, 2016) is equivariant w.r.t. 90-
degree rotations, reflections, and translation.

Most softly equivariant models impose architectural re-
strictions for the soft equivariance. RPP (Finzi et al., 2021a)
build a soft equivariant model via a residual layer added
to the equivariant linear layer, where the degree of equiv-
ariance is determined by the prior variances assigned for
the equivariant layer and the residual pathway. Relaxed
group convolution (Wang et al., 2022) implements a softly
equivariant CNN by interpolating multiple conv operations
with different weights, and the number of convolutions de-
termines the degree of equivariance. Relaxed G-steerable
group convolution (Wang et al., 2022) introduces spatial-
location-dependent weights that replace the weights in the
G-steerable CNN. Relaxed G- and G-steerable CNNs use
group-action-based regularizers to restrict the relaxation.

There are some previous works allowing automatic sym-
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metry discovery from data (Dehmamy et al., 2021; Krip-
pendorf & Syvaeri, 2021). However, to our knowledge,
ours is the first to discover the varying degrees of approx-
imate equivariance across multiple groups under mixed
symmetry settings.

6. Conclusion
In this paper, we tackle the learning problems under mixed
symmetries, where a dataset contains multiple types of
symmetries with different levels of equivariance errors.
While previous methods focused on a single type of sym-
metries and bake in the equivariance constraint to the archi-
tecture as an inductive bias, ours take a regularizer-based
approach, where a model without any equivariance con-
straint is regularized towards it using a projection-based
regularization. One notable advantage is that it can auto-
matically detect the levels of equivariance errors and adapt
to those error levels by controlling the regularization coeffi-
cients. This is done during the training without any explicit
supervision. Using a synthetic function approximation task
and real-world motion forecasting task, we demonstrate
that our proposed model could indeed capture mixed sym-
metries, identify the different level of equivariance errors,
and predicts better than the existing methods. In this paper,
we mainly focused on MLP architectures, so extending our
framework to arbitrary neural network architectures such as
CNNs, RNNs, or transformers (Vaswani et al., 2017) would
be an interesting future research direction.
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Cohen, T., Geiger, M., Köhler, J., and Welling, M. Spheri-
cal CNNs. arXiv preprint arXiv:1801.10130, 2018. 1

Cohen, T., Weiler, M., Kicanaoglu, B., and Welling, M.
Gauge equivariant convolutional networks and the icosa-
hedral CNN. In Proceedings of The 36th International
Conference on Machine Learning (ICML 2019), 2019. 1

Dehmamy, N., Walters, R., Liu, Y., Wang, D., and Yu, R.
Automatic symmetry discovery with Lie algebra convo-
lutional network. In Advances in Neural Information
Processing Systems 34 (NeurIPS 2021), 2021. 9

Ettinger, S., Cheng, S., Caine, B., Liu, C., Zhao, H., Prad-
han, S., Chai, Y., Sapp, B., Qi, C. R., Zhou, Y., Yang,
Z., Chouard, A., Sun, P., Ngiam, J., Vasudevan, V., Mc-
Cauley, A., Shlens, J., and Anguelov, D. Large scale
interactive motion forecasting for autonomous driving :
The waymo open motion dataset. In 2021 IEEE/CVF In-
ternational Conference on Computer Vision, ICCV 2021,
Montreal, QC, Canada, October 10-17, 2021, 2021. 7

Finzi, M., Stanton, S., Izmailov, P., and Wilson, A. G. Gen-
eralizing convolutional neural networks for equivariance
to lie groups on arbitrary continuous data. In Proceed-
ings of The 37th International Conference on Machine
Learning (ICML 2020), 2020. 8

Finzi, M., Benton, G., and Wilson, A. G. Residual path-
way priors for soft equivariance constraints. In Advances
in Neural Information Processing Systems 34 (NeurIPS
2021), 2021a. 2, 3, 5, 8

Finzi, M., Welling, M., and Wilson, A. G. A practical
method for constructing equivariant multilayer percep-
trons for arbitrary matrix groups. In Proceedings of
The 38th International Conference on Machine Learn-
ing (ICML 2021), 2021b. 2, 5, 8

Glorot, X. and Bengio, Y. Understanding the difficulty of
training deep feedforward neural networks. In Proceed-
ings of the Thirteenth International Conference on Ar-
tificial Intelligence and Statistics, AISTATS 2010, Chia
Laguna Resort, Sardinia, Italy, May 13-15, 2010, 2010.
12

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into
rectifiers: Surpassing human-level performance on ima-
genet classification. In 2015 IEEE International Confer-
ence on Computer Vision, ICCV 2015, Santiago, Chile,
December 7-13, 2015, 2015. 12

9



Regularizing towards soft equivariance under mixed symmetries

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015. 15

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations (ICLR), 2016.
1

Krippendorf, S. and Syvaeri, M. Detecting symmetries
with neural networks. Mach. Learn. Sci. Technol., 2021.
9

Loshchilov, I. and Hutter, F. SGDR: stochastic gradient
descent with warm restarts. In 5th International Confer-
ence on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceed-
ings, 2017. 15

Puny, O., Atzmon, M., Smith, E. J., Misra, I., Grover, A.,
Ben-Hamu, H., and Lipman, Y. Frame averaging for
invariant and equivariant network design. In The Tenth
International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022, 2022. 16

van der Ouderaa, T. F. A., Romero, D. W., and van der
Wilk, M. Relaxing equivariance constraints with non-
stationary continuous filters, 2022. 2

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems 30 (NIPS 2017), 2017. 9
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A. Proof of Proposition 3.1
Proof. We define notations V and † where V is a vectorized form of the weight W and † converts the vector form of a
matrix back to the matrix form. i.e. V = vec(W ) and W = V †. Also, we can utilize those identities by the definitions of
Qw and Qb.

ρY(g)(QwQ
⊺
wV )† = (QwQ

⊺
wV )†ρX (g), ρY(g)QbQ

⊺
b b = QbQ

⊺
b b. (19)

Now we first prove Proposition 3.1 where f is a linear function. By the triangle inequality,

∥ρY(g)(Wx+ b)−WρX (g)x− b∥ (20)

= ∥ρY(g)Wx− ρY(g)(QwQ
⊺
wV )†x+ ρY(g)b− ρY(g)QbQ

⊺
b b (21)

−WρX (g)x+ (QwQ
⊺
wV )†ρX (g)x− b+QbQ

⊺
b b∥ (22)

≤ ∥ρY(g)Wx− ρY(g)(QwQ
⊺
wV )†x+ ρY(g)b− ρY(g)QbQ

⊺
b b∥ (23)

+ ∥WρX (g)x− (QwQ
⊺
wV )†ρX (g)x+ b−QbQ

⊺
b b∥ (24)

≤ ∥ρY(g)
(
W − (QwQ

⊺
wV )†

)
x∥+ ∥ρY(g)(b−QbQ

⊺
b b)∥ (25)

+ ∥
(
W − (QwQ

⊺
wV )†

)
ρX (g)x∥+ ∥b−QbQ

⊺
b b∥. (26)

We can split out ρ(g) and x by using the operator norms and the operator norm is bounded by Frobenius norm.

∥ρY(g)
(
W − (QwQ

⊺
wV )†

)
x∥ ≤ ∥ρY(g)∥op∥W − (QwQ

⊺
wV )†∥F ∥x∥, (27)

∥ρY(g)(b−QbQ
⊺
b b)∥ ≤ ∥ρY(g)∥op∥b−QbQ

⊺
b b∥, (28)

∥
(
W − (QwQ

⊺
wV )†

)
ρX (g)x∥ ≤ ∥W − (QwQ

⊺
wV )†∥F ∥ρX (g)x∥. (29)

Therefore, the G-equivariance error is bounded as follows:

sup
x,g

∥ρY(g)(Wx+ b)−WρX (g)x− b∥ (30)

≤
(
sup
g
∥ρY(g)∥op sup

x
∥x∥+ sup

x,g
sup
g
∥ρX (g)x∥

)
∥V −QwQ

⊺
wV ∥ (31)

+
(
∥ρY(g)∥op + 1

)
∥b−QbQ

⊺
b b∥ (32)

= C1∥V −QwQ
⊺
wV ∥+ C2∥b−QbQ

⊺
b b∥. (33)

The norm of x are supposed to be bounded since we have a finite dataset. Now we are looking at when f is a non-linear
function whose activation σ is G-equivariant and L-lipchitz continuous. The equivariant activation σ has

ρY(g)σ(f(x)) = σ(ρY(g)f(x)) (34)

for any function f . Hence, the G-equivariance error

∥ρY(g)σ(Wx+ b)− σ(WρX (g)x− b)∥ = ∥σ(ρY(g)(Wx+ b))− σ(WρX (g)x+ b)∥. (35)

Since σ is L-lipchitz continuous,

∥σ(ρY(g)(Wx+ b))− σ(WρX (g)x+ b)∥ ≤ L∥ρY(g)(Wx+ b)−WρX (g)x− b∥. (36)

The r.h.s is the equivariance error when f is a linear function, which is bounded by Equation 33.

Lastly, we show the case when f is a two-layer MLP. More-than-two-layered MLPs can be shown in the same way. The
G-equivariance error is

∥ρ(2)(g)(W (2)σ(W (1)x+ b(1)) + b(2))−W (2)σ(W (1)ρ(0)(g)x+ b(1))− b(2)∥ (37)

= ∥ρ(2)(g)(W (2)σ(W (1)x+ b(1)) + b(2))−W (2)ρ(1)(g)σ(W (1)x+ b(1))− b(2)

+W (2)ρ(1)(g)σ(W (1)x+ b(1)) + b(2) −W (2)σ(W (1)ρ(0)(g)x+ b(1))− b(2)∥. (38)
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This is bounded by an addition of two equivariance errors by triangle inequality

∥ρ(2)(g)(W (2)σ(W (1)x+ b(1)) + b(2))−W (2)ρ(1)(g)σ(W (1)x+ b(1))− b(2)∥
+ ∥W (2)ρ(1)(g)σ(W (1)x+ b(1)) + b(2) −W (2)σ(W (1)ρ(0)(g)x+ b(1))− b(2)∥ (39)

≤ ∥ρ(2)(g)(W (2)x′ + b(2))−W (2)ρ(1)(g)x′ − b(2)∥
+ ∥W (2)∥op∥ρ(1)(g)σ(W (1)x+ b(1))− σ(W (1)ρ(0)(g)x+ b(1))∥, (40)

where x′ = σ(W (1)x+ b(1)). The first term of Equation 40 is the equivariance error of the linear function where the input
is the output of the first layer. Besides, the second term involves the equivariance error of the non-linear function. Overall,
the equivariance error of the two-layer MLP is bounded as

sup
x,g

∥ρ(2)(g)(W (2)σ(W (1)x+ b(1)) + b(2))−W (2)σ(W (1)ρ(0)(g)x+ b(1))− b(2)∥ (41)

≤
(
sup
g
∥ρ(2)(g)∥op sup

x
∥x′∥+ sup

x,g
∥ρ(1)(g)x′∥

)
∥V (2) −Qw(2)Q

⊺
w(2)V

(2)∥ (42)

+
(
sup
g
∥ρ(2)(g)∥op + 1

)
∥b(2) −Qb(2)Q

⊺
b(2)

b(2)∥ (43)

+ L∥W (2)∥op
(
sup
g
∥ρ(1)(g)∥op sup

x
∥x∥+ sup

x,g
∥ρ(0)(g)x∥

)
∥V (1) −Qw(1)Q

⊺
w(1)V

(1)∥ (44)

+ L∥W (2)∥op
(
sup
g
∥ρ(1)(g)∥op + 1

)
∥b(1) −Qb(1)Q

⊺
b(1)

b(1)∥ (45)

≤ C
(2)
1 ∥V (2) −Qw(2)Q

⊺
w(2)V

(2)∥+ C
(2)
2 ∥b(2) −Qb(2)Q

⊺
b(2)

b(2)∥ (46)

+ C
(1)
1 ∥V (1) −Qw(1)Q

⊺
w(1)V

(1)∥+ C
(1)
2 ∥b(1) −Qb(1)Q

⊺
b(1)

b(1)∥. (47)

In terms of the mathematical induction, the bound of the equivariance error of more-than-two-layered MLPs can be derived
as follows:

sup
x,g

[∥ρ(S)(g)(W (S)σ(f ′(x)) + b(S))−W (S)σ(f ′(ρ(0)(g)x))− b(S)∥] (48)

= sup
x,g

∥ρ(S)(g)(W (S)σ(f ′(x)) + b(S))−W (S)ρ(1)(g)σ(f ′(x))− b(S)

+W (S)ρ(S−1)(g)σ(f ′(x)) + b(S) −W (S)σ(f ′(ρ(0)(S)x))− b(S)∥ (49)

≤ sup
x,g

∥ρ(S)(g)(W (S)σ(f ′(x)) + b(S))−W (S)ρ(1)(g)σ(f ′(x))− b(S)∥

+ L∥W (S)∥op sup
x,g

∥ρ(S−1)(g)f ′(x)− f ′(ρ(0)(S)x)∥, (50)

where S is the number of layers and f ′ is a (S − 1)-layered MLP.

B. RPP vs. PER
Illustrated in Figure 7.

C. Weight Initializations for PER
Since our method does not restrict the parameter space, we can freely choose desirable strategies of weight initialization
according to prior knowledge about a given task.

C.1. Standard

Obviously we can utilize the well-known initializations of neural networks such as Glorot initialization (Glorot & Bengio,
2010) and He initialization (He et al., 2015).
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Figure 7: Comparison of parameterization bewteen RPP (left) and PER (right). W1 and W2 are the parameters of RPP.
W1 explains equivariance by projecting onto the equivariant space and W2, called a residual path, captures the difference
between approximate equivariance desired in dataset and strict equivariance of QwQ

⊺
wW1. On the other hand, WPER does

not require additional parameters because it is already close to the equivariant space due to the regularizer.

C.2. Soft

This initialization mimics the initial weights of the RPP model. The structure of the RPP models consists of addition
of weights projected on the equivariant space QQ⊺vec(W1) and small weights vec(W2) acting as a perturbation of the
equivariant weights.

vec(WRPP) = QQ⊺vec(W1) + vec(W2), vec(W1) ∼ N (0, σ2I), vec(W2) ∼ N (0, ϵσ2I), (51)

where 0 < ϵ << 1 and σ is determined by selected types of initialization such as Glorot and He. Thus, our model can be
initialized with the added distribution as follows:

vec(WPER) ∼ N (0, σ2QQ⊺ + ϵσ2I). (52)

C.3. Half Soft

The degree of approximate equivariance is determined by the perpendicular distance from the equivariant space and the
perpendicular distance is determined by an amount of the complementary direction of the equivariant space. i.e. the approx-
imate equivariance degree of weight W is determined by Q̃Q̃⊺vec(W ) because vec(W ) = QQ⊺vec(W ) + Q̃Q̃⊺vec(W ),
where Q̃ is the complementary basis of Q. Therefore, we can control the equivariance of the initial weights with a scaling
factor λ as follows:

vec(WPER) ∼ N (0, (1− λ)σ2QQ⊺ + λσ2I) = N (0, σ2QQ⊺ + λσ2Q̃Q̃⊺). (53)

The case when λ = 0 corresponds to the initial weights of EMLP and the case when λ = 1 corresponds to the initial
weights of MLP. We chose λ = 0.5 to locate the model in the middle between EMLP and MLP.

D. Samples for Measuring Correlation
Experiments for measuring the Pearson correlation are listed in Table 3.

E. Comparison of trajectory between the normalizations
3 example trajectories (red, green, and blue) for each normalization are described in Figure 8.

F. Experimental Details
F.1. Dataset Description

Information for each dataset is summarized in Table 4.
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Table 3: Samples for measuring the correlation with the data equivariance error. ϵ1 = −Ix̂x̂⊺, ϵ2 = −I ŷŷ⊺, ϵ3 = −I ẑẑ⊺,
and ϵ4 = −Ix̂x̂⊺ + I ŷŷ⊺ − I ẑẑ⊺

Data Equiv. Err. Equiv. Regular. Coeff. Model Equiv. Err. Equiv. Regular.

Noise Oz(2) Ox(2) Oy(2) Oz(2) Ox(2) Oy(2) Oz(2) Ox(2) Oy(2) Oz(2) Ox(2) Oy(2)

0 7.22E-08 7.23E-08 7.38E-08 1.00E+02 9.80E+01 9.34E+01 9.17E-04 7.72E-04 7.60E-04 1.46E-07 1.32E-07 1.31E-07
0.3ϵ1 5.89E-02 7.05E-08 5.85E-02 1.35E+01 1.00E+02 1.32E+01 5.30E-02 4.27E-03 5.42E-02 7.06E-05 9.95E-07 7.01E-05
0.6ϵ1 1.05E-01 7.11E-08 1.04E-01 1.22E+01 1.00E+02 1.29E+01 7.56E-02 8.09E-03 7.95E-02 1.19E-04 4.78E-06 1.18E-04
0.9ϵ1 1.41E-01 6.90E-08 1.40E-01 1.97E+01 1.00E+02 1.98E+01 1.36E-01 3.78E-03 1.34E-01 9.61E-05 2.20E-06 9.53E-05
0.3ϵ2 5.99E-02 5.34E-02 7.43E-08 7.54E+00 7.36E+00 1.00E+02 4.54E-02 5.06E-02 9.64E-03 1.85E-04 1.84E-04 1.57E-05
0.6ϵ2 1.08E-01 9.74E-02 7.22E-08 2.64E+01 2.62E+01 1.00E+02 8.13E-02 8.71E-02 1.73E-02 1.28E-04 1.27E-04 2.62E-05
0.9ϵ2 1.47E-01 1.34E-01 7.15E-08 9.61E+00 9.86E+00 1.00E+02 1.08E-01 1.10E-01 7.21E-03 2.44E-04 2.44E-04 1.96E-05
0.3ϵ3 7.04E-08 5.34E-02 5.96E-02 1.00E+02 3.36E+00 3.39E+00 1.67E-03 5.55E-02 5.56E-02 7.64E-07 1.41E-04 1.41E-04
0.6ϵ3 7.05E-08 9.75E-02 1.08E-01 1.00E+02 4.74E+00 4.96E+00 2.02E-03 9.61E-02 9.47E-02 2.87E-06 2.04E-04 2.05E-04
0.9ϵ3 6.88E-08 1.34E-01 1.47E-01 1.00E+02 4.19E+00 4.21E+00 1.87E-03 1.39E-01 1.40E-01 2.40E-06 2.65E-04 2.65E-04
0.3ϵ4 1.32E-01 5.91E-02 6.70E-02 1.79E+01 9.73E+01 1.00E+02 1.17E-01 5.13E-02 6.59E-02 9.04E-05 3.46E-05 3.39E-05
0.6ϵ4 2.50E-01 1.14E-01 1.31E-01 3.68E+01 9.62E+01 1.00E+02 1.96E-01 9.09E-02 1.06E-01 1.53E-04 5.79E-05 5.92E-05
0.9ϵ4 3.41E-01 1.58E-01 1.85E-01 3.29E+01 5.17E+01 1.00E+02 3.07E-01 1.39E-01 1.75E-01 1.86E-04 6.21E-05 5.86E-05
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Figure 8: The scale-aware normalization strongly emphasizes the z-coordinates. The symmetry-aware normalization
just scales down the whole coordinates but the scale of z-coordinates is still close to zero. The symmetry-scale-aware
normalization scales down the whole coordinates while retaining the scale of z-coordinates.

F.2. Data Selection of WOMD

Trajectory Slicing The WOMD dataset contains maximum 91 points of a trajectory measured in 10Hz. We sliced and
gathered first 24 points and dropped every even-numbered points so that the final trajectory contains only 12 points. The
past 6 points and future 6 points are regarded as input and output, respectively.

Trajectory Selection We selected only a portion of the whole WOMD dataset. The training part of WOMD motion
forecasting dataset consists of total 1,000 files of the TFRecord format. We used first 28 files as training set, next 6 files
as validation set, and last 6 files as testing set only. Furthermore, we excluded all trajectory that doesn’t move enough and
move too far, we collected only trajectories satisfying the following conditions:

∥yt=6 · x̂− yt=1 · x̂∥2 < 5 (54)

∥yt=6 · ŷ − yt=1 · ŷ∥2 < 5 (55)

∥yt=6 · ẑ − yt=1 · ẑ∥2 > 0.05, (56)

where x̂, ŷ, ẑ ∈ R3 are orthonormal basis vectors of x-,y-, and z-axes.

F.3. Details of Training

For all experiments, we used five different seeds to report performance results.

Architecture Description All architectures of the neural networks including EMLP, RPP, Mixed RPP, and our model are
fixed with 4 layers and different width. Their widths were adjusted to set their number of parameters the same.
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Table 4: Information of each dataset. S denotes a scalar and V denotes a vector in R3.

Inertia CosSim WOMD

Training Samples 1,000 1,000 16,814
Validation Samples 1,000 1,000 3,339
Testing Samples 1,000 1,000 3,563
Input Representation 5S⊕ 5V 3V 6V
Output Representation V2 S 6V

Hyperparameters See Table 5 for hyperparameter settings of our model and baseline methods for all experiments.
Those hyperparameters are applied the same for all models. Additional hyperparameters of our model for each task are
listed in Table 6.

Table 5: Common hyperparameter settings for each task.

Dataset Mini-batch Max Epochs Learning Rate Weight Decay Width (RPP)

Inertia 500 8,000 0.001 2.0×10−4 384 (270)
CosSim 200 10,000 0.0002 2.0×10−5 128 (45)
WOMD (scale-aware) 256 750 0.0002 0 384 (269)
WOMD (symmetry-aware) 256 500 0.0002 0 384 (269)
WOMD (symmetry-scale-aware) 256 500 0.0002 0 384 (269)

Table 6: Hyperparameter setting of our model.

Dataset Task Type Initial λ γ Adjustment Epoch Initialization Mini-batch Max Epochs

Inertia

O(3) 100 2 2,000 Standard 500 8,000
Ox(2) 100 2 2,000 Standard 500 8,000
Oy(2) 100 2 2,000 Standard 500 8,000
Oz(2) 100 2 2,000 Standard 500 8,000
Only Soft 100 2 2,000 Standard 500 8,000

CosSim

SO(3) ∪ S(3) 0.005 2 2,500 Standard 200 10,000
SO(3) 0.1 2 2,500 Standard 200 10,000
S(3) 0.01 2 2,500 Standard 200 10,000
Only Soft 0.005 2 2,500 Standard 200 10,000

WOMD
Scale-aware 0.2 5 125 Half Soft 128 500
Symmetry-aware 0.3 5 100 Half Soft 128 500
Symmetry-scale-aware 5 5 100 Half Soft 128 500

Extra Details We applied the cosine decaying of learning rate (Loshchilov & Hutter, 2017) and early stopping with 50
patience for stable training. The optimizers used in every tasks are ADAM (Kingma & Ba, 2015). All experiments were
trained and evaluated on RTX 3090 devices.
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G. Additional Experiments
G.1. Analysis of Adjustment of Hyperparameters

We share a part of the robustness analysis across different hyperparameters (initial coefficients λ, scaling factors γ, and the
moments of the adjustment) required in the automatic tuning procedure described in § 3.2. As the results show in Table 7,
we found that the performance of the model is not so sensitive to the choice of hyperparameters. For instance, for the initial
value of lambda, we observed that the model would achieve similar performances provided that the ratio of the initial Loss
over the initial λ · RPER is at a certain level. The situation for the scaling factor γ is similar: the final performance was
consistent for the values arbitrarily chosen within the range [2, 5].

Table 7: Test MSE results across different hyperparameters required in the automatic PER-coefficients-tuning precedure
described in § 3.2. λ is the initial coefficients and γ is the scaling factors.

(a) Inertia Oz(2) task

loss/(λ · RPER) Test MSE

0.00009 1.75±2.27
0.00037 0.32±0.26
0.00147 0.35±0.19

Oz(2)EMLP 1.56±0.17

(b) CosSim S(3) task

Loss/(λ · RPER) Test MSE

0.0348 0.068±0.007
0.1741 0.065±0.009
0.8707 0.052±0.013

S(3)EMLP 0.21±0.11

(c) Inertia Oz(2) task

γ Test MSE

2 0.32±0.26
3 0.40±0.24
4 0.35±0.15
5 0.43±0.21

Oz(2)EMLP 1.56±0.17

(d) CosSim S(3) task

γ Test MSE

2 0.065±0.009
3 0.044±0.004
4 0.044±0.004
5 0.044±0.004

S(3)EMLP 0.214±0.110

(e) Inertia Oz(2) task
(training epochs
8000)

Adjusted Epoch Test MSE

1000 0.26±0.17
2000 0.32±0.26
3000 0.38±0.24

Oz(2) EMLP 1.56±0.17

(f) CosSim S(3) task
(training epochs
2000)

Adjusted Epoch Test MSE

300 0.044±0.003
500 0.065±0.009
700 0.046±0.004

S(3) EMLP 0.214±0.110

G.2. Comparison with Frame Averaging

Table 8: Test MSE comparison
with FA in the Inertia O(3) task

Model Test MSE

MLP 4.25±0.17
EMLP 1.13±0.36
RPP 2.66±1.43
PER 0.27±0.23

MLP w/ FA 0.36±0.05

Frame Averaging (FA) (Puny et al., 2022) is a framework that, in simple terms, trains
a G-equivariant model f by taking the average over some group elements in G, called
frames. FA is a flexible approach since it does not restrict the internal structure of the
model f , unlike EMLP.

We ran additional experiments with FA on the fully-equivariant task same as the first
row in Table 1. Table 8 shows the results. Although EMLP in the table used gated
nonlinearity (GNL) due to its architectural restriction, FA does not need such a re-
striction, so the ”MLP w/ FA” row in Table 8 applied the frame averaging to the same
setup as the MLP row (i.e., MLP with the Swish activation).

Our results confirmed, FA is indeed a more powerful baseline than EMLP. But note
that our model (PER) performs better than MLP w/ FA here.

G.3. Simple Experiment Assuming Symmetries Are Unknown in the WOMD task

Table 9: (a) Captured equivariance errors across the prescribed regular-
izers with different groups (b) Change of Test MSE due to the additional
regularizers (SLz(2), SLy(2), GLx(2), and GLy(2)).

(a) Model equivariance errors

Regularized Groups Model Equiv. Err.

Oz(2) 0.0007
Ox(2) 0.0006
SLz(2) 0.2638
SLy(2) 0.2302
GLx(2) 0.2398
GLy(2) 0.2089

(b) Test MSE

Models Test MSE (×10−2)

O(2) PER 3.07±0.01
O(2),SL(2),GL(2) PER 3.09±0.01

We explain an additional experiment where
we mimic the situation of unknown sym-
metries by including various and sometimes
wrong matrix groups as candidate groups
and checking whether our method picks
the correct groups. Table 9 shows the
model equivariance error captured by the
model when using all O(2), SL(2), and
GL(2) PERs to train the motion forecast-
ing task with symmetry-aware normaliza-
tion (this task has symmetries with respect
to Oz(2) and Ox(2)). As shown in the ta-
bles, our method has appropriately captured
the equivariance with respect to Oz(2) and
Ox(2).
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