
Model-based Offline Reinforcement Learning with Count-based Conservatism

Byeongchan Kim 1 Min-hwan Oh 1

Abstract
In this paper, we propose a model-based offline re-
inforcement learning method that integrates count-
based conservatism, named Count-MORL. Our
method utilizes the count estimates of state-action
pairs to quantify model estimation error, marking
the first algorithm of demonstrating the efficacy of
count-based conservatism in model-based offline
deep RL to the best of our knowledge. For our pro-
posed method, we first show that the estimation
error is inversely proportional to the frequency
of state-action pairs. Secondly, we demonstrate
that the learned policy under the count-based
conservative model offers near-optimality perfor-
mance guarantees. Through extensive numerical
experiments, we validate that Count-MORL with
hash code implementation significantly outper-
forms existing offline RL algorithms on the D4RL
benchmark datasets. The code is accessible at
https://github.com/oh-lab/Count-MORL.

1. Introduction
Reinforcement Learning (RL) provides a paradigm in which
an agent learns sequential actions within uncertain environ-
ments, all while aiming to maximize cumulative rewards.
The empirical effectiveness of RL has been validated across
diverse domains, underlining its capability to learn complex
tasks (Mnih et al., 2015; Silver et al., 2016; 2017; Fawzi
et al., 2022). A defining feature of RL, which distinguishes
it from other machine learning paradigms, is its inherent
necessity for active information acquisition, in which the
agent collects data through firsthand experimentation with
the environment. This subfield of RL, characterized by
direct interaction, is commonly referred to as online RL.

Nevertheless, this approach with direct experimentation is
often infeasible or potentially unsafe in many real-world
applications, including but not limited to robotics (Gu et al.,

1Seoul National University, Seoul, South Korea. Correspon-
dence to: Min-hwan Oh <minoh@snu.ac.kr>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

2017), autonomous driving (Kiran et al., 2021), and health-
care (Yu et al., 2021a). Furthermore, even when direct inter-
vention is viable, each interaction between the agent and the
environment often incurs cost. Thus, if conditions permit, it
would be advantageous for the agent to learn from readily
available offline datasets, thereby negating the necessity for
direct experimentation.

Offline RL, also referred to as batch RL, is a subfield of
the RL framework that relies solely on previously acquired
static datasets. In this framework, the agent is given a col-
lection of experiences that a behavior policy gathered and
subsequently utilizes for policy learning without any addi-
tional interactions with the environment. Despite its advan-
tages of learning from an offline dataset, offline RL also
presents unique challenges (Levine et al., 2020). Among
these, striking a balance between enhancing generalization
capabilities and circumventing undesired out-of-distribution
(OOD) behaviors remains prominent. The crux of finding
such a balance pivots around managing distributional shift.
During policy evaluation, the application of Bellman up-
dates to value functions involves querying the values of
OOD state-action pairs. This can potentially lead to an ac-
cumulation of extrapolation errors. The issue becomes even
more intricate due to the widespread use of high-capacity
function approximators, such as neural networks, which
further complicates its complexity.

To address this issue with OOD actions, various offline RL
algorithms adapt conservatism in estimated values by induc-
ing some form of pessimism. These methods include both
model-free (Kumar et al., 2020; Shi et al., 2022) and model-
based (Yu et al., 2020; Kidambi et al., 2020; Rafailov et al.,
2021; Lu et al., 2022; Rigter et al., 2022) approaches. Recent
model-based offline RL methods aim to harness conserva-
tive value estimates by using analytical performance bounds
(Yu et al., 2020; Kidambi et al., 2020; Rafailov et al., 2021).
These methods adjust the estimated MDP model learned
from the offline dataset to elicit conservative behavior by
imposing a penalty on the policy or rewards when the policy
visits states where the estimated model’s accuracy is likely
low. If the learned policy takes actions in states where the
accuracy of model prediction is high, it is plausible that the
estimated value of the policy is likely to retain a high level
of accuracy. Specifically, many existing model-based of-
fline RL algorithms incorporate conservatism by estimating

1

https://github.com/oh-lab/Count-MORL

Model-based Offline Reinforcement Learning with Count-based Conservatism

the model uncertainty and penalizing the reward function
proportional to the estimated uncertainty (Yu et al., 2020;
Kidambi et al., 2020; Rafailov et al., 2021).

A recent work (Lu et al., 2022) investigates a variety of
estimated model uncertainty, showing that a different choice
of model uncertainty can significantly affect performances.
However, existing algorithms (Yu et al., 2020; Rafailov et al.,
2021) use the total variation distance between the estimated
and true models as a penalty in theory, but such a distance
is difficult to compute in practice. Because of unreliable
estimates of the model uncertainty, other approaches incor-
porate conservatism by regularizing the value function (Yu
et al., 2021b) or modifying the estimated transition dynam-
ics in an adversarial manner (Rigter et al., 2022) without
model uncertainty quantification. Hence, the questions of
which choice of model uncertainty should be used and what
conservatism is more suitable in practice remain open.

In this work, we propose a new method for model-based
offline RL, Count-based Conservatism for Model-based Of-
fline RL (Count-MORL). Our proposed method utilizes the
estimated frequency (counts) of state-action pairs in the of-
fline dataset to quantify the model estimation error. The
reward function is penalized by the model estimation er-
ror inversely proportional to the frequency of state-action
pairs. Using this count-based penalized reward, we con-
struct the count-based conservative MDP model and learn
a policy using this model. However, when state and action
spaces are not discrete, i.e., when state and action spaces are
represented by high-dimensional features or features that
take continuous values, it can be difficult to enumerate and
quantify the exact counts of state-action pairs. To efficiently
implement our proposed method and address the aforemen-
tioned issue, we utilize hash code heuristics to approximate
the frequency of state-action pairs (Tang et al., 2017), previ-
ously used in online RL but has not been utilized for offline
RL. While we present our method with this hash code ver-
sion of count estimation for clear and easy exposition, other
count estimations (Bellemare et al., 2016; Ostrovski et al.,
2017; Fu et al., 2017; Martin et al., 2017; Machado et al.,
2020) can be utilized in our proposed method. Another
salient feature of our proposed method is the incorporation
of uncertainty in count estimation, which is shown to af-
fect the performance of the proposed method. Hence, a
suitable consideration of the count uncertainty can further
enhance performance. We show in our extensive numerical
evaluations that our proposed count-based conservatism de-
rives superior performances, consistently outperforming the
existing methods in offline RL.

Our main contributions are summarized as follows:

• We propose a new model-based offline RL method
that incorporates count-based conservatism, named
Count-MORL, where we utilize the count estimates of

state-action pairs to quantify the model estimation error.
To our best knowledge, this work is the first to show the
efficacy of count-based conservatism in model-based
offline deep RL.

• We provide two theoretical analyses established for
our proposed method. First, the estimation error is
bounded, inversely proportional to the frequency of
state-action pairs, which can be extended to consider
count approximation, not just exact counts. Second,
the learned policy under the count-based conservative
model has a performance guarantee on near-optimality
that depends on this estimation error and the count
approximation.

• The numerical experiments show that Count-MORL
with hash code implementation significantly outper-
forms the existing offline RL algorithms in the D4RL
benchmark datasets. The results support that count-
based conservatism is both efficient and practical for
model-based offline RL.

2. Related Work
Offline RL addresses the problem of learning policies from
a logged static dataset. Model-free offline algorithms do not
require an estimated model and mainly belong to one of the
three categories: regularizing the learned policy to be close
to the behavior policy (Fujimoto et al., 2019; Wu et al., 2019;
Liu et al., 2020; Siegel et al., 2020; Fujimoto & Gu, 2021;
Kostrikov et al., 2022), quantifying the uncertainty with
ensemble techniques to obtain a robust value function (Agar-
wal et al., 2020b; An et al., 2021; Kumar et al., 2019), and
adapting conservatism to a value function (Kumar et al.,
2020; Xie et al., 2021). In contrast, model-based offline
algorithms use an estimated model based on a fixed dataset
to query model outputs for state transition and rewards so
that algorithms can use them for planning to improve a
policy. However, training a policy using an inaccurately
estimated model can be harmful (Janner et al., 2019). Such
potential risk can be further exacerbated by distributional
shifts. Hence, it is important to correct the insufficiently
learned portion of estimated models. Many existing model-
based approaches (Yu et al., 2020; Kidambi et al., 2020;
Matsushima et al., 2021; Swazinna et al., 2021; Yu et al.,
2021b; Argenson & Dulac-Arnold, 2021; Lee et al., 2021;
Hishinuma & Senda, 2021; Rafailov et al., 2021; Rigter
et al., 2022) address this challenge with various techniques,
which regularizes the value function without uncertainty
estimation (Yu et al., 2021b; Rigter et al., 2022).

A line of the model-based offline RL literature, most related
to our paper, includes the works that utilize penalization
on the estimated model (Yu et al., 2020; Kidambi et al.,
2020; Rafailov et al., 2021). MOPO (Yu et al., 2020) pe-

2

Model-based Offline Reinforcement Learning with Count-based Conservatism

nalizes the reward function with the estimation error be-
tween the true and estimated models based on the maxi-
mum aleatoric uncertainty. MOReL (Kidambi et al., 2020)
constructs a pessimistic model using the unknown state-
action detector based on a threshold of model uncertainty.
LOMPO (Rafailov et al., 2021) handles image data with la-
tent dynamics models and model uncertainty quantification
based on the variance of log-likelihoods. While new meth-
ods are being proposed for model-based offline RL, it is still
unclear as to concretely what and how estimation error is
used for practice. Often, there appears to be a gap between
what is proposed in theory and what is used in practice. Our
work aims to address this issue with a concrete uncertainty
quantification using count estimation.

Count-based uncertainty quantification is widely used in
online RL. Count-based exploration methods (Bellemare
et al., 2016; Ostrovski et al., 2017; Fu et al., 2017; Mar-
tin et al., 2017; Tang et al., 2017; Machado et al., 2020)
are based on estimating the trial counts of state-action
pairs and incorporating this count estimate into a bonus
reward. However, in offline RL, a count-based approach has
been relatively under-utilized. To our knowledge, the only
work (Hong et al., 2023), which uses count-based conser-
vatism for model-free offline RL, has focused on updating
Q-functions by incorporating confidence levels derived from
inverse state visitations. Compared to Hong et al. (2023),
our proposed method has several distinct features. First, in
model-based offline deep RL, we utilize the count estima-
tion of state-action pairs to quantify the model estimation
error and construct the count-based conservatism model us-
ing this count estimation. Second, unlike Hong et al. (2023)
which requires the last layer of the neural network of Q-
function to be linear for approximating state visitations, our
method can utilize various count-based methods used in
online RL. Additionally, for the first time, we address the
issue of uncertainty in count estimation, which has been
shown to enhance performance.

3. Preliminaries
3.1. Markov Decision Process

We consider a Markov decision process (MDP) specified by
the tuples M = (S,A, P, r, d0, γ), where S is the state
space, A is the action space, P : S × A → ∆(S) is
the transition dynamics, r : S × A → [−Rmax, Rmax]
is the reward function, d0 ∈ ∆(S) is the initial state
distribution, and γ ∈ [0, 1) is the discount factor. A
policy π : S → ∆(A) is a mapping from states to
a probability distribution over actions. The value func-
tion V π

P,r(s) := Eπ,P [
∑∞

t=0 γ
tr(st, at)|s0 = s] represents

the expected cumulative discounted reward of π under
P and r when starting from state s. We denote the dis-
counted state visitation distribution of π under P using

dπP (s) := (1 − γ)
∑∞

t=0 γ
tdπP (st = s), where dπP (st = s)

is the probability of reaching state s at a time-step t under
π and P . Similarly, we denote the discounted state-action
visitation distribution as dπP (s, a) := dπP (s)π(a|s).

3.2. Offline RL

The goal of the RL agent in general is to obtain an op-
timal policy π∗ that maximizes the expected cumulative
discounted reward under d0:

max
π

V π
M := Es∼d0

[
V π
P,r(s)

]
=

1

1− γ
E(s,a)∼dπ

P
[r (s, a)]

In offline RL, a policy is learned by utilizing a static dataset
without additional interactions with the environment. The
agent is given an offline dataset D = {(si, ai, ri, s′i)}ni=1

that consists of transition tuples from trajectories gathered in
advance by some potentially unknown behavior policy πβ .
Since D is typically a (possibly very limited) subset of the
entire tuple space, finding the optimal policy using only this
fixed dataset is not only challenging but also sometimes im-
possible especially when actions that belong to the optimal
policy do not even exist in the given dataset. Therefore, the
goal of offline RL is to construct an algorithm that can learn
a policy π̂ minimizing the sub-optimality gap V π∗

M − V π̂
M

computed based on D while hoping that π̂ is close to π∗.

3.3. Model-based Offline RL

A model-based approach to offline RL utilizes an estimated
transition dynamics model that approximates the true transi-
tion dynamics model. Without loss of generality, we assume
that the reward function r(s, a) is known.1 Let P̂ (·|s, a)
denote the maximum likelihood estimator (MLE) of the
true state transition model P ⋆(·|s, a), computed based on
the dataset Ds,a := {(si, ai, s′i)}si=s,ai=a which is a sub-
set of the entire offline dataset D. We denote the number
of samples in Ds,a as n (s, a) := |Ds,a|. Then, we con-
struct the estimated MDP M̂ := (S,A, P̂ , r, d0, γ) with
the estimated transition model that approximates the true
MDP M⋆ = (S,A, P ∗, r, d0, γ). The existing methods in
model-based offline RL use the estimated model M̂ to query
synthetic trajectories by simulating H-step rollouts starting
from a given state observed in the offline dataset (Kidambi
et al., 2020; Yu et al., 2020; 2021b; Rafailov et al., 2021;
Rigter et al., 2022). Similar to a replay buffer utilized in
off-policy RL, the synthetic trajectories are stored in a re-
play buffer Dmodel. However, an inaccurately estimated
model for unobserved state-action pairs in D can lead to
poor performance of the learned policy (Janner et al., 2019).

1This is commonly assumed in the model-based RL litera-
ture (Yang & Wang, 2019; 2020; Zhou et al., 2021; Hwang & Oh,
2023) without loss of generality since learning r(s, a) is consid-
ered much easier than learning P (·|s, a). If r is unknown, it can
be replaced with estimated reward r̂ learned together with P̂ .

3

Model-based Offline Reinforcement Learning with Count-based Conservatism

To address this challenge, one of the most widely used
approaches in model-based offline RL is to incorporate
conservatism by estimating the model uncertainty and con-
structing an uncertainty-penalized MDP with a penalized
reward where a penalty is proportional to the estimated un-
certainty (Yu et al., 2020; Kidambi et al., 2020; Rafailov
et al., 2021; Lee et al., 2021). For example, an uncertainty-
penalized MDP introduced in Yu et al. (2020) utilizes a
penalized reward r̃ (s, a) := r (s, a) − λu (s, a), where
u (s, a) denotes an admissible error estimator for the state-
action pair (s, a). Based on this uncertainty-penalized re-
ward r̃, a learned policy maximizes the expected cumulative
discounted rewards:

Es∼d0

[
V π
P̂ ,r̃

(s)
]
=

1

1− γ
E(s,a)∼dπ

P̂
[r (s, a)− λu (s, a)] .

However, one of the main issues in this approach (Yu et al.,
2020) as well as many other existing methods (Kidambi
et al., 2020; Rafailov et al., 2021) is the unavailability of a
readily usable uncertainty estimate u (s, a), which quantifies
the estimation error between an estimated MDP and the
unknown true MDP.

4. Count-based Conservatism for Model-based
Offline RL

We propose a model-based algorithm for offline RL as de-
scribed in Section 4.2. The main idea of our proposed
method is to compute the estimation error between the
learned and true transition dynamics by quantifying the fre-
quency of state-action pairs (or the frequency of the features
of state-actions) in the offline dataset. We use the estimated
frequency of the observed data to construct a count-based
conservative MDP.

For our proposed method, we provide an estimation error
bound based on the estimated frequency of state-action pairs
in Theorem 1 (in Section 4.1). For each state-action pair, we
penalize the reward function, where the penalty is inversely
proportional to the estimated frequency. With this penalized
reward function, we construct a count-based conservative
MDP. In Theorem 2, we provide a guarantee of the sub-
optimality gap between the optimal policy under the true
MDP and the learned policy under the conservative MDP. In
Section 4.2, we describe our algorithm that incorporates the
aforementioned theoretical results to quantify the suitable
conservatism and derives efficient learning in offline RL.

4.1. Theoretical Analysis

Suppose that we are given a hypothesis class of transition
modelsM = {P : S × A → ∆(S)}. We assume realiz-
ability P ⋆ ∈M, that is, the true transition model exists in
the hypothesis class (Agarwal et al., 2020a; Uehara & Sun,
2022). We denote a total variation distance between two

distributions P1 and P2 as TV(P1, P2). Now, we begin by
presenting the following theorem that establishes an upper
bound of the total variation distance between the learned
and true transition dynamics. The theorem is adapted from
Theorem 21 in Agarwal et al. (2020a).

Theorem 1 (Estimation error of transition dynamics). Fix
δ ∈ (0, 1), assume |M| < ∞ and P ⋆ ∈ M. Given
a state-action pair (s, a) is observed in D with Ds,a =
{(si, ai, s′i)}si=s,ai=a and n (s, a) = |Ds,a|. Define the
MLE of transition dynamics as

P̂ (· | s, a) ∈ argmax
P∈M

∑

(s,a,s′)∈Ds,a

logP (s′ | s, a)

for a given (s, a). Then with probability at least 1− δ,

TV
(
P̂ (· | s, a), P ⋆(· | s, a)

)
≤
√

2 log(|M|/δ)
n (s, a)

.

Discussion of Theorem 1. Theorem 1 states that the es-
timation error between the estimated and true transition
dynamics is smaller for the state-action pairs that are more
frequently observed in the offline dataset D, and provides
the upper bound on the rate of the convergence in terms of
the frequency, i.e., O(1/

√
n(s, a)). Such quantification of

the model estimation error is critical for offline RL algo-
rithms since the penalization on reward functions needed
for learning conservative policies depends on the specifi-
cation of the error bound. The key of this theorem is that
the upper bound of the model estimation error can be deter-
mined based on the number of observations in the offline
dataset, which we aim to estimate in the proposed algorithm
(particularly when the environment is not tabular).

As an immediate corollary, we expand the estimation error
for individual state-action pairs from the offline dataset D
to the entire state-action space.

Corollary 1. Given a state-action pair (s, a) ∈ S×A, with
probability at least 1− δ, the estimated transition dynamics
P̂ satisfies the following inequality by Theorem 1:

TV
(
P̂ (· | s, a), P ⋆(· | s, a)

)
≤ Cδ

P̂
(s, a) ,

where Cδ
P̂
(s, a) := min

(
1,
√

2 log(|M|/δ)
n(s,a)

)
.

We define the estimation error bound based on the true count
for the estimated transition dynamics P̂ as Cδ

P̂
: S ×A →

[0, 1]. By the definition of total variation distance, the esti-
mation error for all state-action pairs is bounded by 1. There
are two cases in which the estimation error takes the value
of 1. First, for unobserved state-action pairs inD, we cannot
estimate the transition dynamics or compute the estimation
error. Second, when n (s, a) is less than

√
2 log(|M|/δ),

4

Model-based Offline Reinforcement Learning with Count-based Conservatism

the estimation error becomes greater than 1. Excluding
these cases, all estimation errors are inversely proportional
to observation counts n (s, a).

So far, we have assumed that we can compute exact counts
for each observation n (s, a) which is only applicable to
tabular settings. However, for large state and action spaces,
or continuous state-action pairs, computing the exact fre-
quency of state-action pairs may be intractable. To this
end, we introduce the notion of approximate counts n̂ to
approximate the true counts.

Definition 1 (Estimation error with approximate count).
Define the approximate count as n̂ : S × A → R, which
approximates the true count n, and the estimation error
bound based on the approximate count as Ĉδ

P̂
: S × A →

[0, 1]:

Ĉδ
P̂
(s, a) := min

(
1,

√
2 log(|M|/δ)

n̂ (s, a)

)
.

We allow an approximation error incurred by n̂. We define
the maximal approximation error as follows.

Definition 2 (Approximation error of counts). Define the
maximal approximation error between estimation error
bounds based on the true count and approximate count
over all state-action pairs as

ϵ := sup
(s,a)∈S×A

∣∣∣Cδ
P̂
(s, a)− Ĉδ

P̂
(s, a)

∣∣∣ .

The following lemma shows the gap of returns between the
estimated MDP M̂ and the true MDP M⋆ of any given pol-
icy π. This result is an adaptation of Lemma 4.1 based on
the telescoping lemma in Yu et al. (2020) with the approxi-
mate count.

Lemma 1 (Value gap of estimated model). Suppose M⋆

and M̂ be two MDPs with the true transition dynamics P ⋆

and estimated transition dynamics P̂ , respectively. Given
the estimation error bound based on the approximate count
Ĉδ

P̂
and the maximal approximation error ϵ. Then, with

probability at least 1− δ, for any policy π,

V π
M̂
−V π

M⋆ ≤ γRmax

(1− γ)2
E(s,a)∼dπ

P̂

[
Ĉδ

P̂
(s, a)

]
+

γRmax

(1− γ)2
ϵ .

Discussion of Lemma 1. Lemma 1 states that the value gap
between the estimated and true model under any policy π is
bounded by the model estimation error under the visitation
distribution dπ

P̂
and the count approximation error. Our

approach of quantifying the model estimation error using the
approximate count n̂ (s, a) for all state-action pairs, instead
of an admissible error estimator u(s, a), provides a practical
way of constructing a reward penalty concretely defined
once an approximate count is provided.

Note that Ĉδ
P̂

is a function of P̂ and π. In order to under-
stand the implication of Lemma 1, first, consider a special
case when π = πβ . Then, the policy takes actions frequently
observed in D and visits states frequently observed in D, so
that the estimation error bound for state-action pairs will be
generally small by Theorem 1. Hence, the expectation of
Ĉδ

P̂
under dπβ

P̂
will be small. Conversely, if a policy takes

actions (or visits states) less observed or unobserved in D,
then the estimation error bound for unobserved state-action
pairs is likely to be large. Thus, the expectation of Ĉδ

P̂
under

dπ
P̂

tends to be large. Note that the maximal approxima-

tion error ϵ does not depend on P̂ or π, that is, even if the
estimation of the model is accurate the error incurred by
the approximation still exists. Hence, when the approxima-
tion error is sufficiently small, the value function will be
efficiently learnable.

The key insight of Lemma 1 is that the value gap for the
learned policy, which maximizes the value function with
respect to M̂ , can be large when the learned policy takes ac-
tions (or visits states) beyond the offline dataset D, or when
the count approximation is inaccurate. Using this insight,
our proposed method augments count-based conservatism
by incorporating the reward penalty based on count-based
estimation error. Also, our method even addresses the un-
certainty in count approximation.

Now, we define a count-based conservative MDP as follows.

Definition 3 (Count-based conservative MDP). Define the
count-based conservative MDP M̃ := (S,A, P̂ , r̃, d0, γ)

with the estimated transition dynamics P̂ and count-based
penalized reward r̃ (s, a) := r (s, a)− γRmax

1−γ Ĉδ
P̂
(s, a).

We invoke the following corollary to demonstrate that M̃
is conservative in that the value of a policy under M̃ is
generally not higher than its value under M⋆.

Corollary 2. Given the true MDP M⋆ and the count-based
conservative MDP M̃ = (S,A, P̂ , r̃, d0, γ) as defined in
Definition 3. Then, with probability at least 1− δ, for any
policy π,

V π
M⋆ ≥ V π

M̃
− γRmax

(1− γ)2
ϵ .

Here, the conservatism error is given by a multiple of the
maximal approximation error ϵ. That is, if ϵ is 0, then the
value under M̃ is pessimistic with high probability.

We define the learned policy π̂ that maximizes the value
function with respect to M̃ , that is, π̂ := argmaxπ V

π
M̃

.
Then, our main theorem (Theorem 2) provides a perfor-
mance guarantee on the learned policy π̂ under M⋆.

Theorem 2 (Sub-optimality gap). Given the estimation er-
ror bound Ĉδ

P̂
based on the approximate count n̂ and the

maximal count approximation error ϵ, with probability at

5

Model-based Offline Reinforcement Learning with Count-based Conservatism

least 1 − δ, the learned policy π̂ under the count-based
conservative MDP M̃ satisfies

V π̂
M⋆ ≥ sup

π

{
V π
M⋆ − 2γRmax

(1− γ)2
E(s,a)∼dπ

P̂

[
Ĉδ

P̂
(s, a)

]}

− 2γRmax

(1− γ)2
ϵ .

In particular, for the optimal policy π∗,

V π∗

M⋆ − V π̂
M⋆ ≤ 2γRmax

(1− γ)2
E(s,a)∼dπ∗

P̂

[
Ĉδ

P̂
(s, a)

]

+
2γRmax

(1− γ)2
ϵ .

Discussion of Theorem 2. Theorem 2 establishes that the
value of the learned policy π̂ under the true MDP M⋆ can
be controlled in terms of the trade-off between the value un-
der M⋆ and the expected estimation error under M̂ and the
count approximation error. Theorem 2 has two important in-
terpretations. First, the learned policy π̂ will perform as least
as well as the behavior policy πβ under M⋆ since the expec-
tation of Ĉδ

P̂
under dπβ

P̂
is small. Second, π̂ aims to find the

optimal balance between the value under M⋆ and the ex-
pectation of Ĉδ

P̂
under dπ

P̂
. There exists a tradeoff between

the two quantities since a policy that increases V π
M⋆ may

also increase the expectation of Ĉδ
P̂

under dπ
P̂

. A learned
policy different from πβ may take actions not observed in
the dataset or visit unobserved states with high-value func-
tions. Then, the resulting Ĉδ

P̂
(s, a) for those state-action

pairs will be large since n̂ (s, a) is small. Hence, this con-
servative MDP encourages the agent to find a near-optimal
policy but simultaneously discourages the agent to take ac-
tions that are unobserved in D. The second inequality in
Theorem 2 shows that the sub-optimality gap between the
optimal policy π∗ and the learned policy π̂ under M⋆ de-
pends on the expectation of Ĉδ

P̂
under dπ

∗

P̂
. If the quality of

the offline dataset D is high — that is, if the behavior policy
πβ is similar to π∗, then the expectation of Ĉδ

P̂
becomes

small, allowing π̂ to be closer to π∗.

4.2. Proposed Algorithm: Count-MORL

We present our algorithm, Count-based Conservatism for
Model-based Offline RL (Count-MORL). The algorithm is
summarized in Algorithm 1. Our algorithm learns the es-
timated transition model and computes the approximate
counts of state-action pairs in the offline dataset to penal-
ize the reward function, so as to induce count-based con-
servatism. Our proposed algorithm is generic in terms of
incorporating count estimation. Hence, one can utilize any
type of count approximation studied in the online RL litera-
ture (Bellemare et al., 2016; Tang et al., 2017; Martin et al.,
2017; Ostrovski et al., 2017; Machado et al., 2020).

Algorithm 1 : Count-based Conservatism for Model-based
Offline RL (Count-MORL)

Require: counting functions {ni : Rd → R+ ∪ {0}}Ni=1,
reward penalty coefficient β, rollout horizon H , rollout
batch size B, offline dataset D

1: Train an ensemble of N dynamics models {P̂i}Ni=1 and
feature mappings {ϕi : S ×A → Rd}Ni=1 on D.

2: Initialize policy π and the replay buffer Dmodel ← ∅.
3: for epoch = 1, 2, · · · do
4: for rollout = 1, 2, · · · , B do
5: Sample initial rollout state s1 from D.
6: for t = 1, 2, · · · , H do
7: Sample an action ât ∼ π(ŝt)

8: Sample a dynamics model P̂ from {P̂i}Ni=1

9: Sample ŝt+1, r̂t ∼ P̂ (ŝt, ât)
10: Compute n̂(ŝt, ât) using Algorithm 2
11: Compute

r̃t =

{
r̂t − β√

n̂(ŝt,at)
if n̂(ŝt, ât) > 0

r̂t − β otherwise.

12: Add sample (ŝt, ât, r̃t, ŝt+1) to Dmodel.
13: end for
14: end for
15: Draw samples from D ∪Dmodel to update π.
16: end for

Another salient feature of our method is incorporation of
the uncertainty of the count estimation, shown in Algo-
rithm 2 which is a sub-routine of Count-MORL. Algorithm 2
allows three possible types of count estimation: lower confi-
dence (LC), average (AVG), and upper confidence (UC). As
shown in the numerical experiments of Section 5, a certain
type of count estimation performs superior to others depend-
ing on how samples in the offline dataset were collected
(see Table 2 for more details). Hence, the consideration of
uncertainty in count estimation is crucial.

Algorithm 1 presents a general version of our proposed
method with feature mappings.2 The first step of our
algorithm is to train an ensemble of N dynamics mod-
els {P̂i(s

′, r|s, a)}Ni=1 and feature mappings {ϕi (s, a)}Ni=1.
Given a state-action pair, each composition function of the
feature mapping and counting function, {ni(ϕi (s, a))}Ni=1,
are obtained. A mean and a standard deviation are calcu-
lated by using these composition functions as n̄ (s, a) and
σ (s, a). When we have prior information available about
the offline dataset, the count estimation (LC, AVG, or UC)
can be chosen appropriately. For example, if the offline
dataset is given by a clearly suboptimal behavior policy (in
other words, the observed trajectories significantly differ
from trajectories possibly given by an optimal policy), then

2For tabular settings, feature representation for each state-
action pair can be given by one-hot encoding.

6

Model-based Offline Reinforcement Learning with Count-based Conservatism

Algorithm 2 : Count Estimation

Require: standard deviation coefficient α, feature map-
pings {ϕi}Ni=1, counting functions {ni}Ni=1

1: for i = 1, 2, · · · , N do
2: Compute ϕi (s, a)
3: Compute n̂i (s, a) = ni(ϕi (s, a))
4: end for
5: Compute n̄ (s, a) = 1

N

∑N
i=1 n̂i (s, a)

6: Compute σ (s, a) =

√∑N
i=1{n̂i(s,a)−n̄(s,a)}2

N−1
7: Compute

n̂(s, a) =

n̄ (s, a)− ασ (s, a) if LC count
n̄ (s, a) if AVG count
n̄ (s, a) + ασ (s, a) if UC count.

8: return an approximate count n̂ (s, a)

it is sensible to consider a higher level of pessimism on
the observed samples, therefore utilizing LC counts in this
case. Then, a learned policy is more inclined to take ac-
tions (and visit states) outside the offline dataset — since
the penalization on observed samples is increased while the
penalization on unobserved data is fixed. Conversely, if
the offline dataset is given by a behavior policy which is
near-optimal, then it is appropriate to utilize UC counts to
penalize with a lower level of pessimism on the observed
samples. In that case, a learned policy is encouraged to take
actions within the offline dataset.

4.3. Architecture and Efficient Implementation

Although Count-MORL is a comprehensive method not lim-
ited to a specific architecture, we provide a concrete archi-
tectural example (used for the experiments in Section 5) that
details its efficient implementation using hash-code count
estimation, adapted from a technique used in the online RL
literature (Tang et al., 2017). The overall architecture is
depicted in Figure 1.

The estimated dynamics model for continuous state tran-
sitions is constructed using a neural network that predicts
a Gaussian distribution over the estimated next state and
reward, similar to the approach of Yu et al. (2020). This
model is linked to an autoencoder at the hidden layer. The
autoencoder’s input is the output of this hidden layer, which
includes a bottleneck layer comprised of d sigmoid func-
tions. By rounding the sigmoid activations of the bottleneck
layer to their nearest binary values, we convert all state-
action pairs into binarized d-dimensional binary vectors.
As the learning process advances, the latent representation
of these state-action pairs, along with their corresponding
binarized d-dimensional vectors, become more stable.

To compute the frequency of potentially high-dimensional or
continuous state-action pairs, we count each unique binary

Dynamics Model
Part (i)

Dynamics Model
Part (ii)

Encoder Decoder
<latexit sha1_base64="6qsoNB3Ali/nbzTg7cYG2hmc6YE=">AAAC13icjVHLSsNAFD2Nr1pftS7dBKtQQUoivpYFNy4r2IfYUibptA1Nk5BMxFKKO3HrD7jVPxL/QP/CO2MKahGdkOTMufecmXuvFbhOJAzjNaXNzM7NL6QXM0vLK6tr2fVcNfLj0OYV23f9sG6xiLuOxyvCES6vByFnA8vlNat/KuO1ax5Gju9diGHAmwPW9ZyOYzNBVCubKzR6TIyi8Z6uABvvtrJ5o2iopU8DMwF5JKvsZ1/QQBs+bMQYgMODIOyCIaLnCiYMBMQ1MSIuJOSoOMcYGdLGlMUpgxHbp2+XdlcJ69FeekZKbdMpLr0hKXXskManvJCwPE1X8Vg5S/Y375HylHcb0t9KvAbECvSI/Us3yfyvTtYi0MGJqsGhmgLFyOrsxCVWXZE3179UJcghIE7iNsVDwrZSTvqsK02kape9ZSr+pjIlK/d2khvjXd6SBmz+HOc0qO4XzaPi4flBvrSdjDqNTWyhQPM8RglnKKNC3jd4xBOetUvtVrvT7j9TtVSi2cC3pT18ADM4ll8=</latexit>

(ŝ, â)

<latexit sha1_base64="6ZRM0Udmmv6oeg05qQxC3TjGe64=">AAAC13icjVHLTsJAFD3UF+ILcemmEY2YGFKMryWJG5eYyMMAIW0ZoKG0zXRqJIS4M279Abf6R8Y/0L/wzlgSlRidpu2Zc+85M/deK3CdUBjGa0KbmZ2bX0guppaWV1bX0uuZSuhH3GZl23d9XrPMkLmOx8rCES6rBZyZA8tlVat/JuPVa8ZDx/cuxTBgzYHZ9ZyOY5uCqFY6k2v0TDEKx7v7CvDxXiudNfKGWvo0KMQgi3iV/PQLGmjDh40IAzB4EIRdmAjpqaMAAwFxTYyI44QcFWcYI0XaiLIYZZjE9unbpV09Zj3aS89QqW06xaWXk1LHDml8yuOE5Wm6ikfKWbK/eY+Up7zbkP5W7DUgVqBH7F+6SeZ/dbIWgQ5OVQ0O1RQoRlZnxy6R6oq8uf6lKkEOAXEStynOCdtKOemzrjShql321lTxN5UpWbm349wI7/KWNODCz3FOg8pBvnCcP7o4zBa341EnsYkt5GieJyjiHCWUyfsGj3jCs3al3Wp32v1nqpaINRv4trSHD2yNlnc=</latexit>

(ŝ0, r̂)

<latexit sha1_base64="eQAbTB50iw1Z0jJUTKWJh33VGDM=">AAAC0HicjVHLSsNAFD2Nr1pfVZduglWoICURX8uCG5dV7APaUpJ02g5Nk5hMxFKKuPUH3OpXiX+gf+GdMQW1iE5Icubce87MvdcOXB4Jw3hNaTOzc/ML6cXM0vLK6lp2faMS+XHosLLju35Ys62IudxjZcGFy2pByKyB7bKq3T+T8eoNCyPue1diGLDmwOp6vMMdSxDVbAQ93hqZ43y0b+21sjmjYKilTwMzATkkq+RnX9BAGz4cxBiAwYMg7MJCRE8dJgwExDUxIi4kxFWcYYwMaWPKYpRhEdunb5d29YT1aC89I6V26BSX3pCUOnZJ41NeSFiepqt4rJwl+5v3SHnKuw3pbydeA2IFesT+pZtk/lcnaxHo4FTVwKmmQDGyOidxiVVX5M31L1UJcgiIk7hN8ZCwo5STPutKE6naZW8tFX9TmZKVeyfJjfEub0kDNn+OcxpUDgrmceHo4jBX3ElGncYWtpGneZ6giHOUUCbvazziCc/apXar3Wn3n6laKtFs4tvSHj4AxD6T3w==</latexit>

�1(s, a)
<latexit sha1_base64="fStV0ano+mRKwOxSEzAGVOX3s8k=">AAAC1XicjVHLSsNAFD2Nr1pfUZduglWoICURX8uCG5cV7APaUibptA1Nk5BMCqV0J279Abf6S+If6F94Z0xBLaITkpw5954zc++1Q8+NhWm+ZrSFxaXllexqbm19Y3NL396pxkESObziBF4Q1W0Wc8/1eUW4wuP1MOJsaHu8Zg+uZLw24lHsBv6tGIe8NWQ93+26DhNEtXW92Wdi4k/bE2taiI/ZUVvPm0VTLWMeWCnII13lQH9BEx0EcJBgCA4fgrAHhpieBiyYCIlrYUJcRMhVcY4pcqRNKItTBiN2QN8e7Rop69NeesZK7dApHr0RKQ0ckiagvIiwPM1Q8UQ5S/Y374nylHcb099OvYbECvSJ/Us3y/yvTtYi0MWlqsGlmkLFyOqc1CVRXZE3N75UJcghJE7iDsUjwo5SzvpsKE2sape9ZSr+pjIlK/dOmpvgXd6SBmz9HOc8qJ4UrfPi2c1pvnSQjjqLPeyjQPO8QAnXKKNC3iM84gnPWk2banfa/Weqlkk1u/i2tIcPI9mVkA==</latexit>

n̂1(s, a)
Learn and jointly

<latexit sha1_base64="5f5htwbet9946HvGw+mljljNbd4=">AAAC1HicjVHLSsNAFD2Nr1ofjbp0E6yCq5KIr2XBjcsK9gFtKUk6bQfTJCQTpcSuxK0/4Fa/SfwD/QvvjCmoRXRCkjPnnnNn7r1O6PFYmOZrTpubX1hcyi8XVlbX1ov6xmY9DpLIZTU38IKo6dgx87jPaoILjzXDiNkjx2MN5+pMxhvXLIp54F+Kccg6I3vg8z53bUFUVy+2b3iPDW2RVifd1Jp09ZJZNtUyZoGVgRKyVQ30F7TRQwAXCUZg8CEIe7AR09OCBRMhcR2kxEWEuIozTFAgb0IqRgqb2Cv6DmjXylif9jJnrNwuneLRG5HTwB55AtJFhOVphoonKrNkf8udqpzybmP6O1muEbECQ2L/8k2V//XJWgT6OFU1cKopVIyszs2yJKor8ubGl6oEZQiJk7hH8Yiwq5zTPhvKE6vaZW9tFX9TSsnKvZtpE7zLW9KArZ/jnAX1g7J1XD66OCxVdrNR57GNHezTPE9QwTmqqKmZP+IJz1pdu9XutPtPqZbLPFv4trSHD4JYlcA=</latexit>

bP1

<latexit sha1_base64="HgGn8Oxb59JNnNEr9Q8Y/Qxywvs=">AAACy3icjVHLSsNAFD2Nr1pfVZduglVwVRLxtSy4cSNUsA9oS0nSaTuYF5mJUGuX/oBb/S/xD/QvvDOmoBbRCUnOnHvOnbn3urHPhbSs15wxN7+wuJRfLqysrq1vFDe36iJKE4/VvMiPkqbrCObzkNUklz5rxglzAtdnDffmXMUbtywRPAqv5ShmncAZhLzPPUcS1WzHQ94d25NusWSVLb3MWWBnoIRsVaPiC9roIYKHFAEYQkjCPhwIelqwYSEmroMxcQkhruMMExTIm5KKkcIh9oa+A9q1MjakvcoptNujU3x6E3Ka2CdPRLqEsDrN1PFUZ1bsb7nHOqe624j+bpYrIFZiSOxfvqnyvz5Vi0QfZ7oGTjXFmlHVeVmWVHdF3dz8UpWkDDFxCvconhD2tHPaZ1N7hK5d9dbR8TetVKzae5k2xbu6JQ3Y/jnOWVA/LNsn5eOro1JlLxt1HjvYxQHN8xQVXKCKmp7jI57wbFwawrgz7j+lRi7zbOPbMh4+ANQdklw=</latexit>

�1

Compute
<latexit sha1_base64="fStV0ano+mRKwOxSEzAGVOX3s8k=">AAAC1XicjVHLSsNAFD2Nr1pfUZduglWoICURX8uCG5cV7APaUibptA1Nk5BMCqV0J279Abf6S+If6F94Z0xBLaITkpw5954zc++1Q8+NhWm+ZrSFxaXllexqbm19Y3NL396pxkESObziBF4Q1W0Wc8/1eUW4wuP1MOJsaHu8Zg+uZLw24lHsBv6tGIe8NWQ93+26DhNEtXW92Wdi4k/bE2taiI/ZUVvPm0VTLWMeWCnII13lQH9BEx0EcJBgCA4fgrAHhpieBiyYCIlrYUJcRMhVcY4pcqRNKItTBiN2QN8e7Rop69NeesZK7dApHr0RKQ0ckiagvIiwPM1Q8UQ5S/Y374nylHcb099OvYbECvSJ/Us3y/yvTtYi0MWlqsGlmkLFyOqc1CVRXZE3N75UJcghJE7iDsUjwo5SzvpsKE2sape9ZSr+pjIlK/dOmpvgXd6SBmz9HOc8qJ4UrfPi2c1pvnSQjjqLPeyjQPO8QAnXKKNC3iM84gnPWk2banfa/Weqlkk1u/i2tIcPI9mVkA==</latexit>

n̂1(s, a)

<latexit sha1_base64="V9M1w3QNJj7LHu0DOEtPlhSHRAo=">AAACyHicjVHLSsNAFD2Nr1pfVZduglWoICURX8uCG3FVwbSFWiRJp3VoXmQmSilu/AG3+mXiH+hfeGeMoBbRCUnOnHvPmbn3eknAhbSsl4IxNT0zO1ecLy0sLi2vlFfXmiLOUp85fhzEadtzBQt4xBzJZcDaScrc0AtYyxueqHjrhqWCx9GFHCWsG7qDiPe570qinKrYdXeuyhWrZullTgI7BxXkqxGXn3GJHmL4yBCCIYIkHMCFoKcDGxYS4roYE5cS4jrOcIcSaTPKYpThEjuk74B2nZyNaK88hVb7dEpAb0pKE9ukiSkvJaxOM3U8086K/c17rD3V3Ub093KvkFiJa2L/0n1m/lenapHo41jXwKmmRDOqOj93yXRX1M3NL1VJckiIU7hH8ZSwr5WffTa1RujaVW9dHX/VmYpVez/PzfCmbkkDtn+OcxI092r2Ye3gfL9S38pHXcQGNlGleR6hjlM04JA3xwMe8WScGYlxa4w+Uo1CrlnHt2XcvwMCoZBq</latexit>

(s, a)

<latexit sha1_base64="pggfTEWq9RDEZ0yzk4sQ/m6YI0Q=">AAAC13icjVHLSsQwFD3W93vUpZviKLgaWvG1FNy4VHB84AxDm8lomLQpaSqKiDtx6w+41T8S/0D/wptYQR1EU9qenHvPSe69cSZFboLgpc/rHxgcGh4ZHRufmJyarszMHuSq0IzXmZJKH8VRzqVIed0II/lRpnmUxJIfxt1tGz885zoXKt03lxlvJtFpKjqCRYaoVmW2ITtSKd1gbWUa5Clkq1INaoFbfi8IS1BFuXZV5RkNtKHAUCABRwpDWCJCTs8JQgTIiGviijhNSLg4xzXGSFtQFqeMiNgufU9pd1KyKe2tZ+7UjE6R9GpS+lgijaI8Tdie5rt44Zwt+5v3lfO0d7ukf1x6JcQanBH7l+4z8786W4tBB5uuBkE1ZY6x1bHSpXBdsTf3v1RlyCEjzuI2xTVh5pSfffadJne1295GLv7qMi1r96zMLfBmb0kDDn+OsxccrNTC9dra3mp1a7Ec9QjmsYBlmucGtrCDXdTJ+wIPeMSTd+zdeLfe3Ueq11dq5vBteffvFYeXJw==</latexit>b·e

Figure 1. Efficient implementation of Count-MORL with hash
codes: given a state action pair as input, for each model, tak-
ing the feature mapping ϕ and computing the counting function n̂
using ϕ.

vector corresponding to each state-action pair. However,
since the binary vector corresponding to each state-action
pair can vary based on different estimated models (given
that we use an ensemble of transition models), we apply an
approximate count computed from the count obtained for
each learned model, as outlined in Algorithm 2.

5. Experiments
In this section, we present our experimental procedures and
their respective outcomes, seeking to answer the following
pertinent questions:

(i) Can the proposed method produce approximate counts
that accurately estimate the true counts for each state-
action pair?

(ii) How does the performance of Count-MORL measure
up against the previous state-of-the-art (SOTA) bench-
marks in offline RL?

(iii) How do count estimation methods, which account
for uncertainty in count estimation, perform when
exposed to different types of datasets?

5.1. Experimental Setup

Grid-World. To address the question (i), we start by pre-
cisely counting the number of samples for each state-action
pair in the Grid-World setting. As we have the true count
for each state-action pair at hand, we can evaluate the dis-
crepancy between the approximate counts and the authentic
counts. We employ four types of Grid-World environments
—Empty, Bridge, Cliff, and ZigZag — as depicted in Figure 2
(Biedenkapp et al., 2021). In each of these environments,
we amass transition samples from a replay buffer of the
policy trained via Q-learning. The Empty dataset contains
106 samples and covers all state-action pairs. In contrast,
the Bridge, Cliff, and ZigZag datasets encompass 1.6× 105,

7

Model-based Offline Reinforcement Learning with Count-based Conservatism

S

G

(a) Bridge

S G

(b) Cliff

S

G

(c) Zigzag

Figure 2. 3 types of 8×8 Grid World, Bridge, Cliff, and Zigzag.
The objective is to reach a fixed goal state (G) from a fixed start
state (S) while avoiding the lava area colored in black.

1.4× 105 and 3× 105 transition samples, respectively, but
they do not include samples for all actions taken within the
lava zones, represented by black grids.

MuJoCo. We evaluate Count-MORL on datasets in the
D4RL benchmark (Fu et al., 2020), which comprises a total
of 12 datasets from 3 different environments (HalfCheetah,
Hopper, and Walker2d), each with 4 dataset types (Ran-
dom, Medium, Medium-Replay, Medium-Expert). Random
dataset contains 106 transition samples collected by a ran-
dom policy. Medium dataset contains 106 transition samples
collected by a partially trained SAC policy. Medium-Replay
dataset contains 105 (2× 105 for Walker2d) transition sam-
ples, which are from the replay buffer that accumulates
samples obtained by interacting with the environment until
the policy trained using SAC reaches the performance of
Medium agent. Medium-Expert dataset contains 106 transi-
tion samples, a mixture of sub-optimal and expert samples
obtained by the partial and fully-trained policy.

Counting Method. As explained earlier, there are three
count estimation methods: LC, AVG, and UC counts. When
using LC and UC count methods, for each dataset, we choose
the standard deviation coefficient α as 0.5. By changing
the value of α, the approximate count can be adjusted to be
either large or small (Line 7 in Algorithm 2).

Hyperparameter Details. Our algorithm adopts its foun-
dational hyperparameters from the MOPO framework (Yu
et al., 2020). While MOPO typically utilizes relatively short
rollout lengths, such as 2 or 5 steps, recent research (Lu
et al., 2022) emphasizes the crucial role that the rollout
length parameter, denoted by h, plays in the performance
of model-based offline RL algorithms. Therefore, we ex-
tend the rollout length to accommodate up to 20 steps. We
select an optimal rollout length and a reward penalty coeffi-
cient from the following potential values: h ∈ {5, 20} and
β ∈ {0.5, 1, 3, 5}.
Hyperparameter Details of Autoencoder. We employ a
d-dimensional binary vector to count the samples within our
offline dataset. Our experiments explore the performance
with different dimensions of this binary vector, specifically

considering five distinct values: d ∈ {16, 32, 50, 64, 80}.
Baselines. We compare our algorithm against the state-
of-the-art model-based algorithms, RepBSDE (Lee et al.,
2021), RAMBO (Rigter et al., 2022), COMBO (Yu et al.,
2021b), MOPO (Yu et al., 2020) and MOReL (Kidambi
et al., 2020), and model-free algorithms, CQL (Kumar et al.,
2020) and TD3+BC (Fujimoto & Gu, 2021), for offline
RL. COMBO, MOPO, and CQL evaluate the performance
of their algorithms on the MuJoCo-v0 datasets. However,
RepB-SDE, RAMBO, MOReL, and TD3+BC papers in-
clude their performance on the MuJoCo-v2 datasets. We
provide normalized scores for Count-MORL and reproduce
the performance of COMBO, MOPO, and CQL algorithms
on the MuJoCo-v2 datasets. This allows for a fair compari-
son with all SOTA offline RL algorithms, which have also
been evaluated on the MuJoCo-v2 datasets.

5.2. Results

5.2.1. RESULTS ON GRID-WORLD

We assess the accuracy of our approach by comparing the
approximate counts with the true counts in the 8×8 Grid-
World environments. The autoencoder, which is connected
to the dynamics model, uses the output from the dynamics
model’s hidden layer as its input, as detailed in our neural
network architecture (see Figure 1). Despite the intricacies
of this setup, we find that the approximate count, derived
from a hash code, matches the true count for each state-
action pair across all the Grid-World environments that we
tested, Bridge, Cliff, and Zigzag. These findings underscore
the accuracy and robustness of our count estimation method.
More detailed results are provided in Appendix C.1.

5.2.2. RESULTS ON D4RL TASKS

Our experimental results, summarized in Tables 1 and 2,
are based on evaluations carried out on the D4RL bench-
mark datasets. To address the question (ii), our method,
Count-MORL, achieves the best or competitive performance
in 10 out of the 12 settings. As seen in Table 1, Count-MORL
outperforms others across datasets with narrower (Medium,
Medium-Expert) and more diverse state-action distributions
(Random, Medium-Replay). However, the Random datasets
of Hopper and Walker2d are exceptions, where MOReL
performs better. Excluding MOReL from comparison, our
method leads in performance for Hopper and Walker2d on
the Random dataset. Additionally, our method surpasses
all other algorithms for the Random dataset of Halfchee-
tah. These results demonstrate the superior performance of
Count-MORL against state-of-the-art offline RL algorithms
across various dataset types.

Table 2 exhibits the performance of different count estima-
tion methods (LC, AVG, and UC) on the D4RL benchmark

8

Model-based Offline Reinforcement Learning with Count-based Conservatism

Table 1. Results for D4RL datasets. Each number is the normalized score proposed in Fu et al. 2020 of the policy during the last 5
iterations averaged over 5 seeds, where ± denotes the standard deviation over seeds. We take the results of RepB-SDE, RAMBO, MOReL,
and TD3+BC from their papers. We reproduce the results of COMBO, MOPO, and CQL with MuJoCo-v2 datasets. We include the score
of behavior cloning (BC) for comparison. Bold numbers are the scores within 2% of the highest score in each environment.

Model-based baselines Model-free baselines
Dataset type Environment Count-MORL RepB-SDE RAMBO COMBO MOPO MOReL CQL TD3+BC BC

Random
Halfcheetah 41.0 ± 0.9 32.9 40.0 36.7± 2.1 34.0± 2.8 25.6 26.6± 0.8 11.0 2.1
Hopper 30.7± 1.3 8.6 21.6 7.8± 0.9 7.0± 1.9 53.6 9.4± 0.6 8.5 9.8
Walker2d 21.9± 0.2 21.1 11.5 5.9± 0.3 5.6± 5.7 37.3 −0.4± 0.8 1.6 1.6

Medium
Halfcheetah 76.5 ± 1.7 49.1 77.6 61.6± 1.5 67.8± 2.3 42.1 47.2± 0.6 48.3 36.1
Hopper 103.6 ± 3.7 34.0 92.8 63.3± 2.4 20.9± 13.9 95.4 62.2± 4.4 59.3 29.0
Walker2d 87.6 ± 3.7 72.1 86.9 70.1± 5.0 −0.1± 0.1 77.8 76.1± 1.6 83.7 6.6

Medium-Replay
Halfcheetah 71.5 ± 1.8 57.5 68.9 57.0± 1.2 66.2± 3.0 40.2 44.6± 0.7 44.6 38.4
Hopper 101.7 ± 0.8 62.2 96.6 71.5± 8.0 64.2± 28.9 93.6 98.3± 1.3 60.9 11.8
Walker2d 87.7 ± 3.0 49.8 85.0 52.6± 4.5 67.9± 15.7 49.8 82.1± 2.6 81.8 11.3

Medium-Expert
Halfcheetah 100.0 ± 4.9 55.4 93.7 65.3± 9.7 91.7± 9.9 53.3 90.6± 4.4 90.7 35.8
Hopper 111.4 ± 0.5 82.6 83.3 105.4± 4.5 21.9± 20.9 108.7 98.2± 11.0 98.0 111.9
Walker2d 112.3 ± 1.8 88.8 68.3 73.7± 12.7 4.0± 5.4 95.6 109.3± 0.6 110.1 6.4

MuJoCo-v2 Average: 78.8 ± 2.0 51.2 68.9 55.9± 4.4 37.6± 9.2 64.4 62.0± 2.5 58.2 25.1

Table 2. Performance of Count-MORL using each count estimation method (LC, AVG, UC). We bold the highest score.
Count Estimation

Dataset type Environment LC count AVG count UC count

Random
Halfcheetah 41.0 ± 0.9 38.7± 0.5 39.1± 1.0
Hopper 30.7 ± 1.3 27.7± 6.2 26.5± 6.5
Walker2d 21.9 ± 0.1 21.9 ± 0.1 21.9 ± 0.2

Medium
Halfcheetah 74.2± 2.5 76.5 ± 1.7 74.6± 1.6
Hopper 99.7± 7.2 101.8± 4.7 103.6 ± 3.7
Walker2d 84.2± 2.9 87.6 ± 3.7 85.2± 2.6

Medium-Replay
Halfcheetah 71.2± 2.9 71.1± 0.8 71.5 ± 1.8
Hopper 98.9± 3.9 100.2± 0.9 101.7 ± 0.8
Walker2d 84.3± 3.1 85.8± 2.8 87.7 ± 3.0

Medium-Expert
Halfcheetah 94.8± 5.5 98.1± 2.5 100.0 ± 4.9
Hopper 107.2± 4.7 109.4± 1.2 111.4 ± 0.5
Walker2d 109.7± 1.4 110.7± 0.5 112.3 ± 1.8

datasets. LC count performs best for Random datasets, while
UC count outperforms others for Medium-Expert datasets.
These results suggest that we can tailor the count estimation
method based on the nature of the offline dataset. Unob-
served state-action pairs in the offline dataset are assigned
a constant penalty of 1 (see Corollary 1). For the Random
dataset, LC count provides a relatively larger penalty to
observed state-action pairs by under-estimating counts, al-
lowing the agent to potentially take actions or visit states be-
yond the dataset’s boundaries. Conversely, for the Medium-
Expert dataset, UC count computes over-approximate counts
incurring smaller penalties and encouraging the agent to
exploit the states within the dataset. If the replay buffer
consistently contains high-quality data, as observed in the
Medium-Replay datasets, UC count tends to perform better,
as indicated in Table 2. However, if the behavior policy
generates low-quality data significantly different from data
from an optimal policy, LC count can be more beneficial.

Thus, the appropriate choice of count estimation is likely to
achieve improved performance.

6. Conclusion
Count-MORL introduces a novel and tractable approach to
model-based offline RL that incorporates count-based con-
servatism, effectively bridging the theoretical and practical
divide in model-based offline deep RL. Consequently, our
method outperforms existing state-of-the-art offline RL al-
gorithms, further solidifying our approach’s efficacy.

Acknowledgements
This work was supported by the National Research
Foundation of Korea(NRF) grant funded by the Korea
government(MSIT) (No. 2021M3E5D2A01024795, No.
2022R1C1C1006859, and No. 2022R1A4A103057912).

9

Model-based Offline Reinforcement Learning with Count-based Conservatism

References
Agarwal, A., Kakade, S., Krishnamurthy, A., and Sun, W.

Flambe: Structural complexity and representation learn-
ing of low rank mdps. Advances in neural information
processing systems, 33:20095–20107, 2020a.

Agarwal, R., Schuurmans, D., and Norouzi, M. An opti-
mistic perspective on offline reinforcement learning. In
International Conference on Machine Learning, pp. 104–
114. PMLR, 2020b.

An, G., Moon, S., Kim, J.-H., and Song, H. O. Uncertainty-
based offline reinforcement learning with diversified q-
ensemble. Advances in neural information processing
systems, 34:7436–7447, 2021.

Argenson, A. and Dulac-Arnold, G. Model-based offline
planning. In International Conference on Learning Rep-
resentations, 2021.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. Unifying count-based ex-
ploration and intrinsic motivation. Advances in neural
information processing systems, 29, 2016.

Biedenkapp, A., Rajan, R., Hutter, F., and Lindauer, M.
Temporl: Learning when to act. In International Confer-
ence on Machine Learning, pp. 914–924. PMLR, 2021.

Fawzi, A., Balog, M., Huang, A., Hubert, T., Romera-
Paredes, B., Barekatain, M., Novikov, A., R Ruiz, F. J.,
Schrittwieser, J., Swirszcz, G., et al. Discovering
faster matrix multiplication algorithms with reinforce-
ment learning. Nature, 610(7930):47–53, 2022.

Fu, J., Co-Reyes, J., and Levine, S. Ex2: Exploration
with exemplar models for deep reinforcement learning.
Advances in neural information processing systems, 30,
2017.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

Fujimoto, S. and Gu, S. S. A minimalist approach to offline
reinforcement learning. Advances in neural information
processing systems, 34:20132–20145, 2021.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep
reinforcement learning without exploration. In Interna-
tional conference on machine learning, pp. 2052–2062.
PMLR, 2019.

Gu, S., Holly, E., Lillicrap, T., and Levine, S. Deep rein-
forcement learning for robotic manipulation with asyn-
chronous off-policy updates. In 2017 IEEE international
conference on robotics and automation (ICRA), pp. 3389–
3396. IEEE, 2017.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,
2018.

Hishinuma, T. and Senda, K. Weighted model estimation for
offline model-based reinforcement learning. Advances
in Neural Information Processing Systems, 34:17789–
17800, 2021.

Hong, J., Kumar, A., and Levine, S. Confidence-conditioned
value functions for offline reinforcement learning. In
International Conference on Learning Representations,
2023.

Hwang, T. and Oh, M.-h. Model-based reinforcement learn-
ing with multinomial logistic function approximation. In
Proceedings of the AAAI conference on artificial intelli-
gence, volume 37, 2023.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust
your model: Model-based policy optimization. Advances
in Neural Information Processing Systems, 32, 2019.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims,
T. Morel: Model-based offline reinforcement learning.
Advances in neural information processing systems, 33:
21810–21823, 2020.

Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Al Sallab,
A. A., Yogamani, S., and Pérez, P. Deep reinforcement
learning for autonomous driving: A survey. IEEE Trans-
actions on Intelligent Transportation Systems, 2021.

Kostrikov, I., Nair, A., and Levine, S. Offline reinforce-
ment learning with implicit q-learning. In International
Conference on Learning Representations, 2022.

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S.
Stabilizing off-policy q-learning via bootstrapping error
reduction. Advances in Neural Information Processing
Systems, 32, 2019.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Con-
servative q-learning for offline reinforcement learning.
Advances in Neural Information Processing Systems, 33:
1179–1191, 2020.

Lee, B.-J., Lee, J., and Kim, K.-E. Representation bal-
ancing offline model-based reinforcement learning. In
International Conference on Learning Representations,
2021.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643, 2020.

10

Model-based Offline Reinforcement Learning with Count-based Conservatism

Liu, Y., Swaminathan, A., Agarwal, A., and Brunskill, E.
Provably good batch off-policy reinforcement learning
without great exploration. Advances in neural information
processing systems, 33:1264–1274, 2020.

Lu, C., Ball, P., Parker-Holder, J., Osborne, M., and Roberts,
S. J. Revisiting design choices in offline model based
reinforcement learning. In International Conference on
Learning Representations, 2022.

Machado, M. C., Bellemare, M. G., and Bowling, M. Count-
based exploration with the successor representation. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pp. 5125–5133, 2020.

Martin, J., Narayanan, S. S., Everitt, T., and Hutter, M.
Count-based exploration in feature space for reinforce-
ment learning. In Proceedings of the 26th International
Joint Conference on Artificial Intelligence, pp. 2471–
2478, 2017.

Matsushima, T., Furuta, H., Matsuo, Y., Nachum, O., and
Gu, S. Deployment-efficient reinforcement learning via
model-based offline optimization. In International Con-
ference on Learning Representations, 2021.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Ostrovski, G., Bellemare, M. G., Oord, A., and Munos, R.
Count-based exploration with neural density models. In
International conference on machine learning, pp. 2721–
2730. PMLR, 2017.

Rafailov, R., Yu, T., Rajeswaran, A., and Finn, C. Offline
reinforcement learning from images with latent space
models. In Learning for Dynamics and Control, pp. 1154–
1168. PMLR, 2021.

Rigter, M., Lacerda, B., and Hawes, N. Rambo-rl: Robust
adversarial model-based offline reinforcement learning.
In Advances in Neural Information Processing Systems,
2022.

Shi, L., Li, G., Wei, Y., Chen, Y., and Chi, Y. Pessimistic
q-learning for offline reinforcement learning: Towards
optimal sample complexity. In International Conference
on Machine Learning, pp. 19967–20025. PMLR, 2022.

Siegel, N., Springenberg, J. T., Berkenkamp, F., Abdol-
maleki, A., Neunert, M., Lampe, T., Hafner, R., Heess,
N., and Riedmiller, M. Keep doing what worked: Behav-
ior modelling priors for offline reinforcement learning. In
International Conference on Learning Representations,
2020.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017.

Swazinna, P., Udluft, S., and Runkler, T. Overcoming
model bias for robust offline deep reinforcement learning.
Engineering Applications of Artificial Intelligence, 104:
104366, 2021.

Tang, H., Houthooft, R., Foote, D., Stooke, A., Xi Chen, O.,
Duan, Y., Schulman, J., DeTurck, F., and Abbeel, P. #
exploration: A study of count-based exploration for deep
reinforcement learning. Advances in neural information
processing systems, 30, 2017.

Uehara, M. and Sun, W. Pessimistic model-based offline
reinforcement learning under partial coverage. In Inter-
national Conference on Learning Representations, 2022.

Wu, Y., Tucker, G., and Nachum, O. Behavior regu-
larized offline reinforcement learning. arXiv preprint
arXiv:1911.11361, 2019.

Xie, T., Cheng, C.-A., Jiang, N., Mineiro, P., and Agarwal,
A. Bellman-consistent pessimism for offline reinforce-
ment learning. Advances in neural information process-
ing systems, 34:6683–6694, 2021.

Yang, L. and Wang, M. Sample-optimal parametric q-
learning using linearly additive features. In Interna-
tional Conference on Machine Learning, pp. 6995–7004.
PMLR, 2019.

Yang, L. and Wang, M. Reinforcement learning in feature
space: Matrix bandit, kernels, and regret bound. In In-
ternational Conference on Machine Learning, pp. 10746–
10756. PMLR, 2020.

Yu, C., Liu, J., Nemati, S., and Yin, G. Reinforcement learn-
ing in healthcare: A survey. ACM Computing Surveys
(CSUR), 55(1):1–36, 2021a.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J. Y., Levine, S.,
Finn, C., and Ma, T. Mopo: Model-based offline policy
optimization. Advances in Neural Information Processing
Systems, 33:14129–14142, 2020.

Yu, T., Kumar, A., Rafailov, R., Rajeswaran, A., Levine, S.,
and Finn, C. Combo: Conservative offline model-based
policy optimization. Advances in neural information
processing systems, 34:28954–28967, 2021b.

11

Model-based Offline Reinforcement Learning with Count-based Conservatism

Zhou, D., Gu, Q., and Szepesvari, C. Nearly minimax
optimal reinforcement learning for linear mixture markov
decision processes. In Conference on Learning Theory,
pp. 4532–4576. PMLR, 2021.

12

Model-based Offline Reinforcement Learning with Count-based Conservatism

A. Proosfs
A.1. Proof of Theorem 1

Proof. Given a state-action (s, a) pair observed in D with Ds,a = {(si, ai, s′i)}si=s,ai=a and n (s, a) = |Ds,a| such that
the MLE of transition dynamics is

P̂ (· | s, a) ∈ argmax
P∈M

∑

(s,a,s′)∈Ds,a

logP (s′ | s, a) (1)

for given (s, a). By Theorem 21 in Agarwal et al. (2020a), with probability at least 1− δ,

E(si,ai)∼Ds,a

[
TV
(
P̂ (· | si, ai), P ⋆(· | si, ai)

)2]
≤ 2 log(|M|/δ)

n (s, a)
.

We can directly bound the total variation distance between the estimated transition dynamics P̂ and the true transition
dynamics P ⋆ due to the subset Ds,a = {(s, a, s′i)}

n(s,a)
i=1 . Thus,

TV
(
P̂ (· | s, a), P ⋆(· | s, a)

)
≤
√

2 log(|M|/δ)
n (s, a)

.

A.1.1. PROOF OF COROLLARY 1

Proof. By Theorem 1, given a state-action (s, a) pair observed in D, the estimated transition dynamics is satisfied by
Equation (1) such that we have

TV
(
P̂ (· | s, a), P ⋆(· | s, a)

)
≤
√

2 log(|M|/δ)
n (s, a)

.

If given an unobserved state-action pair in D, we cannot estimate the transition dynamics or compute the estimation error.
And, when n(s, a) is less than

√
2 log(|M|/δ), the estimation error becomes greater than 1. Thus, by the definition of the

total variation distance between probability distributions P and Q as

TV(P,Q) = sup
A
|P (A)−Q(A)|,

we bound the estimation error as 1 for these cases. Therefore, with probability at least 1 − δ, for any state-action pair
(s, a) ∈ S ×A,

TV
(
P̂ (· | s, a), P ⋆(· | s, a)

)
≤ min

(
1,

√
2 log(|M|/δ)

n (s, a)

)
.

A.2. Proof of Theorem 2

Before we prove Theorem 2, we prove Lemma 1 and Corollary 2 that will be used in the latter proof.

A.2.1. PROOF OF LEMMA 1

The proof of Lemma 1 follows from modifying the proofs of Lemma 4.1 in MOPO (Yu et al., 2020) based on count-based
estimation error.

Proof. We denote the expectation of cumulative discounted reward under π and P̂ for j steps and then switching to P ⋆ for
the rest steps:

Wj = E
s∼d0

∀t≥0,at∼π(·|st)
∀j>t≥0,st+1∼P̂ (·|st,at)
∀t≥j,st+1∼P⋆(·|st,at)

[∞∑

t=0

γtr(st, at) | s0 = s

]

13

Model-based Offline Reinforcement Learning with Count-based Conservatism

Note that W0 = V π
M⋆ and W∞ = V π

M̂
. By the telescoping lemma, we have that

V π
M̂
− V π

M⋆ =

∞∑

j=0

(Wj+1 −Wj) .

Rewriting Wj and Wj+1 for the trajectory distribution as

Wj = Rj + E
sj ,aj∼π,P̂

[
E

sj+1∼P̂ (·|sj ,aj)

[
γj+1V π

P⋆,r(sj+1)
]
]

Wj+1 = Rj + E
sj ,aj∼π,P̂

[
E

sj+1∼P⋆(·|sj ,aj)

[
γj+1V π

P⋆,r(sj+1)
]]

,

where Rj denotes the sum of the discounted rewards obtained from the first step to j step under π and P̂ .

Then,

Wj+1 −Wj = γj+1 E
sj ,aj∼π,P̂

[
E

sj+1∼P̂ (·|sj ,aj)

[
V π
P⋆,r(sj+1)

]
− E

sj+1∼P⋆(·|sj ,aj)

[
V π
P⋆,r(sj+1)

]
]

≤ γj+1Rmax

1− γ
E

sj ,aj∼π,P̂

[
TV
(
P̂ (·|sj , aj), P ⋆(·|sj , aj)

)]

≤ γj+1Rmax

1− γ
E

sj ,aj∼π,P̂

[
Cδ

P̂
(sj , aj)

]

≤ γj+1Rmax

1− γ
E

sj ,aj∼π,P̂

[
Ĉδ

P̂
(sj , aj) + ϵ(sj , aj)

]
, (2)

where first inequality step uses the fact that
∥∥V π

P⋆,r(s)
∥∥
∞ ≤

Rmax

1−γ ; second inequality step uses the estimation error bound
based on the true count Cδ

P̂
in Corollary 1; and the last inequality step uses the estimated error bound based on the

approximate count Ĉδ
P̂

and denote the approximation error for each state-action pair as ϵ(s, a) :=
∣∣∣Cδ

P̂
(s, a)− Ĉδ

P̂
(s, a)

∣∣∣.

Therefore, with probability at least 1− δ, for any policy π,

V π
M̂
− V π

M⋆ =

∞∑

j=0

(Wj+1 −Wj)

≤ Rmax

1− γ

∞∑

j=0

γj+1 E
sj ,aj∼π,P̂

[
Ĉδ

P̂
(sj , aj) + ϵ(sj , aj)

]

=
γRmax

(1− γ)2
E(s,a)∼dπ

P̂

[
Ĉδ

P̂
(s, a) + ϵ(sj , aj)

]

≤ γRmax

(1− γ)2
E(s,a)∼dπ

P̂

[
Ĉδ

P̂
(s, a)

]
+

γRmax

(1− γ)2
ϵ ,

where the first inequality step uses Equation (2); and the last inequality uses the definition of the maximal approximation
error as ϵ = sup(s,a)∈S×A ϵ(s, a).

A.2.2. PROOF OF COROLLARY 2

Proof. In Definition 3, we define the count-based conservatism MDP M̃ := (S,A, P̂ , r̃, d0, γ) with the estimated transition
dynamics P̂ and the count-based penalized reward r̃ (s, a) = r (s, a)− γRmax

1−γ Ĉδ
P̂
(s, a). Then, we represent the result of

14

Model-based Offline Reinforcement Learning with Count-based Conservatism

Lemma 1 based on the value gap between the count-based conservatism MDP M̃ and the true MDP M⋆.

V π
M⋆ ≥ V π

M̂
− γRmax

(1− γ)2
E(s,a)∼dπ

P̂

[
Ĉδ

P̂
(s, a)

]
− γRmax

(1− γ)2
ϵ

=
1

1− γ
E(s,a)∼dπ

P̂

[
r (s, a)− γRmax

1− γ
Ĉδ

P̂
(s, a)

]
− γRmax

(1− γ)2
ϵ

=
1

1− γ
E(s,a)∼dπ

P̂
[r̃ (s, a)]− γRmax

(1− γ)2
ϵ

= V π
M̃
− γRmax

(1− γ)2
ϵ , (3)

where the first inequality step uses the value gap of the estimated model in Lemma 1; and the second equality step uses the
definition of the count-based penalized reward.

Now, we prove our main theorem (Theorem 2) that provides a performance guarantee under M⋆.

Proof. For any policy π, we have that

V π̂
M⋆ ≥ V π̂

M̃
− γRmax

(1− γ)2
ϵ

≥ V π
M̃
− γRmax

(1− γ)2
ϵ

= V π
M̂
− γRmax

(1− γ)2
E(s,a)∼dπ

P̂

[
Ĉδ

P̂
(s, a)

]
− γRmax

(1− γ)2
ϵ

≥ V π
M⋆ − 2γRmax

(1− γ)2
E(s,a)∼dπ

P̂

[
Ĉδ

P̂
(s, a)

]
− 2γRmax

(1− γ)2
ϵ ,

where the first inequality step uses the result of Corollary 2; the second inequality step uses the definition of π̂ as
π̂ = argmaxπ V

π
M̃

; and the last inequality step uses the result of Theorem 1.

B. Experimental Details.
This section contains all details of Count-MORL (github.com/oh-lab/Count-MORL) with hash codes based on the official
MOPO code from github.com/tianheyu927/mopo.

B.1. Model and Policy Training

We represent the dynamics model as an ensemble of probabilistic neural networks that outputs a Gaussian distribution over
the next state and reward given the current state and action:

P̂θ(s
′, r|s, a) = N (µθ(s, a),Σθ(s, a)).

Each dynamics model consists of a 4-layer neural network with 200 hidden units per layer and after the last hidden layer,
the dynamics model outputs the mean and variance using a two-head architecture. We connect an autoencoder to the hidden
layer of the dynamics model, which takes the output of this hidden layer as an input. We determine the architecture of
the autoencoder with the output dimension d of the bottleneck layer. For d < 50, we use 6-layer neural network with
[100, 50, d, 50, 100, 100] units. For 50 ≤ d < 100, we use 5-layer neural network with [100, 100, d, 100, 100] units. We
learn the dynamics model and the autoencoder using the log-likelihood objective function and mean square error, respectively.
Following previous works (Janner et al., 2019; Yu et al., 2020; 2021b; Rigter et al., 2022), we train an ensemble of 7 such
models that each contain the dynamics model and autoencoder and pick the best 5 models based on the validation prediction
error on a held-out test set of 1000 transitions from the offline dataset D. For the soft actor-critic (SAC) (Haarnoja et al.,
2018) updates, we sample a batch of 256 transitions, 5% of them from D and the rest of them from Dmodel.

15

https://github.com/oh-lab/Count-MORL
https://github.com/tianheyu927/mopo

Model-based Offline Reinforcement Learning with Count-based Conservatism

B.2. Hyperparameters

We found that the hyperparameters that have a significant influence on the performance of Count-MORL. We take a rollout
length (H), a standard deviation coefficient (α) for the count estimation, a reward penalty coefficient (β) for each count
estimation method, and a dimension of hash codes (d). For a rollout length and a reward penalty coefficient, we found that a
length H ∈ {5, 20} and a coefficient β ∈ {0.5, 1, 3, 5} performed well across all datasets. This is a slight modification to
the values of H ∈ {1, 5} and β ∈ {0.5, 1, 5} in previous model-based offline RL algorithms (Yu et al., 2020). And, in Lu
et al. (2022), the authors show that a rollout length and a reward penalty coefficient play key parameters in determining the
performance of model-based offline RL algorithms. Thus, we utilize the longer rollout length as 20 steps. We fix a standard
deviation coefficient α as 0.5.

Depending on the dataset, we take a dimension d of hash code over {16, 32, 50, 64, 80}. We experimentally confirmed that
the number of hash codes used for counting samples in the offline dataset does not exponentially increase when the binary
vector has a high dimension. For each dimension of the hash code, the count of samples ranged from 5 to 10 (the total
number of samples in the offline dataset divided by the number of hash codes used for counting) in the highest reported
score for each data type on average. In some other cases, the sample count for each hash code ranged from 1 to 2, or even up
to 100. Details of implementation are in the Table 3.

Table 3. Hyperparameters used in the D4RL datasets.
β

Dataset type Environment H LC AVG UC d

Random
Halfcheetah 5 1 0.5 1 50
Hopper 20 1 1 3 80
Walker2d 20 1 1 1 64

Medium
Halfcheetah 5 1 1 3 32
Hopper 20 1 1 1 50
Walker2d 20 3 3 3 32

Medium-Replay
Halfcheetah 5 1 3 3 32
Hopper 5 3 3 1 50
Walker2d 5 1 3 1 32

Medium-Expert
Halfcheetah 5 3 1 3 32
Hopper 20 3 3 3 50
Walker2d 20 3 3 3 50

C. Additional Results
C.1. Results on Grid-World

We compute the approximate count and the known true count on the 8×8 Grid-World environments. Each environment
comprises 256 state-action pairs from 64 states, each with 4 actions (up, down, left, right). We convert all state-action
pairs into the multi-hot encoder to input. Before counting the number of samples, we train the dynamics model and the
autoencoder with the 20-dimension of the bottleneck layer on the replay buffer of the policy trained by Q-learning. When we
use the bottleneck layer’s dimension less than 20, the hash code cannot divide samples into 256 clusters since the rounding
of the bottleneck layer’s output turns to the value either 0 or 1.

Empty, Bridge, Cliff, and ZigZag datasets contain 106, 1.6× 105, 1.4× 105 and 3× 105 transition samples for each. Empty
dataset has samples for all state-action pairs, but Bridge, Cliff and Zigzag datasets have no samples on all actions taken in
the lava (black grids). In Figure 3, the blue and green histogram presents the known true count and the approximate count,
respectively. We observe that the count error between the true and approximate count is zero for all state-action pairs on the
four environments. Therefore, Figure 3 shows that our implementation model structure is able to exactly estimate the true
count in Grid-World.

16

Model-based Offline Reinforcement Learning with Count-based Conservatism

0 64 128 192 256
Index of state-action pairs

0

2000

4000

6000

8000

10000

12000

14000

16000

Co
un

t

0 64 128 192 256
Index of state-action pairs

0

2000

4000

6000

8000

10000

12000

14000

16000

Co
un

t

(a) Empty

0 64 128 192 256
Index of state-action pairs

0

1000

2000

3000

4000

5000

6000

7000

Co
un

t

0 64 128 192 256
Index of state-action pairs

0

1000

2000

3000

4000

5000

6000

7000

Co
un

t

(b) Bridge

0 64 128 192 256
Index of state-action pairs

0

1000

2000

3000

4000

5000

6000

7000

8000

Co
un

t

0 64 128 192 256
Index of state-action pairs

0

1000

2000

3000

4000

5000

6000

7000

8000

Co
un

t

(c) Cliff

0 64 128 192 256
Index of state-action pairs

0

2000

4000

6000

8000

10000

12000

14000

Co
un

t
0 64 128 192 256

Index of state-action pairs
0

2000

4000

6000

8000

10000

12000

14000

Co
un

t

(d) Zigzag

Figure 3. Comparison between the true count (Blue) and the approximate count (Green) on Grid-World environments.

C.2. Dimension of hash codes

In Table 4, we investigate the impact of hash code dimension on performance. We perform a rough grid search over a range
of the dimension of hash codes. In fact, without much intensive the dimension of hash codes tuning to derive the reported
results, Count-MORL is shown to perform significantly superior to the existing offline deep RL algorithms, which we believe
was another strength of our method. We implement experiments on a total of five dimensions for each dataset, evaluating
count estimation methods that showed good performance in Table 2.

Table 4. Performance of Count-MORL for each dimension of hash codes. We bold the highest score.
Dimension of hash codes

Dataset type Environment Count d = 16 d = 32 d = 50 d = 64 d = 80

Random
Halfcheetah LC 36.7± 0.5 38.4± 0.9 41.0 ± 0.9 36.2± 1.0 35.6± 0.8
Hopper LC 22.9± 6.2 21.5± 8.4 24.7± 6.8 27.6± 6.4 30.7 ± 1.3
Walker2d LC 21.8± 0.1 21.8± 0.1 21.9 ± 0.1 21.9 ± 0.1 21.8± 0.1

Medium
Halfcheetah AVG 74.4± 1.5 76.5 ± 1.7 75.7± 1.4 75.2± 1.9 73.9± 1.6
Hopper UC 90.5± 3.1 93.2± 4.6 103.6 ± 3.7 98.3± 5.8 95.1± 3.9
Walker2d AVG 82.2± 0.9 87.6 ± 3.7 81.4± 1.8 80.1± 1.5 80.5± 0.7

Medium-Replay
Halfcheetah UC 68.7± 1.9 71.5 ± 1.8 68.2± 1.5 67.3± 1.7 65.8± 1.7
Hopper UC 94.4± 3.7 97.1± 4.1 101.7 ± 0.8 94.6± 4.9 92.3± 3.2
Walker2d UC 85.8± 1.7 87.7 ± 3.0 82.4± 3.8 80.7± 1.3 81.0± 2.5

Medium-Expert
Halfcheetah UC 98.1± 3.4 100.0 ± 4.9 99.1± 2.8 98.6± 3.2 93.4± 2.7
Hopper UC 95.2± 7.3 90.3± 16.6 111.4 ± 0.5 108.3± 1.8 102.8± 3.2
Walker2d UC 103.4± 2.6 106.1± 3.4 112.3 ± 1.8 109.6± 2.0 105.8± 2.9

17

Model-based Offline Reinforcement Learning with Count-based Conservatism

C.3. Performance on MuJoCo-v2 datasets

We shows the performance of Count-MORL (LC, AVG, UC) and MOPO on MuJoCo-v2 datasets. We confirm that our algorithm
performs better than MOPO just by applying the count-based conservatism instead of the uncertainty heuristics of the model
in Figure 4. The x-axis of the graph represents episodes, while the y-axis represents the cumulative reward. All count
estimation methods are able to train the estimated policy with fewer episodes compared to MOPO to approximate an optimal
policy.

0 250 500 750 1000
Epochs

0

1000

2000

3000

4000

5000

Re
tu

rn

halfcheetah-random

0 250 500 750 1000
Epochs

0

250

500

750

1000

1250
Re

tu
rn

hopper-random

0 250 500 750 1000
Epochs

0

250

500

750

1000

1250

Re
tu

rn

walker2d-random

0 250 500 750 1000
Epochs

0

2000

4000

6000

8000

10000

Re
tu

rn

halfcheetah-medium

0 250 500 750 1000
Epochs

0

800

1600

2400

3200

4000

Re
tu

rn

hopper-medium

0 250 500 750 1000
Epochs

0

1000

2000

3000

4000

Re
tu

rn

walker2d-medium

0 250 500 750 1000
Epochs

0

2000

4000

6000

8000

10000

Re
tu

rn

halfcheetah-medium-replay

0 250 500 750 1000
Epochs

0

800

1600

2400

3200

4000

Re
tu

rn

hopper-medium-replay

0 250 500 750 1000
Epochs

0

1000

2000

3000

4000

Re
tu

rn

walker2d-medium-replay

0 250 500 750 1000
Epochs

0

2500

5000

7500

10000

12500

Re
tu

rn

halfcheetah-medium-expert

0 250 500 750 1000
Epochs

0

800

1600

2400

3200

4000

Re
tu

rn

hopper-medium-expert

0 250 500 750 1000
Epochs

0

1000

2000

3000

4000

5000

Re
tu

rn

walker2d-medium-expert

LC-count AVG-count UC-count MOPO

Figure 4. Performance of MuJoCo-v2 datasets

18

Model-based Offline Reinforcement Learning with Count-based Conservatism

C.4. Results on MuJoCo-v0 datasets

In Table 1, we show the performance of Count-MORL and offline RL baselines on MuJoCo-v2 datasets. When reproducing
the performance in MuJoCo-v2 datasets, we used the implementation of COMBO from github.com/takuseno/d3rlpy, MOPO
from github.com/tianheyu927/mopo, and CQL from github.com/yihaosun1124/OfflineRL-Kit. However, the reproduced
scores for MOPO, COMBO, and CQL are lower than those from their paper. Therefore, we implement Count-MORL with
hash codes on MuJoCo-v0 datasets in Table 5. Count-MORL achieves the best or comparable performance on 10 out of 12
settings in MuJoCo-v0 datasets.

Table 5. Results for D4RL datasets. Each number is the normalized score proposed in Fu et al. 2020 of the policy during the last 5
iterations of training averaged over 5 seeds, where ± denotes the standard deviation over seeds. We take the results of COMBO, MOPO
and CQL from their original papers. We bold the scores within 2% of the highest score across all algorithms.

Dataset type Environment Count-MORL COMBO MOPO CQL

Random
Halfcheetah 40.5 ± 0.4 38.8 35.4 35.4
Hopper 11.9± 0.2 17.9 11.7 10.8
Walker2d 21.5 ± 0.2 7.0 13.6 7.0

Medium
Halfcheetah 56.2 ± 0.8 54.2 42.3 44.4
Hopper 82.3± 2.4 97.2 28.0 86.6
Walker2d 80.5 ± 0.7 81.9 17.8 74.5

Medium-Replay
Halfcheetah 59.4 ± 0.5 55.1 53.1 46.2
Hopper 91.1 ± 0.7 89.5 67.5 48.6
Walker2d 76.1 ± 4.0 56.0 39.0 32.6

Medium-Expert
Halfcheetah 102.9 ± 0.1 90.0 63.3 62.4
Hopper 112.1 ± 0.3 111.1 23.7 111.0
Walker2d 102.3 ± 0.5 103.3 44.6 98.7

MuJoCo-v0 Average: 69.7± 0.9 66.8 36.7 54.9

19

https://github.com/takuseno/d3rlpy
https://github.com/tianheyu927/mopo
https://github.com/yihaosun1124/OfflineRL-Kit

